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CHAPTER 1
INTRODUCTION

Functional equations are equations in which the unknowns (or unknown) are
functions. A function satisfying a functional equation on a given domain is called
a solution of the equation on that domam. The set of all such solutions is called
the general solution of the equation [2]. Functional equations have substantially
grown to become an _important branch of mathematics. Particularly during the
last two decades, withits special methods, there are a number of interesting results
and several applications [6].

One of the most fa.noui' f’lmctiﬁnai‘_eqhuat.im is the additive equation, or the
Cauchy equation, defined as follows:

fl@ty) = fla) + fy)- (1.1)

A function that satisfies the equation (1.1) will be called an additive function [2].
First, we will consider some properties of a function f : R — R satisfying the
equation (1.1) far all z,y e R.

Putting = y = 0 in the equation (1.1), we have f(0) = 0. Substituting y by
—z in the equation (1.1), we obtain f(—z) = —f(z) for all z € R, i.e. f is an
odd function. By a mathematical induction, we can extend the equation (1.1) to
the equation

Fmat-ant a) = f(z1) 45 6/ f(24);

for all n € N and n > 2, and then substitute x; by z forall i = 1,...,n, it follows
directly that f(nz) = nf(z) foralln € Nand z € R. If z = Tt where n,m € N,
then nt = mt. We have f(nz) = f(mt), and also nf(z) = mf(t). That is
f(=t) = f(z) = f(t). Since f is an odd function, we obtain f(rt) = rf(t)
forall re Q,t € R. Let t =1 and f(1) = ¢. Then f(r) = cr for all r € Q.



Moreover, it was proved [1] that if f is continuous everywhere, then f(z) = cx
forall ze R.
The so-called gquadratic functional equation is the equation of the form

flz+y) + flz—y) = 2f(z) + 2f(v)- (1.2)

We have that the continuous solution to the equation (1.2) is of the form f(z) = ez?
for all z € R. Moreover, every solution of the equation (1.2) is called a quadratic
function [6)].

The problem of stability eriginated from the question of S.M. Ulam [15] in
1940. He gave a wide ranging talk before the mathematics club of the University
of Wisconsin in whieh he discussed a number of impertant unsolved problems.
Among those was the question m‘ucerli;igg the stability of homomorphism:

Let G, be a group and let Gy be a é;ctr'&c group with a metric d(-,-). Given

€ > 0, does there exist a § >0 such :ﬁqt‘if a functien h : G, — G satisfies the

inequality bl

d(h(zy), (@)h(y)) < &

for all 2,y € Gy, then there Niahomag@Wem H : G, — Gy with
d(h(z), H(z)) < €

forall z e Gy ¥

In other words, we are looking for situation when the homomorphisms are stable.
If we turn ouir attention to the case of functional equations; we can ask the ques-
tion: When the solutions of an équation differing slightly from a given one must
be close to the true solution of the given equation [5]. In the next year, D.H. Hyers
[7] has excellently answered the question of Ulam for the case of approximately
additive mapping f: E — E' where E and E' are Banach spaces:

Let f: E — E be a mapping between Banach spaces E,E' such that

If(z+y)— flz)= fly)l| <€ forallz,y€ E



for some € > 0. Then there exists ezactly one additive mapping L : E — E' such
that

If(z) - Lz)[| <€
for all x € E given by the formula L(z) = lim,_.,. 27" f(2"z), z € E.
In 1978, a generalized version of the theorem of Hyers for approximately linear
mapping was given by Th.M. Rassias [14]:
Let f: E — E' be a mapping between Banach spaces E, E' such that

1f(z+ ) — fl@) = fW) < (el dwll?) for allz,y € E

for some € > 0 and some 0 < p < 1. Then there erists exactly one additive
mapping L : E — E' such that

Il =) = L{f)I!

3 Ml

for all z € E given by the formula L[E'l = ]imﬂ_..g &' f(2"z), z € E.
Th.M. Rassias Theorem stimulated sevnﬂl ‘mathematicians working in functional
equations to investigated this Kind of Etyﬂblhty for many important functional
equations [6]. Finally, there exists the ;uerahzed Hyers-Ulam-Rassias stability
which considers the inequality eontm]led by the function of variables = and y
instead of the teriv-e(}jz|{*+ {jyl|*) in the theorem of Rassias.

During the last decades, the stability problems of several functional equations
have been proved by several reseachers (see further [3],(4],(9],(10],[13]). In 2002,
I-S Chang, H-M Kim/ [5] studied the quadratic functional equation

f2x +y) + f(2z —y) = f(z +y) + flz — y) + 6£(x),

which is somewhat different from (1.2), and proved its generalized Hyers-Ulam-
Rassias stability. In this year, K-W Jun, H-M Kim [8] studied the general solution
and the generalized Hyers-Ulam-Rassias stability of the cubic functional equation

fQRz+y)+ f2x —y) =2f(z +y) + 2f(z — y) + 12f(z).



In 2005, S.H. Lee, S.M. Im and L.S. Hwang [11] studied the general solution of the

quartic functional equation

f2z+y) + f(2z —y) = 4f(z +y) + 4f(z —y) + 24f(z) — 6f(v) (1.3)

and proved its stability in the sense of Hyers-Ulam. After that, the generalized
Hyers-Ulam-Rassias stability of the quartic functional equation (1.3) was proved
by A. Najati [12] in 2008.

In this thesis, we start by using a different approach from S.H. Lee, S.M.
Im and 1.S. Hwang to study the general solution of the new quartic functional

equation

f(3z +y) + f(z +8y) = 64f(x) + 64f(y) + 24f(z +y) —6f(z—y) (14)

and prove its gener_aﬁéad Hyer‘s-lllam4ﬂn.miu stability. Our main result deals
with the following new functional equation

f(z+5y) 51 (z-+4y) $10 f(z+3y) ~10f(z+ 29) +5f(a+v)— f (z) = 1204(y) (1.5)

which is a pentic functional equation. AJH,W study the general solution and
the generalized Hyers-Ulam-Rassias stability of the equation (1.5) which are more
complicated than those of (1.4).



CHAPTER II
PRELIMINARIES

In this chapter, we collect some relevant definitions and theorems from the
book Functional Equations and Inequalities in Several Variables by S. Czerwik
[6]. The difference operator and its related theorems are given in Section 2.1. In
Section 2.2, we give a connection between a polynomial function and an n-additive

symmetric function which plays a role in studying the general solution.

2.1 The difference operator

Definition 2.1. Let X and ¥ be two linear spaces over R, and let f: X — Y
be an arbitrary function. The difference operater A, with the span z is defined
by

A fly) = flu+=) - fv) (2.1)
for all z,y € X The iterates A2, s = 0, 1,2. , are defined by the natural
recurrence

AL =1, AP f=AL(AL)). (2.2)

The superposition of geveral difference operators will be written shortly
B tls=nl V410 dN. (2.3)

Theorem 2.2. For arbitrary funétions ' fi, f2: X' = ¥ land for urbitrary constants
o, A€ R, we have
Az(afy + Bfr) = ad.fi + BAzfa. (2.4)

Note that the set of all above functions f : X — Y is a real vector space

under the operations of ordinary addition and scalar multiplication of functions.



Furthermore, Theorem 2.2 tells us that the difference operator is a linear operator

on this set.
Theorem 2.3. For arbitrary x,, 12 € X the operators A, A;, commute:
Ay fubihf (2.5)

By Theorem 2.3, we can see that operator (2.3) is symmetric under the per-

mutation of xq,..., Zs.

Theorem 2.4. For arbitrary z,, 13 € X,

Bisamf =B f — By f = Bssf. (2.6)

Theorem 2.5. Lets € W, then

a1 & 32077 () fy +na). 27)

n=l
2.2 Polynomial functions

In this thesis we classify some functional equations by using the following
definition.

Definition 2.6. Let s € N. A function f: X — ¥ fulfilling the condition
A f(y) =0 (2.8)
for all z,y € X is called a polynomial function of order s.
Theorem 2.7. If f: X — Y is.a polynomial function of order s, then
Bz fly) =0 (2.9)
for all x4, ..., 2,41,y € X.

In order to investigate the general solution of functional equations of polyno-
mial types, we need some properties of n -additive symmetric functions.



Definition 2.8. Suppose that n € N. A function A, : X" — Y is called n-

additive if for every r, 1 <r < n, and for every z,,..., T, ¥r € X,
An{Zh it I'|'-lr:"3r‘|'!:||'ﬂ Trglsoeey I'n} = Aﬂ{Ill wrry zﬂ}+An(Ilr coy Lpm 1y Ury Trlg oo mn}*

That is, A, is additive with respect to each of its variable r, € X, r=1,...,n.

A function A, is called symmetric if
An(z), u-»-‘ﬂn) 7 ArJ;I_:mn veey htnﬂ

for every permutation {7(1),...,m(n)} of A
Given a function A, : X" =Y, 'I;:,r the diagonalization of A, we understand
the function A" : X —.¥ given by tle formula

,A’-‘fm] = ﬂntx}_,..,z], T e X.

For convenience, any constant finction will be called a 0-additive function.

Theorem 2.9. Lei An ;-X T Y 'be a:_xy-mmetric n -additive function and
A" : X — Y be the diagonalization of A..,, ﬂem for every m = n and for every
Ty, Im, Y € X, we have Yot ?_,;

@r;_.zmd;[ y] g AL (T, 40 3,) fm=n (210)
([ =i “if in > n.
Example 2.10. Let A; : R? — R defined by A;(r,y) = zy, =,y € R.
It is easy to see ths;t A, is symmetric and bia.dditive: By Theorem 2.9, we have
As ., A y)es iﬂg{xl,xﬂ = 27173 for dll\zy, 2;,y € R. In particular,
A%y + 27) 2124%(y + 1) + A%(y) = A2A%(y) = 22%. Moreover, A, z,.,A%(y) =0
forall Fiyrszay e Re

Theorem 2.11. Let f: X — Y be a polynomial function of order s. Then there
erist n-additive symmetric mappings A, : X" =Y, n=0,...,s, such that

2

flz)=) Az), z€X

n=0
where A" : X — Y is the diagonalization of A, for eachn=0, ..., s.



Example 2.12. Let f: R — R satisfying the equation (1.2).
If we substitute £ by = + 2y and z + y, respectively, in the equation (1.2), then

we obtain the new equations, respectively,

flz +3y) — 2f(z + 2y) + flz +y) = 2f(y) (2.11)
flz+2y) = 2f(z +y) + f2) = 2f(v)- (2.12)

Subtracting (2.12) from (2.11), we abtain the following equation
f(z+3y) = 3f(z + 2y) £ 3f(z +) — f(z) =

This shows that A3f(z) =0, ie. f is a polynomial function of order 2. Then,
by Theorem 2.11, thereexist n-additive symmetric mappings A, : X" — Y,
n=01,2, such that

f@) < 4° + Al(z)+ Aa), 2 € R (213)

where A" : R — R is the dihgnmﬁzaﬁa&wram for each n =0,1,2.
Actually, we can verify that terms in the r!;ht hand side of the above equation may
vanish. Putting = = y = 0 in the equai:mn»(l .2), we have f(0) = 0. Replacing y
by —y in the equation (1.2}, we can see that Fly) = f(—y) for all y € R. That
is, f is an even function. We observe that Aﬂrmd-,-A*:m even, so the evenness
of f forces that Ax) = 0. Since f(0) = 0, we also ebtain A® = 0. Hence, the
equation (2.13) becomes

flz) =A%) . &R. (2.14)



CHAPTER III
A QUARTIC FUNCTIONAL EQUATION

In this chapter, we study the general solution of the quartic functional equation

f(3z +y) + f(z + 3y) = 64f(x) + 64f(y) - 24f(z +y) —6f(z—y) (3.1)

and prove its generalized Hyers-Ulam-Rassias stability.

3.1 The general solution

In this section, we establish the general solution of the equation (3.1). Throughout
this section X and ¥ will be real vector spaces.

Theorem 3.1. A function f : X — Y satisfies the functional equation (3.1) if
and only if there exists @ 4-additive symmetric function Aq: X 4 Y such that
f(x) = A%(z) for all x € X where A* is the diagonalization of Ay.

Proof. Assume that f satisfies the functional equation (3.1).
Putting = = y = 0-in the equation (3.1), we have f(0) = 0. Replacing = and y

by x4y and x — , respectively, in the equation (3.1}, we obtain
flaz +29) + f(42 — 2y) = 64F(z + y) + 64 (2 — y) + 24f(2x) — 6/(2y). (3.2)
Replacing ¥ by —y in the equation (3.2), we can see that

fly) = f(-v)

for all y € X. That is f is an even function. Replacing y by —z in the equation

(3.1) and using the evenness of f, we get

f(2z) = 16f(x) (3.3)
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for all z € X. Applying the equation (3.3) to the equation (3.2), we obtain

f@z+y)+ F2x —y) = 4f(z+y) +4f(@ —y) + 24/ (2) - 6f(v).  (34)
Replacing y by y+3x and y+ 2z , respectively, in the equation (3.4), then taking
the difference of the two newly obtained equations, we get

f(5z +y) — 5f(4z +y) +10f(3z +y) — 10f(2z + y) +5f(z +y) — f(y) =0

Hence, f satisfies the condition AZf(y) = 0. Consequently, f is a polynomial
function of order 4. Then, by Theorem 2.11, there exist n-additive symmetric

functions A, : X" — Y, n=40,..,4, such that
flzy= AP+ ANz) + A%(z) + A%(z) + A'(z) (3.5)

where A" : X — Y is the diagonalization of A, foreach n =0, ...,4. We observe
that A™, n = 0,2,4, are even. Since f is an even function, A'(z) and A%(z)
must vanish. Moreover, since f(0) = 0, we have A® = 0. Then the equation (3.5)
is reduced to

f(#) = 4%(z) + A'(z). (3.6)
By using the symmetry and the additivity, one can verify that

A"(mz) = m"A™(z) (3.7)

for all n € N,m € Z. Substituting the equation (3.6) into the equation (3.3)
and using the property (3.7), we obtain A%(z) = 0. Hence, we conclude that
f(z) = AY(z)dor all z €' X.

Conversely, assume that there exists a 4-additive symmetric function
Ag : X' 5+ Y such that f(z) =-A*(z) forall-z € X . By Theorem 2.9, we have
Al AY(y) = 4!4%(z). Thus, we obtain

A4z + y) — 44 (3z + 1) + 6A4% (22 + y) — 4A (z +y) + AM(y) = 24A4%(z). (3.8)
Replacing ¥ by vy — = in the equation (3.8), we get

A'(3z + y) — 4AY (22 + y) + 6AYz + y) — 44 (y) + A'(y — ) = 24A4%(z). (3.9)
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Replacing  and y by z + y and —2y, respectively, in the equation (3.9), we
obtain
AY(3z+y)—4A%(27) +6 A% (z—y) —4A(—2y) + A} (=3y—z) = 24A%(z+y). (3.10)
Since A%(nz) = n*A%(z) for all n € Z. Then we have
A3z +y) + A*(3y + z) = 64A4%(z) + 64A% (y) + 24A%(z 4+ y) — 6A*(z — ). (3.11)

By the assumption, we arrive at the functienal equation (3.1). O

3.2 The generalized Hyers-Ulam-Rassias stability
Throughout this section X and V' will be a real normed space and a real Banach
space, respectively. Given a function f: X — ¥, we set

Df(z,y) := f(3z + ) + f(z + 3y) — 64f(z) ~ 64f(y) — 24f(z + y) +6f(z — y)
forall z,y € X.

Theorem 3.2. Let ¢ : X* — [0,00) be a functien such that

[--] i_
E ﬂ%%_ﬂj converges and

i=0 é ; (3.12)
3 3"z, 3%y)
“%T—ﬂfornﬂx.yﬁx

or
Zm‘ﬂ%,n} converges and
= (3.13)
- 31%{:—“, %} =@ for all z,y € X.

If a function f: X — Y satisfies

1Df (z, w)l| < é(z9) (3.14)

for all z,y € X ‘and f(0) = 0, then there erists a unique function T : X — Y
which satisfies the equation (3.1) and the inequality

1 o ¢(3'z,0) |
[l f(z) = T(z)|| < ; o = (3.15)
EZBI‘NE,G] if (3.13) holds
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for all x € X. The function T is given by

f(3"z) A
Al $.12) holds
T(z) = noe 817 b ke (3.16)
nﬁﬂuslﬂf%} if (3.18) holds
forall z e X.

Proof. First, we assume that the conditon (3.12) holds.
Putting y = 0 in the inequality (3.14) and then dividing by 81, we have

f{ f(3z)
=5y — L)< mé(:c*ﬂ]l (3.17)
for all z € X. Replacing &by 3z in the inequality (3.17) and dividing by 81, we
obtain
(gt :
R g’l"" | < 570320 .18
for all z € X. From ingqualitys {3."17}?&11@ (3.18) , we have
£(3°2) #(3z,0)
T g L2 LS ﬂ (w: AN = ) (3.19)

for all z € X. Using &';mathérhatical*]_i__ﬂ}:gtinl, we can extend the inequality
(3.19) to " VT""."'

(LBt) 1R ¢(3*=-,HJ =, $(3'z,0)
8 =f= }IL‘ Z 81 —--—-31:‘,'. 81

(3.20)

for all z € X and for all n € N.

For integers m,n > 0, we have

(i) i)

f(3%3mz)
RIn+m E'lm "

31,, g 7 S
#(3'3™z,0)
< Sl“"‘ stz 81
#(3'3"z,0)
<8 Z glm

Since the right-hand side of the inequality tends to 0 as m — oo, the sequence

=

{817 f(3"x)} is a Cauchy sequence. Since Y is complete, there exists the limit
function T'(z) = lim,—817"f(3"z) for all x € X. By letting n — oo in the
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inequality (3.20), we arrive at the formula (3.15). To show that T' satisfies the
equation (3.1), replace = and y by 3"z and 3"y, respectively, in (3.14) and divide
by 81", then it follows that

817" £(3"(3z + ) + f(3"(z + 3y)) — 64f(3"z) — 64 (3"y) — 24f(3"(z +¥))
+6f(3"(z — )l < 817"¢(3"z,3%y).

Taking the limit as n — oo, we find that T satisfies the equation (3.1) for all
z,ye X,

To prove the uniqueness of quartic function T subject to the inequality (3.15),
assume that there exists'a funetion S: X — Y which satisfies the equation (3.1)
and the inequality (3.15) with T replaced by 5. Note that Theorem 3.1 gives us
T(3"z) = 81"T(z) and S(3"#) = 81°S(z) for all z € X and n € N. Then we
_— :

IT() - S()if = m,um" ) =8@3"7)]

;,1— (IT(3"z) = f(3“-'1=}|| +1f(3"z) — S@"x)l))

1 #(3'8"z,0)
53_(312 Bo )

33"z, 0
z‘"‘sﬁ:; )

for all z € X. By letting n — oo in the preceding inequality, we immediately
find the uniqueness of T'.

For the case when the condifion (3.13) helds, we réplace = by 37'z in the
inequality (3.17) and then consider the sequence {81"f(3™"z)}. We can see that
the limit T'(z) = liti,—e81" f(37"z) exists for-all z € X which is the unique
function satisfying the ‘equation (3.1) and the inequality (3.15). 'This completes
the proof of the theorem. a

Remark 3.3. In case of condition (3.12) a function f which satisfies the inequal-
ity (3.14) needs not to be zero at * = 0. By using the same argument, we can
find a unique quartic function T : X — Y defined by T(z) = lim,.oo 817" f(3"x)
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which satisfies the equation (3.1) and the inequality

#(3iz,0)

(@)~ T() - OV < g7 Zj = (3.21)
ferallz e X.
Corollary 3.4. If a function f: X — Y salisfies the inequality
I1Df(zy)ll < (3.22)

for all x,y € X for some real number £ > 0, then there exists a unique function
T : X — Y such that T satisfies the equation (3.1) and

{3

if(z) = T(z) “-.ﬂﬂ}ﬂ 2

for all x € X. The function T is given by T'(z) = lim,,_.c 817" f(3"z) for all
zeX.

Proof. Taking ¢(x,y) = & for all z,y € X. Being in accordance with (3.12) in
Remark 3.3, we obtain

4 W e £ x
|£(z) - T(z) = z FO Eﬁgﬁ - =
for all x € X, as desired. .

Corollary 3.5. Given positive real numbers £ and p with p # 4. If a function
f: X — Y satisfies the inequality

IDf(z,w)ll < e(i=]® + [llI”) (3.23)

for all x,y € X, then there emsts a unique function T' : X — Y 'such that T
satisfies the equation (5.1) and

1£(2) = T@ < gz l?

forallz e X.
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Proof. Taking ¢(x,y) = ([|z[|” + [|y||*) for all z,y € X.
Putting z = y = 0 in the inequality (3.23), we obtain || f(0)|| < 0. Hence,we have

f(0) = 0.
If 0 < p < 4, then the condition (3.12) in Theorem 3.2 holds. It follows that

If(z) - T(@) < Blzi?’lllmlll’}

E
s el

for all z € X. If p > 4, then the condition (3.13) in Theorem 3.2 holds. It follows
that

1A

lif(z) =T(=)|| :12311 II;!’“

for all z € X. O



CHAPTER IV
A PENTIC FUNCTIONAL EQUATION

In this chapter, we study the general solution of the pentic functional equation

Ay f(z) = 120f(y) (4.1)

or, equivalently,

flz+5y)—5f(z+4y)+10f(z+3y)~10f(z+2y)+5f (z+y) — f(z) = 120f(y) (4.2)

and prove its generalized Hyers-Ulam-Rassias stability.

4.1 The general solution

In this section, we establish the general solution of the equation (4.1). Through-

out this section X and Y will be real vector spaces.

Theorem 4.1. A function f : X — Y satisfies the functional equation (4.1) if
and only if there exists a 5-additive symmetric function As : X° — Y such that
f(z) = A%(z) for all # € X where A® is the diagonalization of As.

Proof Assume that f satisfies the functional equation (4.1). Note that
ASf(z) = A (A, f(2)) = Ajf(z +y) — AJf(2).

By assumption, we have Alf(z) = 120f(y) = Ajf(z + y), so [ fulfills the
condition AJf(z) =0 for all z,y € X. Consequently, f is a polynomial function
of order 5.

Define the function As: X® — Y by

1
A5|:I|,$2,$3,$411'5} = Eiﬁxﬂznzﬂsf{n] {43}
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forall z; € X, i =1,...,5. We have that A; is symmetric since the operator is
symmetric under the permutation of z;,..., rs. We have for each i = 1,....5 and
Ty 5, Ui € X,

As(Z1y ooy Tiv1y Ti + Wiy Tid 10y Ts) — As(T1y ooy Ts) — As(T1, ooy Tie1, Uiy Tim1y 0y T5)

= G Bnniminns(Be (0) — Ar F(0) - Ay, £(0))

By Theorem 2.4, we obtain A, f(0) — A,, f(0) — A, f(0) = A, f(0), so

As(Z1y oy Ticty Ti + iy Tikd ooy Ts) = Ag(21,45, Ts) — As(21, ..., Tie1, iy Tiz1y ooy T5)

1
= 5 8a aimgias (B2, £(0)

1
= ﬁ&:lnmf{ﬂj

Since f is a polynomial function of erder 5, by Theorem 2.7, we have

1

gg"é':[..,ﬂmf{'u) =0.

This shows that Az is 5-additive.
Next, interchanging y and z in the equation (4.1) and then putting y = 0, we
obtain

AZF(0) =120f(z). (4.4)
Then

A¥(z) = AZf(0)/5! = f(x).
Conversely, assume that there exists a 5-additive symmetric function

As: X® = Y such that f(z) = A%(z) forall = € X. By Theorem 2.9, we have
AJA%(x) = 5!A%(y). By assumption, we evidently arrive at the functional equa-
tion (4.1). O

4.2 The generalized Hyers-Ulam-Rassias stability

Throughout this section X and Y will be a real normed space and a real Banach

space, respectively. Given a function f: X — Y, we set

Df(z,y) := Ayf(z) — 120f(y)
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for all z.y € X.

Lemma 4.2. Let r € X, n € N, and mp, my, ...,y € Z such that 3\ m; =0.
Then for any function f: X =Y

znhf([ﬂ-l]m} i, (zmimn—:m) “s)

=1

M;f((n = i)z)

’
fl(n =1, xﬁ’ﬂf{(“ —i)z)

=]
i) f((n —i)z) — Maf(0).

Since M = mg and M= mg+m + ** +Mn-1 = —my, we can conclude that

L — i)x) + my f(0)

0

A ﬂnuﬂ'i mﬁﬂgwaﬁl Ahdohedas i)~ W) Il < #(e,)

for all .y

..Aa,maﬂﬂm UAANYINY

< E [6(52, 2) + 56(4z, T) + 106(3z, T) + 10(2z, z) + 5¢(z, z) + 316(0, )] .

where A® is the diagonalization of As: X° — Y defined in the equation ({.3).
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Proaf. Define

B™"(x) = As(z,...,T,2%,...,22) and

me n

VIO F(0) = ATAD F(0) where m,n € NU {0}

Actually, there is no meaning if both m and n are zero and, in this work, we use
m and n such that m + n equals 5 or 6.

Note that, for'all m =6, 1, 2000 ‘V///

g-mm+l (z) — 0 BA—r Mg -

Ve £(0) (4.6)

;.22*-@9"? I
e N Frnay e
AT

By Theorem 2.5, we have

V24 f(0) = AIAL £(0)
= A%(f(8z) — 4f(6x) + 6f(4z) — 4f(2r) + £(0)).
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Using Lemma 4.2 three times, we obtain
V247(0) = A(f(52) + 3 (4z) + 2/(3x) — 2/(2) — 3/(x) — S(0)).
Similarly, we have
V33£(0) = AX(f(42) + 2/ (32) — 2/(2) = F(0)),
V42£(0) = AX(f(32) + £(22) ~ f(z) - F(0)),
VE1£(0) = AX(f(22) = £(0)) and
vE0£(0) = A%/ (z) — FO))
Hence,
B%(z) — 32B°(z) = %gz‘ﬂﬁ‘m‘f{m
= A% (4(55) + 5/ (4) + 107(32) + 10/ (28) + 5/(z) — 31/(0)
= 2{(A3f(5k) < 51f(2)) + S(ALf(42) = 5If(2)) + 10(ALf(32) 51 ()
+10(A%f(2z) - 8'f(2)) + 5(AZf () = 5f(x)) — 31(AZ£(0) — 5!f())].
Since A3 f(z) — 5!f ()| < #(z.v) for all 2,y € X, we thus conclude that

14°(22)—324%(z) || = || As(22, ..., 22) — 82A5(2; ., 2) |
= || B**(2) — 32B°°(=)]|
< % [6(5z, z) + 5¢(4x, z) + 109(3z, x) + 10¢(2z, z) + 5¢(z, z) + 31¢(0,z)].
(]

Theorem 4.4. Let ¢ : X* —[0,00) be a function such that

{Z ﬂ:;;f] converges and

=0 (4.7)
T PEEEN o £ o B

n—on 32n

[Z 32"r(%} converges and

or

lim 32"¢(—, —) =0 for all z,y € X
Exr gnign! = PE 2t
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where
7(z) = [¢(0,2z) + 2°¢(0, 7)) +
[¢(5z,z) + 5é(4z, z) + 10¢(3z, z) + 10¢(2z, z) + 5¢(z, x) + 316(0, z)]
for all z € X. If a function f: X — Y satisfies
IDf(z,y)ll < ¢(z,v) (4.9)

for all z,y € X, then there exists a unique function T : X — Y which satisfies
the equation (4.1) and the inequality

1 = r1(27) .
=) if (4.7) holds
325! g 32

If(z) - B)][.< (4.10)

ﬁ 232‘1{%} if (4.8) holds
: i=l

for all z € X. The function T s given by

n—ca 320 (4.11)

foy ] S22 i (4.9) holas
T =

Jim 32°f(=2) if (4.8) holds
forallz € X.

Proof. First, we assume that the conditon (4.7) holds.
For all x € X, we have

17(2) ~ £@)l = 11(z) ~ AL O]
= S l5t/(z) — AL (O)]
where As : X® — Y is a function defined in the equation (4.3). Then, by assump-
tion, we obtain
) - 2@ < 590,2) (412
for all z € X. Note that
1£(22) - 25 @)l = | [£(22) — A%(22)] = 2* [f(z) - A°()] + [A°(20) — P A@)] |

< [|f(2z) = A%(22)|| + 2°| f(z) — A°(z)|| + || A®(2) — 2°A°(=)].
(4.13)
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By the inequality (4.12) and Lemma 4.3, we obtain
I f(2x) — 2°f(2)]| < 1|f{2-'-¢} — A%(22)[| + 2°| f(z) — A%(z)]| + || A%(22z) — 2°A%(z)|
[¢(u 2r) + 2°(0,7)] +

< =

E [6(5z, ) + 5¢(4z, T) + 10é(3z, z) + 106(2z, 7) + 5¢(z, ) + 316(0, x)]
(

= 75—? (4.14)

where
r(z) = [¢(0, 2z) +.2-"¢(u, )] +
(6(52, z) + 56(4z, )+ 106(3x, ) +106(2z, 7) + 59(z, 7) + 316(0, 2)]
for all z € X . Dividing the‘fnequality, (4.14) by 32, we have
#J—z-’i- @l < o2 (4.15)

We can show the following relation by udqc:tmn on n together with the inequality
(4.15)

J@ ) 2t @) . 1 <r(2a)
32n Al < 32" 5'2 3% *32-5!2 321 (4.16)

for all z € X and for all n €N. see J4

For integers m,n > 0, we have |

f(zr2mz) f(ﬂ'“zl = ﬂfﬂ 2"z)
%Y i 32~= o

1 T(29™x)
< : :
= 32-5! § 3+

Since the right-hand side of the inequality tends to 0 as m — oo, the sequence

(27|

{327"f(2"z)} is'a Cauchy sequence. Since Y is complete, there exists the limit
function T(z) = lim, .32 "f(2"z) for all z.€ X. By letting n — oo in the
inequality (4.16), we arrive at the formula (4.10). To show that T' satisfies the
equation (4.1), replace = and y by 2"z and 2"y, respectively, in the inequality
(4.9) and divide by 32", then it follows that

327" £(2*(z + 5y)) — 5£(2"(z + 4y)) + 10£(2"(z + 3y)) — 10£(2"(z + 2))
+5f(2%(z +y)) — F(2"z) — 120f(2"y)|| < 327"6(2"z,2"y)
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Taking the limit as n — oo, we find that T satisfies the equation (4.1) for all
T,y EX.

To prove the uniqueness of pentic function T’ subject to the inequality (4.10),
assume that there exists a function S : X — Y which satisfies the equation (4.1)
and the inequality (4.10) with T replaced by S. Note that Theorem 4.1 gives us
T(2"z) = 32"T(z) and S(2"z) = 32"S(z) for all z € X and n € N. Then we
have

IT(2) - S(z)| = inm’*xy ~s@)
< (@) — FER)| + /(2" - S@"a))

7. = r(2+ng)
=327 \ 1651 &~ 32tn
1=0

for all € X. By letting n —+ oo in the preceding inequality, we immediately
find the uniqueness of 7',

For the case when the cendition (4.8) holds, we replace z by 27!z in the
inequality (4.14) and then show the fellowing relation

- I
— gm0 = b — i

17(2) - 32" H(5) | £ 55 5.2}32 r()- (4.17)
Using the same argument in the case when the condition (4.7) holds, we have that
the limit T(z) = limnwoed2"f(2-"&) exists for all & € X which is the unique
function satisfying the equation (4.1) and the inequality (4.10). This completes
the proof of the theorem. (]

Corollary 4.5. If a functien f: X = Y satisfies the inequality
||Pf(z,v)ll <€ (4.18)

forall z,y € X for some real number & > 0, then there exists a unique function
T: X — Y such that T satisfies the equation (4.1) and

1@ -T@I < 51

for all z € X. The function T is given by T(z) = lim,—.oe 327" f(2%z) for all
reX.
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Proof. Taking ¢(x,y) = € for all x,y € X. Being in accordance with (4.7) in

Theorem 4.4, we obtain

95
1£@) ~T@I < 55 5,232, —

for all z € X, as desired. 0

Corollary 4.6. Given positive real numbers € and p with p # 5. If a function
f: X =Y satisfies the inequality

1Pf(z, < e(lizI®+ llul”) (4.19)

forall z,y € X, menmemmﬂIuwcfummT X — Y such that T
satisfies the equation (4.1) mld',

e(5" + 547 £10-3° + 11 - 27 + 99)| z||?
7)) 5 % S

forall e X.
Proof. Taking ¢(z,y) = gfll=|* + ||y]*) for all z,y € X,
If 0 < p <5, then the condition (4.7) in Theorem 4.4 holds. It follows that

' 8. 4P L10- P4 11-2° + 90) 2P| )P
1) - Tou, S D 117 + W) 27])
yui}

£(5P +5-47+10-37 + 1120 +-99) [z
51 (2 — 27)

for all z € X. If p >5,then the condition (4.8) in Theorem 4.4 holds. It follows
that

(57 +5-47 +10 - 37 + 11 - 27 4 99) 32*||z||?
If(2) ~T(@)l 2. 55 5!2 ~

5[5"+5 47 4 10~ 37 +'11 - 2P 4=99) [ z||®
51. (2p — 25)

forall z e X O
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