การศึกษาทางพฤกษเคมีของผักหวานนก

นางสาว ทัตยา โลหกุล

สถาบนวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตรมหาบัณฑิต สาขาวิชาเภสัชพฤกษศาสตร์ ภาควิชาเภสัชพฤกษศาสตร์ คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2546 ISBN 974-17-4969-4 ลิขสิทธ์ของ จุฬาลงกรณ์มหาวิทยาลัย Miss Tattaya Lohakul

สถาบนวทยบรการ

A Thesis Submitted in Partial Fulfillment of Requirements for the Degree of Master of Science in Pharmacy in Pharmaceutical Botany Department of Pharmaceutical Botany Faculty of Pharmaceutical Sciences Chulalongkorn University Academic Year 2003 ISBN 974-17-4969-4

Thesis Title	PHYTOCHEMICAL STUDY OF SAUROPUS HIRSUTUS BEILLE.
Ву	Miss Tattaya Lohakul
Field of study	Pharmaceutical Botany
Thesis Advisor	Associate Professor Ekarin Saifah, Ph.D.

Accepted by the Faculty of Pharmaceutical Sciences, Chulalongkorn University in Partial Fulfillment of Requirements for the Master's Degree

.....Dean of Faculty of

Pharmaceutical Sciences

(Associate Professor Boonyong Tantisira, Ph.D.)

THESIS COMMITTEE

.....Chairman

(Associate Professor Rapepol Bavovada, Ph.D.)

(Associate Professor Ekarin Saifah, Ph.D.)

.....Member

(Associate Professor Nijsiri Ruangrungsi, Ph.D.)

......Member (Assistant Professor Rutt Suttisri, Ph.D.) ทัตยา โลหกุล : การศึกษาทางพฤกษเคมีของผักหวานนก (PHYTOCHEMICAL STUDY OF *SAUROPUS HIRSUTUS* BEILLE.) อ. ที่ปรึกษา : รศ. ดร. เอกรินทร์ สายฟ้า, 141 หน้า. ISBN 974-17-4969-4

จากส่วนที่อยู่เหนือดินของผักหวานนก (*Sauropus hirsutus* Beille.) สามารถสกัดแยก สารอัลคาลอยด์ ในกลุ่ม ไอโสควิโนลีน ชนิดใหม่ได้ 2 ชนิด คือ 4-methoxy-2-methyl-7, 8methylenedioxy-1-isoquinolone และ 4, 6-dimethoxy-2-methyl-7, 8-methylenedioxy-1isoquinolone สารในกลุ่มฟลาวาน 1 ชนิด คือ epicatechin รวมทั้งสารในกลุ่มสเตอรอลอีก 1 ชนิด คือ β-sitosterol การพิสูจน์เอกลักษณ์ของสารเหล่านี้ ทำโดยการวิเคราะห์ข้อมูลทาง สเปกโทรสโกปี จาก UV, IR. MS, 1-D และ 2-D NMR ร่วมกับการเปรียบเทียบค่าที่ได้มี รายงานไว้แล้ว

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

ภาควิชาเภสัชพฤกษศาสตร์ สาขาวิชาเภสัชพฤกษศาสตร์ ปีการศึกษา 2546

ลายมือชื่อนิสิต
ลายมือชื่ออาจารย์ที่ปรึกษา
ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

4476574033 : MAJOR PHARMACEUTICAL BOTANY

KEYWORD: SAUROPUS HIRSUTUS / EUPHORBIACEAE / ISOQUINOLINEALKALOID / FLAVAN / STEROID

TATTAYA LOHAKUL : PHYTOCHEMICAL STUDY OF *SAUROPUS HIRSUTUS* BEILLE. THESIS ADVISOR : ASSOCIATE PROFESSOR EKARIN SAIFAH, Ph.D. 141 pp. ISBN 974-17-4969-4

From the aerial part of *Sauropus hirsutus* Beille., two new isoquinoline alkaloids, 4-methoxy-2-methyl-7, 8- methylenedioxy-1-isoquinolone and 4, 6-dimethoxy-2-methyl-7, 8-methylenedioxy-1-isoquinolone, a flavan, epicatechin, together with a sterol, β -sitosterol, were isolated. Identification of these compounds was accomplished by analysis of their spectroscopy data: UV, IR, MS, 1-D and 2-D NMR, as well as comparison with reported values.

Department Pharmaceutical Botany Field of study Pharmaceutical Botany Academic year 2003

Student's signature
Advisor's signature
Co-advisor's signature

ACKNOWLEDGEMENTS

The author wished to express her sincere gratitude to her thesis advisor, Associate Professor Dr. Ekarin Saifah of the Department of Pharmaceutical Botany, Chulalongkorn University, for his guidance, suggestion, encouragement and kindness throughout the course of this study.

The author would also like to express her grateful thanks to Associate Professor Dr. Rapepol Bavovada of the Department of Pharmaceutical Botany and Associate Professor Dr. Nijsiri Ruangrungsi of the Department of Pharmacognosy for their concern, assistance and valuable suggestion.

The author is deeply indebted to Assistant Professor Dr. Rutt Suttisri of the Department of Pharmaceutical Botany for his extreme goodness and invaluable helps for structure elucidation.

Additional sincere thanks are expressed to all staff members of the Department of Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for their kindness and help.

The author would like to thank the Graduate School of Chulalongkorn University for granting partial financial support to conduct this investigation.

Finally, The author wish to express infinite gratitude to her family for their love and encouragement.

CONTENTS

	Page			
ABSTRACT (THAI)	iv			
ABTRACT (ENGLISH)	v			
ACKNOWLEDGEMENTS	vi			
CONTENTS	vii			
LIST OF FIGURES	ix			
LIST OF TABLES	xi			
	xii			
ABBREVIATIONS	xiii			
CHAPTER				
INTRODUCTION	1			
I HISTORICAL	4			
1. The Botany of euphorbiaceous plants	4			
2. Chemical constituents of the family Euphorbiaceae	5			
2.1 Flavonoids from euphorbiaceous plants	5			
2.2 Isoquinoline alkaloids from eupphorbiaceous plants	31			
3. Chemical constitutents of the genus Sauropus	44			
II EXPERIMENTAL	52			
- Source of Plant Material				
- Phytochemical Techniques	52			
- Extraction	55			
- Isolation	57			
1. Fractionation of the hexane extract	57			
⁹ 1.1 Isolation of compound H1	57			
2. Fractionation of the chloroform extract	58			
2.1 Isolation of compound C1	59			
2.2 Isolation of compound C2	59			
3. Fractionation of the ethylacetate extract	62			
3.1 Isolation of compound EA1	62			

CONTENTS (continued)

			Page
	- Ch	naracterization of isolated compounds	65
IV	RE	SULTS AND DISCUSSION	68
	1.	Structure elucidation of compound H1	68
	2.	Structure elucidation of compound C1	71
	3.	Structure elucidation of compound C2	76
	4.	Structure elucidation of compound EA1	80
V	СС	DNCLUSION	84
RE	FER	ENCES	85
AP	PEN	IDIX	93
VIT	Α.		141

LIST OF FIGURES

Figure	Page
1	Sauropus hirsutus BEILLE
2	The 300 MHz ¹ H-NMR spectrum of compound H194
3a	The 75 MHz ¹³ C-NMR spectrum of compound H195
3b	The 75 MHz ¹³ C-NMR spectrum of compound H1 (expaned)96
4	The 75 MHz ¹³ C-DEPT NMR spectrum of compound H197
5	The EIMS spectrum of compound C1
6	IR spectrum of compound C1
7	UV spectrum of compound C1
8	The 125 MHz ¹³ C-NMR spectrum of compound C1 (in CDCl ₃)101
9	The 125 MHz 13 C-DEPT NMR spectrum of compound C1 (in CDCl ₃)102
10	The 500 MHz ¹ H- ¹³ C HMQC spectrum of compound C1 (in CDCl ₃)103
11a	The 500 MHz 1 H-NMR spectrum of compound C1 (in CDCl ₃)104
11b	The 500 MHz 1 H-NMR spectrum of compound C1 (in CDCl ₃) (expaned)105
12	The 500 MHz ¹ H- ¹ H COSY spectrum of compound C1 (in CDCl ₃)106
13a	The 500 MHz 1 H- 13 C HMBC spectrum of compound C1 (in CDCl ₃)107
13b	The 500 MHz 1 H- 13 C HMBC spectrum of compound C1 (in CDCl ₃)108
13c	The 500 MHz ¹ H- ¹³ C HMBC spectrum of compound C1 (in CDCl ₃)109
14	The 500 MHz 1 H- 1 H NOESY spectrum of compound C1 (in CDCl ₃)110
15	EIMS spectrum of compound C2111
16	IR spectrum of compound C2112
17	UV spectrum of compound C2113
18a 🕤	The 125 MHz 13 C-NMR spectrum of compound C2 (in CDCl ₃ /CD ₃ OD)114
18b	The 125 MHz ¹³ C-NMR spectrum of compound C2
	(in CDCl ₃ /CD ₃ OD) (expanded)115
19	The The 125 MHz ¹³ C-DEPT NMR spectrum of compound C2
	(in CDCl ₃ /CD ₃ OD)

LIST OF FIGURES (Continued)

Figure	Page
20a	The 500 MHz $^1\text{H-}^{13}\text{C}$ HMQC spectrum of compound C2 (in CDCl_3/CD_3OD)117
20b	The 500 MHz 1 H- 13 C HMQC spectrum of compound C2 (in CDCl ₃ /CD ₃ OD)118
21	The 500 MHz 1 H-NMR spectrum of compound C2 (in CDCl ₃ /CD ₃ OD)119
22a	The 500 MHz 1 H- 13 C HMBC spectrum of compound C2 (in CDCl ₃ /CD ₃ OD)120
22b	The 500 MHz ¹ H- ¹³ C HMBC spectrum of compound C2 (in CDCl ₃ /CD ₃ OD)121
22c	The 500 MHz ¹ H- ¹³ C HMBC spectrum of compound C2 (in CDCl ₃ /CD ₃ OD)122
22d	The 500 MHz ¹ H- ¹³ C HMBC spectrum of compound C2 (inCDCl ₃ /CD ₃ OD)123
22e	The 500 MHz ¹ H- ¹³ C HMBC spectrum of compound C2 (in CDCl ₃ /CD ₃ OD)124
23	The 500 MHz ¹ H- ¹ H NOESY spectrum of compound C2 (in CDCl ₃ /CD ₃ OD)125
24	ESI TOFMS spectrum of compound EA1126
25	IR spectrum of compound EA1127
26a	The 125 MHz 13 C-NMR spectrum of compound EA1 (in DMSO- d_6)
26b	The 125 MHz ¹³ C-NMR spectrum of compound EA1
	(in DMSO- d_6) (expanded)
27	The 125 MHz ¹³ C-DEPT NMR spectrum of compound EA1 (in DMSO- d_6)130
28a	The 500 MHz 1 H- 13 C HMQC spectrum of compound EA1 (in DMSO- d_{6})131
28b	The 500 MHz 1 H- 13 C HMQC spectrum of compound EA1 (in DMSO- d_{6})132
29	The 500 MHz ¹ H-NMR spectrum of compound EA1 (in DMSO- d_6)
30	The 500 MHz 1 H- 1 H COSY spectrum of compound EA1 (in DMSO- d_{6})134
31a	The 500 MHz 1 H- 13 C HMBC spectrum of compound EA1 (in DMSO- d_{6})135
31b	The 500 MHz 1 H- 13 C HMBC spectrum of compound EA1 (in DMSO- d_{6})136
31c	The 500 MHz 1 H- 13 C HMBC spectrum of compound EA1 (in DMSO- d_{6})137
31d	The 500 MHz 1 H- 13 C HMBC spectrum of compound EA1 (in DMSO- d_{6})138
31e	The 500 MHz 1 H- 13 C HMBC spectrum of compound EA1 (in DMSO- d_{6})139
31f	The 500 MHz 1 H- 13 C HMBC spectrum of compound EA1 (in DMSO- d_{6})140

LIST OF TABLES

Table.	Page
1	Flavonoids from euphorbiaceous plant8
2	Isoquinoline alkaloids from euphorbiaceous plant
3	Chemical constituents of plant in the genus sauropus45
4	Combined fractions from the hexane extract
5	Combined fractions from the chloroform extract
6	Combined fractions from C03 fraction
7	Combined fractions from C10 fraction
8	Combined fractions from C14 fraction60
9	Combined fractions from the ethyl acetate extract
10	Combined fractions from E03 fraction
11	comparison of the 13 C-NMR spectral data of β -sitosterol and H1 (in CDCl ₃)70
12	Comparison of 13 C-NMR and 1 H-NMR data of compound C1 (in CDCl ₃),
	compound C2 (in $CDCl_3/MeOD$) and casimiroin (in $CDCl_3$)
13	The ¹ H-NMR, ¹³ C-NMR, HMBC and NOESY data of compound C175
14	The ¹ H-NMR, ¹³ C-NMR, HMBC and NOESY data of compound C279
15	Comparison 13 C-NMR data of epicatechin (in DMSO- d_6) and compound EA1 (in
DMSO	- <i>d</i> ₆)
16	The ¹ H-NMR, ¹³ C-NMR and HMBC data of compound EA183

LIST OF SCHEMES

Schem	ne	Page
1	Biosynthetic relationship of flavonoids	6
2	Biosyntesis of isoquinoline alkaloids	32
3	The extraction of aerial part of Sauropus hirsutus	56
4	Fractionation of the chloroform extract	61
5	Fractionation of the ethyl acetate extract	64

ABBREVIATIONS

br s	=	broad singlet (for NMR spectra)
°C	=	degree celsius
CC	=	column chromatography
CDCI ₃	=	Deuterated chloroform
CD ₃ OD	=	Deuterated methanol
CHCI ₃	=	chloroform
cm	=	centimeter
¹³ C-NMR	= 1	Carbon-13 Nuclear Magnetic Resonance
COSY	= 🤞	Correlated Spectroscopy
δ	= 🧹	chemical shift
d	= 🥖	doublet (for NMR spectra)
dd	=	doublet of doublets (for NMR spectra)
DEPT	=	Distortionless Enhancement by Polarization Tranfer
$DMSO-d_6$	=	Deuterated dimethylsulfoxide
EIMS	=	Electron Impact Mass Spectroscopy
ESI TOFMS	= _	Electrospray Ionization TOF Mass Spectroscopy
3	=	molar absorptivity
g	=	gram
¹ H-NMR	=	Proton Nuclear Magnetic Resonance
HMBC	สถ	¹ H-detected Heteronuclear Multiple Bond Coherence
HMQC	ь <u>т</u> р I	¹ H-detected Heteronuclear Multiple Quantum Coherence
Hz	าล	Hertz
IR	ĒPI	Infrared
J	=	coupling constant
KBr	=	potassium bromide
λ_{max}	=	wavelength at maximum absorption (nm)
т	=	multiplet (for NMR spectra)
m	=	meter

M^+	=	molecular ion	
mg	=	milligram	
MHz	=	Megahertz	
ml	=	milliliter	
mm	=	millimeter	
MS	=	Mass Spectrum	
m/z	=	mass-to-charge ratio	
nm	=	nanometer	
NMR	=	Nuclear Magnetic Resonance	
NOESY	=	Nuclear Overhauser Effect Spectroscopy	
n.s.	=	not specified	
ν_{max}	=	wavenumber at maximum absorption	
ppm	=	part per million	
q	= 🦉	quartet (for NMR spectra)	
rel. int.	= /	relative intensity	
S	=	singlet (for NMR spectra)	
sp.	=	species	
t	=	triplet (for NMR spectra)	
TLC	=	Thin Layer Chromatography	
UV	= 1	Ultraviolet	

CHAPTER I

INTRODUCTION

Sauropus hirsutus Beille. (Figure 1) is a plant belonging to the family Euphorbiaceae. In Thailand, this plant is called Phak wan nok or Tai bai (Kanchanaburi), Kom koi (Phetchabun), Kongkoi lot khon (Central) and Ra ngap manut (Chumphon) (ส่วนพฤกษศาสตร์ป่าไม้ สำนักวิชาการป่าไม้ กรมป่าไม้, 2544). Sauropus hirsutus is a prostrate woody herb to small shrub which can grow up to 40 cm-2 m high. The branches are round and hirsute, with 1.8-4 by 0.7-2 mm stipules. The petiole is hairy, 1.7-2.8 mm long. The leaf blade is ovate to elliptic to obovate, 1.4-7.7 by 1-3.8 cm (length/width ratio). The leaf base is rounded to cuneate. The leaf margin is sometimes revolute, the apex bluntly acute, usually mucronulate. The upper surface of the leaf is glabrous except for the margin (dark green) and the lower surface is slightly to completely hairy (light green). The number of nerves on each leaf are 5-9, often distinct.

The flowers are usually few (to many) together and their color is green to dark red. The diameter of staminate flowers are 1.5-4 mm. Its pedicel is subglabrous and 1.4-4.3 mm long. The size of the calyx lobes are 0.4-1.8 by 0.6-1.3 mm, slightly hair on the outside. The stamens of *Sauropus hirsutus* consist of androphore (0.2-0.3 mm long) and anther (0.2-0.3 by 0.2-0.4 mm). The pistillate flowers are 5-15 mm in diameter. Its pedicel is hirsute and 2.4-4 mm long. It has 3 smaller calyx lobes, 2.2-5.5 by 1.4-3 (to 5.8 by 3.8 in fruit) mm, 3 larger ones, 3.2-13 by 2.2-4.5 mm, hairy on the outside. The size of ovary is 1-1.8 by 1.3-2.7 mm. The stigmas are horizontal. The shape of its fruits is ovoid and 5-8 by 5-8 mm in size. Seeds of this plant are in triangular shape, in section, and 5 by 2.7 by 2.7 mm in size.

Sauropus hirsutus is distributed in Thailand, Laos and Cambodia. In Thailand, it could be found in the northern (Chiang Mai, Lampang, Phrae, Sukhothai and Nakhon Sawan), north-eastern (Phentchabun, Loei, Udon Thani, Sakhon Nakhon, Nakhon Phanom and Khon Kaen), eastern (Chaiyaphum, Nakhon Ratchasima, Buri Ram, Surin and Ubon Ratchatani), south-western (Uthai Thani, Kanchanaburi, Ratchaburi,

Phetchaburi and Prachuap Khiri Khan), central (Lop Buri and Nakhon Pathom) and south-eastern (Prachin Buri and Chon Buri).

The plant is distributed in deciduous forest, dry dipterocapus forest, bamboo forest, secondary growths, grassy (buffalo grazing) ground and waste land (along railways and roads) (Airy Shaw, 1972).

The only species of *Sauropus* that have been investigated is *Sauropus* androgynus. It is a vegetable cultivated in India, Malaysia, Indonesia, Southwest China and Vietnam (Chang *et al.*,1997). The leaves of this plant is widely comsumed after cooking in Malaysia (Luh *et al.*, 1999). It contains large amounts of various nutrients (Padmavathi and Rao, 1990; Hulshof *et al.*, 1997; Ching and Mohamed, 2001). It has been reported that excessive consumption of *Sauropus androgynus* leaves containing a considerable amount of the alkaloid papaverine may cause dizziness, drowsiness and constipation (Bander and Ismail, 1973; Yu and Cheah, 1979).

In late1994, *Sauropus androgynus* was imported into Taiwan from the Indo-Malaysia region. Its raw leaves or aqueous extract were used as weight reduction substance (Chag *et al.*, 1997). In August 1995, an outbreak of *Sauropus androgynus* intoxication in Taiwan has been reported (Lai *et al.*, 1996). The consumption of uncooked *Sauropus androgynus* for body weight reduction experienced constrictive a bronchiolitis obliterans (Chang *et al.*, 1998; Hsiue *et al*,1998; Wang *et al.*, 2000) and 3 cases reported arrhythmia (Chen *et al.*, 1996).

In Thailand, the roots of *Sauropus androgynus* are used ethnomedically as a remedy for fever and externally for mumps. Its leaves can be used to treat wound and abscess, and the flowers are used as abortifacient (มาโนช วามานนท์ และ เพ็ญนภา ทรัพย์ เจริญ, 2540; นันทวัน บุณยะ ประภัศร และ อรนุช โชคชัยเจริญพร, 2542).

To the present, phytochemical study of *Sauropus hirsutus* has never been reported. Preliminary examination of this plant revealed a positive test for alkaloids. Therefore, it is the purpose of this investigation to study the nature of the compounds in the aerial part of *Sauropus hirsutus*. The result of this investigation may serve as an additional information on the chemical nature of this plant family, which could be a valuable lead in the fields of chemotaxonomy and phytochemistry.

Figure 1. Sauropus hirsutus Beille.

CHAPTER II

HISTORICAL

1. Botanical description of euphorbiaceous plants.

The Euphorbiaceae family is a large and diverse family with about 300 genera and 8100 species. They grow extensively in the tropical and warmer regions of the world.

The plants in this family can be described as highly variable with plants growing as herbs, shrubs or trees with fleshy stems and milky or colored latex that can be irritating or toxic.

The leaves of these plants are usually alternate, but can also be opposite or even whorled. The stipules are present, large or small and gland-like. The leaves are usually simple but can also be palmately compound.

The flowers are regular and usually monoecious, but they can also be dioecious although this form is rare. The inflorescence are various in type, often compacted to form a special flower cluster called a cyathium. The perianth is usually 5-merous, distinct or connate. The androecium consists of one to many stamens that are free or united. The filaments are distinct or connate. Sometimes the nectary disk is present. The opening of anther is by longitudinal slits. The gynoecium of a flower consists of a compound pistil of 3 united carpels (but they can have 2 or 4), with as many locules. The ovary is superior and commonly 3-lobed. There are 1 or 2 ovules in each locule attached to apical-axile placentas. The styles can be distinct or connate into a single style.

The fruit is usually a dehiscent capsule, but can occasionally be an indehiscent utricle in 1-celled species. This schizocarp separates elastically into usually 3 segments that split ventrally.

The seeds are abundant, having fleshy endosperm with the embryo straight or curved (Dennis, 2000).

2. Chemical constituents of the family Euphorbiaceae.

2.1 Flavonoids from euphorbiaceous plants.

Flavonoids are a group of natural products isolated from a wide variety of plants, and are responsible for much of the colouring found in vascular plants. A single plant may contain dozens of different flavonoids, and the distribution of flavonoids within a plant family can yield useful classifying information about that family. Flavonoids exhibit a wide range of biological activities (Harborne, 1994).

Flavonoids can be classified according to their biosynthetic origin. Some flavonoid types are both intermediates in biosynthesis as well as end-product, which can accumulate in plant tissues. These include chalcones (the first formed C_{15} structure derived from malonyl coenzyme A and *p*-coumaryl coenzyme A), flavanones, flavanon-3-ols and flavan-3,4-diols. Other classes are only known as end-products of biosynthesis e.g. anthocyanins, flavones and flavonols. Two further classes of flavonoids are those in which the 2-phenyl side chain of flavanone isomerizes to the 3-position (giving rise to isoflavones and related isoflavonoids) and then to the 4-position (give rise to the neoflavonoids) as shown in Scheme 1.

Scheme 1. Biosynthetic relationship of flavonoids a=cyclization, b=bioreduction, c=aryl migration, d=dehydrogenation, e=hydroxylation, f=dehydroxylation Many flavonoids which occur naturally are associated with sugars in conjugated form and within any one class may be characterized as monoglycosidic, diglycosidic, etc. Glycosidic complexity is considerable. There are, for example, over 1,500 glycosides of the flavones and flavonols that have been isolated to date. Mono-, di- and tri-saccharides may be linked through a phenolic hydroxyl; and one or more such hydroxyl groups may carry a sugar substitution. Acylated O-glycosides are known, where aromatic or aliphatic acids are linked through the 6-hydroxyl of a glucose moiety. A special group of mainly flavone-based C-glycosides occurs in plant. Sulphate conjugates are common in the flavone and flavonol series, where the sulphation may be on a phenolic hydroxyl and/or on an aliphatic hydroxyl of glycoside moiety (Chapman and Hall, 1994).

Many types of flavonoid are found in family Euphorbiaceae and these are summarized in Table 1.

Table 1 Flavonoids from euphorbiaceous plants.

Compound	Source	Plant part	Reference				
Flavanone							
Bonannione A [1]	Macaranga pleiostemona	leaves	Schutz <i>et al.</i> , 1995				
5,4'-Dihydroxy-[2''-(1-hydroxyl) dihydrofurano]							
-(7,8:5",4") flavanone [2]	Macaranga conifera	leaves	Jang <i>et al.</i> , 2002				
5, 7-Dihydroxy-4'-methoxy-8							
-(3-methylbut-2-enyl) flavanone [3]	Macaranga conifera	leaves	Jang <i>et al</i> ., 2002				
5, 7-Dihydroxy-4'-methoxy-8							
-(2-hydroxy-3-methylbut-3-enyl) flavanone [4]	Macaranga conifera	leaves	Jang <i>et al</i> ., 2002				
6, 7-Dimethoxy-3',4'-methylenedioxyflavanone [5]	Macaranga indica	leaves	Sultana and Ilyas, 1987				
Euchrestaflavanone A [6]	Macaranga pleiostemona	leaves	Schutz <i>et al</i> ., 1995				
5-Hydroxy-4'-methoxy-2",2"-dimethylpyrano							
-(7,8:6",5") flavanone [7]	Macaranga conifera	leaves	Jang <i>et al.</i> , 2002				
Lonchocarpol A [8]	Macaranga conifera	leaves	Jang <i>et al</i> ., 2002				
Macarangaflavanone A [9]	Macaranga pleiostemona	leaves	Schutz <i>et al</i> ., 1995				
Macarangaflavanone B [10]	Macaranga pleiostemona	leaves	Schutz <i>et al.</i> , 1995				
Sophoraflavanone B [11]	Macaranga conifera	leaves	Jang <i>et al.</i> , 2002				

Table 1. (continued)

Compound	Source	Plant part	Reference
Tomentosanol D [12]	Macaranga conifera	leaves	Jang <i>et al</i> ., 2002
Flavanone glycoside			
Prunin [13]	Euphorbia pekinensis	aerial part	Ahn <i>et al</i> ., 1996
Flavanonol			
Lupinifolinol [14]	Macaranga conifera	leaves	Jang <i>et al</i> ., 2002
Isoflavone			
7-Methyltectorigenin [15]	Macaranga indica	leaves	Sultana and Ilyas, 1987
Flavone			
Apigenin [16]	Euphorbia serpens micro	<i>filia</i> n.s.	Del V. Galarza, Cabreya and Juliani, 1983
	Euphorbia minuta	Sn.s.	Del V. Galarza, <i>et al.</i> , 1983

Table 1. (continued)

Compound	Source	Plant part	Reference
Chrysin [17]	Acalypha indica	whole	Hiremath, Rudresh
			and Badami, 1998
5-Hydroxy-7,4'-dimethoxyflavone [18]	Croton betolaster	n.s.	Barbosa <i>et al</i> ., 2003
Luteolin [19]	Euphorbia serpens microfilia	n.s.	Del V. Galarza, <i>et al</i> .,
			1983
Pinnatin [20]	Gelonium multiflorum	roots	Das <i>et al</i> ., 1994
Flavone glycosides			
Apigenin 7-O-glucoside [21]	Euphorbia minuta	n.s.	Del V. Galarza, et al.,
			1983
Isovitexin [22]	Euphorbia serpens microfilia	n.s.	Del V. Galarza, et al.,
			1983
	Euphorbia minuta	n.s.	Del V. Galarza, et al.,
			1983
	Jatropha curcas	leaves	Subramanian, Nagarajan
			and Sulochana, 1971
	Jatropha heynii	leaves	Subramanian <i>et al</i> ., 1971

Table 1. (continued)

Compound	Source	Plant part	Reference	
	Hevea brasiliensis	leaves	Subramanian <i>et al</i> ., 1971	
Luteolin-7-O-glucoside [23]	Euphorbia minuta	n.s.	Del V. Galarza et al.,	
			1983	
Swertisin [24]	Aleurites moluccana	leaves	Meyre-Silva <i>et al.</i> , 1997	
Vitexin [25]	Macaranga triloba	leaves	Vinh, Nguyen and	
			Nguyen, 2002	
	Euphorbia serpens micr	o <i>filia</i> n.s.	Del V. Galarza <i>et al</i> .,	
			1983	
	Euphorbia minuta	n.s.	Del V. Galarza, et al.,	
			1983	
	Jatropha curcas	leaves	Subramanian <i>et al</i> ., 1971	
	Jatropha heynii	leaves	Subramanian <i>et al</i> ., 1971	
	Hevea brasiliensis	leaves	Subramanian <i>et al</i> ., 1971	
Favonol				
Ayanin [26]	Croton schiedeanus	n.s.	Puebla <i>et al</i> ., 2003	
Desmethoxykanugin [27]	Gelonium multiflorum	roots	Das <i>et al</i> ., 1994	

Table 1. (continued)

Compound	Source	Plant part	Reference
Ferrugin [28]	Bridelia ferruginea	stem bark	Cimanga <i>et al</i> ., 2001
Galangin [29]	Acalypha indica	whole	Hiremath <i>et al</i> ., 1998
Isolicoflavonol [30]	Macaranga conifera	leaves	Jang <i>et al</i> ., 2002
Kaempferol [31]	Euphorbia latifolia leave	s, flowers and stems	Atalykova and Kukenov,
			1981
	Euphorbia pachyrrhiza leave	es, flowers and stems	Atalykova and Kukenov,
			1981
Kaempferol-3,6-dimethyl ether [32]	Chamaesyce prostrata	aerial part	Rojas <i>et al</i> ., 1999
Kanugin [33]	Gelonium multiflorum	roots	Das <i>et al</i> ., 1994
Myricetin [34]	Bridelia ferruginea	stem bark	Cimanga <i>et al</i> ., 2001
3-O-Methylquercetin [35]	Bridelia ferruginea	stem bark	Cimanga <i>et al</i> ., 2001
Quercetin [36]	Sapium japonicum	leaves	Ahn <i>et al</i> ., 1996
	Euphorbia serpens microfilia	n.s.	Del V. Galarza <i>et al</i> .,
			1983
	Euphorbia minuta	n.s.	Del V. Galarza <i>et al</i> .,
			1983

Table 1. (continued)

Comp	ound	Source	Plant part	Reference
		Euphorbia latifolia	leaves,flowers and stems	Atalykova and Kukenov,
				1981
		Euphorbia pachyrrhiza	leaves,flowers and stems	Atalykova and Kukenov,
				1981
		Euphorbia paralias	n.s.	Rizk <i>et al</i> ., 1976
	Quercetin 3,7-dimethyl ether [37]	Croton schiedeanus	n.s.	Guerrero <i>et al</i> ., 2002
				Puebla <i>et al</i> ., 2003
	Rutisin [38]	Bridelia ferruginea	stem bark	Cimanga <i>et al</i> ., 2001
	3,3',4',5'-Tetra-O-methylmyricetin [39]	Bridelia ferruginea	stem bark	Cimanga <i>et al</i> ., 2001
Flavor	nol glycosides			
	Afzelin [40]	Sapium japonicum	leaves	Ahn <i>et al</i> ., 1996
		Euphorbia pekinensis	aerial part	Ahn <i>et al</i> ., 1996
	Astragalin [41]	Sapium japonicum	leaves	Ahn <i>et al</i> ., 1996
		Euphorbia pekinensis	aerial part	Ahn <i>et al</i> ., 1996
	Euphorbianin [42]	Euphorbia hirta	leaves	Aqil and Khan, 1999
	6-Hydroxykaempferol-7-rutinoside [43]	Sapium euginiaefolium	leaves	Ahmad <i>et al</i> ., 1991

Table 1. (continued)

Compound	Source	Plant part	Reference
Isoquercitrin [44]	Sapium japonicum	leaves	Ahn <i>et al</i> ., 1996
	Euphorbia pekinensis	aerial part	Ahn <i>et al</i> ., 1996
	Phyllanthus sellowianus	n.s.	Hnatyszyn <i>et al</i> ., 2002
	Euphorbia serpens microfilia	n.s.	Del V. Galarza <i>et al</i> .,
			1983
Isorhamnetin-3-rutinoside [45]	Mercurialis annua	n.s.	Dumkow <i>et al</i> ., 1969
Isorhamnetin-3-rutinoside-4'-glucoside [46]	Mercurialis annua	whole plant	Harborne, 1994
Isorhamnetin-3-O-β-D-xyloside [47]	Alchornea davidii	leaves and twigs	Cui, Liu and Tan, 2003
Isorhamnetin-3-O-β-glucopyranoside			
-7-O-α-rhamnopyranoside [48]	Chrozophora obliqua	aerial part	Mohamed, 2001
Kaempferol-3-O-rutinoside [49]	Euphorbia pekinensis	aerial part	Ahn <i>et al</i> ., 1996
	Manihot esculenta	leaves	Prawat <i>et al</i> ., 1995
	Mercurialis perennis	n.s.	Dumkow, 1969
Kaempferol-3-sophoroside [50]	Mercurialis perennis	n.s.	Dumkow, 1969
Kaempferol-7-O-glucoside [51]	Chamaesyce prostrata	aerial part	Rojas <i>et al</i> ., 1999
Kaempferol-3-O- β -D-glucosyl-7-O- α -L-rhamnosyl [52]	Sauropus androgynus	aerial part	Wang and Lee, 1997
Kaempferol-3-O-β-D-glucosyl-(1→6)-β-D-glucosyl [53]	Sauropus androgynus	aerial part	Wang and Lee, 1997

Table 1. (continued)

Compound	Source	Plant part	Reference
Kaempferol-3-O-β-D-glucosyl-(1→6)-β-D-glucosyl			
7-O-α-L-rhamnosyl [54]	Sauropus androgynus	aerial part	Wang and Lee, 1997
Quercetin-3-arabinoside [55]	Euphorbia paralias	n.s.	Rizk, Ahmed and
			Diab, 1979
Quercetin-3-galactoside [56]	Euphorbia paralias	n.s.	Rizk <i>et al.</i> , 1979
	Euphorbia serpens microfilia	a n.s.	Del V. Galarza <i>et al</i> .,
			1983
	Euphorbia minuta	n.s.	Del V. Galarza <i>et al</i> .,
			1983
Quercetin-3-glucosyl-(1→4)-rhamnoside [57]	Euphorbia drancunculoides	leaves	Harborne, 1994
	Euphorbia pekinensis	aerial part	Ahn <i>et al</i> ., 1996
	Manihot esculenta	phloem sap	Calatayud, 1994
	Croton sparsiflorus	leaves	Subramanian <i>et al</i> ., 1971
	Manihot utilissima	leaves	Subramanian <i>et al</i> ., 1971
Quercetin-3-O-glucoside [58]	Bridelia ferruginea	stem bark	Cimanga <i>et al</i> ., 2001
	Euphorbia minuta	n.s.	Del V. Galarza <i>et al</i> .,
			1983

Table 1. (continued)

pound	Source	Plant part	Reference
Quercetin-3-O-rutinoside [59]	Croton sparsiflorus	leaves	Subramanian <i>et al</i> ., 1971
	Euphorbia pekinensis	aerial part	Ahn <i>et al.</i> , 1996
	Manihot esculenta	leaves	Prawat <i>et al.</i> , 1995
		phloem sap	Calatayud <i>et al</i> ., 1994
	Manihot utilissima	leaves	Subramanian <i>et al.,</i> 1971
	Mercurialis annua	n.s.	Dumkow, 1969
	Phyllantus ussuriensis	n.s.	Ham <i>et al</i> ., 2001
	Phyllanthus sellowianus	n.s.	Hnatyszyn <i>et al</i> ., 2002
	Sapium japonicum	leaves	Ahn <i>et al</i> ., 1996
Quercetin-3-O-rhamnoside [60]	Euphorbia hirta	leaves	Blanc and De Saqui-
			Sannes, 1972; Aqil and
			Khan, 1999;
	Euphorbia pekinensis	aerial part	Ahn <i>et al</i> ., 1996
	Euphorbia minuta	n.s.	Del V. Galarza <i>et al</i> .,
			1983
Quercetin-3-O-(2"-O-galloyl)-β-D-glucoside [61]	Euphorbia pekinensis	aerial part	Ahn <i>et al</i> ., 1996
Quercetin-3-O-(2"-O-galloyl)- α -L-rhamnoside [62]	Euphorbia pekinensis	aerial part	Ahn <i>et al</i> ., 1996

Table 1. (continued)

Compound	Source	Plant part	Reference
Quercetin-3-O- β -D-glucopyranosyl-[1 \rightarrow 6]-O			
-α-L- rhamnoside [63]	Homonia reparia	leaves	Parveen,Singh and
			Khan, 1988
Quercetin-3'-xyloside [64]	Euphorbia paralias	n.s.	Rizk <i>et al</i> ., 1976
Quercetin-3-O-βglucopyranoside			
-7-O-α-rhamnopyranoside [65]	Chrozophora obliqua	aerial part	Mohamed, 2001
Trifolin [66]	Sapium japonicum	leaves	Ahn <i>et al</i> ., 1996
Anthocyanidin			
Cyanidin-3-O-galactoside [67]	Euphorbia minuta	n.s.	Del V. Galarza <i>et al</i> .,
			1983
Cyanidin-3-O-glucoside [68]	Euphorbia serpens micro	ofilia n.s.	Del V. Galarza <i>et al</i> .,
			1983
Delphinidin-3-O-glucoside [69]	Euphorbia serpens micro	<i>ofilia</i> n.s.	Del V. Galarza <i>et al</i> .,
			1983
จพำลง	<u>เกรณ์มหาวิท</u>	ยาลัย	

Table 1. (continued)

Compound	Source	Plant part	Reference
Flavanol			
Leucocyanidol [70]	Euphorbia hirta	n.s.	Blanc and De Saqui-
			Sannes, 1972
Flavans			
Gallocatechin-[4'-O-7]-epigallocatechin [71]	Bridelia ferruginea	stem bark	De Bruyne <i>et al</i> ., 1997;
			Cimanga <i>et al</i> ., 2001
Rotenoids			
Sumatrol [72]	Macaranga indica	leaves	Sultana and Ilyas, 1987
สถาเ ลหาลงก	้ มันวิทยบริก เรถโบหาวิท	าว เยาลัย	

5, 4'-Dihydro-[2''-(1-hydroxyl)dihydrofurano]-(7, 8:5'', 4'') flavanone [2]

	R_1	R_2
5, 7-Dihydroxy-4'-methoxy-8-(3-methylbut-2-enyl) flavanone [3]	CH_3	Н
Lonchocarpol A [8]	Н	prenyl
Sophoraflavanone B [11]	Н	Н

R

5, 7-Dihydroxy-4'-methoxy-8-(2-hydroxy-3-methybut-3-enyl) flavanone [4] CH₃ Tomentosanol D [12]

6, 7-Dimethoxy-3', 4'-methylenedioxyflavanone [5]

5-Hydroxy-4'-methoxy-2'', 2''-dimethylpyrano-(7, 8:6'', 5'') flavanone [7]

Prunin [13]

	R_1	R_2
Afzelin [40]	Rha	Н
Astragalin [41]	Glc	Н
Kaempferol-3-O-rutinoside [49]	Glc ⁶ -Rha	Н
Kaempferol-3-sophoroside [50]	Glc ² -Glc	Н
Kaempferol-3-O-β-D-glucosyl-7-O-α-L-rhamnosyl [52]	β-Glc	lpha-Rha
Kaempferol-3-O-β-D-glucosyl-(1→6)-β-D-glucosyl [53]	β -Glc ⁶ - β -Glc	Н
Kaempferol-3- <mark>O-β-D-glucosyl-(1→</mark> 6)-β-D-glucosyl		
7-O-α-L-rhamnosyl [54]	β -Glc ⁶ - β -Glc	lpha-Rha
Trifolin [66]	Gal	Н

	R
Euphorbianin [42]	β-Gal ³ -6 ^{′′′′} -Ac-Glc
Isoquercitrin [44]	Glc
Quercetin-3-arabinoside [55]	Ara
Quercetin-3-galactoside [56]	Gal
Quercetin-3-glucosyl-(1→4)-rhamnoside [57]	Glc-Rha ⁴
Quercetin-3-O-glucoside [58]	Glc
Quercetin-3-O-rutinoside [59]	Glc ⁶ -Rha
Quercetin-3-O-rhamnoside [60]	Rha
Quercetin-3-O-(2"-O-galloyl)-β-D-glucoside [61]	2 ^{"-} O-galloyl-β-Glc
Quercetin-3-O-(2 ^{''} -O-galloyl)- α -L-rhamnoside [62]	2 ^{''-O-galloyl-α-Rha}
Quercetin-3-O-β-D-glucopyranosyl-(1 → 6)-	
O-α-L-rhamnoside [63]	β-Glc-α-Rha ⁶

จฺฬาลงกรณ์มหาวิทยาลัย

	R ₁	R_2	R_3
Isorhamnetin-3-rutinoside [45]	ОН	Glc ⁶ -Rha	OH
Isorhamnetin-3-rutinoside-4'-glucoside [46]	ОН	Glc ⁶ -Rha	O-Glc
Isorhamnetin-3-O-β-D-xyloside [47]	ОН	β-ΧγΙ	OH
Isorhamnetin-3-O-β-glucopyranoside-			
7-O-α-rhamnopyranoside [48]	O-α-Rha	β-Glc	OH

Quercetin-3'-xyloside [64]

Quercetin-3-O- β -glucopyranoside-7-O- α -rhamnopyranoside [65]

Delphinidin-3-O-glucoside [69]

Sumatrol [72]

2.2 The isoquinoline alkaloids from euphorbiaceous plants.

The alkaloids are one of the largest groups of natural products, the most diverse group of secondary metabolites found in living organism. Then compounds have an array of structure types, biosynthesis pathways and pharmacological activities (Roberts and Wink, 1998).

Isoquinolines form one of the largest groups of plant alkaloids. Their structures comprise double carbon rings containing one nitrogen atom. This extremely large and enormously varied group can be divided into approximately twenty categories, which include a number of valuable clinical agents such as codeine, morphine, emetine and tubocurarine.

Simple isoquinoline are one category of the isoquinoline alkaloids which begin in primary metabolism with the ∞ -amino-acid, tyrosin. This is the result of quite extensive experiments particularly with various phenethylamine precursors. A key intermediate is 3,4-dihydroxy-5-methoxyphenethylamine. Methylation at C-3 of 3,4-dihydroxy-5-methoxyphenethylamine leads to mescaline, whereas methylation at C-4 ultimately affords anhalonidine and anhalamine (Phillipson, Roberts and Zenk, 1985).

The biosynthesis scheme of isoquinoline alkaloids is shown in Scheme 2 and the distribution of isoquinoline alkaloids within the family Euphorbiaceae is summarized in Table 2.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Anhalonidine R=CH3

Anhalamine R=H

Scheme 2. Biosynthesis of isoquinoline alkaloids.

Compound	Sc	ource	100	Plant part		Reference
O-Acetyldihydrosalutaridine [73]	Cr	roton linearis		n.s.	Barton	<i>et al</i> ., 1968; Haynes <i>et al</i> ., 1968
Croton linearis Base E [74]	Cr	oton linearis		n.s.	Haynes	s, Husbands and Stuart, 1966
Crotonosine [75]	Cr	oton linearis		n.s.	Haynes	s et al., 1966
Crotsparine [76]	Cr	oton sparsiflorus		n.s.	Bhakur	ni and Dhar, 1968;
					Bhakur	ni, Satish and Dhar, 1972
Crotsparinine [77]	Cr	oton sparsiflorus		n.s.	Bhakur	ni and Dhar, 1969;
					Bhakur	ni, Satish and Dhar, 1972
8,14-Dihydronorsalutaridine [78]	Cr	roton linearis			Barton	<i>et al</i> ., 1968; Haynes <i>et al</i> ., 1968
8,14-Dihydrosalutaridine [79]	Cr	roton linearis		n.s.	Barton	<i>et al</i> ., 1968; Haynes <i>et al</i> ., 1968
	Cr	roton discolor		n.s.	Barton	<i>et al</i> ., 1968; Haynes <i>et al</i> ., 1968
N,O-Dimethylcrotsparine [80]	Cr	roton sparsiflorus		n.s.	Bhakur	ni and Dhar, 1968
					Bhakur	ni <i>et al</i> ., 1972
N,O-Dimethylhernovine [81]	Cr	roton wilsonii		n.s.	Stuart a	and Chambers, 1967
Discolorine [82]	Cr	roton discolor		n.s.	Cordel	l et al., 1989
Flavinantine [83]	Cr	roton flavens		n.s.	Kotani	and Tobinaga, 1973
Flavinine [84]	Cr	roton flavens		n.s.	Kotani	and Tobinaga, 1973
Hernovine [85]	Cr	oton wilsonii		n.s.	Stuart a	and Chambers, 1967

Table 2 Isoquinoline alkaloids from euphorbiaceous plants.

Table 2. (continued)

Compound	Source	Plant part	Reference
Homolinearisine [86]	Croton linearis	n.s.	Haynes <i>et al.</i> , 1966
Isocrotsparinine [87]	Croton sparsiflorus	aerial part	Casagrande et al., 1975
Jaculadine [88]	Croton linearlis	n.s.	Cordell, 1989
Jacularine [89]	Croton linearlis	n.s.	Stuart et al., 1968; Casagrande et al.,
			1975
Linearisine [90]	Croton linearlis	n.s.	Colombo, 1976; Haynes and Stuart,
			1963; Haynes <i>et al</i> ., 1966
3-Methoxy-4,6-dihydroxymorphinan			
-dien-7-one [91]	Croton bonplandianum		Cordell <i>et al.</i> , 1989
N-Methylcrotsparine [92]	Croton sparsiflorus	n.s.	Bhakuni and Dhar, 1968;
			Bhakuni <i>et al</i> ., 1972
N-Methylcrotsparinine [93]	Croton sparsiflorus	n.s.	Bhakuni and Dhar,1969;
			Bhakuni <i>et al</i> ., 1972
N-Methylhernovine [94]	Croton wilsonii	n.s.	Stuart and Chambers, 1967
10-O- Methylhernovine [95]	Croton wilsonii	n.s.	Stuart and Chambers, 1967
N-Methylisocrotsparinine [96]	Croton sparsiflorus	n.s.	Casagrande <i>et al.</i> , 1975

Table 2. (continued)

Compound	Source	Plant part	Reference
Norsinoacutine [97]	Croton balsamifera	n.s.	Kametani, 1969
	Croton flavens	n.s.	Stuart and Graham, 1973
Papaverine [98]	Sauropus androgynus	leaves	Ismail, 1973
Salutaridine [99]	Croton salutaris	leaves and twigs	Barnes and Soeiro, 1981
	Croton balsamifera	n.s.	Kametani, 1969
Salutarine [100]	Croton salutaris	leaves and twigs	Barnes and Soeiro, 1981
Sparsiflorine [101]	Croton sparsiflorus	leaves	Chatterjee <i>et al</i> ., 1965
Tetrahydroglaziovine [102]	Croton sparsiflorus	n.s.	Casagrande <i>et al</i> ., 1975
1,2,3,4,-Tetrahydro-6-hydroxy-1-methyl-3-			
isoquinoline carboxylic acid [103]	Euphorbia myrsinites	latex	Cordell <i>et al</i> ., 1989
	Euphorbia tirucalli	latex	Cordell <i>et al.</i> , 1989
Thaliporphine [104]	Croton sp.	n.s.	Tschesche <i>et al</i> ., 1965
Wilsonirine [105]	Croton wilsonii	n.s.	Stuart and Chambers, 1967

สถาบนวทยบรการ จุฬาลงกรณ์มหาวิทยาลัย

Tetrahydroglaziovine [102]

1,2,3,4-Tetrahydro-6-hydroxy-1-metyl-3-isoquinolinecarboxylic acid [103]

Wilsonirine [105]

3. Chemical constituents of the genus Sauropus

The genus *Sauropus* contains about 29 species (Airy Shaw, 1972). Chemical study of plants in this genus has been done on only two species, *Sauropus androgynus* and *S. quadrangularis*. The chemical consituents of *S.androgynus* and *S.quadrangularis* are summarized in Table 3.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Table 3. Chemical consituents of plants in the genus Sauropus

Plants	Chemical type	Name	Reference
Sauropus androgynus	Alkaloids	Papaverine [98]	Bender and Ismail, 1973
	Flavonoids	3-O-β-D-glucosyl-7-O-α-L-rhamnosyl-kaempferol [52]	Wang and Lee, 1997
		3-O-β-D-glucosyl-(1→6)-β-D-glucosyl-kaempferol [53]	Wang and Lee, 1997
		3-O-β-D-glucosyl-(1→6)-β-D-glucosyl-7-O-α-L-	
		rhamnosyl-kaempferol [54]	Wang and Lee, 1997
		Quercetin [36]	Miean and Mohamed, 2001
Lignan glycoside	Lignan glycosides	(+)-isolariciresinol 3α -O- β -glucopyranoside [106]	Kanchanapoom <i>et al</i> ., 2003
		(-)-isolariciresinol 3α -O- β -glucopyranoside [107]	Kanchanapoom <i>et al</i> ., 2003
		(-)-isolariciresinol 3α-O-β-apiofuranosyl-	
		(1→2)-O-β-glucopyranoside [108]	Kanchanapoom <i>et al</i> ., 2003
		Liriodendrin [109]	Kanchanapoom <i>et al</i> ., 2003
M	egastigmane glucoside	Corchoionoside C [110]	Kanchanapoom <i>et al</i> ., 2003
		Sauroposide [111]	Kanchanapoom <i>et al</i> ., 2003
	Nucleoside	Adenosine [112]	Wang and Lee, 1997
		5'-Deoxy-5'-methylsulphinyladenosine [113]	Wang and Lee, 1997
		Guanosine [114]	Kanchanapoom <i>et al</i> ., 2003

Table 3. (continued)

Plants	Chemical type	Name	Reference
		Uridine [115]	Wang and Lee, 1997
Sauropus quadrangularis	Lignans	Benzoyl diphyllin [116]	Satyanarayna <i>et al</i> ., 1995
		6-Bromo-3,4-dimethoxybenzoyl diphyllin [117]	Satyanarayna <i>et al</i> ., 1995
		6-Bromo-3,4-methylenedioxybenzoyl diphyllin [118]	Satyanarayna <i>et al</i> ., 1995
		Cinnamoyl diphyllin [119]	Satyanarayna <i>et al</i> ., 1995
		Diphyllin [120]	Satyanarayna <i>et al</i> ., 1995
		3,4-methylenedioxybenzoyl diphyllin [121]	Satyanarayna <i>et al</i> ., 1995
		4-Nitro-benzoyl diphyllin [122]	Satyanarayna <i>et al</i> ., 1995
		3,4,5-Trimethylbenzoyl diphyllin [123]	Satyanarayna <i>et al</i> ., 1995
		trans-(3R,4S) bis (3',4'-methylenedioxybenzyl)	
		tetrahydrofuran [124]	Satyanarayna <i>et al</i> ., 1995

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

(+)-Isolariciresinol-3- α -O- β -glucopyranoside [106]

(-)-Isolariciresinol-3- α -O- β -apiofuranosyl-(1 \rightarrow 2)-O- β -glucopyranoside [108]

Uridine [115]

trans-(3R, 4S) bis (3',4'-Methylenedioxybenzyl) tetrahydrofuran [124]

CHAPTER III

EXPERIMENTAL

Source of plant material

The aerial part of *Sauropus hirsutus* was collected from Sakaerat Environmental Research Station, Wung Num Kiow District, Nakhon Ratchasima Province, Thailand, in October 2002. It was identified by comparision with herbarium specimen (S. Phengnaren No. 449) at the Royal Forest Department, Bangkok, Thailand.

Phytochemical Techniques

1. Chromatographic Techniques

1.1 Thin Layer Chromatography (TLC)

Technique	:	one way ascending
Stationary phase		TLC aluminium sheet silica gel 60F 254,
		Layer thickness 0.2 mm.
Distance	: /	5 cm.
Temperature		28-35 °C (room temperature)
Detection		1) UV light at the wavelengths of 254 and 365 nm
		2)10% sulfuric acid in ethanol and heating at 110° C
		3) Dragendorff Reagent
Solvent		Various solvent systems depending on materials

1.2 Column Chromatography (CC)

Column	in o	Flat bottom glass column (various diameter)
Stationary phase	N L L	Silica gel 60 (No. 9385, E. Merck) particle size
		0.040-0.063 mm (230-400 mesh ASTM)
Packing method	:	Dry and wet packing
Sample loading	:	1) Dry packing: The sample was dissolved in a
		small amount of suitable organic solvent, mixed
		with a small quantity of adsorbent, triturated,
		dried and then loaded on top of the column.

2) Wet packing: The sample was dissolved in a small amount of the eluent, then loaded on top of the column.

Solvent system	:	Various solvents systems depending on materials.
Detection	:	Fractions were examined by TLC observing under
		UV light at the wavelengths of 254 and 365 nm,
		then the TLC plate was sprayed with 10% sulfuric
		acid in ethanol and heated at 110 °C or sprayed
		with dragendorff reagent. The fractions of similar
		TLC pattern were combined.

1.3 Gel Filtration Chromatography

Gel filter	: //	Sephadex TM LH-20
Packing method	:	Gel filter was suspended in the eluent and left
		standing to swell for 24 hours prior to use. It was
		then poured into the column and allowed to set
		tightly.
Sample loading	:	The sample was dissolved in a small volume of the
		eluent and applied on top of the column.
Solvent		Methanol 100%
		Methanol-chloroform (1:1)

1.4 Preparative Thin Layer Chromatography (PTLC)

Stationary phase	:	Kieselgel 60 F 254, Layer thickness 1 mm
Distance	าก (15 cm
Temperature	:	28-35 °C (room temperature)
Detection	:	UV light (254 and 365 nm)
Solvent	:	Hexane-acetone (3:2)

2. Spectroscopy

2.1 Utraviolet (UV) Absorption Spectra

UV spectra (in methanol) were obtained on a Milton Roy Spectronic 3000 Array Spectrometer (Pharmaceutical Research Equipment Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

2.2 Infrared (IR) Absorption Spectra

IR spectra (KBr disc and thin film) were obtained on a Perkin Elmer Infrared Spectrophotometer Model 1760X (Scientific and Technological Research Equipment Center, Chulalongkorn University)

2.3 Mass Spectra (MS)

Electron impact mass spectra (EIMS) were recorded on a Fison Micromass VG Platform II mass spectrometer (Faculty of Science, Mahidol University). The electrospray ionization time of flight mass spectroscopy (ESI TOFMS) were obtained using a Micromass LCT mass spectrometer, and the lock mass calibration was applied for the determination of accurate mass (The National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park)

2.4 Proton and Carbon-13 Nuclear Magnetic Resonance spectra

The ¹H and ¹³C NMR spectra were obtained either on a JEOL JNM-A500 (Alpha series) 500 MHz NMR spectra (Science and Technological Research Equipment Center, Chulalongkorn University) or a Bruker Avance DPX-300 300 MHz NMR spectrometer (Faculty of Pharmaceutical Sciences, Chulalongkorn University).

NMR solvents used in this study were deuterated dimethylsulfoxide (DMSO- d_6), deuterated chloroform (CDCl₃) and deuterated methanol (CD₃OD). Chemical shifts were reported in ppm scale using the chemical shift of the solvent as the reference signal.

3. Melting Point

Melting points were obtained on a Fisher-John Melting Point Apparatus

(Department of Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

4. Solvent

Throughout this work, all organic solvents were of commercial grade and were redistilled prior to use.

Extraction

The dried aerial part of *Sauropus hirsutus* (400 g) were ground into small pieces. It was extracted by maceration with methanol (7 times 3 days each) and then filtered. The filtrate of each batch was combined and concentrated to remove methanol under reduce pressure to yield 100 g of crude methanol extract (25% of dried weight). The crude methanol extract was preadsorbed on kieselguhr and packed into a percolator, then washed down with hexane until the eluate stopped giving positive result to Liebermann-Burchard test. The eluate was evaporated to dryness to give 20.00 g of the hexane extract (5% of dried weight). The remaining kieselguhr residue was air dried and then eluted with chloroform until the eluate stopped giving positive result to Dragendorff reagent. The eluate was evaporated to dryness to give 2.02 g of the chloroform extract (0.51% of dried weight). The air dried kieselguhr residue was eluted with ethyl acetate to give, on evaporation, 7.85 g of the ethyl acetate extract (1.96% of dried weight). Finally, the dried kieselguhr residue was washed down with methanol to give 62.12 g of the methanol extract. These extracts were subjected to column chromatography for further purification.

Extraction of the aerial part of Sauropus hirsutus is summarized in Scheme 3

Scheme 3. Extraction of the aerial part of Sauropus hirsutus

Isolation

1. Fractionation of the hexane extract

The hexane extract (10 g) was subjected to silica gel column chromatography (300 g, 5x40 cm) using hexane-acetone (19:1) as the solvent system. One hundred and fifty-five 30-ml fractions were collected and combined according to their TLC pattern into nine major fractions (H01-H09) as shown in Table 4. Finally, the column was washed throughly with methanol to give H10.

Fraction	Number of eluates	Weight (g)
H01	1-9	0.28
H02	10-19	0.40
H03	20-27	0.51
H04	28-29	0.25
H05	30-38	3.21
H06	39-68	1.18
H07	69-98	0.33
H08	99-143	0.38
H09	144-155	0.73
H10	methanol elute	2.46

Table 4 Combined fractions from the hexane extract

1.1 Isolation of compound H1

Fraction H07, which displayed one major pink-violet spot on TLC upon detection with 10% sulfuric acid, was recrystallized in methanol to give 45.1 mg (0.02% yield) of compound H1 as colorless needles.

2. Fractionation of the chloroform extract

The chloroform extract (2.02 g) was subjected to silica gel column chromatography (100 g, 3x30 cm), using hexane-acetone (7:3) as the eluent. Forty one fractions (30 ml each) were collected and examined by TLC, those with similar pattern on TLC plates were combined and evaporated to dryness to give five major fractions (C01-C04). The last fraction was from elution with methanol (C05). The combined fractions from the chloroform extract are summarized in Table 5

Fraction	Number of eluates	Weight (mg)
C01	1-9	55.8
C02	10-13	18.3
C03	14-20	33.6
C04	21-41	23.8
C05	methanol eluate	1650

Table 5. Combined fractions from the chloroform extract

Fraction C03 (33.6 mg) was further chromatographed on silica gel column chromatography (18 g, 1x20 cm) using hexane-acetone (3:2) as the solvent system. Forty-two fractions (2 ml each) were collected and combined according to their TLC pattern into four major fractions (C06-C09), as shown in Table 6.

Table 6	Combined	fractions	from	fraction	C03
	Compilied	nuotiono	nom	nuotion	000

Fraction	Number of eluates	Weight (mg)
C06	1-18	3.3
C07	19-24	8.2
C08	25-35	5.0
C09	36-42	11.7
2.1 Isolation of compound C1

Fraction C07 displayed one major TLC spot similar to that of fraction C02. Therefore, they were combined to give fraction C10. It was then further separated by gel filtration chromatography using a Sephadex LH-20 column (1x40 cm). Elution was performed utilizing methanol-chloroform (1:1) as the solvent system. Thirty-two fractions (2 ml each) were collected. The fractions were monitored by silica gel TLC with hexane-acetone (3:2) as the solvent.. Those of similar pattern on TLC plates were combined into three major fractions (C11-C13) as shown in Table 7.

Number of eluates	Weight (mg)
1-20	7.9
21-22	3.3
23-33	12.5
	Number of eluates 1-20 21-22 23-33

Table 7 Combined fractions from fraction C10

Fraction C12 showed one orange-red spot on TLC plate upon detection with Dragendorff reagent. It was crystallized in chloroform to give compound C1 as pale yellow needle (3.3 mg, 0.000825% yield).

2.2 Isolation of compound C2

Fraction C08 showed interesting spots on TLC similar to those of fraction C04. They were combined to give fraction C14. It was then chromatographed on a Sephadex LH-20 column (1x40 cm), using methanol as the eluent. Twenty-five fractions (2 ml) were collected and combined according to their TLC pattern into three major fractions, as summarized in Table 8.

Fraction	Number of eluates	Weight
C15	1-11	3.2
C16	12-19	25.1
C17	20-25	4.8

Table 8 Combined fractions from fraction C14

Fraction C16 (25.1 mg), displaying two major spots (Rf=0.44 and 0.52) on TLC plate when detected under UV light. It was then further separated by preparative TLC, using hexane-acetone (3:2) as the solvent. The two major bands were separated, the adsorbent washed throughly with chloroform-methanol (3:7) and the eluate concentrated to afford compound C2 as pale yellow needles (4.8 mg) and an additional amount of compound C1 (1.5 mg) respectively. The fractionation of chloroform extract is summarized in Scheme 4.

Scheme 4. Fractionation of chloroform extract.

3. Fractionation of the ethyl acetate extract.

The ethyl acetate extract (7.85g) was subjected to silica gel column chromatography (240 g, 5x30 cm) using acetone-chloroform (3:2) as the eluent, to give seventy fractions (30 ml each). The column was then washed down with methanol. Combination of fractions according to their TLC pattern resulted eight major fractions (E01-E08), as shown in Table 9.

Fraction	Number of eluates Weight (g)	
E01	1-7	0.08
E02	8-12	0.12
E03	13-18	1.30
E04	19-34	0.74
E05	35-46	0.39
E06	47-61	0.40
E07	62-70	0.44
E08	methanol eluate	4.24

Table 9 Combined fractions from the ethyl acetate extract.

3.1 Isolation of compound EA1

Fraction E03, which displayed one permanent spot with trace of impurity on TLC plate, was selected for further investigation. It was rechromatographed on a silica gel column (70 g, 2.5x30 cm), using acetone-hexane (14:11) as the eluent. Thirty-one fractions (30 ml) were collected and then the column was washed down with methanol. Five major fractions (E09-E13) were obtained as shown in Table 10.

Fraction	Number of eluates	Weight (g)
E09	1-8	0.07
E10	9-17	0.29
E11	18-21	0.06
E12	22-31	0.05
E13	methanol eluate	0.54

Table 10 Combined fractions from fraction E03.

Fraction E10 showed yellow-brown spot on TLC plate. It was recrystallized in acetone to give 273.03 mg of compound EA1 as pale yellow crytals (0.07% yield). Fractionation of ethyl acetate extract is summarized in Scheme 5.

Characterization of isolated compounds

1. Compound H1

Appearance	: Colorless needles
Solubility	: Soluble in chloroform

¹H-NMR (δ ppm, 300 MHz, CDCl₃) (Figure 2, page 94)
0.66 (3H), 0.78 (3H), 0.80 (3H), 0.83 (3H), 0.90 (3H), 0.99 (3H), 3.50 (1H), 5.35 (1H)

¹³C-NMR (δ ppm, 75 MHz, CDCl₃) (Figures 3a-3b, page 95-96)
12.0 (q), 12.1 (q), 18.9 (q), 19.2 (q), 19.5 (q), 20.0 (q), 21.2 (t), 23.2 (t), 24.4 (t),
26.3 (t), 28.4 (t), 29.3 (d), 31.8 (t), 32.0 (t), 32.0 (d), 34.1 (t), 36.6 (d), 36.3 (d),
37.4 (t), 39.9 (t), 42.4 (t), 42.4 (d), 46.0 (d), 50.2 (d), 56.2 (d), 56.8 (d) 71.8 (d),
121.6 (d), 140.6 (s)

2. Compound C1

Appearance	: Pale yellow r	needles
Solubility	: Soluble in ch	nloroform
Melting Point	: 118-120 ⁰ C	
EIMS <i>m/z</i> (% relative	intensity)	: 233(0.6), 219(2.7), 218(13.9),
		217(100.0),216(15.2), 189(38.6),

UV $\lambda_{_{max}}$ nm (log ϵ), in methanol

IR v_{max} (thin flim) cm⁻¹

: 233(0.6), 219(2.7), 218(13.9), 217(100.0),216(15.2), 189(38.6), 188(29.8), 174(10.8), 161(12.4), 160(20.1), 149(13.3), 146(23.8), 118(10.9), 91(10.1) (Figure 5, page 98) : 217 (3.99), 245 (4.12), 295 (3.05), 335 (3.02) (Figure 7, page 100) : 2925, 2850, 1742, 1640, 1596, 1524, 1477, 1448, 1417, 1346, 1280, 1196, 1077, 1048, 946, 812 and 492 (Figure 6, page 99) ¹H-NMR (δ ppm, 500 MHz, CDCl₃) (Figures 11a-11b, page 104-105) 2.67 (3H, *s*), 3.99 (3H, *s*), 6.19 (2H, *s*), 6.47 (1H, *s*), 7.08 (1H, *d*, *J*=8.5 Hz) and 7.68 (1H, *d*, *J*=8.5 Hz)

¹³C-NMR (δ ppm, 125 MHz, CDCl₃) (Figure 8, page 101)
26.0 (q), 55.5 (q), 99.1(d), 102.2(t), 108.6(d), 115.6 (d), 116.5 (s), 135.6 (s),
140.3 (s), 147.3 (s), 161.3 (s) and 162.5 (s)

3. Compound C2

Appearance	: Pale yellow needles		
Solubility	: Soluble in methanol		
Melting Point	:164-166 ⁰ C		
EIMS <i>m/z</i> (% relative i	ntensity)	: 263 (0.2), 249 (1.8), 247 (100.0), 246	
		(45.6), 232 (30.8), 218 (18.8), 204 (22.2),	
		1 <mark>89 (13.9),</mark> 176 (18.8), 160 (9.7), 149	
		(11.8), 133 (7.6), 118 (5.3), 91 (4.4) and	
		77 (6.7) (Figure 15, page 111)	
UV $\lambda_{_{max}}$ nm (log ϵ), in	methanol	: 223 (4.14), 254 (4.29) and 307 (3.35)	
		(Figure 17, page 113)	
IR v_{max} (KBr) cm ⁻¹		: 2968, 2938, 1721, 1592, 1534,	
		1465, 141 <mark>6,</mark> 1345, 1297, 1163, 1148,	
		1064, 941 and 826 (Figure 16, page 112)	

¹H-NMR (δ ppm, 500 MHz, CDCl₃/ CD₃OD) (Figure 21, page 119) 2.58 (3H,*s*), 3.94 (3H,*s*), 4.02 (3H,*s*), 6.19 (2H,*s*), 6.66 (1H,*s*) and 7.12 (1H,*s*)

¹³C-NMR(δ ppm, 125 MHz, CDCl₃) (Figures 18a-18b, page 114-115)
24.8 (q), 56.3 (q), 56.6 (q), 96.90 (d), 100.9 (d), 103.9 (t), 117.4 (s), 132.2 (s),
139.1 (s), 142.2 (s), 145.2 (s), 159.8 (s) and 163.2 (s)

4. compound EA1

Appearance	: Pale yellow crytals
Solubility	: soluble in methanol
Melting Point	: 240-242 [°] C
ESI TOFMS (<i>m/z</i>)	: 290.0837 (Figure 24, page 126)
$IR \ \boldsymbol{\nu}_{max} \ (KBr)cm^{\text{-1}}$: 3457, 1625, 1521, 1260, 1144, 1095,
	1016, 795, 627 and 461 (Figure 25, page 127)

¹H-NMR (δ ppm, 500 MHz, DMSO-*d*₆) (Figure 29, page 133) 2.48 (1H, *dd*, *J*= 16.3, 3.5 Hz), 2.67 (1H, *dd*, *J*= 16.3, 4.4 Hz), 4.00 (1H, *m*), 4.65 (1H, *d*, *J*=4.58 Hz), 4.73 (1H, *s*), 5.71 (1H, *d*, *J*=2.44 Hz), 5.88 (1H, *d*, *J*=2.44 Hz), 6.64 (1H, *dd*, *J*=8.1, 1.8 Hz), 6.66 (1H, *d*, *J*=8.1 Hz), 6.88 (1H, *d*, *J*=1.83 Hz), 8.72 (1H, *s*), 8.79 (1H, *s*), 8.96 (1H, *s*) and 9.11 (1H, *s*)

¹³C-NMR (δ ppm, 125 MHz, DMSO d₆) (Figures 26a-26b, page 128-129)
28.3 (t), 64.9 (d), 78.1 (d), 94.1 (d), 95.1 (d), 98.5 (s), 114.8 (d), 114.9 (d), 118.0 (d), 130.7 (s), 144.4 (s), 144.5 (s), 155.8 (s), 156.3 (s) and 156.6 (s)

CHAPTER IV

RESULTS AND DISCUSSION

The investigation of chemical constituents of the methanol extract of the aerial part of *Sauropus hirsutus* Beille. by chromatographic techniques led to the isolation of four compounds. The identification and structure elucidation of these compounds were based on spectroscopic evidences (UV, IR, NMR and mass spectra) and also confirmed by comparison with those previously reported in the literature. The details can be discussed as follows.

1. Structure elucidation of compound H1

Compound H1 was obtained as colorless needles (0.02% yield). It gave purple color upon spraying with 10% H₂SO₄ in 95% ethanol and heated. Liebermann-Burchard test of this compound gave positive green color, suggesting the presence of a steroidal skeleton.

The ¹H-NMR spectrum (Figure 2) showed the signal at δ 5.35 ppm which could be assigned to the vinylic proton H-6, which another one-proton multiplet signal at δ 3.50 ppm was attributable to the proton geminal to the 3-OH group. The signals between δ 0.66-0.99 ppm are the signals of methyl protons, which at δ 0.66 ppm (H-18), 0.78 ppm (H-27), 0.80 ppm (H-26), 0.83 ppm (H-29), 0.90 ppm (H-21) and 0.99 ppm (H-19). The signal at δ 1.1-2.3 ppm were those of methylene and methine protons.

The ¹³C-NMR spectrum (Figures 3a-3b) showed the signals of 29 carbon atoms, supporting the assignment of this compound as a steroid derivative. The DEPT experiments (Figure 4) were performed to differentiate these 29 signals in to those of three quaternary carbons at δ 36.6 (C-10), 42.4 (C-13) and 140.6 (C-5) ppm, nine methine carbons at δ 29.3 (C-25), 32.0 (C-8), 36.3 (C-20), 46.0 (C-24), 50.2 (C-9), 56.2 (C-17), 56.8 (C-14), 71.8 (C-3) and 121.6 (C-6) ppm, eleven methylene carbons at δ 21.2 (C-11), 23.2 (C-28), 24.4 (C-15), 26.3 (C-23), 28.4 (C-16), 31.8 (C-2), 32.0 (C-7),

34.1 (C-22), 37.4 (C-1), 39.9 (C-12) and 42.4 (C-4) ppm, and six methyl carbons at δ 12.0 (C-18), 12.1 (C-29), 18.9 (C-21), 19.2 (C-27), 19.5 (C-19) and 20.0 (C-26) ppm. The two most downfield signals at δ 140.6 and 121.6 could be assigned to the olefenic C-5 and C-6 of double bond, respectively.The carbon signal at δ 71.8 ppm represented the hydroxyl substituted position C-3.

Comparison of the ¹³C-NMR data of compound H1 with those values previously reported for β -sitosterol (De-Eknamkul and Potduang, 2003) revealed them to be fully in agreement, as summarized in Table 11. Therefore, compound H1 was identified as β -sitosterol.

Carbon	Chemical shift (ppm)		
	β-sitosterol	H1	
1	37.2	37.4	
2	31.6	31.8	
3	71.8	71.8	
4	42.2	42.4	
5	140.7	140.6	
6	121.7	121.6	
7	31.9	32.0	
8	31.9	32.0	
9	50.1	50.2	
10	36.5	36.6	
11	21.1	21.2	
12	39.7	39.9	
13	42.3	42.4	
14	56.7	56.8	
15	24.3	24.4	
16	28.2	28.4	
17	56.0	56.2	
18	11.8	12.0	
19	19.4	19.5	
20	36.1	36.3	
21	18.8	18.9	
22	33.9	34.1	
23	26.0	26.3	
24	45.8	46.0	
25	29.1	29.3	
26	19.8	20.0	
27	19.0	19.2	
28	23.0	23.2	
29	12.0	12.1	

Table 11. Comparison of the $^{13}\text{C-NMR}$ spectral data of $\beta\text{-sitosterol}$ and Compound H1 (in CDCl_3)

2. Structure elucidation of compound C1

Compound C1 was recrystallized as pale yellow needles from $CHCl_3$ (4.8 mg, 0.0012% yield). The EIMS spectrum of this compound (Figure 5) showed a molecular ion peak at m/z 233, suggesting its molecular formula as containing odd number of nitrogen atom, which corresponded to the molecular formula $C_{12}H_{11}O_4N$, supported by the number of carbon signals and proton integration in ¹³C-NMR (Figure 8) and ¹H-NMR (Figures 11a-11b) spectrum respectively.

The IR spectrum (Figure 6) revealed absorption bands at 1596 and 946 cm⁻¹, suggesting the presence of tertiary amide and methylene dioxy functionalities (Weinstein and Hylton, 1964)

The ¹³C-NMR spectrum (Figure 8) of C1 exhibited the signals of 12 carbon atoms. The DEPT (Figure 9) and ¹H-¹³C HMQC (Figure 10) experiment were performed to differentiate these 12 signals into those of one methoxyl carbon at δ 55.5 ppm (4-OCH₃), six quaternary carbons at δ 116.5 (C-4a), 135.6 (C-8a), 140.3 (C-8), 147.3 (C-7), 161.3 (C-1) and 162.5 ppm (C-4), three methine carbons at δ 99.1 (C-3), 108.6 (C-6) and 115.6 ppm (C-5), one methylene carbon at δ 102.2 ppm (C-9) and another one Nmethyl carbon at δ 26.0 (NCH₃)

The ¹H-NMR spectrum (Figures 11a-11b) showed six signals at δ 2.67 (3H, *s*, N-CH₃), 3.99 (3H, *s*, 4-OCH₃), 6.19 (2H,*s*, H-9), 6.47 (1H, *s*, H-3), 7.08 (1H, *d*, *J*=8.5 Hz, H-6) and 7.68 ppm (1H, *d*, *J*=8.5 Hz, H-5). The last two signals were ortho-coupled as could also be observed in the ¹H-¹H COSY experiment (Figure 12).

In addition, the elucidation of C1 structure was chiefly done by comparison of the ¹³C and ¹H-NMR of this compound with those corresponding signals of the quinolone alkaloid casimiroin (4-methoxy-1-methyl-7,8-methylenedioxy-2-quinolone), previously reported from the seed and bark of *Casimiroa edulis* (family Rutaceae) (Ito *et al.*, 1998). Comparison of their ¹H- and ¹³C-NMR data is presented in Table 12.

	Chemical shift (δ) ppm					
Position	Casi	miroin	C1		C2*	
	С	н	С	Н	С	Н
C=O	164.1	-	161.3	-	159.8	-
N-CH ₃	29.1	3.84, s	26.0	2.67, s	24.8	2.58
3	94.6	5.89, s	99.1	6.47, s	100.9	6.66
4	162.7		162.5	-	163.2	-
4a	113.0		116.5	-	117.4	-
5	118.0	7.53, d,	115.6	7.68, d,	96.9	7.12
		<i>J</i> =8.6 Hz	Service (<i>J</i> =8.5 Hz		
6	104.3	6.78, <i>d</i> ,	108.6	7.08, <i>d</i> ,	145.2	-
	25	<i>J</i> =8.6 Hz		<i>J</i> =8.5 Hz		
7	149.9		147.3	-	139.1	-
8	133.5	บันวิ	140.3	ริกา	142.2	-
8a	126.5	กรถ์	135.6	กิญย	132.2	-
9	101.0	6.04, s	102.2	6.19, <i>s</i>	103.9	6.19
4-OCH ₃	55.8	3.91, s	55.5	3.99, s	56.3	-
6-OCH ₃	-		-		56.6	3.94

Table 12. Comparison of 13 C NMR and 1 H NMR data of compound C1, compound C2 and Casimiroin (Ito et al., 1998) (in CDCl₃)

* in CDCl₃/CD₃OD

The ¹H-¹³C HMBC experiment (Figures 13a-13c) was useful to confirm the structure of compound C1. The proton at δ 7.08 displayed three-bond correlations with C-4a (116.5 ppm) and C-8 (140.3 ppm) and two-bond correlation with C-7 (147.3 ppm), confirming its position at C-6, while the signal of H-5 at δ =7.68 showed three-bond correlations with C-4 (162.5 ppm), C-7 (147.3 ppm) and C-8a (135.6 ppm). The methoxy proton at (δ 3.99, *s*) displayed long-range coupling with C-4 (162.5), confirming its attachment at C-4. The H-3 methine proton at δ 6.47(*s*) showed three-bond correlations with C-4a (116.5ppm) and N-methyl carbon (26.0 ppm) and two-bond correlation with C-4a (162.5 ppm), confirming its position at C-3 (99.1 ppm). The singlet signal of methylene dioxy proton (2.67, *s*) showed long-range cross peaks with both C-3 (99.1 ppm) and C-1 (161.3 ppm) placing this group between the amide carbonyl and C-3, making its position is different from casimiroin.

The structure of C1 was also confirmed by NOESY experiment (Figure 14). The proton signal at δ 6.47 ppm (H-3) showed cross peaks with both the methoxy proton (δ 3.99, 4-OCH₃) and N-methyl proton (δ 2.67). The complete carbon and proton assignments of C1, together with HMBC and NOESY results are shown in Table 13 Major HMBC and NOESY correlations are shown below.

Major HMBC correlation of Compound C1

Major NOESY correlation of Compound C1

From the above data, the structure of C1 was elucidated as a new isoquinoline alkaloid, 4-methoxy-2-methyl-7, 8-methylenedioxy-1-isoquinolone.

Position	δC	δΗ	HMBC correlations	NOESY correlations
1	161.3	-	-	-
2-NCH ₃	26.03	2.67, s	C-1, C-3	H-3
3	99.1	6.47, s	C-4, C-4a, 2-NCH ₃	2-NCH ₃ , 4-OCH ₃
4	162.5	-		-
4-OCH ₃	55.5	3.99, s	C-4	H-3
4a	116.5		-	-
5	115.6	7.68, <i>d</i> , <i>J</i> =8.5	C-4, C-8a, C-7	H-6
6	108.6	7.08, <i>d</i> , <i>J</i> =8.5	C-4a, C-7, C-8	H-5
7	147.3			-
8	140.3	45200	1/18/6-1 - C	-
9	102.2	6.19, s	C-7, C-8	-

Table 13.The ¹H- NMR, ¹³C-NMR, HMBC and NOESY data of compound C1

3. Structure elucidation of compound C2

Compound C2 was crystallized as pale yellow needles from $CHCl_3$ -MeOH (3:7) (7.8 mg, 0.0020% yield). The EIMS spectrum (Figure 15) showed a molecular ion peak at m/z 263, suggesting its molecular formula as containing odd number of nitrogen atom, corresponding to the molecular formula of $C_{13}H_{13}O_5N$, supported by number of carbon signals and proton integration in ¹³C-NMR (Figures18a 18b) and ¹H-NMR (Figure 21) spectrum.

The IR spectrum (Figure 16) revealed absorption bands at 1592 and 941 cm⁻¹, suggesting the presence of tertiary amide and methylene dioxy groups (Weinstein and Hylton, 1964).

The ¹³C-NMR spectrum (Figures 18a-18b) showed the signals of 13 carbon atoms. DEPT (Figure 19) and HMQC (Figures 20a-20b) experiments indicated these as the signals of two methoxyl carbons at δ 56.3 (4-OCH₃) and δ 56.6 ppm (6-OCH₃), seven quaternary carbons at δ 117.4 (C-4a), 132.2 (C-8a), 139.1 (C-7), 142.2 (C-8), 145.2 (C-6), 159.8 (C-1) and 163.2 ppm (C-4), two methine carbons at δ 96.9 (C-5) and 100.9 ppm (C-3), one methylene carbon at δ 103.9 ppm (C-9) and one methyl carbon at δ 24.8 ppm (N-CH₃)

The ¹H-NMR spectrum (Figure 21) exhibited 6 singlet signals at δ 2.58 (3H, *s*, N-CH₃), 3.94 (3H, *s*, 6-OCH₃), 4.02 (3H, *s*, 4-OCH₃), 6.19 (2H, *s*, H-9), 6.66 (1H, *s*, H-3) and 7.12 (1H, *s*, H-5). The spectrum was similar to that of compound C1. The compound also gave similar orange-red spot on TLC plate upon detected with Dragendorff reagent. Therefore, the elucidation of the structure of C2 was mainly accomplished by comparison of the ¹³C-NMR and ¹H-NMR chemical shift data with casimiroin and C1 (Table 12) supported by HMBC experiment which helped in assigning all carbon and proton positions within its structure.

The ¹H-¹³C HMBC experiment (Figures 22a-22b) exhibited long-rang correlation between, the methoxy proton at δ 3.94 ppm and C-6 (δ 145.2 ppm), whereas another methoxy proton at δ 4.02 ppm showed long-range correlation with C-4 (δ 163.2 ppm),

indicated their positions as at C-6 and C-4, respectively. The signal of singlet methine proton at δ 7.12 ppm (H-5) showed three-bond correlations with C-4 (δ 163.2 ppm), C-7 (δ 139.1ppm) and C-8a (δ 132.2 ppm) and two bond correlation with C-6 (δ 145.2 ppm). Another one methine proton at δ 6.66 ppm (H-3) displayed three-bond coupling with C-4a (δ 117.4 ppm) and 2N-CH₃ (δ 24.8 ppm) and two-bond coupling with C-4 (δ 163.2 ppm), while the N-methyl proton exhibited three-bond correlations with both C-1 (δ 159.8 ppm) and C-3 (δ 100.9 ppm), indicating the proximity of then positions. The methylene dioxy protons at δ 6.19 ppm showed long-range coupling with both C-7 (δ 139.1 ppm) and C-8 (δ 142.2 ppm), that confirming the position of this group as between the protons 7 and 8.

The ¹H-¹H NOESY (Figure 23) showed cross peaks between H-3 proton and both N-CH₃ protons and 4-OCH₃ protons, while H-5 proton exhibited cross peaks with both 4-OCH₃ and 6-OCH₃ signals, confirming the position of both methane protons.

Consequently, It could be concluded that the structure of compound C2 contains an additional methoxy group at position C-6, which is different from compound C1 and its chemical name is therefore 4,6-Dimethoxy-2-methyl-7,8-methylenedioxy-1-isoquinolone.The structure of compounds C2 is shown below

Compound C2

The complete carbon and proton assignment of C2 together with HMBC and NOESY experiment is shown in Table 14 and the HMBC and NOESY correlation of compound C2 are shown below

Major HMBC correlation of Compound C2

Major NOESY correlation of Compound C2

From the above data, the structure of C2 was elucidated as a new isoquinoline alkaloid, 4, 6-dimethoxy-2-methyl-7, 8-methylenedioxy-1-isoquinolone

Position	δC	δΗ	HMBC correlations	NOESY correlations
1	159.8	-	-	-
2-NCH ₃	24.8	2.58, <i>s</i>	C-1, C-3	H-3
3	100.9	6.66, <i>s</i>	C-4, C-4a, 2-NCH ₃	2-NCH ₃ , 4-OCH ₃
4	163.2	-		-
4-OCH ₃	56.3	4.02, s	C-4	H-3, H-5
4a	117.4	-		-
5	96.9	7.12, s	C-4, C-6, C-7, C-8a	4-OCH ₃ , 6-OCH ₃
6	145.2 🥖	- 20		-
6- OCH ₃	56.6	3.94, s	C-6	H-5
7	139.1	-49.9	1141-1-	6
8	142.2	-	-	-
9	103.9	6.19, <i>s</i>	C-7, C-8	-

Table 14. The ¹H- NMR, ¹³C-NMR, HMBC and NOESY data of compound C2

4. Structure elucidation of compound EA1

Compound EA1 was recrystallized as pale yellow crystals (0.07% yield) from acetone. The EIS TOF mass spectrum of this compound (Figure 24) showed a molecular ion peak at m/z 290.0938, which corresponded to the molecular formula of $C_{15}H_{14}O_6$ (calculated for $C_{15}H_{14}O_6$ = 290.0790) The presence of the alcohol functionality in the molecule was confirmed by IR absorption peak at 3457 cm⁻¹ (Figure 25).

The ¹³C-NMR spectrum of EA1 (Figures 26a-26b) showed 15 carbon signals. The DEPT (Figure 27) and HMQC (Figures 28a-28b) experiments were employed to classify these signals into those of seven quaternary carbons at δ 156.6 (C-7), 156.3 (C-5), 155.8 (C-9), 144.5 (C-4'), 144.4 (C-3'), 130.7 (C-1'), and 98.5 (C-10) ppm, seven methine carbons at δ 118.0 (C-6'), 114.9 (C-2'), 114.8 (C-5'), 95.1 (C-6), 94.1 (C-8), 78.1 (C-2) and 64.9 (C-3) ppm, and a methylene carbon at δ 28.3 (C-4) ppm.

The ¹H-NMR spectrum of EA1 (Figure 29) showed the substitution pattern of the aromatic proton. The meta-substitution pattern of two hydroxyl groups on ring A (5-OH and 7-OH) was substantiated by the meta-coupling of the two aromatic proton signals at δ 5.88 ppm (*d*, *J*=2.4Hz) and δ 5.71 ppm (*d*, *J*=2.4 Hz), which could be assigned to H-6 and H-8, respectively. Both signals appeared as sharp doublets that showed cross peak in the ¹H-¹H COSY spectrum (Figure 30).

Substitution pattern on ring B was deduced from the meta-coupling of aromatic proton signals at δ 6.88 ppm (1H, *d*, *J*=1.8 Hz, H-2') and δ 6.64 ppm (1H, *dd*, *J*=8.1, 1.8 Hz, H-6'), whereas the latter signal also ortho-coupled to a doublet at δ 6.66 ppm (1H, *d*, *J*=8.1 Hz, H-5'). Therefore, two hydroxy groups could be assigned to the 3' and 4' positions of this ring.

On the ring C, a methylene carbon at δ 28.3 ppm (C-4) showed cross peak with two proton signals at δ 2.48 (1H, *dd*, *J*=16.3, 3.5 Hz) and 2.67 ppm (*dd*, *J*=16.3, 4.4 Hz) in the HMQC spectrum, indicating both signals as those of the methylene H-4, which showed COSY cross peak with another signal at δ 4.00 ppm (m, H-3). A hydroxy proton signal at δ 4.65 (*d*, *J*=4.6 Hz) gave cross peak with H-3, confirming its position at C-3. Another methine proton signal at δ 4.73 (H-2) appeared as a broad singlet because its dihedral angle with H-3 was 90°. This is different from catechin, of which the signal of H-2 appears as a doublet (Meulenbeld et al, 1999).

Compound EA1 was therefore identified as the flavan-3-ol, epicatechin Comparison of its carbon chemical shift with those previously reported for epicatechin (Lin and Lin, 1999) is shown in Table 15.

The NMR assignments of EA1 were also confirmed by the ¹H-¹³C HMBC experiment (Figures 31a-33f). Correlations of aromatic proton at position 6 (δ 5.88 ppm) and C-8 (δ 94.1 ppm) and C-10 (δ 98.5 ppm) could be observed, as well as between H-8 (δ 5.71ppm) and C-6 (δ 95.1 ppm) and C-10. H-4 Methylene proton showed three-bond coupling with C-2 (δ 78.1 ppm), C-5 (δ 156.3 ppm) and C-9 (δ 155.8 ppm), while H-2 methine proton signal at δ 4.72 ppm showed long-range coupling with both C-1' and C-2'

The signal of aromatic proton in ring B at δ 6.64 ppm (H-6') showed long-rang coupling with C-2' and C-4' and the doublet signal at δ 6.66 ppm (H-5') showed three bond coupling with C-1' and C-3', while another olefinic proton at δ 6.89 ppm (H-2') display HMBC cross peak with C-4' and C-6'. The ¹H-¹³C HMBC correlation in structure EA1 were summarized in Table 16

Major HMBC correlation of Compound EA1

Epicatechin

Carbon	Chemical shift (δ) ppm		
	Epicatechin	EA1	
2	78.1	78.1	
3	65.0	65.0	
4	28.3	28.3	
5	156.3	156.3	
6 🥖	95.1	95.1	
7	156.6	156.6	
8	94.1	94.1	
9 🥖	155.8	155.8	
10	98.6	98.5	
1'	130.7	130.7	
2'	114.8	114.9	
3'	144.5	144.5	
4'	144.5	144.5	
5'	114.9	114.8	
6'	118.0	118.0	

Table 15. Comparison of ¹³C NMR data of epicatechin (Lin and Lin, 1999) and compound EA1 (in DMSO- d_6).

Position	δC	δΗ	HMBC correlation
2	78.1	4.73, br s	C-2', C-1', C-6'
3	65.0	4.00, <i>m</i>	C-10
3-OH	-	4.65, <i>d</i> , <i>J</i> =4.6	C-4
4	28.3	2.67, <i>dd</i> , <i>J</i> =16.3, 4.4 2.48, <i>dd</i> , <i>J</i> =16.3, 3.5	C-2, C-3, C-5, C-9, C-10
5	15 <mark>6.3</mark>		-
5-OH	-	9.11, s	-
6	95.1	5.88, <i>d</i> , <i>J</i> =2.4	C-5, C-7, C-8, C-10
7	156.6	1/2=4	-
7-OH	//	8.90, s	C-6, C-8
8	94.1	5.71, <i>d</i> , <i>J</i> =2.4	C-6, C-9, C-10
9	155.8	A B B B B B	
10	98.5	1966-1997 - 1999	-
1'	130.7		-
2′	114.9	6.88, <i>d</i> , <i>J</i> =1.8	C-4′, C-6′
3'	144.5	-	-
4'	144.5	-	-
5'	114.8	6.66, <i>d</i> , <i>J</i> =8.1 Hz	C-1', C-3'
6 ′	118.0	6.64, <i>dd</i> , <i>J</i> =8.1, 1.8 Hz	C-2', C-4'

Table 16. The ¹H-NMR, ¹³C-NMR and HMBC data of compound EA1.

จุฬาลงกรณมหาวทยาลย

CHAPTER V

CONCLUSION

Four compounds were isolated from the aerial part of *Sauropus hirsutus* by chromatographic techniques. Their chemical structures were elucidated using spectroscopic techniques. Two of them isolated from the chloroform extract, were elucidated as the new isoquinolone alkaloids named 4-methoxy-2-methyl-7,8-methylenedioxy-1-isoquinolone and 4,6-dimethoxy-2-methyl-7,8-methylenedioxy-1-isoquinolone. From the ethyl acetate extract, a flavonoid, epicatechin, was isolated, whereas β -sitosterol was found in the hexane extract.

This is the first chemical investigation of the constituents of this *Sauropus* species and the data obtained would be valuable in the chemotaxonomic and phytochemical studies of this plant genus.

REFERENCES

Thai

นั้นทวัน บุณยะประภัศร และ อรนุช โชคชัยเจริญพร. 2542. <u>สมุนไพรไม้พื้นบ้าน (3)</u>. กรุงเทพมหานคร:บริษัท ประชาชน จำกัด. หน้า 134-135.

มาโนช วามานนท์ และ เพ็ญนภา ทรัพย์เจริญ. 2540. <u>ผักพื้นบ้าน ความหมาย และภูมิปัญญา</u> <u>ของสามัญชนไทย</u>:โรงพิมพ์ องค์การสงเคราะห์ทหารผ่านศึก. หน้า 18.

ส่วนพฤกษศาสตร์ป่าไม้ สำนักวิชาการป่าไม้ กรมป่าไม้. 2544. <u>ชื่อพรรณไม้แห่งประเทศไทย เต็ม</u> <u>สมิตินันทน์</u>. กรุงเทพมหานคร:บริษัท ประชาชน จำกัด. หน้า 466-467.

English

Airy Shaw, H. K., 1972. Kew Bulletin. London: Her Majesty 's Stationery office.

- Ahmad, M., Jain, N., Kamil, M. and Ilyas, M. 1991. 6-Hydroxykaempferol 7-rutinoside from leaves of *Sapium euginiaefolium*. <u>Phytochemistry</u> 30 : 2815-2816.
- Ahn, B. T., Zhang, B., Lee, S. C., Kim, J. G., Ro, J. S. and Lee, K. S. 1996. Phenolic compounds of aerial parts of *Euphorbia pekensis*. <u>Yakhak Hoechi</u> 40 : 170-176.
- Ahn, Y. J., Lee, S. H., Kang, S. T., Hwang, B. Y., Park, W. Y., Ahn, B. T., Ro, J. S. and Lee, K. S. 1996. The phenolic components of *Sapium japonicum*. <u>Yakhak</u> <u>Hoechi</u>. 40 : 183-192.
- Aqil, M. and Kham, I. Z. 1999. Euphorbianin a new flavonol glycoside from *Euphorbia hirta* Linn. <u>Global J. Pure Appl Sci</u>. 5 : 371-373.
- Atalykova, F. M. and Mukenov, M. K. 1981. Flavonoid containing plant of the Tarbagatai natural flora. <u>Ser Biologicheskaya</u> 4:4-8.
- Barbosa, P. R., Fascio, M., Martins, D., Guedus, M. L. S. and Roque, N. F. 2003.
 Triterpenes of *Croton betulaster* (Euphorbiaceae). <u>Biochem Syst Ecol</u>. 31: 307-308.
- Barnes, R. A. and Soeiro, O. M. The alkaloids of *Croton salutaris*. 1981. <u>Phytochemistry</u> 20 : 543-544.
- Barton, D. H. R., Kirby, A. J. and Kirby, G. W. 1968. Phenol oxidation and biosynthesis.
 Part XVII. Investigation on the biosynthesis of sinomenine. <u>J. Chem. Soc. (C)</u>. : 929-936.

- Bender, A. E. and Ismail, K. S. 1973. Nutritive value and toxicity of *Sauropus androgynus*. <u>Proc. Nutr. Soc</u>. 32 : 79A-80A.
- Bhakuni, D. S. and Dhar, M. M. 1968. Crotsparine, a new proaporphine alkaloid from *Croton sparsiflorus* Morong. <u>Experientia</u> 24 : 10-11.
- Bhakuni, D. S. and Dhar, M. M. 1969. Crotsparinine, a dihydroproaporphine alkaloid from *Croton sparsiflorus*. <u>Experientia</u> 25 : 354.
- Bhakuni, D. S., Satish, S. and Dhar, M. M. 1972. Absolute configuration of crotsparine, crotsparinine and sparsiflorine. <u>Tetrahedron</u> 28 : 4579-4582.
- Blance, P. and De Saqui-Sannes, G. 1972. Flavonoids of *Euphorbia hirta* (Euphorbiaceae). <u>Plant Med Phytother</u>. 6 : 106-109.
- Calatayud, P. A., Rahbe, Y., Delobel, B., Khuong-Huu, F., Tertuliano, M. and Ru, B. L.
 1994. Influence of secondary compounds in the phloem sap of cassava on expression of antibiosis towards the mealybug *Phenacoccus manihoti*. <u>Entomol.</u>
 <u>Exp. Appl</u>. 72 : 47-57.
- Casagrande, C., Canonica, L. and Severini-Rica, S. 1975. Studies on proaporphine and aporphine alkaloids. Part VII. Stereochemistry of reduced proaporphines of *Croton sparsiflorus* and *C. linearis*. J. Chem. Soc. Perkin Trans I. 1659-1663.
- Chapman and Hall. 1994. Dictionary of Natural Products London : Great Britain.
- Chang, H., Wang, J. S., Tseng, H. H., Lai, R. S. and Su, J. M. 1997. Histopathological study of *Sauropus androgynus* associated constrictive bronchiolitis obliterans.
 <u>Am. J. Surg. Pathol</u>. 21 : 35-42.
- Chang, Y. L., Yao, Y. T., Wang, N. S. and Lee, Y. C. 1998. Segmental necrosis of small bronchi after prolonged in take of *Sauropus androgynus* in Taiwan. <u>Am. J.</u> <u>Respir. Crit. Care Med</u>. 157 : 594-598.
- Chatterjee, A., Majumder, P.L., Mukherjee, R. Saha, S. K. and Talapatra, S.K. 1965.
 Structure of sparsiflorine, an alkaloid of *Croton sparsiflorus* Morung.
 <u>Tetrahadron Lett</u>. 21 :1539-1544.
- Chen, I. C., Chang, K. C., Hsieh, Y. K. and Wu, D. 1996. Torsade de pointes due to consumption of *Sauropus androgynus* as a weight-reducing vegetable. <u>Am. J.</u> <u>Cardiol</u>. 78 :1186-1187.

- Ching, L. S. and Mohamed, S. 2001. Alpha-tocopherol content in 62 edible tropical plants. <u>J. Agric. Food Chem</u>. 49 : 3101-3105.
- Cimanga, K., Ying, L., De Bruyne, T., Aper, S., Cos, P., Hermans, N., Bakana, P., Tona,
 L., Kambu, K., Kalenda, D. T., Pieters, L., Vanden Berghe, D. and Vlietinck, A. J.
 2001. Radical scavenging and xanthine oxidas inhibitory activity of phenolic
 compounds from *Bridelia ferruginea* stem bark. <u>J. Pharm. Pharmacol</u>. 53:757-761.
- Colombo, A. 1976. Crystal structure and relative configuration of (±) 11, 12 dihydroglaziovine. Stereochemistry of reduced proaporphines. <u>J. Chem. Soc.</u> <u>Perkin Trans II</u>. 1218-1221.
- Cordell, G. A., Saxton, J. E., Shamma, M. and Smith, G. F. 1989. <u>Dictionary of</u> <u>alkaloids</u>.London New York :Chapman and Hall Ltd.
- Cui, G. Y., Liu, J. Y. and Tan, R. X. 2003. A new antimicrobial flavonol glycoside from *Alchornea clavidii*. <u>Chin Chem Lett</u>. 14 : 179-180.
- Das, B., Chakravarty, A. K., Masuda, K., Suzuki, H. and Ageta, H. 1994. A diterpenoid from roots of *Gelonium multiflorum*. <u>Phytochemistry</u> 37 : 1363-1366.
- De Bruyne, T., Cimanga, K., Pieters, L., Claeys, M., Dommisse, R. and Vlietinck, A.
 1997. Gallocatechin- (4'→O→7)-epigallocatechin, a new biflavonoid isolated from *Bridelia ferruginea*. <u>Nat. Prod. Lett</u>. 11: 47-52.
- De- Ehnamkul, W. and Potduang, B. 2003. Biosynthesis of β-sitosterol and stigmasterol in *Croton sublyratus* proceeds via a mixed origin of isoprene units. <u>Phytochemistry</u> 62 : 389-398.
- Del V. Galarza, S., Cabreya, J. L. and Juliani, H. R. 1983. Constitutents of Euphorbiaceae from Argentina. Part I. <u>An. Asoc. Quim. Argent</u>. 71 : 505-508.
- Dennis, W. 2000. Contemporary Plant Systematics USA : Andrews University Press.
- Dumkow, K. 1969. Flavonoids of native Euphorbiaceae. IV. Flavonol glycosides from *Mercurialis annua*. <u>Z Naturforsch</u>. 24 : 1203.
- Gurrero, M. F., Puebla, P., Carron, R., Martin, M. L. and Roman, L. S. 2002. Quercetin
 3, 7-dimethyl ether : a vasorelaxant flavonoid isolated from *Croton schiedeanus*Schlecht. J. Pharm. Pharmacol. 54 : 1373-1378.

- Ham, I., Wang, T., Cho, E. S., Cho, H. K. and Wang, W. K. 2001. Phenolic compounds from *Phyllanthus ussuriensis*. <u>Yakhak Hoechi</u>. 45 : 237-244.
- Harborne, J. B. 1994. <u>The flavonoids : advance in research since 1986</u>. London : Chapman and Hall.
- Haynes, L. J. and Stuart, K. L. 1963. Alkaloids from *Croton* species. Part I. The isolation of alkaloids from *C. linearis* Jacq. and the detection of alkaloids in *C. glabellus* L., *C. humilis* L. and *C. flavans* L. <u>J. Chem. Soc</u>. 1784-1788.
- Haynes, L. J., Husbands, G. E. M. and Stuart, K. L. 1966. Alkaloids from *Croton* species. Part IV. The isolation and structure of a New proaporphine derivative from *Croton linearis* Jacq. J. Chem. Soc. (C). 1680-1681.
- Haynes, L. J., Husbands, G. E. M. and Stuart, K. L. 1968. Alkaloids from *Croton* species. Part VII. Morphinandienone derivatives from *Croton linearis* Jacq. <u>J.</u>
 <u>Chem. Soc. (C)</u>. 951-957.
- Haynes, L. J., Stuart, K. L., Barton, D. H. R. and Kirby, G. W. 1966. Alkaloids from *Croton* species. Part III. The constitution of the proaporphines crotonosine, "Homolinearisine", Base A, and the dihydroproaporphine linearisine. <u>J. Chem.</u>
 <u>Soc (C)</u>. 1676-1679.
- Hiremath, S. P., Rudresh, K. and Badami, S. 1998. Flavonoids of *Acalypha indica* Linn. Indian J. Heterocycl. Chem. 8 : 163-164.
- Hnatyszyn, O., Mino, J., Ferraro, G., Acevedo, C. 2002. The hypoglycemic effect of *Phyllanthus sellowianus* fractions in streptozotocin induced diabetic mice.
 <u>Phytomedicine</u> 9 : 556-559.
- Hsiue, T. R., Guo, YL. L., Chen, K. W., Chen, C. W., Lee, C.H. and Chang, H. Y. 1998.
 Dose response relationship and irreversible obstructive ventilatory defect in patients with consumption of *Sauropus androgynus*. <u>Chest</u> 113 :71-76.
- Ito, A. Shamon, L. A., Yu, B., Meta-Greenwood, E., Lee, S. K., Breemen, R. B., Mehta, R. G., Farnsworth, N. R., Fong, H. H. S., Pezzuto, J. M. and Kinghorn, A. D. 1998.
 Antimutagenic constituents of *Casimiroa edulis* with potential cancer chemopreventive activity. J. Agric. Food Chem. 46 : 3509-3516.

- Hulshof, P. J. M., Xu, G., Bovenkamp, P., Muhilal and West, C. E. 1997. Application of a validated method for the determination of provitamin A carotenoids in Indonesian foods of different maturity and origin. <u>J. Agric. Food Chem</u>. 45 :1174-1179.
- Jang, D. S., Cuendet, M., Hawthorne, M. E., Kardono, L. B. S., Kawanishi, K., Fong, H. H. S., Mehta, R. G., Pezzuto, J. H. and Kinghorn, A. D. 2002. Prenylated flavonoids of the leaves of *Macaranga conifera* with inhibitory activity against cyclooxygenase-2. <u>Phytochemistry</u> 61 : 867-876.
- Kanchanapoom, T., Chumsri, P., Kasai, R., Otsuka, H. and Yamasaki, K. 2003. Lignan and megastigmane glycosides form *Sauropus androgynus*. <u>Phytochemistry</u> 63 :985-988.
- Kametani, T., Ihara, M., Fukumoto, K. and Yagi, H. 1969. Studies on syntheses of heterocyclic compounds. Part CCC. Syntheses of salutaridine, sinoacutine and thebaine. Formal total syntheses of morphine and sinomenine. <u>J. Chem. Soc</u> (<u>C</u>). 2030-2033.
- Kotani, E. and Tobinaga, S. 1973. Total synthesis of the morphinandienone alkaloids,
 (±) amurine, (±) flavinantine and (±) pallidine by anodic oxidation.
 <u>Tetrahedron Lett</u>. 48 : 4759-4762.
- Lai, R. S., Chiang, A. A., Wu, M. T., Wang, J. S., Lai, N. S., Lu, J. Y., Ger, L. P., and Roggli, V. 1996. Outbreak of bronchiolitis obliterans associated with consumption of *Sauropus androgynus* in Taiwan. <u>Lencet</u> 348 : 83-85.
- Lin, J. H. and Lin, Y.T. 1999. Flavonoids from leaves of *Loranthus Kaoi* (Chao) Kiu. <u>J.</u> <u>Food Drug Anal</u>. 7 : 185-190.
- Luh, S. P., Lee, Y. C., Wu, H. D., Kuo, S. H. and Chu, S. H. 1999. Lung transplantation for patients with end-stage *Sauropus androgynus* induced bronchiolitis obliterans (SABO) syndrome. <u>Clin. Transplantation</u> 13 : 496-503.
- Meulenbeld, G. H., Zuilhof, H., Veldhuizen, A., Heuvel, R. H. H. and Hartmans, S. 1999.
 Enhanced (+)-Catechin transglucosylating activity of *Steptococcus mutans* GS-5 glucosyltranferase-D due tofructose removal. <u>Appl. Environ. Microbiol</u>. 65: 4141-4147.

- Meyre-Silva, C., Mora, T. C., Santos, A. R. S., Dal margo, J., Yunes, R. A., Delle
 Monache, F. and Cechinel-Filho, V. 1997. A triterpene and a flavonoid C-glycoside from *Aleurites moluccana* L. Wild. (Euphorbiaceae). <u>Acta. Farm.</u>
 <u>Bonaerense</u> 16 : 169-172.
- Miean, K. H. and Mohamed, S. 2001. Flavonoid (myricetin, quercetin, kaempferol,luteolin and apigenin) content of edible tropical plants. <u>J. Agri. Food</u>
 <u>Chem</u>. 49 : 3106-3112.
- Mohamed, K. M. 2001. Phenylpropanoid glucosides from *Chrozophora obliqua*. <u>Phytochemistry</u> 58:615-618.
- Padmavathi, P. and Rao, M. P. 1990. Nutritive value of *Sauropus androgynus* leaves. <u>Plant Foods Hum Nutr</u>. 40 : 107-113.
- Parveen, N., Singh, M.P. and Khan, N. U. 1988. Chemical examination of the leaves of *Homonoia reparia* Lour (Euphorbiaceae). J. Indian Chem. Soc. 65 : 815-816.
- Phillipson, J. D., Roberts, M. F. and Zenk, M. H. 1985. <u>The Chemistry and Biology of</u> <u>Isoquinoline alkaloids</u>. Geramany : Springer-Verlag Berlin Heidelberg.
- Prawat, H., Mahidol, C., Ruchirawat, S., Prawat, U., Tuntiwachawuttikul, P., Tooptakong, U., Taylor, W. C., Pakawatchai, C., Skelton, B. W. and White, A. H. 1995.
 Cyanogenic and non-cyanogenic glycosides from *Manihot esculenta*.
 <u>Phytochemistry</u> 40 : 1167-1173.
- Puebla, P., Lopez, J. L., Guerrero, M., Carron, R., Martin, M. L., Roman, L. S. and Feliciano, A. S. 2003. Neo-clerodane diterpenoids from *Croton schiedeanus*.
 <u>Phytochemistry</u> 62 :551-555.
- Rizk, A. M., Ahmed, S. S. and Diab, M. A. 1979. Constituents of Egyptian
 Euphorbiaceae. VII. Further investigation of the flavonoids of *Euphorbia paralias* L. <u>Planta Med</u>. 36 : 189-190.
- Rizk, A. M., Youssef, A. M., Diab, M. A. and Salem, H. M. 1976. Constituents of
 Egyptain Euphorbiaceae. Part 2 : Flavonoids of *Euphorbia paralias*. <u>Pharmazie</u>.
 31 : 405.
- Roberts, M. F. and Wink, M. 1998. <u>Alkaloids Biochemistry, Ecology and Medicinal</u> <u>Appications</u> New York : Plenum Press.

- Rojas, S., Macias, M., Castaneda, P., Bye, R., Linares, E. and Mata, R. 1999. A New Lanostan-type triterpenoid from *Chamaesyce prostrata*. <u>Planta Med</u>. 65 : 478-479.
- Satyanarayana, P. and Ramu, K.S. 1995. Characterisation of a new series of diphyllin esters from *Sauropus quadrangularis* Muell-Arg. <u>Indian J. Chem. Sec.B</u>. 34B : 571-572.
- Schutz, B. A., Wright, A. D., Rali, T. and Sticher, O. 1995. Prenylated flavanones from leaves of *Macaranga pleiostemona*. <u>Phytochemistry</u> 40 : 1273-1277.
- Stuart, K. L. and Chamber, C. 1967. New aporphine alkaloids from *Croton wilsonii* Griseb. <u>Tetrahedron Lett</u>. 42 : 4135-4138.
- Stuart, K. L. and Graham, L. 1973. Alkaloid biosynthesis in *Croton flavens*. <u>Phytochemistry</u> 12 :1967-1972.
- Stuart, K. L., Haynes, L.J., Barrett, M. and Husbands, G. E. M. 1968. Jacularine, a new reduced proaporphine from *Croton linearis* Jacq. <u>Tetrahedron Lett</u>. 42 :4473-4474.
- Subramanian, S. S., Nagarajan, S. and Sulochana, N. 1971. Flavonoids of some Euphorbiaceous plants. <u>Phytochemistry</u> 10 : 2548-2549.
- Sultana, S. and Ilyas, M. 1987. Chemical investigation of *Macaranga indica* Wight. Indian J. Chem. 26B :801-802.
- Tschesche, R., Welzel, P. and Legler, G. 1965. Zur struktur einiger tetrasubstituierter aporphinalkaloide. <u>Tetrahedron Lett</u>. 8 :445-450.
- Vinh, D. Nguyen, M.D. and Nguyen, V. T. 2002. A flavonoid compound from leaves of *Macaranga tribola* Muell-Arg. Euphorbiaceae. <u>Tap. Chi. Duoc. Hoc</u>. 8 : 15-17.
- Wang, J. S., Tseng, H. H., Lai, R. S., Hsu, H. K. and Ger, L. P. 2000. Sauropus androgynus constrictive obliterative bronchitis/bronchiolitis-histopathological study of pneumonectomy and biopsy specimens with emphasis on the inflammatory process and disease progression. <u>Histopathology</u> 37 : 402-410.
- Wang, P. H. and Lee, S. S. 1997. Active chemical consituents from Sauropus androgynus. <u>J. Chin. Chem. Soc.-Taip</u>. 44 : 145-149. Chem abstract 127 (1997) : Abstract No. 92667q.

- Weinstein, B. and Hylton, T. A. 1964. Heterocyclic compounds V. The synthesis of casimiroin. <u>Tetrahedron</u> 20 : 1725-1728.
- Yu, S. Y. and Cheah, C. H. 1979. Nutritive value and toxicity of *Sauropus albicans*, a Malaysian leafy vegetable. <u>Food and Nutr</u>. 5:38.

APPENDIX

ev. .

94

·**

Figure 4. The 75 MHz ¹³C- DEPT NMR sprectrum of compound H1.

97

e., •

÷.,

I

G1-1H

Figure 11b. The 500 MHz ¹H-NMR spectrum of compound C1. (in CDCl₃) (expanded).

Figure 12. The 500 MHz 1 H- 1 H COSY spectrum of compound C1. (in CDCl₃)

** +

Figure 13a. The 500 MHz ¹H-¹³C HMBC spectrum of compound C1. (in CDCl₃)

۰.

ฬาลงกรณมหาวทยาลย

•

Figure 18a. The 125 MHz 13 C-NMR spectrum of compound C2. (in CDCl₃/CD₃OD)

114

ОСН₃

2

ö

Н

℃Нз

· · ·

 $\begin{array}{c} H & OCH_3 \\ CH_{3O} & 6 & 3 \\ \hline 7 & 8 & 4 & 3 \\ \hline 7 & 8 & 8 & 1 \\ \hline 7 & 8 & 8 & 1 \\ \hline 7 & 8 & 8 & 1 \\ \hline 0 & 0 & CH_3 \\ H & CH_3 \\ \hline \end{array}$

พาลงกรณมหาวทยาลย

Figure 22a. The 500 MHz 1 H- 13 C HMBC spectrum of compound C2. (in CDCl₃/CD₃OD)

H30 V 5 4a 4 7 8 8a 1 2N CH3

Figure 22b. The 500 MHz 1 H- 13 C HMBC spectrum of compound C2. (in CDCl₃/CD₃OD)

27. ý

Figure 22c. The 500 MHz 1 H- 13 C HMBC spectrum of compound C2. (in CDCl₃/CD₃OD)

ลถาบนวทยบรการ

Figure 22d. The 500 MHz ¹H-¹³C HMBC spectrum of compound C2. (in CDCl₃/CD₃OD)

Figure 22e. The 500 MHz 1 H- 13 C HMBC spectrum of compound C2. (in CDCl₃/CD₃OD)

Figure 23. The 500 MHz 1 H- 1 H NOESY spectrum of compound C2. (in CDCl₃/CD₃OD)

Figure 24. ESI TOFMS spectrum of compound EA1.

12.4

Figure26a. The 125 MHz 13 C-NMR spectrum of compound EA1. (in DMSO- d_6)

٠,

Figure 26b. The 125 MHz ¹³C-NMR spectrum of compound EA1. (in DMSO- d_6) (expanded)

۰. و

Figure 27. The 125 MHz ¹³C-DEPT NMR spectrum of compound EA1. (in DMSO- d_6)

Sec. 1

Figure 28a. The 500 MHz 1 H- 13 C HMQC spectrum of compound EA1. (in DMSO- d_{6})

·~ •

Figure 28b. The 500 MHz 1 H- 13 C HMQC spectrum of compound EA1. (in DMSO- d_{6})

Figure 29. The 500 MHz ¹H-NMR spectrum of compound EA1. (in DMSO- d_6)

Figure 30. The 500 MHz ¹H-¹H COSY spectrum of compound EA1. (in DMSO-*d*₆)

Figure 31a. The 500 MHz 1 H- 13 C HMBC spectrum of compound EA1. (in DMSO- d_{6})

Figure 31b. The 500 MHz 1 H- 13 C HMBC spectrum of compound EA1. (in DMSO- d_{6})

see. +

Figure 31c. The 500 MHz ¹H-¹³C HMBC spectrum of compound EA1. (in DMSO-*d*₆)

Figure 31d. The 500 MHz ¹H-¹³C HMBC spectrum of compound EA1. (in DMSO-*d*₆)

Figure 31e. The 500 MHz 1 H- 13 C HMBC spectrum of compound EA1. (in DMSO- d_{6})

Figure 31f. The 500 MHz 1 H- 13 C HMBC spectrum of compound EA1. (in DMSO- d_{6})

VITA

Miss Tattaya Lohakul was born on March 22, 1976 in Phang-nga, Thailand. She has received her Bachelor of Pharmaceutical Sciences in 1998 from the Faculty of Pharmaceutical Sciences, Prince of Songkla university, Songkhla, Thailand. She is now working as a hospital pharmacist at Bantakhun hospital, Surattani, Thailand.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย