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CHAPTER |

INTRODUCTION

1.1 Nanotechnology

Nanotechnology is the study at the atomic, molecular, and supramolecular levels
on a scale of ~1-100 nm. Nanotechnology creates various new functional materials with
better coatings, better fluidic flow, and a hest of other improvements to everyday
components due to fundamentally-new properties and functions resulting from their small
structure. Thus, this teehnolegy manufaftures goods and systems with a vast range
of applications, such as.in'medicing, eI__ectr:c_)n'i_cs and energy production.

Nanomaterials exhibii novel-;proﬁg'rties such “as. unique mechanical, optical,
chemical, electrical and magnetic p'r'opertiés j('i,2) which are directly depended on their
size and structure. Widely:tsed r,nahomaté}j__ala_:structures are nanoparticles, nanorods,
nanotubes, nanowires, nanofilms, etc.. -’!:'.rf-;!

Among various types ofii'hahomater@;;-’éold nanoparticles (AuNPs) and silver
nanoparticles (AgNPs) particularly have beeﬁ-’ﬁééd-in many applications because of their
excellent photo physiq{al_and_elﬂci[ical_pmpﬁttiﬁs;[hei_ also exhibit high chemical
reactivity (3,4). The Tich surface area of these metal “Hanoparticles allows surface
modification with wide varieties of biomolecules, for example; DNA (5,6), protein (7),
carbohydrate (8).dipids (9), .enzymes (10), drugs, (11), and.viruses (12). Therefore, gold
and silver nanoparticies—can- be 'served as“promising bioteckinological tools such as

biosensors, drug/gene delivery devices, and contrasting agents.
1.2 Leptospirosis

Leptospirosis is an epidemic disease in human caused by a spirochete bacterium
called Leptospira interrogans which have 23 serogroups and more than 200 serovars.
With the size of 0.1 micron in diameter and 6 - 20 micron in length, Leptospira

interrogans can be seen by dark-field or fluorescence microscope.


http://en.wikipedia.org/wiki/List_of_nanotechnology_applications
http://en.wikipedia.org/wiki/Nanomedicine
http://en.wikipedia.org/wiki/Nanoelectronics
http://en.wikipedia.org/wiki/Leptospira

s

. -\"“3:.4:

SEOLTSELY 5.0\ 17,000

Figure 1-1 Electron microscope image-Qi-l_eptospira interrogans

Leptospirosis can” besiniected from animals and found all over the world
occasionally through out'the year. At is severely spread in tropical country especially in
rainy season. For Thailand, its widespread‘iln October and November as the rain washes
germs from environment and adds up  in flooded area. People or animals that have a
contact with the water can pe infected. Dufi’ng-.—2006-2008 more than 11,000 adults and

children became infected with Leptespirosis and 195 of those infected people died.

) .'.;‘i, Morbidity rate Number

(/100,000) province
1o (5)

[7] '<6.66 (54)
E

1 6.66-13.32 (6)
B 13.33-19.98 (6)
W >1998 (5)

Figure 1-2 Reported cases of Leptospirosis per 100,000 populations by province,
Thailand, 2008



The symptoms of Leptospirosis are similar to many other transmitted disease
symptoms. It cannot be identified in a short period. The treatment should be done within
2 weeks or else the patients are risk to dead. Thus the diagnostic of Leptospirosis in
laboratory is crucial. Nowadays, there are many methods for Leptospirosis detection.
Each method has its advantages and drawbacks, for example, culturing this bacteria from
urine samples requires a long period of infection. Whilst, and the detection of antigen is

complicated, time consuming and harmful to researchers.

In present, World Health Organization (WHO) has set up a standard method for
Leptospirosis detection by..separating leptospira,-cetecting antibody by microscopic
agglutination test (MAT) and.e@etecting DNA in blood sample by polymerase chain
reaction (PCR). Eventhough.ihese method exhibit satisfied diagnostic result, but special
equipments and experienced researcher are needed. Moreover, the accurate result can be
detected after 5-7 days affinfection in b=loo<;-stream.

The quick and ac€urate dragnosrs for the disease benefits to both patient health
and economics; decrease /the cost of medrcrne and equipments for diagnostic and
treatment. Consequently, this research aims. to,rstudy and develop a novel diagnosis
method for Leptospirosis detectron usrng nanotechnology The process is to prepare short

DNA probes which have a complementary base set.corresponding to the infected

Leptospirosis. Based on the different absorption eff|C|encyxbetween single-stranded and
double-stranded DNA onto nanoparticles surface, nanoparticles will act like a marker
which identify if there is the-leptospirosis DNA or not. This technique is promising for

development of fast, sensitive.and economical tool for leptospirasis detection.

1.3 Objectives of this research

The objective of this research is to develop the Leptospirosis detection method

using gold and silver nanoparticles.



1.4 Scope of this research

The scope of this research covers the synthesis metal nanoparticles characterized
by UV-Visible spectroscopy and Transmission electron microscopy (TEM).
Leptospirosis was detected by aggregation and oxidation method of metal nanoparticles.
In addition, the effect of salt and DNA concentration on aggregation and oxidation
method were studied.

AULINENTNEINS
RN TAUNIINGIAE



CHAPTER I

THEORY AND LITERATURE REVIEWS

2.1 Nanotechnology

\QW 2

Nanotechnology iswmplaarymh comprises of fundamental and
applied sciences such I , medicine, and engineering.
Nanotechnology invol materials in nanoscale level to

create unique product i tie study of nanotechnology is

divided into 2 categorie eek to create smaller particles
in nanometer level starti s to direct their assembly and “bottom-up
method” which using hi arrange smaller components (atoms or

Macro
Meso

Micro

F N3s
W S A N’a

Year

1950 1990 2010
e

Figure 2-1 Progress of top-down and bottom-up approaches



Nowadays, nanotechnology has been applied into several applications because of
their unique properties of nanomaterials. For example, nanoparticles can exhibit
excellence light scattering and their light absorption is in the visible wavelength. In
addition, nanomaterials which have high surface-to-volume can be applied in catalyst

chemistry and nanoelectronic engineering.

In biotechnology and biomedical sciences, there is a strong dependence on having
proper understanding of biochemical processes: Thus, the use of molecular self-assembly
as a means to manufacture nanostructures for various nanodevices is one of the major
trends, some of the nanodevices-including'nanoparticies; and quantum dots can be used to

obtain much deeper understanding of biological processes.

Mostly applications™ of nanotechniblogy are related to health & medical areas.
Typical examples include arrays (chips) fér’iarge scale DNA or protein screening. Drug
delivery is another much studied examble.T)/a[ious self assembled peptide structures can
be designed to release<Compatinds undép_lspecific conditions. The applications of
nanomaterials to biology ok medici-hrgiare givé@_gelow:

et

- Fluorescent biologgc_:g_l_labels (13)74 Nanobiomotors (19)

- Drug and gene delivéry (14) P = Biemineralization (20)

- Detection 5f7proteins (15) — I\iénorobotics (21)

- Probing of DNA structure (16) - Nanocomputers (22)

- Tissue engineering (17) - Nanorods vaccination (23)

- Biosensors (18) = | MRI Contrast enhancement (24)

The use of biomolecules in«the~energy 'sector has. so | faribeen rather limited.
Although there are in principle possibilities for applications such as using biological
light-harvesting complexes for solar energy capture, the formats are so far not very
compatible. Lately there has been focused on fuel cells for using chemical redox
reactions for production of electricity. Some success has been reported for such devices
that include biomolecules (25) thus the method in bioelectrochemistry can be improved

by nanostructured biomaterials.



2.2 Nanomaterial

Nanomaterials can be applied into metal, ceramic, polymer and composite which
synthesized by controlling of matter on an atomic or molecule scale range from 1-100
nanometers. Properties of the nanomaterials are different from those of their bulk
materials because of very high sq{fwi /)-volume ratio and other size-dependent
properties.

Nanomaterials are clas s.g:gg&s_dependmg on their structure and

|nto ariou
shape such as quantum d oparti Ies nanowires, carbon nanotubes, nanofilms,
nanocoating, nanocatalysts.e / 3|tes

Wﬁ%ﬁ“ﬁ“ﬁﬂ Wﬁ'ﬁw 98 8

One of the most nanomaterials that is widely applied in medical field is metal
nanoparticles. Nanoparticles are, by definition, particles with diameters ranging from 1 to
100 nm. Metal nanoparticles are known to exist in various shapes such as spherical,
triangular, cubical, pentagonal, rod-shaped, shells, and ellipsoidal. Metal nanoparticles
have sizes similar to the biomolecules encountered at the cellular level. Thus, they can
play great role in nanodevices that can be applied in medical and clinical applications.



When polarized light is shone onto metal nanoparticles at a specific (resonance)
angel, the light will be reflected by the metal nanoparticles acting as a mirror. Photons of
p-polarized light can interact with the electrons cloud of the metal nanoparticles, inducing
a wave-like oscillation of the electrons cloud and thereby reducing the reflected. This
phenomenon is called Surface Plasmon Resonance (SPR) (26). There are many factors
that effect to wavelength of SPR phenomenon. One of the main factors is the size of

nanoparticles. The wavelength can be calculated from Mie theory as shown below.

24NGR*e 2 m | ¥ £.(A)
7 nd@ {e () ¥2& Y F 2 (N)

E(1) =

When

it

Na  Avogadre number J 4

R the radiugofthe spherical NP,
i g
abd vl
Dielectric constant of the §{)rrounding medium
A The wavelength of the light

~The real parts of the dielectric functic‘);nrof the metallic

‘The imaginary parts of the dielectric flnction of the metallic

The prominentcelours, of many metatlicynaneparticle;selutions show the plasmon
band in visible frequencies, unlike the'bulk metals'where the plasmon absorption is in the

UV region which make the colour of nanoparticles-different from bulk metals.

After the synthesis of nanoparticles, the dispersion and aggregation behavior of
nanoparticles is generally controlled in liquid phase. The major mechanisms of surface

interaction between particles in liquid phase are summarized in table 2-1.



Table 2-1 Mechanisms of surface interaction between particles in liquid phase
Surface interaction General mechanism

van der Waals interaction electromagnetic ~ force  between
molecule and/or atom due to
covalent bonds or to the electrostatic
interaction of ions with one another

or with neutral molecules.

Overlap of electric double layer Electrical interaction by the overlap
of “electron double layer around

particle in solution

Bridge force e/ Formation of the bridge of surfactant
between particles

Hydration force s ~ © Interaction of hydrogen bond in
W water with hydrophilic surface on
~ " particles

The van der Waals interaction and overlapping of electric double layer is
generated by the counter ions concentrated at the surfaCe of particles by the surface
charge. Low maximum value-of surface petential promotes the particle aggregation. If the
particles size is large, particles are ‘able to disperse in-suspension’but for particle less than
100 nm, the maximum value of surface potential was too low that‘cause aggregation. In
order to ‘tncrease the, maximumgpotential.and disperse nanoparticles, @anionic or cationic

must be used to increase surface charge.

Thus, the colours of nanoparticles can be easily changed when nanoparticles are
aroused by environment. This leads to the development of diagnosis tools particularly the
modification of the surface of nanoparticles with targeted biomolecules such as DNA
(27), protein (28) or carbohydrate (29).
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2.2.1 Gold nanoparticles

Gold has been famous since ancient times and it was one of the main research
topics for scientist since past decade. Nowadays, research paper about gold has been
rapidly increased especially in nanotechnology field which concerning about gold

nanoparticles (AuNPs) or gold colloid and its self-assembled monolayers, SAMs (30).

Figure 2-3 The dig
light absorbed. P e

‘popartlcles determines the wavelengths of

et i ,' 2 Ly _'4;'_

—
AUNPs is one_oﬁthe most stable nanoparticles amagd metal nanoparticles (31) and

it has many interesting E!ropertles such as particles aggrggatlon, superquenching ability in
fluorescent and surface plasmon resonance. JThe preparations of AuNPs in both aqueous
and organic solvent have-been studied since 4:5 B.C.-in Egypt and China. AuNPs was used
for ornament or medical purpose. After that, the research about AuNPs has been done since
then. In 4818 Ritchters, give areason on colourdiversitylingold coloidthat, it depends on
the starting gold compound used for the synthesis. In 1857, Faraday presented the synthesis
of AuNPs via a reduction process of AuCl, using phosphorus in CS; (two phase system).
It has been discovered that light absorption property of prepared thin film which obtain
from dehydrating AuNPs can cause reversible colour changing depends strongly on

mechanic force applied (32).
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2.2.1.1 Synthesis of gold nanoparticles

The synthesis of AuNPs can be operated both in ageous and organic solution in
one or two phase systems. Synthesis method requires a stabilizer which is a small organic
compound or a polymer chain (33). Stabilizer will attach to AuNPs surface and prevent
AuNPs from linking with each other. Thus, no aggregate or precipitate occur. These
stabilizers are in equilibrium between entering and exiting from AuNPs surface (34).
Consequenly, the AuNPs surface can be exchanged with other stabilizers.

In 1994, Brust reported a systhesis of-AuNPs.in organic solvent by the reduction
of Au®* with NaBH,. Thiol-containing c;mpound was used as a stabilizer. This synthesis
consists of two phase system, ageots and_l organic phase. The reduction of Au®" went in
ageous phase, then the AUNRS was traﬁsfered to organic phase and stabilized by a
thiolated organic compound. Thus, the red-colour AuNPs synthesized in this method was

— il

suspended in the organiC phase (35). . 5

" )

o £
HAUCI4#3H 0 NaB-Hg; e 3 J?H‘::S\S Sgq F,r""

(cctyl)gN*Br 4&~ e

Figure 2-4 Synthesis of AuNPs in organic solvent
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Synthesis of AuNPs in ageous phase can also be done using a water soluble
stabilizer. In 1999 Yonezawa and Kunitake synthesized AuUNPs using sodium
3—mercaptopropionate salt as a stabilizer (36). In 1996, Graba synthesized the AuNPs
using HAuCl,, sodium citrate (stabilizer) and NaBH,; (reducing agent) at room
temperature obtaining 2.6 nm of AuNPs. When the experiment was done at 100 °C, the
size of AuNPs was 60 or 125 nm depended on the concentration of HAuCl, (37). Xiao
synthesized AuNPs using the same method at a temperature up to 100 °C. When
HAUCI, : sodium citrate ratio was 0.30, 0.50,0.75 and 1.00, the size of AuNPs was
16+2.3 nm, 24+2.1 nm, 42+2.6 nm and 5115.3 nmeaecordingly (38). The sodium citrate
acts as both stabilizer and redueing agent. Maoreover, the reaction condition for sodium

citrate is significantly milderthan that foriNaBH, (39).
\

4

Snﬁbun—"a J-mercaptopropionate
;’S ‘.'3 =
Trispdium Citrate
reflux L g
HAuCI, —— N
sinlitangoys —refiix
addition - 2l

Figure 2-5 Synthesis=of AuNPs_in agueous using Sodium 3-mercaptopropionate

as stabilizer

2.2.1.2 Application of gold nanoparticles

AUNPs can be applied in many applications such as catalyst chemistry, Schimpf
found that AuNPs can act as a catalyst in hydrogenation and oxidation reactions (40).
Later, Haruta proved that the oxidation reaction of carbon monoxide can be operated at
room temperature with the presence of AuNPs. (41) Moreover, gold nanoparticles have

been widely used in many biomedical applications including biosensor and molecular
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sensor. Himmelhaus claimed that cap-shaped AuNPs can also be used as optical
biosensor. (42) Furthermore, AuNPs is applicable as ozone sensor (43) and in medical
imaging (44). These applications are always associate with the surface plasmon
resonance (SPR) property of AuNPs.

In 2000, Mirkin binded AuNPs with single stranded DNA constructed a novel
DNA probe to detect the target DNA by hybridization process. The result showed that

plasmon resonance band changed ‘V the blndlng between DNA probe and the
target DNA. This mteractlo characterlstlc red colour of gold

nanoparticles to a bluish- pu@r on&:ollﬁwgaﬂon (45).

e i1 @Toﬁcww%’m e 4 s

(B) hybridization“!

Q‘W’mﬂﬂ‘ﬁm URIINYIR

BeS|des naked eye detection, the changing of light absorption band can be
detected easily by other methods. For example, detected with UV-vis spectrometer (46),
electrophoretic migration (47), or by direct detection using high magnification electron
microscope (48).
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In 2006, Min Su used 2 different DNA probes to bind with the target single-
stranded DNA in corporation with a triplex binder constructing a triplex DNA stand. This
method allows dramatically improvement in discrimination between stabilizing and non-

stabilizing triplex binders, thus the specificity is higher than normal hybridization (49).

Figure 2-7 Represen tiopflgt‘StructL[rfé_,gpd Colour Change of Nanoassembly in
the Presence of Triplex Binder at _Rgﬁm Tem@'@i@e.
(A _vy

For easier ari'a!lgﬁzing, Charrier bind DNA proti_é-i%nto specific beads before

hybridization with a target DNA. After hybridization, aggregation can be observed on the
bead as two-dimensional faggregation. Thisaaggregation caused less aggregation than
three-dimensional enviranment due to the small amaunt of particles. Thus, AuNPs colour
was still red. After that, dextran sulfate was added to the solution competing with the
adsorbed, AuNPs on~the-lipid“fayer onthe bead.’ Therefore, ‘it promoted desorption of
AUNPs resulting in red colour of solution. In contrast, when the hybridization was carried
out with target DNA, no desorption can be observed after introduction of the dextran
sulfate in the solution. The adventage of this method is, as 2D supported system, it

enables the design of multiplexed detection (50).



15

.01

binding between the positive
charge within the gold

In 2008 Rojanathanes /(5! \ \ fic
’ \\\\- ge within hCG hormone in
f o s

pregnancypositive urine; observed in pregnancy negative

urine samples. As a stabilizer, [ d né \1 particles from aggregation, thus the

pregnancy-positive mixture r

gray.

e pregnancy-negative mixture turned to

Figure 2-9 The mixtures of gold nanoparticles solution and positive and negative
urine samples compare with commercial test kit



16

2.2.2 Silver nanoparticles

In recent years, silver nanoparticles have received a lot of attention as discoveries
in the various physical properties. These small particles maintain in hopes of use in
electrical, catalytic, medical and optical fields. Like the gold nanoparticles, the extremely
small size of silver nanoparticles results in the particles having a large surface area
relative to their volume. This allows them to easily interact with other particles and
increases their efficiency in many applications. For example, in antibiotic field, this effect
can be so great that one gram of silver naﬁop_articles is all that is required to give

antibacterial properties to hundreds of sqLLare Mmeters of substrate material.

80nm

-
i

Figure 2-10 Th‘é;colour of different size of silver;‘célloids. The smaller colloids

(20 and 40nm) are yellow in colour and the larger sizes (60'and 80nm) are a light gray.

Almost all the research focusehas been coneerned with using gold nanoparticles
with verylittle work envather ngble metal nanoparticles such as silver: This is due to the
difficulty in synthesis method of silver nanoparticles which makes achieving repeatable
size and optical characteristics problematic compared to gold nanoparticles synthesis.
However, a silver nanoparticle also generates significant scientific and technological
interests over gold nanoparticles in some applications due to the higher extinction
coefficients compared with gold nanoparticles (52). Consequently, the sensitivity of the
technique can be improved when using absorption spectroscopy. This benefit leads to
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improved visibility due to the difference in optical brightness. In addition, silver
nanoparticles provide much greater enhancements of Raman scattering than gold (53) and
as such control over the aggregation of silver nanoparticles is considerable interest to

those looking for optimal sensitivity using surface enhanced Raman scattering.

2.2.2.1 Synthesis of Silver Nanoparticles

Several various synthesis methods have.been conducted to achieve these small
particles. In silver nanoparticles synthesis, it 1s"very important to control not only the
particle size but also thesparticle-shape and morphology as well. Previous studies also
indicated that colloidal-stability, particle- size and morphology, and surface properties
strongly depended on the'Speeifie method of preparatlon and the experimental conditions
applied. These synthesis methods is chudmg but not limiting to, hydrothermal treatment
(54), Tollens process (55)4 laser ablation m Water (56), electrochemical synthesis (57),
and electrochemical reduction on. compac't"zeolite film modified electrodes (58). The
silver nanoparticles are almost always elther capped or stabilized with salts or organic
compounds forming nanorods, nanocrystaISJanospheres nanoprisms and particles of

<10 nm diameter. Each synthesis produces! different particles with varying properties

depending on capping molecules

Colloidal dispersj_ons of stlver in non-aqueous quuids, known to be difficult to
prepare and to stabilize (59), have received, little attention. Wet-chemical synthesis
methods usually®praduce stable silver colloids at J/Ag” lconcentrations below 0.01 M.
Above this concentration, silver colloids usually become unstable or form aggregates. On
the other hand; silverynanoparticles; mostly: hydnosolsy are'perhagsy most widely studied
because of their easy synthesis method and important applications in catalysis (60) and
photographic processes (61) and their roles in surface-enhanced Raman spectroscopy
(SERS).

In 2005, Wei reported the one-step synthesis of silver nanoparticles, nanorods,
and nanowires on nanoporous DNA network fabricated formed on the APTES-

functionalized mica. Silver ions were first adsorbed onto the DNA network and then
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reduced in sodium borohydride solution. Silver nanomaterials were formed by controlling
the size of pores of the DNA network. The diameter of the silver nanoparticles and the
aspect ratio of the silver nanorods and nanowires can be controlled by adjusting the DNA

concentration and reduction time (62).

Figure 2-11 Atomic fpﬂrggf___mlcrf)s%‘cgﬂy&g;\FM) |m_§ges of DNA network and
synthesized nanoparticles £
Y -

Another shape Qﬂsilver nanomaterials was reported by Dong. Triangular silver

nanoprisms were synthes;zed by stepW|se reductlon of S|Iver nitrate with sodium
borohydride (NaBH{.) and tr|$od|4m C|trate Spherlcal ahd Podllke silver nanoparticles
were obtained at low concentration of NaBH, (2x10 M). In the other hand, at medium
concentrat10’n of [\I&BH4 (5x10 M) ﬂlangular sﬂver |nanopr|sms accompamed with
some spherical silver nanopartlcles were obtained as the product. Furthermore, at high
concentration of NaBH, (5x10™ M), the product was dominated by small spherical silver
nanoparticles. Thus, the triangular nanoprism was depended on the amount of NaBH,

used in the reactions (63).
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Figure 2-12 TEM images of
5x10° M (B) and 5x10* M (C) cor

H’/r omaterial prepared with 2x107 M (A),
ati Hy

In 2010, Olga prese izel cor synthesis of citrate-capped silver
nanoparticles, ranging in di 8 to 50 nm, by a seed-mediated
growth procedure. Fir i : '7' 7 Nre synthesized by reducing
AgNO3z with NaBH,4 Si jer sizes by heating a solution of silver

nanoparticles seeds, AgN al diameter of the grown silver

it ".-H;"
particle size less than ﬁnm by reduc ¥|th polyethylene glycol (Mw
~ 200) without additionalsteps of introducing ot 8dUtCing agents or stabilizers at room

temperature. Therefore Hwe procedur xicﬁagents, surfactant, or organic

solvents involved in the wgple process.

ﬂummmwmm
amaﬂﬂmumqwmaa
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A Mixing —
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For synthesis of
sodium linoleate, a liquid
ions formed in the system.
ions into silver nanoparticles then@f Jbed molld phase. The product was collected

at the bottom of vesselland dispersed in chlorofomlk.ﬁé anoparticles obtained from
this method exhlbltedw_ﬂp to 4 months (65).
g )
‘o _ v
Zﬂzmﬂ'@%'wwmﬂ P

In nowadays silver nanoparticles application especially in antibacterial

appicatibls 1 bedina frbre irboriaded ud @ dhidic sdpetty of sitver. For

example, 1he coating fabric to keep it clean without washing (66), air condition

nd solution phases reduced the silver

containing nanoparticles in its filter (67) and the mixing of nanosilver in painting product.

Silver has been used as treatment of medical ailments for over 100 years due to its
natural antibacterial and anti fungal properties. Silver is expensive metal and can be

oxidized when expose to the air. As a result of these limitations, silver is become less
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interesting. When nanotechnology is discovered, scientists are once again fascinated by
silver nanoparticles on the reason that silver nanoparticles can diffuse though call wall of

bacteria and destroy bacteria by only small amount of silver nanoparticles.

Death of Bacteria

/ AR\
sk [1=] ¥ - 2 Z
jcell 3 ano Silver Particle
-+ of Ba::tanﬂ einase of Bacteria
s o i - Yl ‘;_ ‘..L o
1

sm of silver nanoparticles

Figure 2-14 Antibacterial activity and me ;'a

S
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One of the h);p[dihesis about mechani’é{"'flwanoparticles in antibacteria
process is when silver nﬂ*oparticles is in contact with baietleria and fungus, it diffuse into
bacteria and fungus.cel tﬁ rticles Which i id_combine with sulphydryl
group (soft base’]%ijv ﬁtﬂ@ﬁﬂﬁeﬁm E‘ﬁﬁ ﬁy e. Thus it will adversely
affect cellular me?a]lbolism and inhibit€ell growth. =

ARIAINIUURIANYIAY

Other potential application for silver nanoparticles is medical applications. It has a

long history of treating wounds in the right quantities (68). Furthermore, Diagnostic
biomedical optical imaging (69), Biological implants (like heart valves) (70), Dressings

and bandages (71) are also application of silver nanoparticles.

In Colorimetric biosensor application, recently, Lee reported a new strategy for

preparing silver nanoparticles modified oligonucleotide conjugates based upon cyclic
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disulfide-anchoring groups modified DNA which shows excellence stability and can
withstand NaCl concentrations up to 1.0 M. When silver nanoparticles functionalized
with complementary sequences are combined, they assemble to form huge cluster. This
assembly process is reversible with heating and is associated with a red shifting of the

particle surface plasmon resonance (72).

hybridization of two complementary

———

DNA-silver nanoparticles due to temperature, =
) i (

N
\

For uses of unmaodified silver nanoparti , Wei presented the detection of

| —
enzyme by reactions conﬂerning adenosi phosphate (&T P) dephosphorylation by calf
intestine alkaline phosphatase.(CIAP) and peptide phosphorylation by protein kinase A

i, e o) S D) LIRS PUBEVENS, wreectes TP oout

protect silver nan%barticles from salt-induced aggrcggltion, whereasd'_r} the presence of the

eI RO AT BRI NG o coto o

This work“provides a brilliance detection limit of 1 unit/mL for CIAP and 0.022 unit/mL
for PKA (73).
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cAMP

ADP

ATP

Figure 2-16 Enzymsa
: Sl
nanoparticles-based enzyme golorimetric:

Therefore, S|Iver nanop n both modified and unmodified form.

A summary of thescolorimetric DNA experimental* iup and results on silver
nanoparticles is provide \
'I
|
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Table 2-2 Principle of silver nanoparticles based colorimetric DNA detection

Type | assays Type ll assays
{using DNA- or PNA-modified nanoparticles) (using unmodified nanoparticles)
Scheme Aggregation Mechanism Scheme Aggregation Mechanism
Two sets of DNA conjugate ‘interparticle crosslinking

— aggregation
X .
. Salt induced aggregation
driven by London-van der
Two sets of DNA conjugate Waals ath;rac‘tlua farce
-
One set of DNA conjugate

y—

one set of PNA conjugate

2.3 Leptospirosis | &

Leptospirosi ﬁ‘ﬁ: i \f d animals, is considered
one of the mosﬁm}lo (Il(ﬁrjj rlﬁ%jmfs]jﬁs from infected animals
will contaminate_the warm_lake %jair e sist_in watef,“damp alkaline soil,
vegetatiﬁ ﬁ ;Laﬁ fe]nﬁr ﬂﬁéryﬁ;ﬁzﬁﬂﬂg (Ernths. Therefore,
most caseg of leptospirosis occur in the warm season and in rural areas.

The disease shows variable clinical manifestations so laboratory confirmation is
necessary. As isolation of leptospires from clinical samples is time consuming. Thus the

serology remains the main of diagnosis. The gold standard serological test is microscopic
agglutination test (MAT).
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In MAT test, patient sera are reacted with live antigen suspensions of leptospiral
serovars. After incubation, the serum-antigen mixtures are examined microscopically for
agglutination. The MAT is read by dark-field microscopy. Then, the titers are determined.
The end point is the highest dilution of serum at which 50% agglutination occurs.
Because of the difficulty in detecting when 50% of the leptospires are agglutinated, the
end point is determined by the presence of approximately 50% free, unagglutinated
leptospires compared to the control suspension At this point, the positive result is the
serum that has an antibody titer per serovar gne’gtér than or equal to 1:100

Although MAT test has high selectlwty th’! al.can classify each serovar, MAT test
is requires the malntenangg_of several leptosplral serovars in the laboratory which is

expensive. It also requweyhe’é !

ertlse personnel to read the results.

Figurg 2-17 Mieroscapy of leptospiral in microscopic agglutination test

Besides the MAT test, there are many leptospirosis detection methods such as
indirect hemagglutination test (IHA) (74), immunofluorescent assay (IFA) (75) and
enzyme-linked immunosorbent assay (ELISA) (76).



CHAPTER I

MATERIALS AND METHODS

3.1 Chemicals

1

2.

All chemicals are @I sources and used as received,
- —

unless noted otherwise. / 7 —
. Hydrogen tetrac/ Irate “Sigma Aldrich

Silver nanoparticle Department of Chemistry,

)

Trisodium citrate dihydrate:—— : Merk

Faculty of Science,

Chulalongkorn University

Hydrogen peroXide ermo Fisher Scientific

Sodium chloride- - Merk
J I
Hydrochloric acid » . ; Sigma Aldrich

o) U ANINTNY VDR
W’Tﬂﬁnim 1319737 Sy

OI| onucleotide : BioDesign
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3.2 Equipment and analytical instuments

1. Magnetic Stirrer : Clifton

2. Micropipette : BRAND

3. Stirrer Hot Plate : BEC Thai

4. Vortex Mixer : BEC Thai

5. Spectrophotometer 4 2 Beckman Coulter

6. Transmission Electron Microscope.I 3 Hitachi High-Technologies
3.3 Experimental procedure ] ,a

3.3.1 Synthesis and char’aéte'rizatioh-"__éf;-’lé’netal nanoparticles

3.3.1.1 Synthesi-s of cftrate-stébiﬁzéd gold nanoparticles

Citrate reduction-method was first proposed by Turkeévich et al. in 1951 (77). Ina
typical standard citrate reduction procedure, 24 mL of milli-Q water was heated to 80-
85 °C on a strirring, hot.plate. With, vigorously. stirring,. 0.5 mL of 1% tetrachloroauric
acid (HAuCl,) and 0:94imL of 38:8.mM ftrisodium lcitrate wereiquickly added, resulting

in a colour changing from yellow to"grey and finaily to purple. This solution was kept
stirring for 2/ hours. Then the salution appeared as deep red_coloun of igold nanoparticles.
Gold nanoparticles was then cooled to room temperature. The concentration of the

synthesized gold nanoparticles was 100 ppm.
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3.3.1.2 Characterization of metal nanoparticles

Metal nanoparticles are commonly characterized by absorption spectroscopy and
Transmission Electron Microscopy (TEM). The optical property, size and size
distribution of metal nanoparticles can be investigated from their plasmon band.
Generally, 1 mL of 50 ppm gold nanoparticle solution and 1 mL of 25 ppm silver
nanoparticles were pipetted in a quartz cuvette and measured the absorption using UV-
Vis Spectrophotometer.

A Transmission Electron Microscope (TEM).was used to view and determine the
size of metal nanoparticles..FEM samples were prepared as follows: a single drop (10
uL) of metal nanoparticles soluitonwas placed onto a copper grid. The grid was left to
dry for several hours at rogm temperatu{e. Then, the average size histogram of metal
nanoparticles was determinedby digital processing of Transmission Electron Microscopy
images. =

3.3.2 Preparation of DNAs . ;-g' ; i

All oligonucleotides Weré';pr'epared @ﬁluting a 200 uM oligonuclotide stock
solution to 20 uM. The oligonucteotide seqﬁé’ﬁ‘éésvsed in this experiment are shown in
Table 3-1. vz 5
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Table 3-1 Oligonucleotide sequences

Oligonucleotides Sequence (5’ to 3°)
Oligol
o TTTATTCGTCGTTACACTAC
(target leptospirosis)
Oligo2

o GTAGTGTAACGACGAATAAA
(leptospirosis probe ’
0lig03 saSes

CAATAAATCTTTACC
(non-complementary {o.1 ﬂG

Oligo
90 \§\~ > - AACGACGAATAAA
(1 mismatched compl 1t

L—l
A stock DNA was/prepar JB

..\\ \- nucleotide into the hybridization

buffer (0.2xSSC containing orman 1"', : '\o extran sulfate) at room temperature
Ll

for 30 min prior to use. Ratigs of-the olige leotide and the hybridization buffer are

shown in table 3-2.

ﬂ‘lJEJ’JVIEJ'ﬂ‘ﬁWEJ’]ﬂ‘i
QW’]@NﬂiﬂJ UA1AINYAY



Table 3-2 DNA mixture composition (Oligol :

hybridization buffer)
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Oligo2 : Oligo3 : Oligo4 :

) Oligol | Oligo2 | Oligo3 | Oligo4 Hybridization
DNA mixture
(nL) (nL) (nL) (nL) buffer (uL)
mixturel (SSDNA) 6 - - - 2
mixture2 (SSDNA) - 6 - - 2
mixture3 (dsDNA) 3 J3 - - 2
mixture4 (SSDNA) 3 5 3 - 2
mixture5 \
3 - - 3 2

(1 mismatched dsDNA)

3.3.3 Aggregation of gold ﬂanoparfiéles

4
* i

3.3.3.1 Effect of buffer on aggregation

Into 5 eppendorf tubes contrary, 250 iil-"é#'loo ppm AuNPs, 10, 50, 100, 150 and
200 pl of hybridization-buffer were added. The solutions were occasionally shaken and

allowed to stand for at least 30 mins at room temperature, Then, the colours of solution

mixtures were observed. Finally, the solutions were mixed with 250 ul of milli-Q water

and the absorbaneeswere measured by: UV- VIS spectrophotemeter.

3.3.3i2 Effect of salt on aggregation

Into 5 eppendorf tubes contrary, 250 pl of 100 ppm AuNPs, 1, 2, 3, 4, and 5 pl of

2M NaCl were added. The solutions were occasionally shaken and allowed to stand for at

least 30 mins at room temperature. Then, the colours of solution mixtures were observed.

Finally, the solutions were mixed with 250 pl of milli-Q water and the absorbances were

measured by UV-VIS spectrophotometer.
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3.3.3.3 Effect of DNA on aggregation

Into 15 eppendorf tubes contrary, 250 pl of 100 ppm AuNPs, 0.1, 0.2, 0.3, 0.4 and
0.5 pl of mixturel-3 were added. Subsequently, 4 pul of 2M NaCl was added. The
solutions were occasionally shaken and allowed to stand for at least 30 mins at room
temperature. Then, the colours of solution mixtures were observed. Finally, the solutions
were mixed with 250 ul of milli-Q water and the absorbances were measured by UV-VIS
spectrophotometer.

-

3.3.3.4 Colorimeiricdetection of non-complementary DNA,
comaplementary DNA and 1-mismatched complementary DNA

Into 3 eppendorf itibes contrar:yﬁ 25T0 lpl of 100 ppm AuUNPs, 0.3 pl of mixture3-5
were added. Subsequently 4 ul of M Na(f?_l was added. The solutions were occasionally
shaken and allowed to stand for at Ieést 30'_-;\9!ins at room temperature. Then, the colours
of solution mixtures were observed-.!Finall'g/{_f‘_thg solutions were mixed with 250 pl of

milli-Q water and the absorbances iere meas@téé"by UV-VIS spectrophotometer.

o oy
d

3.3.4 Aggregation of silver nanoparticles
3.3.4.1 Effect.of buffer on aggregation

Into 5 eppendorfitubes contrary, 250 ul of 56-ppm AgNPs, 10, 50, 100, 150 and
200 pl of hybridization buffer were added. The satutions were océasionally shaken and
allowed to stand for-at least 30-mins:at-room temperature; Then, the cColours of solution
mixtures were observed. Finally, the solutions were mixed with 250 pl of milli-Q water
and the absorbances were measured by UV-VIS spectrophotometer.
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3.3.4.2 Effect of salt on aggregation

Into 5 eppendorf tubes contrary, 250 pl of 50 ppm AgNPs, 1, 2, 3, 4, and 5 pl of
2M NaCl were added. The solutions were occasionally shaken and allowed to stand for at
least 30 mins at room temperature. Then, the colours of solution mixtures were observed.
Finally, the solutions were mixed with 250 pl of milli-Q water and the absorbances were

measured by UV-VIS spectrophotometer.

3.3.4.3 Effect.of DNA on.aggregation

Into 15 eppendorf tubes eonirary, 250 pl of 50 ppm AgNPs, 1, 2, 3, 4 and 5 pl of
mixturel-3 were added. Subseguently, 4 lll of 2M NaCl were added. The solutions were
occasionally shaken and allewed 0 stand for at least 30 mins at room temperature. Then,
the colours of solution“mixitires were‘obsg,fved. Finally, the solutions were mixed with
250 pl of milli-Q wateg and the ;pgor_bances were measured by UV-VIS

spectrophotometer. , 7
Abd v ol o

e ]
send A4
- -

taf o

3.3.4.4 Qolorimetric detection of non-complementary DNA,

'Eomplementary DNA and 1-mismatched complementary DNA

Into 3 eppendorf tubes contrary, 250,ul of 50 ppm AgNPs, 2 ul of mixture3-5
were added. Subsequently, 4 pl of 2M NaCl were'added. The solutions were occasionally
shaken and allowed to stand for at least 30 mins at room temperature. Then, the colours
of solution mixtures wereObserved. [Finally; the solutions weredmixed with 250 pl of

milli-Q water and the absorbances were measured by UV-VIS spectrophotometer.
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3.3.5 Oxidation of silver nanoparticles
3.3.5.1 Effect of silver nanoparticles concentration on oxidation

Into 6 eppendorf tubes contrary, 500, 250, 125, 83.33, 62.5 and 50 pl of 25, 50,
100, 150, 200 and 250 ppm AgNPs respectively, 0.8 ul of 30% hydrogen peroxide were
added. The solutions were vigorous shaken immediately with vortex mixer for 5 second
and allowed to stand for 15 mins at roem temperature. Then, the colours of solution
mixtures were observed. Finally, the solutions were diluted with milli-Q water to 500 pl

and the absorbances were measured by UV-VISspectrophotometer.
-

3.3.5.2 Effget of temperatl'!are on oxidation

Five eppendorf tubes containiﬁg, 25T£)lu| of 50 ppm AgNPs were heated to 26, 30,
35, 40 and 45 °C for 30 miins/ Then, 1.1 p,l of 30% hydrogen peroxide were added into
each tube. The solutions were vigo;rbus s.t;'a.ken Immediately with vortex mixer for 5
second and allowed to stand for 15 mins";a*t-,room temperature. Then, the colours of
solution mixtures were observed.""Fin'aIIy, theéé)jf;tions were diluted with milli-Q water to

500 pl and the absorbances were measured by:fU!V:VIS spectrophotometer.

3.3.5.3 Effect of hydrogen peroxide on oxidation

Into 5 eppendorf tubes contrary, 250 ul of 50 ppm/AgNPs, 0.5, 0.8, 1.1, 1.4 and
1.7 pl of 30% hydrogen peroxide were added. The solutions were vigorous shaken
immediatelyowith warteximixer-for 5| secorid and allowedita standyfar 15 mins at room
temperature. Then, the colours of solution mixtures were observed. Finally, the solutions
were mixed with 250 ul of milli-Q water and the absorbances were measured by UV-VIS

spectrophotometer.
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3.3.5.4 Effect of DNA on oxidation

Into 12 eppendorf tubes contrary, 250 pl of 50 ppm AgNPs, 1, 2, 3 and 4 ul of
mixturel-3 were added. Subsequently, 0.8 pl of 30% hydrogen peroxide were added. The
solutions were vigorous shaken immediately with vortex mixer for 5 second and allowed
to stand for 15 mins at room temperature. Then, the colours of solution mixtures were
observed. Finally, the solutions were mixed with 250 pl of milli-Q water and the
absorbances were measured by UV-VIS spectrophotometer.

-

3.3.5.5 Colorimeiricdetection of non-complementary DNA,
comaplementary DNA and 1-mismatched complementary DNA

Into 3 eppendorf tubes contrery, 230 pl of 50 ppm AgNPs, 4 ul of mixture3-5
were added. Subsequently,; 0.8 pl of 30% ﬁy&rogen peroxide were added. The solutions
were vigorous shaken immediaiely with vo'rdfexmixer for 5 second and allowed to stand
for 15 mins at room temperature Then, the' €040urs of solution mixtures were observed.
Finally, the solutions were mixed" ith 250 ul_m‘ m|II| -Q water and the absorbances were

measured by UV-VIS spectrophotoimeter. 7R
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CHAPTER IV

RESULT AND DISCUSSION

4.1 Characterization of metal nanoparticles

7 ized by UV-Vis spectrophotometer and
Transmission Electron Microscopy ( ﬁcal absorption spectrum of metal
=igure 4-2 (AgNPs). The plasmon
wavelength maxima (Amax) !noicate Siiz ’oparticles. The Amax Of gold and
silver nanoparticles used infthis resea are app 'tely at 520 nm and 400 nm,
respectively. .
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Figure 4-1 The characterization of AuUNPs using spectrophotometer
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1.5 -
== Blank AgNPs 25 ppm

Absorbance

—
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Figure 4-2 The characterization OFAG ectrophotometer
LA
£ ailg ‘

Although the concentration .\L. ticles used in characterization is

roan . : :\
pLiy

anoparticles is higher than gold

lower than gold nanoparticles, the absorb

nanoparticles indicating the higherabso r nanoparticles. Thus, this benefits

in higher sensitivity of the dete AGNF AUNPs,
0 used for determining the size

Transmission Elec
Y] . L
-' size distribution of metal

U

and size distribution of

nanoparticles are shown.in Figure 4-3.

AULINENTNEINS
RINNIUUNIININY



37

Figure 4-3 The characterization of metal nanoparticles using TEM. (A) Shows a
spherical gold naoparticiés with /diameter around =15 nm. (B) Spherical silver

nanoparticles with diameterarotind #5-20 ﬁm

e e
TEM images show that both gold aﬁdl silver nanoparticles are in spherical shape

with different size distribution JAAUNPS appegdr;gd-as more uniform size distribution.

- ¥
.-._.:‘ljll
il

4.2 Aggregation of metal nanoparticles.

4.2.1 Effect of buffer on aggregation >

Due to the(change screening effectyaddition of buffer-orelectrolyte into a solution
containing metal, nanoparticles ‘resulted in "a decreasing ‘of interparticle distance and
caused nanoparticles aggregation. The more electrofytes added, the"more aggregation can
be observed. Therefore, tolmake thedmost efficientcstabilization, tbuffer in hybridization
step should not cause aggregation of metal nanoparticles. The effect of different buffer
quantity in aggregation of MNPs was shown in figure 4-4 (gold nanoparticles) and figure
4-5 (silver nanoparticles)
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Figure 4-4 The e ifferent @ 1) er to the aggregation of AuNPs.

, S
(A) UV-vis spectra of C d AUNP: ' w;\»u- puffer. (B) the colour changing

after adding buffer, 10, 0 right, respectively.
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Flgure 4-5 The effect of different amount of buffer to the aggregation of AgNPs.
(A) UV-vis spectra of unmodified AgNPs mixing with buffer. (B) the colour changing
after adding buffer, 10, 50, 100, 150 and 200 uL, from left to right, respectively.




39

The decreasing in absorbance at Ansx and a concomitant red shift in the
nanoparticles plasmon band indicated an aggregation of metal nanoparticles. When high
amount of buffer was added into a solution of metal nanoparticles, the nanoparticles
aggregated and the solution colour turned from red to blue in AuNPs solution and yellow
to pale brown in AgNPs solution.

According to the experiment, if the buffer used in hybridization was over 100 uL,
the colour changing in aggregation can be abserved with naked eye and the decreasing of
absorbance at Amax Of nanoparticles cab also be detected. While in 10-50 pL of buffer, less
aggregation can be observed.and the colour changing ef solution cannot be detected with
the naked eye. Thus, the amouni of buff_érr using i the hybridization process should not
reach 50 pL.

|

4.2.2 Effect of salt.éh aggregation:

The addition of Na€l inta solution increased total ionic charge in solution as in
the addition of buffer. Thus,the resujt was'sie_mi_lar. The higher amount of salt added, the
more aggregation can be observed. ,UV-vis":er'egtra of mixture were shown in figure 4-6

(gold nanoparticles) and figure 4 (stver na@éé?ticles).

o J oy
[ el
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‘\. Cl to the aggregation of AuNPs.

h NaCl. (B) the colour changing

LY

right, respectively.

Wavelength (nm)

Figure 4-7 The effect of different amount of NaCl to the aggregation of AgNPs.
(A) UV-vis spectra of unmodified AgNPs mixing with NaCl. (B) the colour changing
after adding 2M NacCl, 1, 2, 3, 4 and 5 pL, from left to right, respectively.
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UV-vis spectra showed that aggregation, which was caused by charge screening
effects, suppressed the absorption intensity. This is a slow process and the size of

nanoparticle gradually growing bigger. The small red shift of the Amax indicated that the

size of nanoparticles was slightly increased. Moreover the band width of absorption was
barely changed. This indicated that size distribution remained constant.

The minimum amount of salt that caused significant changing of absorption
spectra was about 3-4 uL. The following experiments used this optimum volume of salt
solution.

-

4.2.3 Effect of DNAen"aggregation

Metal nanoparticies_in solution aré_ typically stabilized by adsorbed negative ions
(e.g. citrate ion) or molecule containing Iéne pair electron which cause negative charge
on the surface. Repulsion'from pegative ch;irq_e prevents van der Waals attraction among
metal nanoparticles and thus prevénts agd?cegiation. Although the ssDNA has negative
charges on the backbone causing 'e"lettrostafi_if repulsion to the nanoparticles surface, the
sSDNA is flexible and partially uncOII ts struc?ture Under these conditions, the negative
charge on the backbone is able to avert frorrFmetaI nanoparticles to avoid repulsion. On
the other hand, attract|ve van derWaaIs forces b€tween the bases of ssDNA and the metal
nanoparticles causes S_t@mm ’T _he effect of DNA on AuNPs
aggregation was show‘n in figure 4-8 (mixturel) and 4-éx(mixture2) and the effect of

DNA on AgNPs aggrega}ion was shown in figure 4-10 (m}xturel) and 4-11 (mixture2).
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Figure 4-9 The effect of different amount of mixture2 to the aggregation of
AUNPs. (A) UV-vis spectra of unmodified AuNPs stabilized by mixture2 after mixing
with NaCl. (B) the colour changing of AuNPs solution stabilized by 0.1, 0.2, 0.3, 0.4 and
0.5 uL mixture2, from left to right, respectively.
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[ mixturel to the aggregation of

AgNPs. (A) UV-vis spe ified AgNF \ lized by mixturel after mixing
ablllzed by 1,2,3,4and 5 pL
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Figure 4-11 The effect of different amount of mixture2 to the aggregation of
AgNPs. (A) UV-vis spectra of unmodified AgNPs stabilized by mixture2 after mixing
with NaCl. (B) the colour changing of AgNPs solution stabilized by 1, 2, 3, 4 and 5 puL

mixture2, from left to right, respectively.
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According to the experiment, at an equal amount of mixturel and mixture2 used
to stabilize metal nanoparticles, the measured absorption intensity values were varied.
The absorbance of MNPs/mixture2 mixture was higher than that of MNPs/mixturel
mixture. It indicated that the metal nanoparticles stabilization efficiency of mixture2 is
higher than mixturel. Since mixture2 sequence contain more adenine base. Among four
nucleobases, Adenine exhibits stronger base stacking due to its high aromaticity. Thus it
promoted uncoil of DNA and caused adsorption faster and more efficiently than mixturel.

Although the colour of solution was' depended on the amount of ssDNA, the
addition of excess ssDNA .cannot improve siability because the limited amount of
nanosurface. As in AgNPs aggregation,—}more than 2 ul of DNA was over excess and
causes insignificantly changing.n colourlof solution. ©n the other hand, solutions with
only a few ssDNA had disiinctly different I]in absorption spectra and colloid colour.

In contrast, dsDNA‘hag' different eiectrostatlc properties due to the double-helix
geometry that always turn the negatlvely -charged phosphate backbone out. Therefore,
repulsion between the charged phosphate backbone of dsSDNA and the negative charge of
stabilizer dominated the electfostatic mteraotlon between the metal nanoparticles and

dsDNA. As a consequence, dSDINVA.is not adsorbed onto the nanoparticles surface. The

result of dsDNA stabilized metal nanoparUeles was shown in figure 4-12 (gold
nanoparticles) and flgure 4-13 (S|Iver nanoparticles)
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Figure 4-12 The \\ of m |xture3 to the aggregation of
AuUNPs. (A) UV-vis spec bilized by mixture3 after mixing
with NaCl. (B) the colalir cf ’ \ \. lized by 0.1, 0.2, 0.3, 0.4 and
0.5 pL mixture3, from left to righ -r--s-_ : \
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Flgure 4-13 The effect of different amount of mixture3 to the aggregation of
AgNPs. (A) UV-vis spectra of unmodified AgNPs stabilized by mixture3 after mixing
with NaCl. (B) the colour changing of AgNPs solution stabilized by 1, 2, 3, 4 and 5 pL

mixture3, from left to right, respectively.
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With the increasing of mixture3, absorbance intensity was also increased though
dsDNA cannot stabilize the MNPs, because hybridization was a reversible process and

some of ssDNA still remained which able to stabilize metal nanoparticles.

The Experiment condition that make the aggregation of metal nanoparticles
stabilized by mixturel-3 clearly detected with naked eye was shown in figure 4-14 (gold

nanoparticles) and figure 4-15 (silver nanoparticles)
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3. 0n the aggregation of AuNPs.
inmodified AUNPs stabilized by

Figure 4-14 Com|
(A) The UV-vis spectra anc
0.3 puL mixturel-3 from_left to right, respectively.
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= Mixturel

= Mixture2

= Mixture3

Non-complementa A is the mixture en two non-hybridizable ssDNA.

It can be absorbed o : the metal nanoparticles i abilizes the MNPs against the
aggregation from the inﬂctl 0 utions \ﬂh adequate quantities of non-
complementary DNA pre\‘ent aggregation, whereas solutions with complementary DNA

(dsDNA) do n en non-complementary
DNA and comﬂentary 3;\ staﬂzed met ﬂgpﬂ:ﬂ?;s shown in figure 4-16
(gold ).and Ive
RN A
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Figure 4-17 Comparison between non-complementary DNA (mixture4) and
complementary DNA (mixture3) stabilized AgNPs. (A) The UV-vis spectra and (B) the
colour changing of unmodified AgNPs stabilized by mixture4 (left eppendorf) and
mixture3 (right eppendorf).
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Typically, 1-mismatched complementary DNA containing a few base pairs
always has lower melting temperature than a perfect complementary DNA for 6-7 °C.
Thus, a solution of 1-mismatched complementary DNA contains higher number of
ssSDNA than those in a perfect matched DNA. As a consequence, 1-mismatched
complementary DNA is a better stabilizer for metal nanoparticles than a perfect matched
DNA but not as a non- complementary DNA. The comparison between 1-mismatched

complementary DNA and complementary DNA stabilized metal nanoparticles was
shown in figure 4-18 (gold nan ’% 4-19 (silver nanoparticles)

-
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Figure 4-18 Cod.ilarison' e atched @nplementary DNA (mixtureb)
and complementﬁ/ DNA (mixture3) stabilized AuNPs. (A) The UV-vis spectra and (B)

the colour chan gu Er@i%&bﬁsﬁaﬂ”zﬁ Q ﬂ@eS (left eppendorf) and

mixture3 (right e&endorf). ¢
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Table 4-1 CR of gold and silver nanoparticles stabilized by mixture3-5

ACR
Metal Type of _ )
_ CR (comparing with
nanoparticles DNA _
mixture3)
mixture3 0.29 0
AuNPs mixture4 0.22 0.07
mixture5 0.23 0.05
mixture3 0.13 0
AgNPs mixtureffr, 0.04 0.09
mixtured 0.08 0.05

|
The CR values describe’ the' golour ‘ehanging comparing with a blank solution.
Higher CR value indicCatgs stronger colour changing by aggregation of metal

nanoparticles. , ",

Sensitivity of this €xperiment-was measured by ACR value. The difference in
ACR of AuNPs and AgNPs considered statistically insignificant. Furthermore, ACR of
both AuNPs and AgNPs in mixture4 and mixture5were low. This indicated that the DNA

detection by aggregatidn of metal nanoparticles lacks of sen§i_tivity.

4.3 Oxidation of silver naneparticles

4:3.1 [Effect of silver hanoparticles concentration en oxidation

Direct evidence of the interaction between AgNPs and hydrogen peroxide was
illustrated in Figure 4-20. In oxidation process of AgNPs, AgNPs was surrounded by
silver ions; they induced aggregation of AgNPs. In higher concentration, the aggregation
was clearly detected as the colour changing to deep brown shade. When AgNPs 100 ppm
was oxidized, the colour changed from yellow to orange-brown and the absorbance was
dropped down, while in 50 ppm AgNPs solution, the colour changing was hardly
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observed. Because higher particle population of 100 ppm AgNPs, they leaded to
aggregation of silver ion. Comparing between AgNPs 25 ppm and 50 ppm, absorbance of
25 ppm AgNPs was weaker because of the faster oxidation in lower AgNPs concentration.
According to the high E° of the bigger particles, the aggregation process predominated in

higher concentration of AgNPs.

260 ' ppm

RIAINTUNNIINYIAL
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Figure 4-21 Effec seratura to the o ‘e.; of AgNPs. The UV-vis spectra
(A) and the colour changig - xidized at 45, 40, 35, 30 and 26 °C, from left
to right, respectively. AL \

4.3.3 Effect of hydroge

The effect of hydrge de” shown in figure 4-22. The higher

concentration of peroxide used; vas observed. The hydrogen peroxide
used is over excess - I s. Furthermore is not stable under direct
sunlight, freshly a recommended. The oxidation

completed within 15 minUtes after that the excess amount'of hydrogen peroxide gradually
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Figure 4-22 Effectiof-hydrogen peroxide to the oxidation of AgNPs. (A) The UV-
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hydrogen peroxide, from left to right, respectively.

Silver ion was not only increased the charge screening effects in the solution but
also acted like a catalyst that bound AgNPs together resulting in faster aggregation. The
smaller size of non-aggregated AgNPs and aggregated AgNPs was oxidized in different
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rate. Thus, the Amax Obtained from oxidation process was much weaker than the one
obtained from aggregation process.

4.3.4 Effect of DNA on oxidation

Addition of ssDNA into AgNPs solution before oxidation caused the stabilization
of AgNPs by ssDNA and thus prevented silver ion deposition onto AgNPs. As a
consequence, the oxidation proce is Wr than the aggregated AgNPs. Therefore,
adding more ssDNA promote the © Q,;;- 10 /ﬁ experiment, the addition of 4 uL of
ssDNA, the complete oxidation.oF AgNPS to @vas observed from the colourless

solution as shown in figure 4-23.(mixturel) a 4 (mixture2).
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Figure 4-24 OXM 5 stahilized by-mixture2. (A) The UV-vis spectra
of oxidized AgNPs. (B) anging o Ps containing 1, 2, 3 and 4 pL
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Single and dou d DNAh binding affinity onto AgNPs
surface due to their electr .-~';- e 4-25, AgNPs solution containing
dsDNA was not absorbed ithepartic consequence, the silver ion from
oxidized AgNPs bound onto fgm Ps in solution. As the aggregation
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Figure 4-26 Comparison of effect of mixturel-3 to the oxidation of AgNPs. (A)
The UV-vis spectra and (B) the colour changing of unmodified AgNPs stabilized by 4 uL

mixturel-3 from left to right, respectively.
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4.3.5 Colorimetric detection of non-complementary DNA, complementary
DNA and 1-mismatched complementary DNA

As in aggregation experiment, the affinity of DNA onto AgNPs surface was
ranked from mixture4, mixture5 and mixture3. The oxidation efficiency was cooperative
with the stabilization efficiency of DNA. Therefore, the colour changing in mixture5

stabilized silver nanoparticles was the.easiest to be detected with the naked eye and

espectively. The comparison between

mixture4, mixture5 and mixture3 stabili articles was shown in figure 4-27
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Figure 4-27 Comparison of mixture3, mixture4 and mixture5 stabilized AgNPs.
(A) The UV-vis spectra and (B) the colour changing of unmodified AgNPs stabilized by,

from left to right, mixture5, mixture4 and mixture3, respectively.



60

4.4 Comparison of sensitivity between aggregation and oxidation of silver
nanoparticles

The colorimetric response (CR) of aggregation and oxidation method is defined in
table 4-2.

Table 4-2 CR of aggreg@fw method of silver nanoparticles
= 7—
\.[)Ee

ACR

(comparing with

mixture3)
4 0
Oxidationd” J” i N\ 0.58
0.15

0
Aggregation 0.09
0.05

of aggragation both in non-
complementary DNA d 1- mlsmatched complement: DNA. The ACR of non-

complementary MTWEY %‘ﬁﬁﬁﬁd complementary DNA
was 3 times h d aggregation method
considered statistically significant.

ammmmmﬁwmé’ﬂ

Obviously, A
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CHAPTER IV

CONCLUSION

5.1 Conclusion

)

We have developed a nevel metal nanoparticle=based colorimetric Leptospira’s

DNA detection methodf)si’ﬁ'g the a"?gregation of “unmodified gold and silver
nanoparticles and the oxidati behaVIor of UandIerd AQNPs as the sensing element.
Besides the common advg.ﬁéis of colorlmetrlc assay such as simplicity, high sensitivity,
and low cost, our metpdjg;usmg unmédlfled AgNPs could further simplify the
experimentation since it is a J"ébel free‘nanogarticle Sensitivity of the aggregation of gold

r,
and silver nanoparticles con5|dered’astat|st1é'a-lly insignificant. This indicated the less

effectiveness of aggregation of imetal nanopar rcles Comparing with the aggregation

method, the oxidation method exhibits 6 tlmeS‘éTTd 3 tlmes stronger colour alterations.

Thus, this novel OX|d-at , \?enue of research exploiting

Y
the advantages of the oxidation of AgNPs.

5.2 Future Perspective

- Optimizingthe experimental condition to meet themost effective DNA
detection
- Use genomic DNA

- Use PNA to increase the sensitivity of the detection
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APPENDIX A

REAGENTS AND PREPARATIONS

Stock 1% hydrogen tetrachloroaurate (100 mL)
HAuCI,3H,0
Milli-Q water

Stock 38.8 mM s(

CeHsNazO7 2H,0
Milli-Q water

2x Saline Sodium‘Citra
CHsNagO72H,0 "1 ;a _'
NaCl F 7781753
Milli-Q water g _n___;-
pH was adjusted
\&

Stock Hybridizﬂon buffer
CHsNO

Dextranﬂf%dﬁl’ll T’IEJfﬂﬁW EJ"Iﬂ‘i

2x SSC

'@'W@ﬂﬂﬂ‘ifﬂﬂﬂq’}%ﬂqﬂﬂ
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APPENDIX B

COLORIMETRIC RESPONSE CALCULATION

Equation
CR = (PBy - PB))/P
PB =
Where
A is the absorba & ok \ f the yellow band (400 nm) for
AgNPs or red band (520 F at the baseline (700 and 800 nm for AgNPs

PBy is the baseline/colour ratio of th ol'sample (before induction of a colour
changes; blank solution), whi i‘{‘-; alue obtained after the colorimetric

aggregation or oxidation
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