สารจับอนุมูลอิสระจากใบปาหนันขึ้แมว

นางสาว ฉวีวรรณ คล่องศิริเวช

สถาบนวิทยบริการ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตรมหาบัณฑิต สาขาวิชาเภสัชเวท ภาควิชาเภสัชเวท คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2546 ISBN 974-17-3502-2 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

FREE RADICAL SCAVENGERS FROM GONIOTHALAMUS TENUIFOLIUS LEAVES

Miss Chaweewan Klongsiriwet

สถาบนวทยบรการ

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Pharmacognosy Department of Pharmacognosy Faculty of Pharmaceutical Sciences Chulalongkorn University Academic Year 2003 ISBN 974-17-3502-2

Thesis title	Free Radical Scavengers from Goniothalamus tenuifolius Leaves
Ву	Miss Chaweewan Klongsiriwet
Field of Study	Pharmacognosy
Thesis Advisor	Associate Professor Kittisak Likhitwitayawuid, Ph. D.
Thesis Co-advisor	Associate Professor Sumphan Wongseripipatana, Ph. D.
Thesis Co-advisor	Assistant Professor Vichien Jongbunprasert, M. Sc. in Pharm.

Accepted by the Faculty of Pharmaceutical Sciences, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

..... Dean of Faculty of Pharmaceutical Sciences

(Associate Professor Boonyong Tantisira, Ph. D.)

Thesis committee

..... Chairman

(Associate Professor Dhavadee Ponglux, Ph. D.)

...... Thesis Advisor

(Associate Professor Kittisak Likhitwitayawuid, Ph. D.)

...... Thesis Co-advisor

(Associate Professor Sumphan Wongseripipatana, Ph. D.)

...... Thesis Co-advisor

(Assistant Professor Vichien Jongbunprasert, M. Sc. in Pharm.)

...... Member

(Associate Professor Rapepol Bavovada, Ph. D.)

ฉวีวรรณ คล่องศิริเวช: สารจับอนุมูลอิสระจากใบปาหนันขี้แมว (FREE RADICAL SCAVENGERS FROM *GONIOTHALAMUS TENUIFOLIUS* LEAVES) อาจารย์ที่ ปรึกษา: รศ. คร. กิตติศักดิ์ ลิขิตวิทยาวุฒิ, อาจารย์ที่ปรึกษาร่วม: รศ. คร. สัมพันธ์ วงศ์เสรี พิพัฒนา, ผศ. วิเชียร จงบุญประเสริฐ, 136 หน้า. ISBN 974-17-3502-2

การศึกษาทางพฤกษเคมีของใบปาหนันขึ้แมว สามารถแยกได้สารบริสุทธิ์ 9 ชนิด ประกอบด้วยสาร กลุ่ม 3-methoxyflavone 8 ชนิด และสารบริสุทธิ์ *trans*-cinnamic acid อีก 1 ชนิด โดยสารในกลุ่ม3methoxyflavone มีสาร 1 ชนิด เป็นสารที่พบครั้งแรกในธรรมชาติคือ 3'-hydroxy-3,5,7,4'tetramethoxyflavone และอีก 7 ชนิดเป็นสารที่เคยมีรายงานมาก่อนได้แก่ retusine, pachypodol, kumatakenin, 5,7,3',4'-tetrahydroxy-3-methoxyflavone, 3',4'-dihydroxy-3,5,7-trimethoxyflavone, 3,5,7,3',4'-pentamethoxyflavone, 4'-hydroxy-3,5,7,3'-tetramethoxyflavone การพิสูจน์โครงสร้าง ทางเคมีของสารที่แยกได้นี้ อาศัยการวิเคราะห์สเปลตรัมของ UV, IR, MS และ NMR ร่วมกับการ เปรียบเทียบข้อมูลของสารที่ทราบโครงสร้างแล้ว และได้ทำการทดสอบฤทธิ์จับอนุมูลอิสระของ สารบริสุทธิ์แต่ละชนิดที่แยกได้ โดยวิธี DPPH radical scavenging assay พบว่า มีสาร 3 ชนิดที่ แสดงฤทธิ์จับอนุมูลอิสระ ได้แก่ สาร kumatakenin, 5,7,3',4'-tetrahydroxy-3-methoxyflavone และ 3',4'-dihydroxy-3,5,7-trimethoxyflavone โดยมีค่า IC₅₀ เท่ากับ 5.8, 6.4 และ 6.7 µM ตามลำดับ เมื่อ เปรียบเทียบกับ quercetin ซึ่งมีค่า IC₅₀ เท่ากับ 6.6 µM

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

ภาควิชาเภสัชเวท

สาขาวิชาเภสัชเวท

ปีการศึกษา 2546

ลายมือชื่อนิสิต
ลายมือชื่ออาจารย์ที่ปรึกษา
ลายมือชื่ออาจารย์ที่ปรึกษาร่วม
ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

4476562433: MAJOR PHARMACOGNOSY

KEY WORD: *GONIOTHALAMUS TENUIFOLIUS* / FREE REDICAL SCAVENGING ACTIVITY/ FLAVONOIDS

CHAWEEWAN KLONGSIRIWET: FREE RADICAL SCAVENGERS FROM GONIOTHALAMUS TENUIFOLIUS LEAVES. THESIS ADVISOR: ASSOC. PROF. KITTISAK LIKHITWITAYAWUID, Ph. D., THESIS CO-ADVISORS: ASSOC. PROF. SUMPHAN WONGSERIPIPATANA, Ph.D. AND ASST. PROF. VICHIEN JONGBUNPRASERT, M. Sc. in Pharm. 136 PP. ISBN 974-17-3502-2

Phytochemical study of the leaves of Goniothalamus tenuifolius led to the isolation of nine pure compounds, which included a new natural product namely 3'-hydroxy-3,5,7,4'tetramethoxyflavone and eight known compounds including trans-cinnamic acid, retusine, pachypodol, kumatakenin, 5,7,3',4'-tetrahydroxy-3-methoxyflavone, 3',4'-dihydroxy-3,5,7trimethoxyflavone, 3,5,7,3',4'-pentamethoxyflavone, 4'-hydroxy-3,5,7,3'-tetramethoxyflavone. The structures of all of these isolates were determined by interpretation of their spectroscopic data (UV, IR, MS and NMR) and comparison of the spectral properties with previously reported values. Each of these compounds was evaluated for free radical scavenging activity on DPPH decoloration test. The active compounds were kumatakenin, 5,7,3',4'-tetrahydroxy-3methoxyflavone and 3',4'-dihydroxy-3,5,7-trimethoxyflavone with IC₅₀ values of 5.8, 6.4 and 6.7 μ M, respectively, whereas quercetin (positive control) showed an IC₅₀ value of 6.6 μ M.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Department Pharmacognosy Field of study Pharmacognosy Academic year 2003

Student's signature
Advisor's signature
Co-advisor's signature
Co-advisor's signature

ACKNOWLEDGEMENTS

The author is grateful to the following persons and institutions who encouraged and supported her thesis fulfillment:

Associate Professor Dr. Kittisak Likhitwitayawuid of the Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, her thesis advisor, for his excellent advice, valuable guidance and great encouragement throughout her thesis study.

Associate Professor Dr. Sumphan Wongseripipatana of the Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, her thesis coadvisor, for his kindness and valuable suggestions.

Assistant Professor Vichien Jongbunprasert of the Department of Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, her thesis co-advisor, for the plant collection and botanical verification.

The thesis committee for their useful advice and kind attention.

The Graduate School of Chulalongkorn University for granting partial financial support to conduct this research.

All the lecturers and staff members of the Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for their valuable advice and kindness.

Miss Pimpimon Tansakul, a Ph. D. student of Department of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, for her assistance in some¹H-NMR data which are the most important for her thesis.

Mr. Tanawat Chaowasku for the photographs of the plant.

All students of the Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for their sincere friendships and memorable supports.

Finally, the author wishes to express her infinite gradtitude to her parents and family for all their love, understanding, assistance and encouragement throughout this graduate study.

CONTENTS

	Page
ABTRACT (Thai)	iv
ABTRACT (English)	v
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF TABLES	X
LIST OF FIGURES	xi
LIST OF SCHEMES	XV
LIST OF ABBREVIATIONS AND SYMBOLS	xvi
CHAPTER	
I INTRODUCTION	1
II HISTORICAL	
1. Chemical constituents of <i>Goniothalamus</i> spp	4
2. Free radical scavenging activity from natural sources	
III EXPERIMENTAL	
1. Source of plant material	
2. General techniques	
2.1 Analytical thin-layer chromatography	
2.2 Column chromatography	
2.2.1 Vacuum liquid column chromatography	
2.2.2 Flash column chromatography	
2.2.3 Gel filtration chromatography	
2.3 Spectroscopy	
2.3.1 Ultraviolet (UV) absorption spectra	54
2.3.2 Infrared (IR) absorption spectra	
2.3.3 Mass spectra	
2.3.4 Proton and Carbon-13 nuclear magnetic resonance	
(¹ H- and ¹³ C-NMR) spectra	
2.4 Solvents	55
2.5 Microtiter plate reading	

CONTENTS (continued)

Page

3. Extraction and iso	lation	
3.1 Extraction and	isolation of compounds from Goniothalamus tenuifolius	
3.1.1 Extrac	tion	55
3.1.2 Isolati	on	57
3.1.2.1 Is	olation of compound GT-1 (retusine)	57
3.1.2.2 Is	olation of compound GT-2 (<i>trans</i> -cinnamic acid)	57
3.1.2. <mark>3</mark> Iso	olation of compound GT-3 (pachypodol)	58
3.1. <mark>2.4 Is</mark>	olation of compound GT-4 (kumatakenin) and compound	
G	Γ-5 (5,7,3',4'-tetrahydroxy-3-methoxyflavone)	58
3.1.2.5 Is	olation of compound GT-6 (3',4'-dihydroxy-3,5,7-	
tri	methoxyflavone) and compound GT-7 (3,5,7,3',4'-	
pe	ntamethoxyflavone)	58
3.1.2.6 Ise	olation of compound GT-8 (4'-hydroxy-3,5,7,3'-	
tet	ramethoxyflavone) and compound GT-9 (3'-hydroxy-3,5,7,	
4'-	tetramethoxyflavone)	59
4. Physical and spect	ral data of isolated compounds	
4.1 Compound GT	-1 (retusine)	65
4.2 Compound GT	-2 (<i>trans</i> -cinnamic acid)	65
4.3 Compound GT	-3 (pachypodol)	66
4.4 Compound GT	F-4 (kumatakenin)	66
4.5 Compound GT	5-5 (5,7,3',4'-tetrahydroxy-3-methoxyflavone)	67
4.6 Compound GT	5-6 (3',4'-dihydroxy-3,5,7-trimethoxyflavone)	67
4.7 Compound GT	5-7 (3,5,7,3',4'-pentamethoxyflavone)	68
4.8 Compound GT	5-8 (4'-hydroxy-3,5,7,3'-tetramethoxyflavone)	68
4.9 Compound GT	5-9 (3'-hydroxy-3,5,7,4'-tetramethoxyflavone)	69
5. Determination of t	free radical scavenging activity	
5.1 TLC screening	g assay	70
5.2 Free radical sc	avenging activity assay	
5.2.1 Prepar	ation of the test sample	70

CONTENTS (continued)

		ix

Page

5.2.2 Preparation of the DPPH solution (50µM)	7
5.2.3 Measurement of activity	7
5.2.4 Calculation of percentage of free radical scavenging activity	7
IV RESULTS AND DISSCUSSION	
1. Structure determination of isolated compounds	7
1.1 Structure determination of compound GT-1	7
1.2 Structure determination of compound GT-2	7
1.3 Structure determination of compound GT-3	7
1.4 Structure determination of compound GT-4	8
1.5 Structure determination of compound GT-5	8
1.6 Structure determination of compound GT-6	8
1.7 Structure determination of compound GT-7	8
1.8 Structure determination of compound GT-8	8
1.9 Structure determination of compound GT-9	9
2. Free radical scavenging activity	9
V CONCLUSION	9
REFERENCES	9
APPENDIX	1
VITA	1

LIST OF TABLES

Table		Page
1	Distribution of chemical constituents in the genus Goniothalamus	4
2	Antilipidperoxidation of flavones from Ginkgo biloba leaves	37
3	Flavones as ABTS ⁺⁺ cation scavengers	38
4	TEAC values of the flavones isolated from Laksa leaves	39
5	Antilipidperoxidation of flavonols from <i>Ginkgo biloba</i> leaves	40
6	TEAC values of the flavonols isolated from Laksa leaves	41
7	Comparison of antioxidant effectiveness of vitamins and flavanones	43
8	Antiradical activities of flavanones (3.3 x $10^{-5} \mu$ M) in methanol solution	
	of DPPH	44
9	Comparison of antioxidant effectiveness of vitamins and flavanols	46
10	Inhibition of microsomal lipid peroxidation by coumarins	48
11	Percentage of scavenging activity of phenylpropanoid glycosides on	
	hydroxyl radical	49
12	Antioxidative activities of diterpenoids from <i>Podocarpus nagi</i>	50
13	The initial and final concentrations (µg/ml) of test sample	71
14	NMR Spectral data of compound GT-1 and retusine	75
15	NMR Spectral data of compound GT-2 and <i>trans</i> -cinnamic acid	77
16	NMR Spectral data of compound GT-3 and pachypodol	79
17	NMR Spectral data of compound GT-4 and kumatakenin	81
18	NMR Spectral data of compound GT-5 and	
	5,7,3',4'-tetrahydroxy-3-methoxyflavone	83
19	NMR Spectral data of compound GT-6	85
20	NMR Spectral data of compound GT-7 and 3,5,7,3',4'-pentamethoxyflavone	87
21	NMR Spectral data of compound GT-8 and	
	4'-hydroxy-3,5,7,3'-tetramethoxyflavone	89
22	NMR Spectral data of compound GT-9 and	
	3'-hydroxy-3,5,7,4'-tetramethoxyflavone	91
23	Percentage of free radical scavenging activity by pure compounds	
	isolated from <i>G. tenuifolius</i>	93

LIST OF FIGURES

Figure		Page
1	Goniothalamus tenuifolius King	3
2	Structures of flavones from Ginkgo biloba	38
3	Structures of flavones 143 to 147	39
4	Structures of flavonols with free radical scavenging activity	
	(compounds 148 -159)	42
5	Structures of flavanones with free radical scavenging activity	
	(compounds 160 -167)	44
6	Structures of flavanonols with free radical scavenging activity	
	(compounds 168-170)	45
7	Structures of flavans with free radical scavenging activity	
	(compounds 171 -175)	46
8	Structures of xanthones with free radical scavenging activity	
	(compounds 176 -179)	47
9	Structures of coumarins with free radical scavenging activity	
	(compounds 180 -185)	48
10	Structures of PPG with free radical scavenging activity	
	(compounds 186 - 191)	49
11	Structures of diterpenoids with free radical scavenging activity	
	(compounds 192 - 197)	51
12	Free radical scavenging activity of compounds GT-4, GT-5 and GT-6	
	on DPPH radical	93
13	Structures of compounds isolated from the leaves of G. tenuifolius	
	with free radical scavenging activity (compounds 198-206)	94
14	UV Spectrum of compound GT-1 (methanol)	104
15	IR Spectrum of compound GT-1 (film)	104
16	Mass Spectrum of compound GT-1	105
17	¹ H-NMR (300 MHz) Spectrum of compound GT-1 (CDCl ₃)	105
18	¹³ C-NMR (75 MHz) Spectrum of compound GT-1 (CDCl ₃)	106

LIST OF FIGURES (continued)

Figure		Page
19	UV Spectrum of compound GT-2 (methanol)	106
20	IR Spectrum of compound GT-2 (film)	107
21	Mass Spectrum of compound GT-2	107
22	¹ H-NMR (300 MHz) Spectrum of compound GT-2 (CDCl ₃)	108
23	¹³ C-NMR (75 MHz), DEPT 90 and DEPT 135 Spectra of	
	compound GT-2 (CDCl ₃)	108
24	UV Spectrum of compound GT-3 (methanol)	109
25	IR Spectrum of compound GT-3 (film)	109
26	Mass Spectrum of compound GT-3	110
27	¹ H-NMR (300 MHz) Spectrum of compound GT-3 (CDCl ₃)	110
28	¹³ C-NMR (75 MHz), DEPT 90 and DEPT 135 Spectra of	
	compound GT-3 (CDCl ₃)	111
29	NOESY Spectrum of compound GT-3 (CDCl ₃)	111
30	HMQC Spectrum of compound GT-3 (CDCl ₃)	112
31	HMBC Spectrum of compound GT-3 (CDCl ₃)	112
32	UV Spectrum of compound GT-4 (methanol)	113
33	IR Spectrum of compound GT-4 (film)	113
34	Mass Spectrum of compound GT-4	114
35	¹ H-NMR (300 MHz) Spectrum of compound GT-4 (acetone- d_6)	114
36	¹ H-NMR (300 MHz) Spectrum of compound GT-4 (DMSO- d_6)	115
37	¹³ C-NMR (75 MHz) Spectrum of compound GT-4 (acetone- d_6)	115
38	¹³ C-NMR (75 MHz) Spectrum of compound GT-4 (DMSO- d_6)	116
39	NOESY Spectrum of compound GT-4 (acetone- d_6)	116
40	HMQC Spectrum of compound GT-4 (acetone- d_6)	117
41	HMBC Spectrum of compound GT-4 (DMSO- d_6)	117
42	UV Spectrum of compound GT-5 (methanol)	118
43	IR Spectrum of compound GT-5 (film)	118
44	Mass Spectrum of compound GT-5	119
45	¹ H-NMR (300 MHz) Spectrum of compound GT-5 (DMSO- d_6)	119

LIST OF FIGURES (continued)

Figure		Page
46	¹³ C-NMR (75 MHz) Spectrum of compound GT-5 (DMSO- d_6)	120
47	NOESY Spectrum of compound GT-5 (DMSO- <i>d</i> ₆)	120
48	HMQC Spectrum of compound GT-5 (DMSO- <i>d</i> ₆)	121
49	HMBC Spectrum of compound GT-5 (DMSO- <i>d</i> ₆)	121
50	UV Spectrum of compound GT-6 (methanol)	122
51	IR Spectrum of compound GT-6 (film)	122
52	Mass Spectrum of compound GT-6	123
53	¹ H-NMR (300 MHz) Spectrum of compound GT-6 (acetone- d_6)	123
54	UV Spectrum of compound GT-7 (methanol)	124
55	IR Spectrum of compound GT-7 (film)	124
56	Mass Spectrum of compound GT-7	125
57	¹ H-NMR (300 MHz) Spectrum of compound GT-7 (CDCl ₃)	125
58	¹³ C-NMR (75 MHz), DEPT 90 and DEPT 135 Spectra of	
	compound GT-7 (CDCl ₃)	126
59	NOESY Spectrum of compound GT-7(CDCl ₃)	126
60	HMQC Spectrum of compound GT-7 (CDCl ₃)	127
61	HMBC Spectrum of compound GT-7 (CDCl ₃)	127
62	UV Spectrum of compound GT-8 (methanol)	128
63	IR Spectrum of compound GT-8 (film)	128
64	Mass Spectrum of compound GT-8	129
65	¹ H-NMR (300 MHz) Spectrum of compound GT-8 (CDCl ₃)	129
66	¹³ C-NMR (75 MHz) Spectrum of compound GT-8 (CDCl ₃)	130
67	NOESY Spectrum of compound GT-8 (CDCl ₃)	130
68	HMQC Spectrum of compound GT-8 (CDCl ₃)	131
69	UV Spectrum of compound GT-9 (methanol)	131
70	IR Spectrum of compound GT-9 (film)	132
71	Mass Spectrum of compound GT-9	132
72	¹ H-NMR (300 MHz) Spectrum of compound GT-9 (CDCl ₃)	133
73	¹³ C-NMR (75 MHz) Spectrum of compound GT-9 (CDCl ₃)	133

LIST OF FIGURES (continued)

Figure		Page
74	NOESY Spectrum of compound GT-9 (CDCl ₃)	134
75	HMQC Spectrum of compound GT-9 (CDCl ₃)	134
76	HMBC Spectrum of compound GT-9 (CDCl ₃)	
	$[\delta_{\rm H} 3.6\text{-}8.0 \text{ppm}, \delta_{\rm C} 50\text{-}180 \text{ppm}]$	135
77	HMBC Spectrum of compound GT-9 (CDCl ₃)	
	$[\delta_{\rm H} 5.5-7.9 \text{ ppm}, \delta_{\rm C} 85-178 \text{ ppm}]$	135

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

LIST OF SCHEMES

Scheme	2	Page
1	Extraction of Goniothalamus tenuifolius King	56
2	Separation of the ethyl acetate extract of the leaves of <i>G. tenuifolius</i>	60
3	Separation of fraction 4-B4 of the ethyl acetate extract	61
4	Separation of fractions C and D of the ethyl acetate extract	62
5	Separation of fraction G of the ethyl acetate extract	63
6	Separation of fraction 3-G3 of the ethyl acetate extract	64
7	Structure of DPPH and reaction with antioxidant	71

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

LIST OF ABBREVIATIONS AND SYMBOLS

α	=	alpha
ABTS ^{.+}	=	2,2'- azinobis (3-ethylbenzothiazoline-6-sulfonic acid)
Acetone- d_6	=	deuterated acetone
β	=	beta
br	=	broad (for NMR spectra)
BHT	=	butylated hydroxytoluene
calcd	=	calculated
cm	=	centimeter
С	=	concentration
°C	=	degree celsius
CCl ₄	-	carbontetrachloride
CDCl ₃	Ū-	deuterated chloroform
CHCl ₃	- 9	chloroform
¹³ C-NMR		carbon-13 nuclear magnetic resonance
1-D	11	one-dimension
2-D	=	two-dimension
d	=	doublet (for NMR spectra)
dd	=	doublet of doublets (for NMR spectra)
DEPT	=	distortionless enhancement by polarization transfer

LIST OF ABBREVIATIONS AND SYMBOLS (continued)

DMSO- d_6	=	deuterated dimethylsulfoxide
DPPH	=	1,1-diphenyl-2-picrylhydrazyl
ESIMS	=	electrospray ionization mass spectrometry
EtOAc	=	ethyl acetate
g	=	gram
hr	=	hour
¹ H-NMR	=	proton nuclear magnetic resonance
HMBC	=	¹ H-detected heteronuclear multiple bond coherence
HMQC	=	¹ H-detected heteronuclear multiple quantum coherence
HRESIMS	=	High resolution electrospray ionization mass spectrometry
Hz	=	hertz
IC ₅₀	0=	median inhibitory concentration
IR	2	infrared spectrum
J	=	coupling constant
kg	งา	kilogram
L	=	liter
δ	=	chemical shift
$\lambda_{_{max}}$	=	wavelength at maximal absorption
3	=	molar absorptivity

LIST OF ABBREVIATIONS AND SYMBOLS (continued)

	V_{max}	=	wave number at maximal absorption
	m	=	meta
1	m	=	meter
1	m	=	multiplet (for NMR spectra)
1	mg	=	milligram
ļ	μg	=	microgram
]	ml	=	milliliter
ļ	μ1	=	microliter
ļ	μΜ	- /	micromolar
]	min	=	minute
1	mult	-	multiplicity
	m/z	-	mass to charge ratio
]	M ⁺	יס 1911	molecular ion
]	MAD	-	malonaldehyde
	МеОН	1ก	methanol
]	MHz	=	megahertz
]	MS	=	mass spectrometry
]	MW	=	molecular weight
1	nm	=	nanometer

LIST OF ABBREVIATIONS AND SYMBOLS (continued)

NMR	=	nuclear magnetic resonance
NOESY	-	nuclear overhauser effect spectroscopy
0	=	ortho
р	-2	para
ppm	=	part per million
spp.	=	species
s	=	singlet (for NMR spectra)
TEAC	=	trolox equivalent antioxidant capacity
TLC	-	thin layer chromatography
tBH	=	tert-butyl hydroperoxide
UV	=	ultraviolet
UV-VIS	=	ultraviolet and visible spectrophotometry
VLC	าบั	vacuum liquid column chromatography

จุฬาลงกรณ์มหาวิทยาลย

CHAPTER I

INTRODUCTION

Oxidation is the transfer of electrons from one atom to another and represents an essential part of aerobic life and our metabolism, since oxygen is the ultimate electron acceptor in the electron flow system that produces energy in the form of ATP. However, problems may arise when the electron flow becomes uncoupled (transfer of unpaired single electron), generating free radicals (Pietta, 2000). Unpaired electrons usually seek other electrons to become paired. Thus, free radicals are in general reactive and attack other molecules, although some radicals are not reactive but stable enough to have long life (Papas, 1999).

Active oxygen species (also known as reactive oxygen species) and related species play an important physiological role and at the same time, they may exert toxic effects as well. The active oxygen species are essential for production of energy, synthesis of biologically essential compounds and phagocytosis, a criticle process of our immune system (Papas, 1999).

Humans have evolved with antioxidant systems to protect against free radicals. These systems include some antioxidants produced in the body (endogenous) and others obtained from the diet (exogenous) (Pietta, 2000). Such exogenous antioxidants are commonly obtained from food and include vitamins C and E, β -carotene and a variety of phenolic compounds, including flavonoids (Campos *et al.*, 2003).

Plants of the genus *Goniothalamus* are reported to contain compounds with a wide range of biological activity such as cytotoxic, antitumor, pesticidal, abortifacient, teratogenic and embryototic effects (Hasan *et al.*, 1994). Ethnobotanical uses of several species of the genus *Goniothalamus* are well known in Malaysia; many of these plants have provided bioactive acetogenins, alkaloids, stryl-lactones and flavonoids (Cao *et al.*, 1998).

Goniothalamus tenuifolius King (Annonaceae), locally known as "Panan Kee Meaw," is a shrub or small tree growing in several parts of Thailand (ปียะ เฉลิมกลิ่น, 2544). It belongs to the tribe Mitrephoreae. Sinclair (1955) described the characteristics of this plant as follows.

Shrub or small tree 2-7 m high. Young twigs slender, pubescent, later glabrous and striate. Leaves membranous, varying considerably in shape and size, lanceolate or oblong lanceolate, acuminate, base acute, rarely rounded, the margins sometimes slightly undulate,

glabrous or pubescenct on the midrib and veins beneath; main nerves 8-11 pairs, fine, curving and interarching 5 mm from margin; reticulations faint and lax; length 8-18.5 cm; breadth 2-6 cm; petiole 5-8 mm long, glabrous or pubescent. *Flowers* solitary, axillary, pendulous. *Pedicels* 5 mm- 2mm long, glabrous or pubescent with 2-3 minute bracts at base. *Sepals* ovate, acute or acuminate, membranous, several-nerved and reticulate, persistent, varying much in size, 7 mm - 2.7 cm long and 6 mm- 2.2 cm broad. *Petals* yellowish to pinkish, thinly coriaceous, pubescent, outer broadly lanceolate, acuminate, much contracted at the base, varying much in length with age, 2-3 cm long, inner ovate, acuminate, 1 cm long or less. *Stamens* 2 mm long, numerous with flat-topped or convex connectives. *Ovaries* about 3 mm long, narrow; style filiform, stigma funnel-shaped, split down the inner side. *Ripe carpels* ovoid, slightly apiculate, pubescent or glabrescent, 1-1.2 cm long; stalks 4-5 mm long. *Seeds* 1 rarely 2.

A previous phytochemical study of this plant has shown the presence of antimalarial aristolactam alkaloids in the stembark (Likhitwitayawuid *et al.*, 1997). Our preliminary screening of the leaves of this plant showed that the ethyl acetate and methanol extracts had free radical scavenging activity with DPPH in a TLC autobiographic assay. Up to the present time, there has been no study on the chemical constituents of the leaves of this plant.

The main objectives in this investigation are as follows.

1. to isolate and purify compounds possessing free radical scavenging activity from the leaves of *G. tenuifolius*.

2. to determine the chemical structure of each isolated compound.

3. to evaluate the free radical scavenging activity of each isolated compound.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Figure 1 *Goniothalamus tenuifolius* King (Photographed by Mr.Tanawat Chaowasku)

CHAPTER II

HISTORICAL

1.Chemical constituents of Goniothalamus spp.

The chemical constituents of plants in the genus *Goniothalamus* can be classified into eleven groups namely acetogenins, alkaloids, aza-anthraquinones, benzenoids, flavonoids, naphthoquinones, styrylpyrones, sterols, styrene derivatives, terpenoids and miscellaneous compounds as shown in Table 1.

Plant & chemical compounds	Category	Plant part	References
Goniothalamus amuyon			
(-)-Anolobine [1]	Aporphine	Wood	Lu, Wu and
O O H H H O H	alkaloid		Leou, 1985
(-)-Anonaine [2]	Aporphine	Wood	Lu, Wu and
O H H	alkaloid	การ ทยาล	Leou, 1985
Goniodiol-7-monoacetate [3]	Styrylpyrone	Leave	Wu, Duh, Chang
HO _{ffin} , H H ^{W^W} OAc			and Chang, 1991

Table 1 Distribution of chemical constituents in the genus Goniothalamus.

Plant & chemical compounds	Category	Plant part	References
G. amuyon			
Goniodiol-8-monoacetate [4]	Styrylpyrone	Leave	Wu <i>et al.</i> , 1992
AcQ _{III} H H ^W OH			
Goniotriol [5]	Styrylpyrone	Leave	Wu <i>et al.</i> , 1992
HO HO HINT H			
Liriodenine [6]	Oxoaporphine	Stem bark	Lu, Wu and
$rac{1}{rac}$	alkaloid		Leou, 1985
Palmatine [7]	Protoberberine	Stem bark	Lu, Wu and
H ₃ CO	alkaloid	Ū.	Leou, 1985
H ₃ CO N+ OCH ₃ OCH ₃	ทยบริ เมษะวิว	การ	22
(-)-Tetrahydropalmatine [8]	Tetrahydro	Stem bark	Lu, Wu and
	protoberberine		Leou, 1985
H ₃ CO H ₃ CO H W H OCH ₃	alkaloid		

Plant & chemical compounds	Category	Plant part	References
G. andersonii			
(+)-Goniothalamin [9]	Styrylpyrone	Leave, Fruit,	Jewers , Davis,
		Root, Stem	Dougan and
			Manchanda, 1972
H O O			
G. arvensis			
5-Acetoxyisogoniothalamin oxide [10]	Styrylpyrone	Stem bark	Peris <i>et al.</i> , 2000
H			
O O O H			
32	<u>a</u>		D. 1
3-Acetylaltholactone [11]	Styrylpyrone	Stem bark	Peris <i>et al.</i> , 2000
н	and a		
OF ON H H OCOCH3	(e) (all all a		
a simula	114/10		
Almuheptolide-A [12]	Benzenoid	Stem bark	Bermojo <i>et al</i> .,
H ₃ CH ₂ CO OCH ₂ CH ₃			1998
ОН			
0 инини он			
	181915	การ	
		9	2
<u>- จฬาลงกรณ</u>	19977	Nga	
Almuheptolide-B [13]	Benzenoid	Stem bark	Bermojo <i>et al.</i> ,
H OCH ₂ CH ₃			1998
ОН			
0 - С			

Plant & chemical compounds	Category	Plant nart	References
	Category	r iant part	Kelelences
G. arvensis			
Altholactone [14]	Styrylpyrone	Stem bark	Peris <i>et al.</i> , 2000
(Synoname : (+)-Goniothalenol)			
H O O O H H H			
(+)-Etharvendiol [15]	Styrylpyrone	Stem bark	Bermejo,
			Blazquez, Rao
O OWNING OH O OWNING OH OH			and Cortest, 1998
(-)-Etharvensis [16]	Styrylpyrone	Stem bark	Bermejo <i>et al.,</i>
		2	1997
(+)-Garvensintriol [17]	Styrylpyrone	Stem bark	Bermejo,
			Blazquez, Rao
O ONIT OH OH	ายบริ	การ	and Cortest, 1998
Ōн	แหาวิ	ทยาล	191
(+)-Goniofufurone [18]	Styrene	Stem bark	Bermejo,
	derivative		Blazquez, Rao
O O O O O O O O O O O O O O O O O O O			and Cortest, 1998

Plant & chemical compounds	Category	Plant part	References
G. borneensis			
Aristolactam- AIII [19]	Aristolactam	Bark	Cao <i>et al.</i> , 1998
H ₃ CO HO	alkaloid		
Cinnamyl cinnamate [20]	Miscellaneous	Bark	Cao <i>et al.</i> , 1998
Goniobutenolide A [21]	Styrene	Bark	Cao <i>et al.</i> , 1998
	derivative		
Goniobutenolide B [22]	Styrene	Bark	Cao <i>et al.</i> , 1998
e /	derivative		
OH OH OH	ายปริ	การ ู	,
ุลฬาลงกรณ	บหาว	ทยาล	18
Goniofufurone [18]	Styrene derivative	Bark	Cao <i>et al.</i> , 1998

Plant & chemical compounds	Category	Plant part	References
G. borneensis			
Goniothalactam [23]	Aristolactam	Bark	Cao <i>et al.</i> , 1998
H ₃ C H ₃ CO HO	alkaloid		
Goniothalamin [9]	Styrylpyrone	Bark	Cao <i>et al.</i> , 1998
H O O			
(+)-Goniothalenol [14]	Styrylpyrone	Bark	Cao <i>et al.</i> , 1998
HO HO			
Goniothalesdiol [24]	Styrene	Bark	Cao <i>et al.</i> , 1998
	derivative		
HO ^{sur} OH	ายบริ	การ	, . 01
	Star large	Darda	Gala at al. 1009
Goniotriol [5]	Styryipyrone	Bark	Cao <i>et al.</i> , 1998

Plant & chamical compounds	Catagory	Plant nort	References
r tant & chemical compounds	Category	r iant part	Kelefences
G. borneensis			
Pinocembrin [25]	Flavonoid	Bark	Cao <i>et al.</i> , 1998
Stigmasterol [26]	Sterol	Bark	Cao <i>et al.</i> , 1998
HO HO			
G. cardiopetalus	State A		
Altholactone [14]	Styrylpyrone	Stem bark	Hisham <i>et al</i> .,
	1222	2	2000
Cardiopetalolactone [27]	Styrylpyrone	Stem bark	Hisham <i>et al</i> .,
H O H OH	ายบริ มหาร์	การ เทยาล์	2000
Goniopyrone [28]	Styrylpyrone	Stem bark	Hisham <i>et al.</i> ,
			2000

Plant & chemical compounds	Category	Plant part	References
G. cheliensis			
Goniolactone A [29] $\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Bi- styrylpyrone	Root	Wang, Zhang, Chen and Yu, 2002
Goniolactone B [30] $ + 0 + (+++) + (++++) + (+++++) + (++++) (++++-) (++++) (+++-+) (+++-) (+++-) (+++-) (+++-) (+++-) (+++-) (+++-) (+++-) (+++-) (+++-) (+++-) (+++-) (+++-) (++) (++) (++) (++) (++) (++-$	Flavanone- styrylpyrone	Root	Wang, Zhang, Chen and Yu, 2002
Goniolactone C [31] $\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Flavanone- styrylpyrone	Root	Wang, Zhang, Chen and Yu, 2002
Goniolactone D [33] $HO \longrightarrow HO \longrightarrow$	Flavanone- styrylpyrone	Root	Wang, Zhang, Chen and Yu, 2002

Plant & chemical compounds	Category	Plant part	References
G. cheliensis			
Goniolactone E [33]	Flavanone-	Root	Wang, Zhang,
	styrylpyrone		Chen and Yu, 2002
Goniolactone F [34]	Flavanone-	Root	Wang, Zhang,
$\begin{array}{c} H \\ H $	styrylpyrone		Chen and Yu, 2002
G. dolichocarpus			
(+)-Annonacin [35]	Acetogenin	Stem bark	Goh, Ee, Chuah and Wei 1995
HO, OH	ายบริ มหาวั	การ เทยาล์	8
(+)-5-Deoxygoniopypyrone [36]	Styrylpyrone	Stem bark	Goh, Ee, Chuah
	~.,.,.,.		and Wei, 1995

Plant & chemical compounds	Category	Plant part	References
G. dolichocarpus			
(-)-Iso-5-Deoxygoniopypyrone [37]	Styrylpyrone	Stem bark	Goh, Ee, Chuah and Wei, 1995
(-)-Iso-5-deoxygonionynyrone acetate	Styrylpyrone	Stem bark	Gob Fe Chuah
	Styrypyrone	Stell bark	
Isogoniothalamin epoxide [39]	Styrylpyrone	Stem bark	Goh, Ee, Chuah and Wei, 1995
	Styrylpyrone	Stem bark	and Wei, 1995
Н он			
(+)-Goniodiol diacetate [41]	Styrylpyrone	Stem bark	Goh, Ee, Chuah and Wei, 1995

Plant & chemical compounds	Category	Plant part	References
G. dolichocarpus			
(+)-Goniothalamine [9]	Styrylpyrone	Stem bark	Goh, Ee, Chuah
			and Wei, 1995
H H	inite a		
	11/100		
(+)-Goniothalamine epoxide [42]	Styrylpyrone	Stem bark	Goh, Ee, Chuah
			and Wei, 1995
H			
G. donnaiensis			
(+)-Annonacin [36]	Acetogenin	Root	Jiang and Yu,
	Ass		1997
	(Stand)		
	13 Maria		
		m	
cis-Goniodonin [43] and 34-epi-cis-	Acetogenin	Root	Jiang, Chen,
goniodonin [44]	กยาเริ	การ	Chen and Yu,
			1997
$H_3C(H_2C)_{11}$	แหาวิ	ทายาล	191
он он он и			
Donbutocin [45]	Acetogenin	Root	Jiang Chen
	rectogenin	ROOL	Chen and Yu
			1998a
$\begin{array}{ c c c c c } H_3C(H_2C)_{15} & & & & & & \\ \hline & OH & OH & OH & \\ OH & OH & OH & \\ \end{array}$			

Plant & chemical compounds	Category	Plant part	References
G. donnaiensis			
Donhepocin [46] and 34-epi-donhepocin	Acetogenin	Root	Jiang, Chen,
[47]			Chen and Yu,
			1998a
$H_{3}C(H_{2}C)_{11}$ OH OH OH $(CH_{2})_{4}$ $(CH_{2})_{5}$ OH OH OH OH OH OH OH OH	1100		
Donaienin [48]	Acetogenin	Root	Jiang, Chen,
			Chen and Yu,
ОН			1998b
$H_3C(H_2C)_{13}$ $H_3C(H_2)_2$ $(CH_2)_2$ $(CH_2)_5$			
0			
Donnaienin A [49] and 34- <i>eni</i> -	Acetogenin	Root	Jiang and Yu.
donnaienin A [50]	6		1997
			1337
$H_3C(H_2C)_{11}$ $H_3C(H_2C)_{11}$ OH OH OH OH OH OH OH OH			
Donnaienin B [51] and 34-epi-	Acetogenin	Root	Jiang and Yu,
donnaienin B [52]		-	1997
$H_3C(H_2C)_{13}$ $H_3C(H_2C)$	ายบริ	การ ู	,
Donaionin C [52] and 24 ani donaionin C	Acetogonin	Poot	liang Chan
Donalenin C [53] and 34- <i>ept</i> -donalenin C	Acetogenin	KOOL	Jiang, Chen,
[54]			Chen and Yu,
$H_3C(H_2C)_{11}$ H_0			1998c

Plant & chemical compounds	Category	Plant part	References
G. donnaiensis Donaienin D [55] and 34- <i>epi</i> -donaienin D [56]	Acetogenin	Root	Jiang, Chen, Chen and Yu, 1998c
H ₃ C(H ₂ C) ₁₁ OH OH (CH ₂) ₄ (CH ₂) ₅	1110		
Donhexocin [57] $H_{3}C(H_{2}C)_{11} \xrightarrow{OH} \xrightarrow{OH} \xrightarrow{OH} \xrightarrow{(CH_{2})_{4}} \xrightarrow{(CH_{2})_{4}} \xrightarrow{(CH_{2})_{5}} \xrightarrow{I}_{4} \xrightarrow{I}_{6} \xrightarrow{I}_{7} \xrightarrow{I}_{7$	Acetogenin	Root	Jiang, Chen, Chen and Yu, 1998a
Goniodonin [58] and 34- <i>epi</i> -goniodonin [59] $H_{3}C(H_{2}C)_{11} \underbrace{+}_{OH} \underbrace{+}_{OH}$	Acetogenin	Root	Jiang, Chen, Chen and Yu, 1997
Goniothalamicin [60] $H_{3}C(H_{2}C)_{12} \xrightarrow{f}_{OH} \xrightarrow{OH}_{OH} \xrightarrow{OH}_{(CH_{2})_{5}} \xrightarrow{H}_{CH_{3}}$	Acetogenin	Root	Jiang and Yu, 1997
Isoannonacin [61] $\downarrow 0 \rightarrow 0H \rightarrow 0H \rightarrow 0H^{0} \rightarrow 0H^{0}$	Acetogenin	Root	Jiang and Yu, 1997
Murisolin [62] $H_{3}C \xrightarrow{O} OH \xrightarrow{OH} OH \xrightarrow{OH} (CH_{2})_{10} \xrightarrow{O} (CH_{2})_{11}CH_{3}$	Acetogenin	Root	Jiang and Yu, 1997

Plant & chemical compounds	Category	Plant part	References
G. gardneri			
2', 4'- Dihydroxy-4 ,6'-dimethoxychalcone [63]	Flavonoid	Aerial part	Seidal, Bailleul and Waterman, 2000
<u>О́Н</u> О́	11/2		
2', 4'- Dihydroxy-4,6'- dimethoxydihydrochalcone [64] $HO + OCH_3 + O$	Flavonoid	Aerial part	Seidal, Bailleul and Waterman, 2000
Gardnerilins A [65] $H_{3}C(H_{2}C)_{11} \xrightarrow{OH} \xrightarrow{OH}$	Acetogenin	Root	Chen, Jiang, Chen and Yu, 1998a
Gardnerilins B [66] $H_{3}C(H_{2}C)_{13} + (H_{2}C)_{6} + (H_{2}C)_{5} + (H_{2}C)_{5} + (H_{2}C)_{6} + (H_{2}C)_{5} + (H_{2}C)_{6} + (H_{2}$	Acetogenin	Root	Chen, Jiang, Chen and Yu, 1998a
Gardnerinin [67] and 34- <i>epi</i> -gardnerinin [68] $H_{3}C(H_{2}C)_{11} \xrightarrow{OH}_{OH} \xrightarrow{OH}_{OH} \xrightarrow{OH}_{OH} \xrightarrow{OCH_{3}}_{OH} \xrightarrow{OH}_{OH} \xrightarrow{OCH_{3}}_{O}$	Acetogenin	Root	Chen, Chen, Jiang and Yu, 1998b
Goniothalamusin [69] HOH ₂ C ^{.11} $(CH_2)_7$ C=C (CH ₂) ₄ H H	Acetogenin	Aerial part	Seidal, Bailleul and Waterman, 1999
Plant & chemical compounds	Category	Plant part	References
---	-----------	-------------	------------------
G. gardneri			
2'- Hydroxy-4,4',6'-trimethoxychalcone	Flavonoid	Aerial part	Seidal, Bailleul
[70]			and Waterman,
H ₃ CO OCH ₃ OCH ₃			2000
2'- Hydroxy-4,4',6'-	Flavonoid	Aerial part	Seidal, Bailleul
trimethoxydihydrochalcone [71]			and Waterman,
			2000
H ₃ CO OCH ₃ OCH ₃			
Narigenin trimethyl ether [72]	Flavonoid	Aerial part	Seidal, Bailleul
	11111		and Waterman,
H ₃ CO OCH ₃ O			2000
Rel- $(1\beta, 2\alpha)$ di- $(2,4$ - dihydroxy-6-	Flavonoid	Aerial part	Seidal, Bailleul
methoxybenzoyl)- $(3\beta - 4\alpha)$ -di- $(4-$		Q	and Waterman,
methoxyphenyl)-cyclobutane [73]	มหาว	ทยาด	2000

Plant & chemical compounds	Category	Plant part	Keterences
G. gardneri			
2',4,4',- Trihydroxy-6'-	Flavonoid	Aerial part	Seidal, Bailleul
methoxydihydrochalcone [74]			and Waterman,
			2000
ОН			
HO UCH3			
он о			
Tsugafolin [75]	Flavonoid	Aerial part	Seidal Bailleul
rougatorin [70]	1 14 / 011014		and Waterman
OCH3			2000
HO			2000
Ш осн₃ о			
G. giganteus			
8-Acetylgoniotriol [76]	Styrylpyrone	Stem bark	Fang <i>et al.,</i> 1990
11911	1114/2010		
H	(Add and a		
Aco			
HOM		The second	
Altholactone [14]	Styrylpyrone	Stem bark	El-Zayat <i>et al.</i> ,
861 1076 31	เยบว		1985
		9	
	มทาว	1 B T 6	12
O O O O O O O O O O O O O O O O O O O			
Annomontacin [77]	Acetogenin	Stem bark	Fang <i>et al.</i> , 1992a
H ₃ C(H ₂ C) ₁₁ CH ₃ C(H ₂ C) ₁₁ CH ₃			
HO' O' OH HO' (2000) O			

Plant & chemical compounds	Category	Plant part	References
G. giganteus			
Annonacin [35]	Acetogenin	Stem bark	Alkofahi <i>et al.</i> ,
HO, OH OH OH OH OH HO	1112-		1988
Asimilobin [78]	Acetogenin	Stem bark	Zhang et al., 1995
$H_3C(H_2C)_{11}$ $H_3C(H_2C)$			
2,4- <i>cis</i> and <i>trans</i> -Gigantecin [79]	Acetogenin	Stem bark	Alali, Zhang,
$H_3C(H_2C)_{11}$ $H_3C(H_2C)_{12}$ $H_3C(H_2C)$			Rogers and McLaughlin, 1997
2,4- <i>cis</i> and <i>trans</i> -Gonioneninone [80]	Acetogenin	Stem bark	Alali, Zhang,
		9	Rogers and
H ₃ C(H ₂ C) ₁₁			McLaughlin 1998
2,4- <i>cis</i> and <i>trans</i> -Xylomaticinone [81]	Acetogenin	Stem bark	Alali, Rogers,
6161101691			Zhang and
$\begin{array}{c} OH \\ H_{3}C(H_{2}C)_{14} \\ \end{array} \\ \begin{array}{c} O \\ O \\ \end{array} \\ \begin{array}{c} O \\ (CH_{2})_{3} \\ \hline \\ (CH_{2})_{5} \\ \hline \\ O \\ \end{array} \\ \begin{array}{c} OH \\ \hline \\ (CH_{2})_{5} \\ \hline \\ O \\ O \\ \end{array} \\ \begin{array}{c} OH \\ \hline \\ CH_{2} \\ \hline \\ O \\ O \\ \end{array} \\ \begin{array}{c} OH \\ \hline \\ CH_{2} \\ \hline \\ O \\ O \\ \end{array} \\ \begin{array}{c} OH \\ \hline \\ CH_{2} \\ \hline \\ O \\ O \\ \end{array} \\ \begin{array}{c} OH \\ \hline \\ CH_{2} \\ \hline \\ O \\ O \\ O \\ \end{array} \\ \begin{array}{c} OH \\ \hline \\ CH_{2} \\ \hline \\ O \\ O \\ O \\ O \\ \end{array} \\ \begin{array}{c} OH \\ \hline \\ CH_{2} \\ \hline \\ O \\ O$	มหาวิ	ทยาลิ	McLaughlin 1999
4-Deoxygigantecin [82]	Acetogenin	Stem bark	Alali, Zhang,
			Rogers and
$H_3C(H_2C)_{11}$ O^{V} OH OH OH OH $(CH_2)_7$ O			McLaughlin, 1997

Plant & chemical compounds	Category	Plant part	References
C cigantaus	Caregory		
G. giganteus			D
9-Deoxy-goniopypyrone [83]	Styrylpyrone	Stem bark	Fang <i>et al.</i> , 1991a
Gigantecin [84]	Acetogenin	Stem bark	Alkofahi <i>et al.,</i>
$H_3C(H_2C)_{11}$ $H_3C(H_2C)_{12}$ $H_3C(H_2C)$			1990
Gigantetrocin [85]	Acetogenin	Stem bark	Fang et al., 1991
$H_3C(H_2C)_{13}$ $H_3C(H_2C)$			
Gigantetronenin [86]	Acetogenin	Stem bark	Fang <i>et al.</i> , 1992a
$H_3C(H_2C)_{10}$ $H_3C(H_2C)$			
Gigantransenin A [87]	Acetogenin	Stem bark	Zeng, Zhang and
$H_3C(H_2C)_{10}$ $H_3C(H_2C)$	ายาเริ	ก าร	McLaughlin 1996
Gigantransenin B [88]	Acetogenin	Stem bark	Zeng, Zhang and
$H_3C(H_2C)_{10}$ OH OH OH OH OH OH OH OH	มหาวิ	ทยาล	McLaughlin 1996
Gigantransenin C [89]	Acetogenin	Stem bark	Zeng, Zhang and
			McLaughlin 1996
$H_{3}C(H_{2}C)_{10} \xrightarrow{OH} \underbrace{OH}_{OH} \underbrace{OH} \underbrace{OH} \underbrace{OH}_{OH} \underbrace{OH} \underbrace{OH}_{OH} \underbrace{OH}_{OH} \underbrace{OH}_{OH$			6

Plant & chemical compounds	Category	Plant part	References
G. giganteus			
Gigantriocin [90]	Acetogenin	Stem bark	Fang <i>et al.</i> , 1991
$H_3C(H_2C)_{13}$ $H_3C(H_2C)$			
Gigantrionenin [91]	Acetogenin	Stem bark	Fang <i>et al.</i> , 1992a
$H_3C(H_2C)_{10}$ $H_3C(H_2C)$			
Goniobutenolide A [21]	Styrene	Stem bark	Fang <i>et al.</i> , 1991b
12.2	derivative		
OH OH OH OH			
Goniobutenolide B [22]	Styrene	Stem bark	Fang <i>et al.</i> , 1991b
	derivative		
OH OH OH			
Goniocin [92]	Acetogenin	Stem bark	Gu, Fang, Zeng and McLaughlin.
$H_3C(H_2C)_{10}$ $H_3C(H_2C)$	มหาวิ	ทยาล	1994
Goniodenin [93]	Acetogenin	Stem bark	Zhang et al., 1995
H ₃ C(H ₂ C) ₁₁ OH			

Plant & chemical compounds	Category	Plant part	References
G. giganteus	Sturvlovrone	Stem bark	Fang <i>et al</i> 1001a
	Styryipyrone	Stelli baik	Tang <i>et al.</i> , 1991a
Goniofufurone [18]	Styrene derivatives	Stem bark	Fang <i>et al.</i> , 1990
7- <i>epi</i> -Goniofufurone [94]	Styrene derivative	Stem bark	Fang <i>et al.</i> , 1991b
Goniofupyrone [95] $(-)^{OH}$	Styrylpyrone	Stem bark	Fang <i>et al.</i> , 1991b
Gonioheptolide A [96]	Benzenoid	Stem bark	Fang <i>et al.,</i> 1993

Plant & chemical compounds	Category	Plant part	References
G. giganteus			
Gonioheptolide B [97]	Benzenoid	Stem bark	Fang <i>et al.</i> , 1993
HO OCH ₂ CH ₃ OH			
Gonionenin [98]	Acetogenin	Stem bark	Gu, Fang, Zeng
$H_3C(H_2C)_{10}$ $H_3C(H_2C)$			and McLaughlin, 1994
Goniopypyrone [99]	Styrylpyrone	Stem bark	Fang <i>et al.,</i> 1990
но			
Goniotetracin [100]	Acetogenin	Stem bark	Alali, Zhang,
$H_3C(H_2C)_{13}$			Rogers and McLaughlin, 1998
Goniothalamicin [60]	Acetogenin	Stem bark	Alkofahi <i>et al.</i> ,
$H_3C(H_2C)_{12}$ $H_3C(H_2C)$	มหาวิ	ทยาลิ	1988 and Fang <i>et</i> <i>al.</i> , 1992b
Goniothalamin [9]	Styrylpyrone	Stem bark	El-Zayat et al.,
H O O			1985

Plant & chemical compounds	Category	Plant nart	References
G aigantaus	2.400,001 /	- mit put	
Goniotriocin [101]	Acetogenin	Stem bark	Alali, Rogers,
$H_3C(H_2C)_{10}$ $H_3C(H_2C)$			Zhang and McLaughlin, 1999
Goniotriol [5]	Styrylpyrone	Stem bark	Alkofahi <i>et al.,</i> 1989
Goniotrionin [102] $H_{3}C(H_{2}C)_{13} \xrightarrow{(H_{2}C)_{13}} (CH_{2})_{5} \xrightarrow{(H_{2}C)_{13}} (CH_{2}) (CH_{2}$	Acetogenin	Stem bark	Alali, Zhang, Rogers and McLaughlin, 1998
Pyragonicin [103] $H_{3}C(H_{2}C)_{13}$	Acetogenin	Stem bark	Alali, Zhang, Rogers and McLaughlin, 1998
Pyranicin [104] $H_{3}C(H_{2}C)_{10} \xrightarrow{HO_{r_{1}}}_{OH} \xrightarrow{OH}_{OH} \xrightarrow{OH}_{O} \xrightarrow{OH}_{O}$	Acetogenin	Stem bark	Alali, Zhang, Rogers and McLaughlin, 1998
G. griffithii Aristolactam A-II [105] $HO \rightarrow H_{3}CO \rightarrow HO$	Aristolactam alkaloid	Root	Zhang, Kong, Chen and Yu, 1999

Plant & chemical compounds	Category	Plant part	References
G. griffithii			
Goniodiol [40]	Styrylpyrone	Stem bark	Talapatra <i>et al.</i> , 1985
OH H OH H OH	114.		
Goniodiol diacetate [41]	Styrylpyrone	Stem bark	Talapatra <i>et al.</i> ,
OAc H H OAc			1985
Goniodiol-7-monoacetate [3]	Styrylpyrone	Stem bark	Talapatra <i>et al</i> .,
HO _{III} H			1985
Griffithazanone A [106]	Aza-	Root	Zhang, Kong,
	anthraquinone	การ _เ	Chen and Yu, 1999
Griffithdione [107]	4,5-Dioxo-	Root	Zhang, Kong,
9	aporphine		Chen and Yu,
H ₃ CO H ₃ CO H ₃ CO CH ₃	alkaloid		1999

Plant & chemical compounds	Category	Plant part	References
G. griffithii			
Griffithinam [108]	Aristolactam alkaloid	Root	Zhang, Kong, Chen and Yu,
H ₃ CO HO HO OCH ₃			1999
4-Methyl-2,9,10-(2H)-1-	Aza-	Root	Zhang, Kong,
azaanthracenetrione [109]	anthraquinone		Chen and Yu,
$\begin{array}{c} \downarrow \\ \downarrow $			1999
Nor-cepharanone B [110]	Alkaloid	Root	Zhang, Kong,
			Chen and Yu,
	13333-3-		1999
Pinocembrin [25]	Flavonoid	Stem bark	Talapatra, Deb
			and Tarapatra,
	ทยบริ	การ	1985
<u>- ฉพาลงกรถ</u>	เมหาว	ทยาล	18
Taliscanine [111]	Aristolactam	Root	Zhang, Kong,
H ₃ CO H ₃ CO H ₃ CO H ₃ CO OCH ₃	alkaloid		Chen and Yu, 1999

Plant & chemical compounds	Category	Plant part	References
G. griffithii			
Velutinam [112]	Aristolactam	Root	Zhang, Kong,
0	alkaloid		Chen and Yu,
H ₃ CO H ₃ CO H ₃ CO			1999
G. leiocarpus			
7-epi-Goniodiol [113]	Styrylpyrone	Stem bark	Mu <i>et al.</i> , 1999
ОН			
OH H O O			
Leiocarpin A [114]	Styrene	Stem bark	Mu <i>et al</i> ., 1999
	derivative		
Leiocarpin B [115]	Flavanone-	Stem bark	Mu <i>et al.</i> , 1999
O OH	styrylpyrone	ā	
	ายบริ	การ ู	
<u>ฉพำลงกร</u> ณ	111117	ทยาล	181
Leiocarpin C [116]	Styrylpyrone	Stem bark	Mu <i>et al</i> ., 1999
OH OH H OH OH OH			

Plant & chemical compounds	Category	Plant part	References
G. macrophyllus			
(+)-Goniothalamin [9]	Styrylpyrone	Stem bark, Root	Sam <i>et al.</i> , 1987
Goniothalamin oxide [42]	Styrylpyrone	Stem bark, Root	Sam <i>et al.</i> , 1987
G. malayanus			
(+)-Isoaltholactone [117]	Styrene derivative	Stem bark	Colegate <i>et al.</i> , 1990
G. marcanii		-27	
Dielsiquinone [118] $ \begin{array}{c} & \leftarrow & \leftarrow \\ & \leftarrow & \leftarrow$	Aza- anthraquinone	Stem bark	Soonthorn- chareonnon <i>et al.</i> , 1999
5-Hydroxy-3-amino-2-aceto-1,4-	Naphtho-	Stem bark	Soonthorn-
napthoquinone [119] $\qquad \qquad $	quinone		chareonnon <i>et al.</i> , 1999 ref 22

Plant & chemical compounds	Category	Plant part	References
G. marcanii			
Marcanine A [120]	Aza- anthraquinone	Stem bark	Soonthorn- chareonnon <i>et al.</i> ,
			1999
Marcanine B [121]	Aza-	Stem bark	Soonthorn-
$\begin{array}{c} O \\ CH_3 \\ CH_4 \\ O \\ CH_3 \end{array} $	anthraquinone		chareonnon <i>et al.</i> , 1999
Marcanine C [122]	Aza-	Stem bark	Soonthorn-
$\begin{array}{c} & & CH_3 \\ & & + \\ & + \\ & + \\ & + \\ & - \\ & + \\ & - \\ & + $	anthraquinone	9	chareonnon <i>et al.</i> , 1999
Marcanine D [123]	Aza-	Stem bark	Soonthorn-
	anthraquinone	การ	chareonnon <i>et al.</i> , 1999
	มหาวิ	ทยาลิ	181
Marcanine E [124]	Aza-	Stem bark	Soonthorn-
	anthraquinone		1999

Plant & chemical compounds	Category	Plant part	References
G. montanus			
(+)-Isoaltholactone [117]	Styrene	Stem bark	Colegate <i>et al.</i> ,
ų.	derivative		1990
G. scortechinii	1/125		
Scornazanone [125]	Aza-	Root	Din, Colegate and
ООН	anthraquinone		Razak, 1990
OCH3			
N OCH3			
ö	20		
G. sesquipedalis			
5-Acetoxyisogoniothalamin oxide [126]	Styrylpyrone	Stem bark	Hasan, Mia,
AcO			Rashid and
	(Sugar		Connolly, 1994
	1134/200		
Aristolactam A-II [105]	Aristolactam	Leave, Twig	Talapatra, Basu,
	alkaloid		Chattopadhyay
HONH		000	and Tarapatra,
H ₃ CO	ายบว		1988
	มทาง		181
Aurantiamid acetate [127]	Miscellaneous	Leave, Twig	Talapatra, Basu,
			Chattopadhyay
			and Tarapatra,
			1988
, in the second se			

Plant & chemical compounds	Category	Plant part	References
G. sesquipedalis			
(+)-Goniodiol [40]	Styrylpyrone	Leave, Twig	Talapatra <i>et al.</i> , 1985
(+)-Goniodiol diacetate [41]	Styrylpyrone	Leave, Twig	Talapatra <i>et al.</i> ,
OAc H OAC			1985
Goniodiol-7-monoacetate [3] $\begin{array}{c} \\ HO_{n} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Styrylpyrone	Leave, Twig	Talapatra <i>et al.</i> , 1985
Goniopedaline [128] $\begin{array}{c} HO \\ HO \\ H_{3}CO \\ H \\ H_{3}CO \\ H \\ $	Aristolactam alkaloid	Leave, Twig	Talapatra, Basu, Chattopadhyay and Tarapatra, 1988
Goniotriol [5]	Styrylpyrone	Leave, Twig	Talapatra <i>et al.</i> , 1985

Plant & chemical compounds	Category	Plant part	References
G. sesquipedalis			
β -Sitosterol [129]	Steroid	Leave, Twig	Talapatra, Basu, Chattopadhyay and Tarapatra, 1988
Taliscanine [111] $H_{3}CO + f + f + g + g + g + g + g + g + g + g$	Aristolactam alkaloid	Leave, Twig	Talapatra, Basu, Chattopadhyay and Tarapatra, 1988
<i>G. tapis</i> Isoaltholactone [118] $\downarrow \downarrow $	Styrene derivative	Stembark	Colegate <i>et al.</i> , 1990
G. tenuifolius Aristolactam A-II [105] $HO + + + + + + + + + + + + + + + + + + +$	Aristolactam alkaloid	Stem bark	Likhitwitayawuid <i>et al.</i> , 1997
Cepharanone B [130] $H_{3}CO \qquad \qquad$	Aristolactam alkaloid	Stem bark	Likhitwitayawuid <i>et al.</i> , 1997

Plant & chemical compounds	Category	Plant part	References
G. tenuifolius			
Norcepharadione B [131]	4,5-Dioxo-	Stem bark	Likhitwitayawuid
	aporphine		et al., 1997
H ₃ CO H ₃ CO NH	alkaloid		
Taliscanine [111]	Aristolactam	Stem bark	Likhitwitayawuid
	alkaloid		<i>et al.</i> , 1997
H ₃ CO H			
Velutinam [112]	Aristolactam	Stem bark	Likhitwitayawuid
0	alkaloid		<i>et al.</i> , 1997
H ₃ CO H ₃ CO		3	
ОН		000	
G. thwaitesii	LIRIA	H D	
Annulatin [132]	Flavonoid	Aerial part	Seidel, Bailleul and Waterman.
			2000

Plant & chemical compounds	Category	Plant part	References
G. thwaitesii			
Betulinic acid [133] $ \begin{array}{c} $	Triterpene	Aerial part	Seidel, Bailleul and Waterman, 2000
Friedelin [134] $\downarrow \qquad \qquad$	Triterpene	Aerial part	Seidel, Bailleul and Waterman, 2000
Friedelinol [135] $\begin{array}{c} & & H_3C \\ & & CH_3 \\ & & CH_3$	Triterpene	Aerial part	Seidel, Bailleul and Waterman, 2000
G. uvarioides	มทาง	VIEI 16	B
5-Acetylgoniothlamin [136] $H_{3}C \to H_{H_{0}} \to H_{H_{0}}$	Styrylpyrone	Root	Ahmad, Tukol, Omar and Sharif 1991

Plant & chemical compounds	Category	Plant part	References
G. uvarioides			
Goniothlamin [9]	Styrylpyrone	Root	Ahmad, Tukol,
~			Omar and Sharif
			1991
Ă Ă O O			
A			
G. velutinus			
Cepharanone B [131]	Aristolactam	Stem bark	Omar <i>et al.</i> , 1992
	alkaloid		
H ₃ CO			
H ₃ CO NH			
Velutinam [113]	Aristolactam	Stem bark	Omar <i>et al.</i> , 1992
0	alkaloid		
H ₃ CO	113/15:50-		
H ₃ CO NH			
ОН			
0.7			

2. Free radical scavenging activity from natural sources.

Examples of oxygen centered free radicals, known as reactive oxygen species (ROS) include superoxide (O_2^{-}) , peroxyl (ROO), alkoxyl (RO), hydroxyl (OH) and nitric oxide (NO) (Pietta, 2000). Five groups of natural products have been shown to possess free radical scavenging activity. They can be classified as:

2.1 Flavonoids

Flavonoids are naturally occurring phenolics which are widely distributed in a variety of plants at high levels and are commonly ingested from vegetables, fruits and beverages (tea and wine) (Haraguchi, 2001). Flavonoids have been shown to elicit antitumoral, antiplatelet, antiischemic, antiallergic and antiinflammatory activities. Along with these activities, flavonoids have also been shown to inhibit the activity of several enzymes, including lipoxygenase and cycloxygenase, monoxygenase, xanthine oxidase, mitocondrial succinoxidase and NADH-oxidase, phospholipase A_2 and protein kinase. The biological activities of the flavonoids are thought to be the result of their antioxidant properties, where the inhibition of the enzyme by flavonoids could be attributed to their ability to react with reactive oxygen species (ROS) formed at or near the reaction center (Dugas *et al.*, 2000). Flavonoids as free radical scavengers have been grouped, as follows:

2.1.1 Flavone derivatives

Flavones from leaves of *Ginkgo biloba* have been evaluated for their antilipid peroxidation which was induced by *tert* - butyl hydroperoxide (*t* BH). Lipid peroxidation was monitored by the production of malonaldehyde (MAD).

Compounds	MAD	DPPH	
	(nmoles /10 ⁶ cells)	(% decolouration at 10^{-4} M)	
Positive control	0.35 ± 0.07	0	
<i>t</i> BH 1.5 mM	10.42 ± 0.33	0	
Luteolin (137)	0.70 ± 0.18 ***	59	
Apigenin (138)	$7.13 \pm 0.48*$	8 0	
Flavone (139)	11.11 ± 0.32		
Acacetin (140)	$6.97 \pm 0.51*$	0	
Chrysin (141)	6.93 ± 1.79 ***	0	

Table 2 Antilipidperoxidation of flavones from Ginkgo biloba leaves

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 2 shows the results obtained on MAD production and DPPH (1,1-diphenyl-2picrylhydrazyl) decolouration test. At 100 μ M, only luteolin (137) produced a decolouration of DPPH radical and significantly reduced MAD production. The other flavones are not active with the DPPH radical and are only weak antilipidperoxidants (Joyeux *et al.*, 1995).

	\mathbf{R}_{1}	\mathbf{R}_2	\mathbf{R}_{3}	\mathbf{R}_4
Luteolin (137)	OH	OH	ОН	OH
Apigenin (138)	Н	OH	OH	OH
Flavone (139)	Н	Н	Н	Н
Acacetin (140)	Н	OCH ₃	ОН	OH
Chrysin (141)	Н	Н	OH	OH
	Luteolin (137) Apigenin (138) Flavone (139) Acacetin (140) Chrysin (141)	R1 Luteolin (137) OH Apigenin (138) H Flavone (139) H Acacetin (140) H Chrysin (141) H	R1 R2 Luteolin (137) OH Apigenin (138) H Flavone (139) H Acacetin (140) H OCH3 Chrysin (141) H	R1 R2 R3 Luteolin (137) OH OH OH Apigenin (138) H OH OH Flavone (139) H H H Acacetin (140) H OCH3 OH Chrysin (141) H OH OH

Figture 2 Structures of flavones from of Ginkgo biloba

Flavones have been studied for the relationships between their structures and radical scavenging activity. The Trolox equivalent antioxidant capacity (TEAC) is defined as the concentration of Trolox with the same antioxidant capacity as 1 mM concentration of the antioxidant under investigation. This assay is based on the ability of an antioxidant to scavenge (at pH 7.4) a preformed radical cation chromophore of 2,2'- azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS⁺⁺) in relation to that of 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), an aqueous soluble vitamin E analogue (Pietta, 2000), as shown in Table 3.

Compounds	TEAC (mM)		
Luteolin (137)	2.09		
Luteolin 4'-glucoside (142)	1.74		
Apigenin (138)	1.45		
Chrysin (141)	1.43		

Four flavone compounds were isolated from the dried leaves of *Polygonum hydropiper* (Laksa leaves), and evalutated for antioxidant activity by using TEAC (Peng *et al.*, 2003), as shown in Table 4.

Compounds	TEAC (mM)
6-Hydroxyluteolin 7-O'-D-glucopyranoside (143)	2.87 ± 0.04
6-Hydroxyluteolin; 3',4',5,6,7-pentahydroxyflavone (144)	2.33 ± 0.04
Scutillarein (145)	2.16 ± 0.05
Scutillarein 7-O- β -D-glucopyranoside (146)	1.98 ± 0.08

Table 4 TEAC values of the flavones isolated from Laksa leaves

The antilipid peroxidative effect of some flavones were investigated using CCl_4 -induced lipid peroxidation in rat microsomes. The active compounds were luteolin (137), apigenin (138) and gardenin D (147) with IC₅₀ values of 70.4 ± 1.7, 79.1 ± 0.8 and 84.6 ± 1.7 µM, respectively (Choli, Paya and Alcaraz, 1991).

	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆
Compound (143)	OH	OH	ОН	OH	GlcO	Н
Compound (144)	ОН	ОН	ОН	ОН	ОН	Н
Compound (145)	Н	OH	OH	OH	OH	Н
Compound (146)	Н	OH	OH	OH	GlcO	Н
Compound (147)	OH	OCH ₃	OH	OCH ₃	OCH_3	OCH ₃

Figure 3 Structures of flavones 143 to 147

2.1.2 Flavonol derivatives

Flavonols which inhibited CCl_4 -induced lipid peroxidation were dasticetin (148), morin (149), galangin (150) with IC_{50} values of 39.5 ± 0.8 , 48.5 ± 0.9 , $68.9 \pm 1.3 \mu$ M, respectively (Cholbi, Paya and Alcaraz, 1991). Flavonols from leaves of *Ginkgo biloba* have been evaluated for their antilipidperoxidation which was induced by *tert*-butyl hydroperoxide (*t* BH) and for their DPPH radical scavenging activity as shown in Table 5 (Joyeux *et al.*, 1995).

Compounds		MAD	DPPH
		(nmoles /10 ⁶ cells)	(% decolouration at 10^{-4} M)
Positive control		1.42 ± 0.31	0
<i>t</i> BH 1.5 mM		8.74 ± 0.86	0
Myricetin (151)	50μM	0.48 ± 0.06***	63
Quercetin (152)	50μM	1.33 ± 0.07***	58
Fisetin (153)	5 <mark>0μΜ</mark>	1.95 ± 0.10 ***	44
Kaempferol (154)	50µM	1.12 ± 0.19***	37
Rutin (155)	100µM	7.33 ± 1.91	36

Table 5 Antilipidperoxidation of flavonols from Ginkgo biloba leaves

* p < 0.05, ** p < 0.01, *** p < 0.001

Five flavonols from *Polygonum hydropiper* (Laksa leaves) showed ABTS^{'+} cation scavenging activity, which was expressed as the Trolox equivalent antioxidant capacity value (TEAC) (Peng *et al.*, 2003), as shown in Table 6.

Table 6 TEAC values of	of the flavor	nols isolated f	rom Laksa leaves
------------------------	---------------	-----------------	------------------

Compounds	TEAC (mM)
2"-O-(3,4,5-Trihydroxybenzoyl) quercitrin; galloyl quercitrin (156)	6.14 ± 0.06
Quercetin-3- O - β -D-glucuronide (157)	5.08 ± 0.09
Quercetin (152)	4.65 ± 0.07
3- <i>O</i> -α-L-Rhamnopyranosyloxy-3', 4', 5, 7-tetrahydroxyflavone (quercitin) (158)	3.46 ± 0.11
3- <i>O</i> -β-D-Glucopyranosyloxy-4', 5, 7-trihydroxyflavone	1.39 ± 0.07
(kaempferol 3-glucoside) (159)	

From Table 6, the order of effectiveness in scavenging the ABTS⁺⁺ radicals is as follows: Compound 156 > 157 > 152 > 158 > 159

	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇
Compound (148)	ОН	Н	Н	Н	OH	ОН	OH
Compound (149)	H	Н	H	Н	OH	ОН	OH
Compound (150)	ОН	Н	ОН	Н	ОН	ОН	OH
Compound (151)	Н	ОН	OH	ОН	ОН	ОН	OH
Compound (152)	Н	ОН	ОН	Н	ОН	ОН	OH
Compound (153)	Н	OH	OH	Н	OH	Н	OH
Compound (154)	Н	Н	OH	Н	OH	ОН	OH
Compound (155)	Н	OH	OH	Н О-І	Rha-Glu	OH	ОН

Figure 4 Structures of flavonols with free radical scavenging activity (compounds 148 - 159)

2.1.3 Flavanone derivatives

Eriodictyol (160) showed antilipid peroxidative effect in rat liver microsome induced by CCl_4 with IC_{50} of $78.9 \pm 1.3 \mu M$ (Choli, Paya and Alcaraz, 1991). This compound (160) and several flavanone derivatives, including hesperetin (161), naringenin (162) and naringenin 7-rutinoside (163) exhibited ABTS^{.+} cation scavenging activity with TEAC values at 1.8, 1.4, 1.5 and 0.8 mM, respectively (Pietta, 2000). Four flavanones have been compared in a dose-response manner with vitamin C, vitamin E and β -carotene by using an *in vitro* lipoprotein oxidation model. The IC₅₀ data are shown in Table 7 (Vinson *et al.*, 1995). Hesperetin (161) was the only compound which possessed significant antioxidant activity.

Compounds	IC ₅₀ (μM)
Vitamin C	1.45
Vitamin E	2.40
β-carotene (provitamin A)	4.30
Hesperetin (161)	3.66
Hesperidin (hesperetin rutinoside) (164)	> 16
Neohesperidin (165)	> 16
Naringenin (162)	> 16

Table 7 Comparison of antioxidant effectiveness of vitamins and flavanones

Burda and Oleszek (2001) studied the relationships between the structures of flavanones and their antiradical activity by the DPPH decoloration test, as shown in Table 8

Compounds	Antiradical activity (%)
Hesperetin (161)	30.0
Naringenin (162)	6.3
Naringin (166)	4.7
Flavanone (167)	2.6

Table 8 Antiradical activities of flavanones (3.3 x $10^{-5} \mu M$) in methanol solution of DPPH

	R ₁	R ₂	R ₃	R_4
Compound (160)	OH	ОН	OH	ОН
Compound (161)	OH	OCH ₃	OH	ОН
Compound (162)	Η	ОН	OH	ОН
Compound (163)	Н	OH	OH	O-Glu-Rha
Compound (164)	ОН	OCH ₃	ОН	O-Glu-Rha
Compound (165)	ОН	OCH ₃	ОН	O-Glu-Rha
Compound (166)	Н	ОН	ОН	O-neohesp
Compound (167)	Н	Н	Н	Н

Figure 5 Structures of flavanones with free radical scavenging activity (compounds 160 -167)

2.1.4 Flavanonol derivatives

Taxifolin (168) inhibited CCl_4 - induced rat liver microsome lipid peroxidation at IC_{50} 100 μ M (Choli, Paya, Alxaraz, 1991). TEAC values of taxifolin (168) and dihydrokaempferol (169) have been reported at IC_{50} 1.9 and 1.3 mM, respectively (Pietta, 2000).

Taxifolin (168) and fustin (dihydroquercetin) (170) on DPPH decoloration test, showed 94.8 and 91.9 % activity at the concentration of $3.3 \times 10^{-5} \mu$ M (Burda and Oleszek, 2001).

Compound (168)	ОН	OH	ОН	OH	OH
Compound (169)	ОН	Н	ОН	OH	OH
Compound (170)	ОН	ОН	ОН	Н	OH

R₅

Figure 6 Structures of flavanonols with free radical scavenging activity (compounds 168-170)

2.1.5 Flavan derivatives

Catechin (171) exhibited antilipid peroxidative effect in rat liver microsome, induced by CCl_4 at IC_{50} 87.1 ± 1.7 µM (Choli, Paya, Alcaraz, 1991). The ABTS⁺⁺ cation scavenging activities of (+)-catechin (171), (-)-epicatechin (172), (-)-epigallocatechin (173), (-)-epicatechin-3-gallate (174) and (-)-epigallocatechin-3-gallate (175) have been shown as TEAC values at 2.4, 2.5, 3.8, 4.93 and 4.75 mM, respectively (Pietta, 2000). These compounds (171 -175) also inhibited lipid peroxidation by using an *in vitro* lipoprotein oxidation model. This model simulates the oxidation of low-density lipoproteins, which results in atherosclerosis. The IC₅₀ data are shown in Table 9 (Vinson *et al.*, 1995). Among the compounds tested, epigallocatechin-3-gallate (175) was the most potent, being 20 times more potent than the best vitamin, ascorbic acid.

Compounds	IC_{50} (μ M)
Vitamin C	1.45
Vitamin E	2.40
β -carotene (provitamin A)	4.30
Catechin (171)	0.187
Epigallocatechin (173)	0.097
Epicatechin-3-gallate (174)	0.142
Epigallocatechin-3-gallate (175)	0.075

Table 9 Comparison of antioxidant effectiveness of vitamins and flavanols

Figure 7 Structures of flavans with free radical scavenging activity (compounds 171 -175)

2.2 Xanthones

Since most xanthones have phenolic functional groups on a linear tricyclic ring, they often exhibit a wide range of biological and pharmacological activities (Minami *et al.*, 1994). Four xanthones have been isolated from the wood of *Garcinia subelliptica*. Antioxidative properties of all compounds have been evalulated *in vitro* using three assay systems to measure antilipidperoxidation and free radical and superoxide anion scavenging activity. Among them, 1,2-dihydroxy-5,6-dimethoxyxanthone (176) and 1,8-dihydroxy-6-methoxyxanthone (177) were effective in preventing lipid peroxidation in rat brain homogenates. 1,2,5-Trihydroxyxanthone (178) was a potent scavenger against DPPH radical and O_2^- derived from xanthine-xanthine oxidase system. Globuxanthone (179) was also effective in scavenging O_2^- and preventing lipid peroxidation.

	R ₁	R ₂	R ₃	\mathbf{R}_4	R ₅	R ₆
Compound (176)	ОН	ОН	Н	OCH ₃	OCH_3	Н
Compound (177)	OH	Н	Н	н	OCH_3	OH
Compound (178)	OH	ОН	Н	OH	Н	Н
Compound (179)	OH	OH		OH	Н	Н

Figure 8 Structures of xanthones with free radical scavenging activity (compounds 176 -179)

2.3 Courmarins

The coumarins (also known as benzopyrones) consist of fused benzene and α -pyrone rings, and form a large class of phenolic compounds occurring in plants. Six coumarins (compounds **180**, **181**, **182**, **183**, **184** and **185**), all of which have two hydroxyl groups, were effective inhibitors of Fe³⁺-ascorbate induced microsomal lipid peroxidation, as shown in Table 10.

Compounds	% Inhibition	$IC_{50}(\mu M)$
	at 100 µM	
7,8-Dihydroxy-6-methoxycoumarin (fraxetin) (180)	100	3.3
6,7-Dihydroxycoumarin (esculetin) (181)	100	13.0
6,7-Dihydroxy-4-methylcoumarin (4-methylesculetin) (182)	100	8.0
5,7-Dihydroxy-4-methylcoumarin (183)	100	12.0
7,8-Dihydroxycoumarin (daphnetin) (184)	100	18.0
7,8-Dihydroxy-4-methylcoumarin (4-methyldaphnetin) (185)	100	2.8

Table 10 Inhibition of microsomal lipid peroxidation by coumarins

The dihydroxylated coumarins were all active as inhibitors of lipid peroxidation, with *ortho*-dihydroxy being more favorable than *meta*-dihydroxy (compounds **182** and **185** *vs* **183**). Addition of a further 4-methyl substituent increases potency (**182** *vs* **181** and **185** *vs* **184**), presumably by enhancing lipid solubility (Paya, Halliwell and Hoult, 1992).

Figure 9 Structures of coumarins with free radical scavenging activity (compounds 180 -185)

2.4 Phenylpropanoids

Phenylpropanoids are also widely distributed in edible plants and foodstuff derived from plants (Haraguchi, 2001). Five phenylpropanoid glycosides, verbascoside (186), pedicularioside A (187), pedicularioside M (188), pedicularioside N (189), leucosceptoside A (190) and martynoside (191), isolated from *Pedicularis* plants, have been studied for the scavenging activity on superoxide anion and hydroxy radicals, as shown in Table 11. The results demonstrated that their radical scavenging activities are related to the number of phenolic hydroxy groups in the structures (Wang *et al.*, 1996).

Compounds	No. of Ph-OH	Concentration	% Radical scavenging
		(mM)	
Verbascoside (186)	4	1.53	79.4 ± 2.1
Pedicularioside A (187)	4	1.50	77.8 ± 2.8
Pedicularioside M (188)	3	1.73	55.1 ± 1.7
Pedicularioside N (189)	2	1.56	33.0 ± 1.2
Leucosceptoside A (190)	3	1.57	17.5 ± 4.1
Martynoside (191)	2	1.50	28.3 ± 1.3

Table 11 Percentage of scavenging activity of phenylpropanoid glycosides on hydroxyl radical

Figure 10 Structures of phenylpropanoid glycosides with free radical scavenging activity

(compounds 186 - 191)

2.5 Terpenoids

Terpenoids are also widely distributed in a variety of plants. In comparison to hydrophillic flavonoids, lipophilic terpenoids have been revealed to possess potent antioxidative activities and protective effects against oxidative stresses in mitochondria (Haraguchi, 2001).

Diterpenes from *Podocarpus nagi* showed potent inhibition of rat liver microsomal lipid peroxidation. Totarol (192), totaradiol (193) and 19-hydroxytotarol (194) exhibited almost complete inhibition at 19 μ M. Totaral (195), 4 β -carboxy-19-nortotarol (196) and sugiol (197) also inhibited microsomal lipid peroxidation over 50% at 35 μ M. Their IC₅₀ values are shown in Table 12 with that of BHT, a common synthetic antioxidant (positive control) (Haraguchi, Ishikawa and Kubo, 1997).

Compounds	IC ₅₀ (μM) 4.79 ± 0.16	
Totarol (192)		
Totaradiol (193)	6.69 ± 0.22	
19-Hydroxytotarol (194)	6.55 ±0.18	
Totaral (195)	12.25 ±0.63	
4β -carboxy-19-nortotarol (196)	18.96 ± 0.55	
Sugiol (197)	31.24 ± 1.36	
BHT	1.92 ± 0.07	
Myricetin	41.70 ± 2.61	

Table 12 Antioxidative activities of diterpenoids from Podocarpus nagi.

	\mathbf{R}_{1}	R ₂
Compound (192)	Н	CH_3
Compound (193)	ОН	CH,

Figure 11 Structures of diterpenoids with free radical scavenging activity (compounds 192 - 197)

CHAPTER III

EXPERIMENTAL

1. Source of plant material

The leaves of *Goniothalamus tenuifolius* were collected from Kaengkrachan, Phetchaburi province, Thailand. The plant was identified by comparison with herbarium specimens in the Botany Section, Technical Division, Department of Agriculture, Ministry of Agriculture and Co-operatives, Bangkok. A voucher specimen (VJ 04-2538) is retained at the Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University.

2. General techniques

2.1 Analytical thin-layer chromatography

Technique	:	One dimention, ascending
Adsorbent	:	Silica gel 60G F254 (E.Merck) precoated plate
Layer thickness	:	0.2 mm
Distance	یہ : ۱۹۲	6 cm
Temperature	: U	Laboratory temperature (30-35 °C)
Detection	าก	1.Ultraviolet light (254 and 365 nm)
		2. Anisaldehyde and heating at 105°C for 10 min

2.2 Column chromatography

Adsorbent Silica gel 60 (No. 7734) particle size 0.063-0.200 mm : (70-230 mesh ASTM) (E. Merck) Packing method Dry packing : Sample loading The sample was dissolved in an organic solvent, mixed with the : adsorbent, triturated, dried and then placed gently on top of the column. Detection Fractions were examined by TLC observing under UV light (254 and 365 nm) Flash column chromatography 2.2.2 Silica gel 60 (No. 9385) particle size 0.040-0.063 mm Adsorbent (230-400 mesh ASTM) (E. Merck) Packing method Wet packing Sample loading The sample was dissolved in a small amount of eluent and then applied gently on top of the column. Detection Fractions were examined in the same manner as described : in section 2.2.1 Gel Filtration chromatography 2.2.3Gel filter Sephadex LH 20 (Pharmacia) : Packing method Gel filter was suspended in the eluent and left standing to swell : for 24 hours prior to use. It was then poured into the column and allowed to set tightly.

2.2.1 Vacuum liquid column chromatography
Sample loading : The sample was dissolved in a small amount of eluent and applied on top of the column.

2.3 Spectroscopy

2.3.1 Ultraviolet (UV) absorption spectra

UV (in methanol) spectra were obtained on a Milton Roy Spectronic 3000 Array spectrophotometer (Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

2.3.2 Infrared (IR) absorption spectra

IR spectra (film) were recored on a JASCO FT/IR-300E spectrophotometer (Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

2.3.3 Mass spectra

Electrospray ionization mass spectra (ESIMS) were measured on a mass spectrometer LCT (LCMS) Micromass (National Center for Genetic Engineering and Biotechnology, BIOTEC (NSTDA, Science Park, Pathumthani, Thailand).

2.3.4 Proton and Carbon-13 nuclear magnetic resonance (¹H- and ¹³C-NMR) spectra

¹H-NMR (300 MHz), ¹³C-NMR (75 MHz), NOESY, HMQC and HMBC spectra were obtained with a Bruker Avance DPX-300 FT-NMR spectrometer (Faculty of Pharmaceutical Sciences, Chulalongkorn University).

Solvents for NMR were deuterated acetone (acetone- d_6), deuterated chloroform (CDCl₃) and deuterated dimethylsulfoxide (DMSO- d_6). Chemical shifts were reported in ppm scale using the chemical shifts of the solvent as the reference signal.

2.4 Solvents

All organic solvents employed throughout this work were of commercial grade and were redistilled prior to use.

2.5 Microtiter plate reading

Microtiter plate reading was performed on an Anthos HTL instrument (Department of Biochemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

3. Extraction and isolation

3.1 Extraction and isolation of compounds from Goniothalamus tenuifolius

3.1.1 Extraction

The dried leaves of *Goniothalamus tenuifolius* (1.3 kg) were chopped, ground and then extracted four times with hexane (10 L, 3 days each) and then filtered. The filtrate was pooled and evaporated under reduced pressure to yield a hexane extract (syrupy mass 29.4 g, 2.26 % based on dried weight of leaves).

The marc was repeatedly extracted four times with ethyl acetate (10 L, 3 days each) and then filtered. The filtrate was pooled and evaporated under reduced pressure to yield an ethyl acetate extract (syrupy mass 97.7 g, 7.51 % based on dried weight of leaves).

Finally, the marc was extracted four times with methanol (10 L, 3 days each) and then filtered. The filtrate was pooled and evaporated under reduced pressure to yield a methanol extract (syrupy mass 114.7 g, 8.82 % based on dried weight of leaves). Each extract was subjected to free radical scavenging activity evaluation as described in Section 5.

Scheme 1 Extraction of Goniothalamus tenuifolius King

3.1.2 Isolation

The ethyl acetate extract, which was found be active against DPPH (see Section 5), was selected for further separation by vacuum liquid column chromatography using a sintered glass filter column of silica gel (No. 7734). The ethyl acetate extract (45 g) was dissoved in a small amount of ethyl acetate, triturated with silica gel (No.7734, 45 g) and dried under vacuum. The mixture was then applied on the top of the column. Elution was performed in a polarity gradient manner with pet-ether, ethyl acetate and methanol as the solvent. The eluate was collected 500 ml per fraction and examined by TLC (silica gel, pet ether: ethyl acetate 1:4). Fractions with similar chromatographic patterns were combined to yield 10 fractions: fraction A (2.0 g), fraction B (460 mg), fraction C (1.2 g), fraction D (5.1 g), fraction E (1.6 g), fraction F (4.7 g), fraction G (2.4 g), fraction H (1.5 g), fraction I (6.3 g), fraction J (8.0 g).

3.1.2.1 Isolation of compound GT-1 [198]

Fraction B (460 mg) was divided into two portions. Each portion was separated by gel filtration chromatography using a column of Sephadex LH 20 with a mixture of methanol and chloroform (1.5:1) as the eluent. The eluates were collected and combined according to their TLC chromatographic patterns (silica gel, methanol: chloroform 1:19) to give 5 fractions (1-B1 to 1-B5). Fraction 1-B4 (106 mg) was further separated in a similar manner to give 5 fractions (2-B1 to 2-B5). Fraction 2-B4 (40 mg) was re-separated on Sephadex LH 20 to give compound GT-1 (5 mg, R_f value = 0.57, silica gel, ethyl acetate: chloroform 2:3) as pale yellow needles. This compound was later identified as retusine (5-hydroxy-3,7,3',4'-tetramethoxyflavone) [**198**].

3.1.2.2 Isolation of compound GT-2 [199]

Fraction 1-B5 (83 mg) was separated on Sephadex LH 20 (methanol and chloroform 1.5: 1). Fourteen fractions (20 ml, each) were collected and combined based on their chromatographic patterns (silica gel, methanol: chloroform 1:19) to yield 4 fractions (4-B1 to 4-B4). Fraction 4-B4 (61 mg) was re-separated in a similar manner to give 4 fractions (5-B1 to 5-B4). Fraction 5-B3 (43 mg) was further separated on Sephadex LH 20 (methanol and ethyl acetate 1:1). Eluates with similar TLC behavior (silica gel, ethyl acetate: chloroform 2:3) were pooled to give 4 fractions (6-B1 to 6-B4). Fraction 6-B3 gave compound GT-2 (2 mg, R_f value = 0.29, silica gel, ethyl acetate: chloroform 2:3) as pale yellow needles. Compound GT-2 (10 mg)

was also obtained from fraction 6-B2 (34 mg) by re-separation on Sephadex LH 20 (methanol and chloroform 1.5:1). This compound was identified as *trans*-cinnamic acid [199].

3.1.2.3 Isolation of compound GT-3 [200]

Compound GT-3 was obtained as yellow needles from fraction C through recrytallization from a mixture of chloroform and methanol (10 mg, $R_{\rm f}$ value = 0.49, silica gel, ethyl acetate: chloroform 2:3). It was later identified as pachypodol (5,4'-dihydroxy-3,7,3'trimethoxyflavone) [200].

3.1.2.4 Isolation of compound GT-4 [201] and compound GT-5 [202]

Fraction D (5.1g) was recrystallized from a mixture of chloroform and acetone to yield Re-Fr.D (128 mg) which was then separated by gel filtration chromatography using a column of Sephadex LH 20 with methanol. The eluates were collected and combined according to their TLC chromatographic patterns (silica gel, acetone: chloroform 3:7) to give 6 fractions (1-D1 to 1-D6). Fraction 1-D3 gave compound GT-4 (86 mg, R_f value = 0.19, silica gel, ethyl acetate: chloroform 2:3) as yellow needles. This compound was later identified as kumatakenin (5,3',4'-trihydroxy-3,7-dimethoxyflavone) [201].

Fraction 1-D5, after removal of the solvent, gave compound GT-5 (8 mg, $R_{\rm f}$ value = 0.06, silica gel, ethyl acetate: chloroform 2:3) as yellow needles. It was subsequently identified as 5,7,3',4'-tetrahydroxy-3-methoxyflavone [**202**].

3.1.2.5 Isolation of compound GT-6 [203] and compound GT-7 [204]

Fraction G (2.4 g) was fractionated by vacuum liquid chromatograpy (silica gel No.7734). Elution was performed in a polarity gradient manner with mixtures of pet-ether: ethyl acetate (100:0 to 0:100) and ethyl acetate: acetone (100:0 to 0:100). Twenty fractions (200 ml, each) were collected and combined based on their TLC behavior (silica gel, acetone: chloroform 1:4) leading to 7 fractions: fractions 1-G1 to 1-G7.

Fraction 1-G3 (1.4 g) was recrystallized from chloroform and methanol to yield Re-Fr.1-G3 (20 mg) and then re-purified on Sephadex LH 20 with mixtures of methanol and ethyl acetate (1:1). Eluates with similar TLC behavior (silica gel, ethyl acetate: chloroform 1:1) were pooled to give 5 fractions (2-G1 to 2-G5). Fraction 2-G4 gave compound GT-6 (6 mg, $R_{\rm f}$ value = 0.05, silica gel, ethyl acetate: chloroform 2:3) which was identified as a 3',4'-dihydroxy-3,5,7-trimethoxyflavone [203].

The mother liquor was dried and fractionated on a column using silica gel 60 (No. 7734) as the adsorbent. Isocratic elution with a mixture of acetone and chloroform (1:9) was performed. Fractions with similar chromatographic patterns (silica gel, acetone: chloroform 1:9) were combined to yield 6 major fractions: fractions 3-G1 to 3-G6.

Fraction 3-G2 was recrystallized from a mixture of chloroform and methanol to give compound GT-7 (220 mg, R_f value = 0.25, silica gel, ethyl acetate: chloroform 2:3) as pale yellow needles. This compound was identified as 3,5,7,3',4'-pentamethoxyflavone [204].

3.1.2.6 Isolation of compound GT-8 [205] and compound GT-9 [206]

Fraction 3-G3 (44 mg) was dissolved in chloroform. The solution, after removal of insoluble substances (Re-Fr. 3-G3), was dried and separated by gel filtration chromatography using a column of Sephadex LH 20 with acctone as the eluent. Twenty-four fractions (20 ml, each) were collected and combined according to their TLC behavior (silica gel, acetone: chloroform 1:4) to yield 4 fractions (4-G1 to 4-G4). Fraction 4-G3 (16 mg) was subjected to separation in a similar manner to give 2 fractions (5-G1 and 5-G2). Fraction 5-G1 (13 mg) was further separated on Sephadex LH 20 with ethyl acetate: chloroform (1:1). The eluates were collected and combined based on their TLC chromatographic patterns (silica gel, acetone: chloroform 3:7) to give 2 fractions: (6-G1 and 6-G2). Fraction 6-G1, after removal of the solvent, gave compound GT-8 (5 mg, R_r value = 0.17, silica gel, ethyl acetate: chloroform 2:3) as pale yellow needles. Fraction 6-G2 (7 mg) was combined with Re-Fr. 3-G3 (5 mg) and then fractionated on Sephadex LH 20 with ethyl acetate: chloroform (1:1) to give GT-8 (2 mg, R_r value = 0.17, silica gel, ethyl acetate: chloroform 2:3).

Compound GT-9 was also obtained from fraction 3-G4 (16 mg) through recrystallization from a mixture of ethyl acetate and chloroform (5 mg, R_f value = 0.16, silica gel, ethyl acetate: chloroform 2:3). GT-8 was identified as a 4'-hydroxy-3,5,7,3'-tetramethoxyflavone [205] whereas GT-9 was identified as a 3'-hydroxy-3,5,7,4'-tetramethoxyflavone [206]

Vacuum liquid chromatography, Silica gel No. 7734, Pet-ether: Ethyl acetate

Ethyl acetate extract (45 g) from leaves of Goniothalamus tenuifolius

Scheme 2 Separation of the ethyl acetate extract of the leaves of Goniothalamus tenuifolius

4. Physical and spectral data of isolated compounds

4.1 Compound GT-1 [198]

Compound GT-1 was obtained as pale yellow needles, soluble in chloroform (6 mg, 5.38×10^{-4} % based on dried weight of leaves).

ESIMS	: $[M+H]^+$ m/z 359 (positive ion mode); Figure 16
UV	: λ_{max} nm (log E), in methanol; Figure 14
	252 (4.30), 351 (4.28)
IR	: V_{max} cm ⁻¹ , film; Figure 15
	3448, 2920, 1648, 1589, 1495, 1233, 1149, 812, 796
¹ H-NMR	: δ ppm, 300 MHz, in CDCl ₃ ; Figure 17, Table 14
¹³ C-NMR	: δ ppm, 75 MHz, in CDCl ₃ ; Figure 18, Table 14

4.2 Compound GT-2 [199]

Compound GT-2 was obtained as pale yellow needles, soluble in chloroform (12 mg, 9.23×10^{-4} % based on dried weight of leaves).

ESIMS	: $[M-H]^{T}$ m/z 147 (negative ion mode); Figure 21
UV	: λ_{max} nm (log ϵ), in methanol; Figure 19
	214 (4.23), 270 (4.25)
IR	: \mathbf{V}_{max} cm ⁻¹ , film; Figure 20
	3432, 1681, 1629, 1448, 1286, 933
¹ H-NMR	: δ ppm, 300 MHz, in CDCl ₃ ; Figure 22, Table 15

¹³**C-NMR** : δ ppm, 75 MHz, in CDCl₃; Figure 23, Table 15

4.3 Compound GT-3 [200]

Compound GT-3 [200] was obtained as yellow needles, soluble in chloroform (10 mg, 7.69 x 10^{-4} % based on dried weight of leaves).

ESIMS	: $[M+H]^+$ <i>m/z</i> 345.12 (positive ion mode); Figure 26
UV	: λ_{max} nm (log ε), in methanol; Figure 24
	253 (4.40), 356 (4.39)
IR	: $V_{\text{max}} \text{ cm}^{-1}$, film; Figure 25
	3432, 2927, 1656, 1593, 1496, 1212, 811
¹ H-NMR	: δ ppm, 300 MHz, in CDCl ₃ ; Figure 27, Table 16
¹³ C-NMR	: δ ppm, 75 MHz, in CDCl ₃ ; Figure 28, Table 16

4.4 Compound GT-4 [201]

Compound GT-4 [201] was obtained as yellow needles, soluble in acetone and methanol (86 mg, 6.61×10^{-3} % based on dried weight of leaves).

ESIMS	: $[M+H]' m/z 331.11$ (positive ion mode); Figure 34
UV	: λ_{max} nm (log ϵ), in methanol; Figure 32
	256 (4.51), 356 (4.48)
IR	: V_{max} cm ⁻¹ , film; Figure 33
	3431, 3181, 1662, 1590, 1497, 1309, 823

¹ H-NMR	: δ ppm, 300 MHz, in acetone- d_6 ; Figure 35, Table 17
	: δ ppm, 300 MHz, in DMSO- d_6 ; Figure 36, Table 17
¹³ C-NMR	: δ ppm, 75 MHz, in acetone- d_6 ; Figure 37, Table 17
	: δ ppm, 75 MHz, in DMSO- d_6 ; Figure 38, Table 17

4.5 Compound GT- 5 [202]

Compound GT-5 was obtained as yellow needles, soluble in acetone and methanol (8 mg, 6.15×10^{-4} % based on dried weight of leaves).

ESIMS	: $[M+H]^+$ <i>m/z</i> 317.10 (positive ion mode); Figure 44
UV	: λ_{max} nm (log ϵ), in methanol; Figure 42
	256 (4.25), 358 (4.22)
IR	: \mathbf{V}_{max} cm ⁻¹ , film; Figure 43
	3177, 1653, 1605, 1504, 1167, 799
¹ H-NMR	: δ ppm, 300 MHz, in DMSO- d_6 ; Figure 45, Table 18
¹³ C-NMR	: : δ ppm, 75 MHz, in DMSO- d_6 ; Figure 46, Table 18

4.6 Compound GT-6 [203]

Compound GT-6 was obtained as pale yellow needles, soluble in acetone and methanol (6 mg, 4.61×10^{-4} % based on dried weight of leaves).

ESIMS	: $[M+H]^+$ m/z 345.14 (positive ion mode); Figure 52
UV	: λ_{max} nm (log E), in methanol; Figure 51

IR	: $\mathbf{V}_{\text{max}} \text{ cm}^{-1}$, film; Figure 50
	3438, 2915, 1603, 1457, 1217, 823
¹ H-NMR	: δ ppm, 300 MHz, in acetone- d_6 ; Figure 53, Table 19

251 (4.22), 345 (4.20)

4.7 Compound GT-7 [204]

Compound GT-7 was obtained as pale yellow needles, soluble in chloroform (220 mg, 1.69×10^{-2} % based on dried weight of leaves).

ESIMS	: $[M+H]^+$ m/z 373.12 (positive ion mode); Figure 56
UV	: λ_{max} nm (log ϵ), in methanol; Figure 54
	247 (4.60), 339 (4.58)
IR	: \mathbf{V}_{max} cm ⁻¹ , film; Figure 55
	2936, 1627, 1604, 1515, 1216, 822, 750
¹ H-NMR	: δ ppm, 300 MHz, in CDCl ₃ ; Figure 57, Table 20
¹³ C-NMR	: δ ppm, 75 MHz, in CDCl ₃ ; Figure 58, Table 20

4.8 Compound GT-8 [205]

Compound was obtained as pale yellow needles, soluble in chloroform (7 mg, 5.38×10^{-4} % based on dried weight of leaves).

ESIMS	: $[M+H]^+$ m/z 359.10 (positive ion mode); Figure 64
UV	: λ_{max} nm (log ϵ), in methanol; Figure 62

ID	$\cdot \mathbf{V} = \mathrm{am}^{-1}$ film: Figure 62
IK	\mathbf{v}_{max} cm , mm, right 05
	3439, 2926, 1623, 1604, 1458, 1216, 823, 754
¹ H-NMR	: δ ppm, 300 MHz, in CDCl ₃ ; Figure 65, Table 21
¹³ C-NMR	: δ ppm, 75 MHz, in CDCl ₃ ; Figure 66, Table 21

248 (4.181), 342 (4.286)

4.9 Compound GT-9 [206]

Compound GT-9 was obtained as pale yellow needles, soluble in chloroform (7 mg, 5.38×10^{-4} % based on dried weight of leaves).

HRESIMS	: $[M+H]^+$ at m/z 359.1129 (positive ion mode)
	calcd for $C_{19}H_{18}O_7$ 359.1131
ESIMS	: $[M+H]^+$ <i>m/z</i> 359.03 (positive ion mode); Figure 71
UV	: λ_{\max} nm (log ϵ), in methanol; Figure 69
	250 (4.27), 343 (4.24)
IR	: \mathbf{V}_{\max} cm ⁻¹ , film; Figure 70
	3421, 2919, 1631, 1603, 1437, 1023, 802
¹ H-NMR	: δ ppm, 300 MHz, in CDCl ₃ ; Figure 72, Table 22
¹³ C-NMR	: δ ppm, 75 MHz, in CDCl ₃ ; Figure 73, Table 22

5. Determination of free radical scavenging activity

5.1 TLC screening assay (Calis et al., 1999)

The samples were spotted and developed on a TLC plate with suitable developing solvent. After drying, the TLC plate was sprayed with 0.2% solution of 1,1-diphenyl-2-picrylhydrazyl (DPPH) in methanol. The plate was examined 30 min after spraying. Active compounds appear as yellow spots against purple background.

5.2 Free radical scavenging activity assay (Sritularak, 2002)

5.2.1 Preparation of the test sample

Pure compounds from *G. tenuifolius* were first tested at 40 µg/ml. Compounds exhibiting more than 50% inhibition were further analyzed for their IC_{50} values. Each test sample was prepared as an ethanolic solution with initial concentration of 400 µg/ml. For IC_{50} analysis, serial dilution was performed to give seven concentrations (200 µg/ml, 100 µg/ml, 50 µg/ml, 25 µg/ml, 12.5 µg/ml, 6.25 µg/ml, 3.125 µg/ml). Assays were carried out in duplicate. The test sample (20µl) was added to the reaction mixture (180 µl) to furnish the total volume of 200 µl. The final concentration (Table 13) was calculated by the formula below.

$$\mathbf{N}_1 \mathbf{V}_1 = \mathbf{N}_2 \mathbf{V}_2$$

 $N_1 = Beginning concentration (\mu M)$

 $V_1 =$ Beginning volume (µl)

 $N_2 = Final concentration (\mu M)$

 $V_2 = Final volume (\mu l)$

For example, 20 μ l of test sample (400 μ g/ml) was added to the reaction mixture to furnish the total volume of 200 μ l.

Thus, final concentration of test sample
$$= 400 \ \mu g/ml \ x \ 20 \ \mu l / 200 \ \mu l$$

Initial concentration (µg/ml)	400	200	100	50	25	12.5	6.25	3.125
Final concentration (µg/ml)	40	20	10	5	2.5	1.25	0.625	0.312

Table 13 The initial and final concentrations (µg/ml) of test sample

5.2.2 Preparation of the DPPH solution (50 μM)

Two mg of DPPH (MW 394.32) was dissolved in 100 ml of ethanol and the solution was subsequently stirred for 30 min.

5.2.3 Measurement of activity

The test sample (20 μ l) was added to 180 μ l of DPPH solution (50 μ M) in a 96-well microtiter plate. The reaction mixture was incubated at 37 C for 30 min, and then the absorbance of each well was measured at 510 nm. The DPPH solution was used as negative control. Quercetin was used as reference compound.

AH = antioxidant

Scheme 7 Structure of DPPH and reaction with antioxidant

5.2.4 Calculation of percentage of free radical scavenging activity

The percentage of scavenging activity was calculated as follows.

% DPPH reduction = $\begin{bmatrix} A - B \\ A \end{bmatrix} x 100$

A : The absorbance of DPPH solution after incubation at 510 nm.

B: The absorbance of the reaction mixture after incubation at 510 nm.

For IC_{50} evaluation of pure compounds, a graph showing concentration versus

% DPPH reduction was plotted. The IC_{50} was then calculated from the graph.

CHAPTER IV

RESULTS AND DISCUSSION

The dried leaves of *Goniothalamus tenuifolius* King (1.3 kg) were extracted with pet ether, ethyl acetate and methanol to give a pet ether extract (29.4 g), ethyl acetate extract (97.7 g) and methanol extract (114.7 g). Each extract was subjected to free radical scavenging activity evaluation. The ethyl acetate and methanol extracts were equally active with the DPPH assay. The ethyl acetate extract was further separated using several chromatographic techniques to yield nine compounds (compounds GT-1 to GT-9). The structures of all of the isolates were determined by interpretation of their UV, IR, NMR and MS data and comparison with previously reported values.

1. Structure determination of isolated compounds

1.1 Structure determination of compound GT-1

Compound GT-1 was obtained as pale yellow needles. The positive ESIMS (Figure 16) exhibited its $[M+H]^+$ ion at m/z 359, suggesting the molecular formula $C_{19}H_{18}O_7$. The IR sprectrum (Figure 15) showed absorption bands at 3448 (O-H stretching, H-bonded), 2920 (C-H stretching), 1648 (C=O stretching), 1589 and 1495 (C=C aromatic ring), 1149 (C-O stretching), 812 and 796 (=C-H bending) cm⁻¹. The UV absorptions at 351, 252 nm (Figure 14) and the presence of a phenolic proton signal in the ¹H NMR spectrum at δ 12.61 ppm indicated a 5-hydroxyflavone compound (Vidari, Finzi and Bernardi, 1971).

The ¹H-NMR spectrum (Figure 17) revealed the presence of four methoxyl groups at δ 3.84, 3.86, 3.94 and 3.95 (3H each, s). The substitution pattern of the A ring showed an AB system of two aromatic protons (H-6 and H-8) with typical *meta*-coupling constant at δ 6.34 (d, J = 2.1 Hz, H-6) and δ 6.43 (d, J = 2.1 Hz, H-8). The remaining three aromatic protons formed the characteristic pattern for a 3', 4'-disubstituted B ring (Harborne and Mabry, 1982). The signals of the H-2' at δ 7.67 (d, J = 1.8 Hz) and H-6' at δ 7.72 (dd, J = 8.5, 1.8 Hz) were overlapping. The doublet signal at δ 6.97 could be assigned to H-5'.

Compound GT-1 was identified as retusine (5-hydroxy-3,7,3', 4'-tetramethoxyflavone) **[198]**, based on the above spectral data. The ¹H-NMR and ¹³C-NMR spectra were in close agreement with previously published values (Ohashi *et al.*, 1999 and Dong *et al.*, 1999) as shown in Table 14.

Retusine [198]

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Position	Compound GT-1 (CDCl ₃)		Retusine (CDCl ₃)	
	¹ H (mult, J in Hz)	¹³ C	¹ H (mult, J in Hz)	¹³ C
2	-	155.8	-	155.6
3	-	139.0	-	138.8
4	-	178.7	-	178.6
5	-	156.7	-	156.6
6	6.34 (d, 2.1)	97.8	6.36 (d, 2.2)	97.7
7	-	165.4	-	165.3
8	6.43 (d, 2.1)	92.2	6.45 (d, 2.2)	92.1
9	-	162.0	-	161.9
10	- 1 23	106.0	-	105.9
1'		122.9	-	122.8
2'	7.67 (d, 1.8)	110.8	7.69 (d, 2.2)	110.7
3'	- 53	148.8	-	148.6
4'	- 55559	151.4	-	151.3
5'	6.97 (d, 8.5)	111.3	7.00 (d, 8.4)	110.4
6'	7.72 (dd, 8.5, 1.8)	122.1	7.74 (dd, 8.4, 2.2)	122.1
OCH ₃ , OCH ₃ ,	3.84 (s), 3.86 (s)	60.1, 55.8	3.87, 3.89	60.9, 55.7,
OCH ₃ , OCH ₃	3.94 (s), 3.95 (s)	55.9, 56.0	3.97, 3.98	55.8, 55.9
ОН	12.64 (br s)	- 0	12.65 (br s)	-
ର ଶ	ภาบนว	ทยปร	ัการ	

Table 14 NMR Spectral data of compound GT-1 and retusine

จุฬาลงกรณ์มหาวิทยาลย

1.2 Structure determination of compound GT-2

Compound GT-2 was obtained as pale yellow needles. The negative ESIMS (Figture 21) showed its [M-H]⁻ ion at m/z 147 indicated the molecular formula $C_9H_8O_2$. The UV spectrum (Figure 19) displayed absorptions at 214 and 270 nm. The IR spectrum (Figure 20) exhibited absorption bands at 3022 (O-H stretching), 1681 (C=O stretching), 1629 and1448 (C=C aromatic ring), 1286 (C-O stretching) and 933 (*trans* -CH=CH-) cm⁻¹.

In the ¹H-NMR spectrum (Figure 22), *trans*-olefinic protons were observed at δ 6.44 (H-8) and δ 7.78 (H-7) (each d, J = 15.9 Hz). In the aromatic region, a set of three aromatic protons including H-3, H-4 and H-5 showed as multiplet signals at δ 7.52-7.54 ppm. The complex signal at δ 7.38-7.40 ppm belonged to H-2 and H-6. These data indicated that this compound was *trans*-cinnamic acid [199]. Comparison of the ¹H-NMR and ¹³C-NMR spectra of this compound with those of *trans*-cinnamic acid (Hanai *et al.*, 2001) comfirmed the structure (Table 15).

trans-Cinnamic acid [199]

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Position	Compound GT-2 (CDCl ₃)		<i>trans</i> -Cinnamic acid (CDCl ₃)	
	¹ H (mult, <i>J</i> in Hz)	¹³ C	¹ H (mult, <i>J</i> in Hz)	¹³ C
1	-	133.9	-	134.0
2	7.52 -7.55 (m)	128.2	7.54-7.57 (m)	128.3
3	7.38-7.40 (m)	128.8	7.40-7.41 (m)	128.9
4	7.38-7.40 (m)	130.5	7.40-7.41 (m)	130.7
5	7.38-7.40 (m)	128.8	7.40-7.41 (m)	128.9
6	7.52 -7.55 (m)	128.2	7.54-7.57 (m)	128.3
7	7.78 (d, 15.9)	146.8	7.80 (d, 16.1)	147.1
8	6.44 (d, 15.9)	117.2	6.46 (d, 16.1)	117.3
9	-	171.9	-	172.6

Table 15 NMR Spectral data of compound GT-2 and trans-cinnamic acid

1.3 Structure determination of compound GT-3

Compound GT-3 was obtained as yellow needles. The positive ESIMS (Figure 26) exhibited its $[M+H]^+$ ion at m/z 345, suggesting the molecular formula $C_{18}H_{16}O_7$. The UV spectrum displayed absorptions at 253 and 356 nm (Figure 24). The IR sprectrum (Figure 25) showed absorption bands at 3432 (O-H stretching, H-bonded), 2927 (C-H stretching), 1656 (C=O stretching), 1593 and 1496 (C=C aromatic ring), 1212 (C-O stretching), 811 and 783 (=C-H bending) cm⁻¹. The presence of IR absorption band at 3432 cm⁻¹ and the ¹H-NMR signal at δ 12.61 ppm suggested a 5- hydroxyflavone structure.

The ¹H-NMR spectrum (Figure 27) showed the presence of three methoxyl groups at δ 3.83, 3.85 and 3.96 ppm (3H each, s). They were located at C-3, C-7 and C-3' respectively based on their correlations in a NOESY experiment. The A ring displayed signals for protons with *meta*-coupling at δ 6.33 (d, *J*=1.8 Hz, H-6,) and δ 6.42 (d, *J*=1.8 Hz, H-8). The B ring protons showed an ABX system at δ 7.02 (d, *J*= 8.4 Hz, H-5'), with overlaping signals for H-6' and H-2' at δ 7.63 and 7.67 ppm, respectively. The siglet signal at δ 6.01 could be assigned to the OH group at C-4' position. The ¹H- and ¹³C-NMR assignments of this compound were thoroughly studied by ¹³C-NMR, DEPT 90, DEPT 135 (Figure 28), HMQC (Figure 30), HMBC (Figure 31) and NOESY (Figure 29) experiments. Based on the above spectral data, compound GT-3 was identified as 5,4'-dihydroxy-3,7,3'-trimethoxyflavone (pachypodol) [200], which was previously reported by Itokawa *et al.* (Itokawa, Suto and Takeya, 1981). The earlier assignments of three methoxyl groups were revised in this study, based on the 2D-NMR data (Table 16).

Pachypodol [200]

Position	Compound GT-3 (CDCl ₃)		Pachypodol (DMSO- d_6)		
	¹ H (mult, <i>J</i> in Hz)	¹³ C	1 H (mult, J in Hz)	¹³ C	
2	-	155.8	-	155.8	
3	-	138.7	-	137.9	
4	-	178.6	-	178.0	
5	-	161.9	-	160.9	
6	6.33 (d, 1.8)	97.7	6.34 (d, 2.0)	97.8	
7	-	165.3	-	165.1	
8	6.42 (d, 1.8)	92.1	6.74 (d, 2.0)	92.4	
9	-	156.6	-	156.3	
10	- 112	105.9	-	105.2	
1'	-//>	122.3	-	120.7	
2'	7.67	110.8	7.66	112.1	
3'	- 13	146.3	-	147.5	
4'	- 6555	148.3	-	150.0	
5'	7.02 (d, 8.4)	114.5	6.95 (d, 8.0)	115.7	
6'	7.63 (dd, 8.4, 1.8)	122.6	7.61 (dd, 9.0, 2.0)	122.3	
3-OCH ₃	3.83*	60.1	3.89	59.7	
7-0CH ₃	3.84*	55.7	3.87	56.2	
3'-OCH ₃	3.95*	56.0	3.84	55.9	
* Revised assignments					

Table 16 NMR Spectral data of compound GT-3 and pachypodol

1.4 Structure determination of compound GT-4

Compound GT-4 was obtained as yellow needles. The positive ESIMS (Figure 34) showed its $[M+H]^+$ ion at m/z 331 suggested the molecular formula $C_{17}H_{14}O_7$. The UV spectrum (Figure 32) exhibited absorptions at 256 and 356 nm. The IR sprectrum (Figure 33) displayed absorption bands at 3431 (O-H stretching, H-bonded), 3181 (C-H stretching), 1662 (C=O stretching), 1590 and 1497 (C=C aromatic ring), 1309 (C-O stretching), 823 (=C-H bending) cm⁻¹. The ¹H-NMR spectrum (Figures 35 and 36) presented a phenolic proton at δ 12.70 ppm indicating a 5- hydroxyflavone structure, similar to compounds GT-1 and GT-3.

The ¹H-NMR (DMSO- d_6) spectrum (Figure 35) also exhibited signals for protons of ring A at δ 6.30 (br s, H-6), 6.63 (br s, H-8). The B ring showed a splitting pattern for ABX system at δ 6.89 (d, J= 8.1 Hz, H-5'), 7.45 (d, J= 8.1 Hz, H-6') and 7.58 (br s, H-2').

The first methoxyl at δ 3.78 ppm could be placed at C-3 according to its NOESY correlation peak with H-2' and H-6' and its HMBC correlation with C-3. The second methoxyl at δ 3.82 ppm was located at C-7, as shown by its NOESY interaction with H-6 and H-8 and its HMBC correlation with C-7. The NOESY and HMBC data suggested a revision for the earlier assignment of the methoxyl groups (Urbatsch *et al.*, 1976).

From the above ¹H-NMR data, together with the information from ¹³C-NMR (Figures 37 and 38), HMQC (Figure 40), HMBC (Figure 41) and NOESY (Figure 39) experiments, compound GT-4 was identified as 5-3',4'-trihydroxy-3,7-dimethoxyflavone (kumatakenin) [201]. This compound has been isolated from *Ericameria diffusa* (Compositae) (Urbatsch *et al.*, 1976). The ¹H- and ¹³C-NMR data are demonstrated in Table 17.

Kumatakenin [201]

Position		Compound	Kumatakenin			
	¹ H (mult,	Jin Hz)	13	С	¹ H (mult, J in Hz)	¹³ C
	acetone- d_6	DMSO- d_6	acetone- d_6	DMSO- d_6	DMSO- d_6	DMSO- d_6
2	-	-	157.6	156.0	-	156.1
3	-	-	140.0	137.6	-	137.8
4	-	-	179.5	177.7	-	177.9
5	-		162.7	160.7	-	160.8
6	6.29 (d, 1.8)	6.30 (br s)	98.4	97.5	6.17 (d, 2.5)	97.6
7	-	- //	166.5	164.8	-	165.0
8	6.62 (d, 1.8)	6.63 (br s)	92.7	92.0	6.45 (d, 2.5)	92.1
9	-	- / 2	156.9	155.7	-	155.8
10	-	/-/ %	106.5	105.0	-	105.0
1'	- /	- 5.4	122.8	120.6	-	120.6
2'	7.70 (d, 1.8)	7.58 (br s)	116.3	115.4	7.66 (d, 2.0)	115.4
3'	-	-0566	145.9	145.0	-	145.1
4'	-	- 5-15-15-15	149.2	148.6	-	148.7
5'	6.97 (d, 8.4)	6.89 (d, 8.1)	116.3	115.6	6.80 (d, 8.5)	115.6
6'	7.57	7.45 (d, 8.1)	122.1	120.5	7.43	120.5
	(dd, 8.4, 1.8)				(dd, 8.5, 2.0)	
3-OCH ₃	3.82 (s)*	3.78 (s)*	60.1	59.6	3.84	59.5
7-OCH ₃	3.95 (s) *	3.82 (s)*	56.3	56.0	3.78	55.9
ОН	12.64 (br s)	12.66 (br s)	o* -	_	e U	-
* Revised assignments						

Table 17 NMR Spectral data of compound GT-4 and kumatakenin

1.5 Structure determination of compound GT-5

Compound GT-5 was obtain as yellow needles. The UV spectrum (Figure 42) displayed absorptions at 256 and 358 nm. The IR sprectrum (Figure 43) exhibited absorption bands at 3177 (O-H stretching, H-bonded), 1653 (C=O stretching), 1605 and 1504 (C=C aromatic ring), 1167 (C-O stretching) and 799 (=C-H bending) cm⁻¹. The positive ESIMS (Figure 44) showed its $[M+H]^+$ ion at m/z 317, suggesting the molecular formula $C_{16}H_{12}O_7$.

The ¹H-NMR spectrum (Figure 45) showed a H-bonded phenolic proton at δ 12.69 ppm, indicating a 5- hydroxyflavone structure. It also exhibited two doublet signals at δ 6.17 and 6.39 (each d, J= 1.5 Hz), assignable to H-6 and H-8 of ring A. The assignments of H-6 and H-8 were based on its HMQC correlation to C-6 (δ 98.6) and C-8 (δ 93.6) respectively. The ¹H-NMR spectral data, furthermore, revealed the presence of a methoxyl group at δ 3.76 (3H, s) which was placed at C-3 according to its NOESY correlation with H-2' and its HMBC correlation with C-3. For ring B, the presence of an ABX spin system at δ 6.89 (d, J= 8.4 Hz, H-5'), δ 7.43 (dd, J= 8.4, 1.8 Hz, H-6') and δ 7.53 (d, J= 1.8 Hz, H-2') in the ¹H-NMR spectrum, placed the hydroxy groups at C-3' and C-4' positions.

Based on the above spectral evidence, and comparison of the ¹H-and ¹³C-NMR spectral of compound GT-5 with those of the previously reported structure (Urbatsch, Bacon and Mabry, 1975 and Wang, Hamburger, Gueho and Hostettmann, 1989), the compound was identified as 5,7,3',4'-tetrahydroxy-3-methoxyflavone **[202]**, as shown in Table 18.

5,7,3',4'-Tetrahydroxy-3-methoxyflavone [202]

Table 18 NMR Spectral data of compound GT-5 and 5,7,3',4'-tetrahydroxy-3-

methoxyflavone

Position	Compound GT-5		5,7,3',4'-Tetrahydroxy-3-methoxyflavone		
	1 H (mult, Jin Hz)	¹³ C	¹ H (mult, <i>J</i> in Hz)	¹³ C	
	DMSO- d_6	DMSO- d_6	CCl_4 (OCH ₃ in C ₆ D ₆)	DMSO- d_6	
2	-	155.6	-	156.2	
3	-	137.7	-	137.6	
4	-	177.9	-	177.8	
5	-	161.3	-	161.2	
6	6.17 (d, 1.5)	98.6	6.16 (d, 2.5)	98.4	
7	-	164.2	-	164.0	
8	6.39 (d, 1.5)	93.6	6.47 (d, 2.5)	93.5	
9	-	156.4	-	155.5	
10	-/// 5	104.2	-	104.1	
1'	-	120.8	-	120.7	
2'	7.53 (d, 1.8)	115.4	7.77 (d. 2.0)	115.3	
3'	-	145.3	-	145.1	
4'	0.	148.7	-	148.6	
5'	6.89 (d, 8.4)	115.8	6.38 (d, 9.0)	115.6	
6'	7.43 (dd, 8.4, 1.8)	120.6	7.58 (dd, 9.0, 2.0)	120.5	
3-OCH ₃	3.76 (s)	59.7	3.87	59.5	
ОН	12.69 (br s)	ามย	ปรอาร	-	

จุฬาลงกรณมหาวทยาลย

1.6 Structure determination of compound GT-6

Compound GT-6, pale yellow needles, showed its $[M+H]^+$ ion at m/z 345 in th ESIMS, corresponding to the molecular formula $C_{18}H_{16}O_7$. The IR bands at 3438 (O-H stretching), 2915 (C-H stretching), 1603 (C=O stretching), 1457 (conjugated C=C), 1217 (C-O stretching) and 823 (=C-H bending) cm⁻¹ (Figure 51) and the UV absorptions at 251 and 345 nm (Figure 50) were indicative of a flavone skeleton (Markham, 1982).

The ¹H-NMR spectrum (Figure 53) exhibited the signals similar to those of compound GT-4. The A ring protons appeared at δ 6.43 (d, J = 2.2 Hz, H-6), 6.69 (d, J = 2.2 Hz, H-8). Ring B showed signals for three protons at δ 6.94 (d, J = 8.5 Hz, H-5'), δ 7.55 (dd, J = 8.5, 2.0 Hz, H-6') and δ 7.68 (d, J = 2.0 Hz, H-2'). However, GT-6 had no H-bonded phenolic group, but possessed a methoxyl group at C-5. This was supported by the resonances of three methoxyls at δ 3.77, 3.88 and 3.93 ppm. Compound GT-6 was identified as 3',4'-dihydroxy-3,5,7-trimethoxyflavone [203]. It has been reported as a diacetate derivative (Ohashi *et al.*, 1999). This work is the first report of the ¹H-NMR spectral data (Table 19).

Position	Compound GT-6
	¹ H (mult, J in Hz)
2	-
3	-
4	
5	
6	6.45 (d, 2.2)
7	
8	6.72 (d, 2.2)
9	-
10	1977 W
1'	04 -
2'	7.69 (d, 2.0)
3'	22/2/
4'	Controlly -
5'	6.97 (d, 8.5)
6'	7.55 (dd, 8.5, 2.0)
OCH ₃	3.93 (s)
OCH ₃	3.88 (s)
	2.70(-)

Table 19 NMR Spectral data of compound GT-6 (acetone-d₆)

จุฬาลงกรณ์มหาวิทยาลัย

1.7 Structure determination of compound GT-7

Compound GT-7 appeared as pale yellow needles. The positive ESI mass spectrum (Figure 56) displayed its $[M+H]^+$ ion at m/z 373, suggesting the molecular formula $C_{20}H_{20}O_7$. The UV spectrum (Figure 54) showed λ_{max} at 247 and 339 nm. The IR sprectrum (Figure 55) exhibited absorption bands at 2936 (C-H stretching), 1627 (C=O stretching), 1604 and 1515 (C=C aromatic ring), 1216 (C-O stretching) and 822, 750 (=C-H bending) cm⁻¹, suggestive of a flavone skeleton.

The ¹H-NMR spectrum (Figure 57) revealed the presence of five methoxyl groups at δ 3.86, 3.88, 3.93, 3.93, 3.93 (3H each, s). The A ring showed an AB coupling system of the two aromatic protons (H-6 and H-8) at δ 6.33 (d, J = 1.8 Hz) and 6.48 (d, J = 1.8 Hz), respectively. Ring B exhibited signals for an ABX system at δ 6.95 (d, J = 8.4 Hz, H-5'), 7.66 (br s, H-6') and 7.69 (br s, H-2'). Compound GT-7 was determined as 3,5,7,3',4'-pentamethoxyflavone [204], a flavone previously isolated from *Amonum koenigii* (Dong *et al.*, 1999). The ¹H-and ¹³C-NMR data (Figures 57 and 58) obtained in this study suggested that the assignments of H-2', H-6' and the methoxyl groups at C-3, C-7 and C-3' should be revised. The successful revision was accomphished by application of 2D-NMR, including NOESY (Figure 59), HMQC (Figure 60) and HMBC (Figure 61) experiments.

3,5,7,3',4'-Pentamethoxyflavone [204]

Table 20 NMR Spectral data of compound GT-7 (CDCl₃) and 3,5,7,3',4'-

pentamethoxyflavone (CDCl₃)

Position	¹ H (mult, <i>J</i> in Hz)		Position	¹³ C		
	Compound	3,5,7,3',4'-		Compound	3,5,7,3',4'-	
	GT-7	Pentamethoxyflavone		GT-7	Pentamethoxyflavone	
2	-	-	2	152.5	152.6	
3	-		3	141.1	141.2	
4	-		4	174.0	174.0	
5	-		5	161.0	158.8	
6	6.33 (d, 1.8)	6.32	6	95.7	95.8	
7	-		7	163.8	163.9	
8	6.48 (d, 1.8)	6.48	8	92.8	92.5	
9	_ /	-	9	158.7	161.1	
10	-	in International	10	109.5	109.5	
1'	-		1'	123.4	123.4	
2'	7.69 (br s)	7.67	2'	111.3	111.3	
3'	-	34-12/18/18/19/19	3'	148.7	148.7	
4'	- 📿	-	4'	150.8	150.9	
5'	6.95 (d, 8.4)	6.93	5'	110.8	110.8	
6'	7.66 (br s)	7.68	6'	121.6	121.6	
3-OCH ₃	3.93 (s)	3.88	OCH ₃	59.9	59.9	
5-0CH ₃	3.93 (s)	3.91	OCH ₃	55.7	55.8	
7-OCH ₃	3.88 (s)	3.97	OCH ₃	55.9	55.9	
3'-OCH ₃	3.86 (s)	3.97	OCH ₃	56.0	56.1	
4'-OCH ₃	3.93 (s)	3.97	OCH ₃	56.3	56.4	

- : The bold values are revised assignments.

1.8 Structure determination of compound GT-8

Compound GT-8 was obtained as yellow needles. The UV spectrum (Figure 62) exhibited absorptions at 248 and 342 nm. The positive ESI mass spectrum (Figure 64) showed its $[M+H]^+$ ion at m/z 359 corresponding to the molecular formula $C_{19}H_{18}O_7$. The IR sprectrum (Figure 63) displayed absorption bands at 3439 (O-H stretching), 2926 (C-H stretching), 1623 (C=O stretching), 1604 and 1458 (C=C aromatic ring), 1216 (C-O stretching), 823 and 754 (=C-H bending) cm⁻¹, characteristic of a flavone skeleton (Markham, 1982).

The ¹H-NMR sprectrum (Figure 65) displayed a broad OH proton signal at δ 5.97 ppm. This spectrum also exhibited the presence of four methoxy groups at δ 3.84, 3.88, 3.94 and 3.94 (each 3H, s). In the aromatic region, signals for the A ring protons appeared at δ 6.32 (d, J= 2.1 Hz, H-6) and 6.48 (d, J= 2.1 Hz, H-8). An ABX system at δ 7.00 (d, J= 8.4 Hz, H-5'), 7.61(dd, J= 8.4, 1.8 Hz, H-6') and 7.72 (d, J= 1.8 Hz, H-2') were observed for ring B.

The results from NOESY and HMQC experiments indicated that four methoxyl groups were on C-3, C-5, C-7 and C-3' position. Consequently, this compound was determined to be 4'-hydroxy-3,5,7,3'-tetramethoxyflavone **[205]**. It has been previously isolated from *Melicope triphylla* (Higa, Miyagi, Yogi and Hokama, 1987). The present work is the first report of the ¹³C-NMR spectral data of this compound (Table 21).

4'-Hydroxy-3,5,7,3'-tetramethoxyflavone [205]

Table 21 NMR Spectral data of compound GT-8 (CDCl₃) and 4'-hydroxy-3,5,7,3'-

tetramethoxyflavone (CDCl₃)

Position	Compound GT-8		Position	4'-Hydroxy-3,5,7,3'-
				tetramethoxyflavone
	¹ H (mult, <i>J</i> in Hz)	¹³ C		¹ H (mult, <i>J</i> in Hz)
2	-	152.4	2	-
3	- 3	140.8	3	-
4	-	173.7	4	-
5	-	160.8	5	-
6	6.32 (d, 2.1)	95.7	6	6.32 (d, 2.5)
7	-	163.6	7	-
8	6.48 (d, 2.1)	92.3	8	6.48 (d, 2.5)
9		158.8	9	-
10	- 6	109.4	10	-
1'	- 10	122.7	1'	-
2'	7.72 (d, 1.8)	110.8	2'	7.67 (d, 2.0)
3'	-	146.1	3'	-
4'	Q -	147.5	4'	Q -
5'	7.00 (d, 8.4)	114.3	5'	7.02 (d, 9.0)
6'	7.61 (dd, 8.4, 1.8)	121.9	6'	7.59 (dd, 9.0, 2.0)
3-OCH ₃	3.84 (s)	59.9	OCH ₃	3.84
5-0CH ₃	3.94 (s)	56.1	OCH ₃	3.94
7-OCH ₃	3.88 (s)	55.7	OCH ₃	3.84
3'-OCH ₃	3.94 (s)	56.6	OCH ₃	3.94
4'-OH	5.97 (br s)	-	ОН	-
1.9 Structure determination of compound GT-9

Compound GT-9 was obtained as pale yellow needles. The IR sprectrum (Figure 70) showed absorption bands at 3421 (O-H stretching), 2919 (C-H stretching), 1631 (C=O stretching), 1603 and 1437 (C=C aromatic ring), 1023 (C-O stretching), 802 (=C-H bending) cm⁻¹. The positive ESIMS (Figure 71) displayed its $[M+H]^+$ ion at m/z 359, suggesting the molecular formula $C_{19}H_{18}O_7$. The UV spectrum (Figure 69) exhibited absorption bands at 250, 343 nm, indicative of flavone skeleton (Markham, 1982).

The ¹H-NMR spectrum (Figure 72) showed signals for a set of protons with *meta* - coupling at δ 6.31 (d, J = 2.1 Hz, H-6) and 6.48 (d, J = 2.1 Hz, H-8). On ring B, an ABX splitting pattern consisting of overlapping signals appeared at δ 7.65 (d, J = 2.1 Hz, H-2') and 7.69 (dd, J = 8.4, 2.1 Hz, H-6') and a broad doublet at 6.93 (d, J = 8.4 Hz, H-5'). The sharp proton singlet at δ 5.67 could be assigned to the hydroxyl group at C-3'. The ¹³C-NMR (Figure 73) showed 19 signals, corresponding to four methoxyls, five methines and ten quaternary carbons.

Further analysis of the ¹H-and ¹³C-NMR spectra (Figures 72 and 73, respectively) revealed the presence of four methoxyl groups at $\delta_{\rm H}$ 3.85, 3.93, 3.87, 3.95 (3H each, s) and $\delta_{\rm C}$ 59.8 (3-OCH₃), 56.3 (5-OCH₃), 55.7 (7-OCH₃) and 56.0 (4'-OCH₃), respectively. The assignments of these methoxyl groups were based on the NOESY (Figure 74), HMQC (Figure 75) and HMBC (Figure 76) experiments.

The first methoxyl group at δ 3.85 ppm could be placed at C-3 according to its NOESY correlation peak with H-6' and H-2' and HMBC correlation of the methoxyl group with C-3. The second methoxyl group at δ 3.87 ppm was located at C-7, as shown by its NOESY interaction with H-8 and H-6 and the HMBC correlation of the methoxyl group with C-7. The third methoxyl group at δ 3.93 should be assigned at C-5 based on the NOESY correlation peak with H-6 and the HMBC correlation of the methoxyl group with C-5. The last methoxyl group at δ 3.95 was placed at C-4', as exhibited by its NOESY interaction with H-5' and the HMBC correlation of the methoxyl group with C-5.

Thus, compound GT-9 was identified as 3'-hydroxy-3,5,7,4'-tetramethoxyflavone **[206]**. Although this compound has been earlier synthesized (Bouktaib, Lebrun, Atmani and Rolando, 2002, Beutler *et al.*, 1998, Parmar *et al.*, 1996, Parmar *et al.*, 1994, Wang, Hamburger, Gueho and Hostettmann, 1989), this is the first time it has been found as a naturally occuring compound. Prior to this study, the ¹³C data of this compound have not been reported.

Position	Compound GT-9		Position	3'-Hydroxy-3,5,7,4'-		
				tetramethoxyflavone		
	¹ H (mult, <i>J</i> in Hz)	¹³ C		¹ H (mult, <i>J</i> in Hz)		
2	-	152.3	2	-		
3	-	141.3	3	-		
4		174.0	4	-		
5		161.0	5	-		
6	6.31 (d, 2.1)	95.7	6	6.35 (s)		
7	-	163.8	7	-		
8	6.48 (d, 2.1)	92.4	8	6.55 (s)		
9	- / / /	158.8	9	-		
10	- / / 3	109.5	10	-		
1'	-/// 5-	124.1	1'	-		
2'	7.65 (d, 2.1)	114.1	2'	7.50-7.65 (m)		
3'	- 🕖 656	145.4	3'	-		
4'	- 500	148.2	4'	-		
5'	6.93 (d, 8.4)	110.3	5'	6.95 (d, 9.0)		
6'	7.69 (dd, 8.4, 2.1)	121.2	6'	7.50-7.65 (m)		
3-OCH ₃	3.85 (s)	59.8	OCH ₃	3.77		
5-0CH ₃	3.93 (s)	56.3	OCH ₃	3.88		
7-OCH ₃	3.87 (s)	55.7	OCH ₃	3.90		
4'-OCH ₃	3.95 (s)	56.0	OCH ₃	3.93		
3'-ОН	5.67 (s)	1217	ОН	/ยาลย		

Table 22 NMR Spectral data of compound GT-9 (CDCl₃) and 3'-hydroxy-3,5,7,4'tetramethoxyflavone (CDCl₃)

3'-Hydroxy-3,5,7,4'-tetramethoxyflavone [206]

2. Free radical scavenging activity

By TLC screening assay, the ethyl acetate and methanol extracts from the leaves of *Goniothalamus tenuifolius* showed free radical scavenging activity. Pure compounds from *G. tenuifolius* were first tested at 40 μ g/ml. Compounds exhibiting more than 50% inhibition were further analyzed for their IC₅₀ values (Figure 12). Quercetin was used as positive control. The results are summarized in Table 23

C.

92

Figure 12 Free radical scavenging activity of compounds GT-4, GT-5 and GT-6 on DPPH radical. Measurement at 510 nm, determination after 30 min. and linear equation for analysis IC₅₀ values (μg/ml). A: GT-4, B: GT-5, C: GT-6, D: Quercetin

Table 23 Percentage of free radical scavenging activity by pure compounds

Compounds	% Scavenging activity	IC ₅₀		
	(40 µg/ml)	(µg/ml)	(µM)	
GT-1 [198]	4.27	-	-	
GT -2 [199]	6.20		-	
GT-3 [200]	13.69		-	
GT-4 [201]	82.15	1.93	5.8	
GT-5 [202]	80.31	2.03	6.4	
GT-6 [203]	75.06	2.31	6.7	
GT-7 [204]	0.61	ริการ	-	
GT-8 [205]	19.07	d _ d	-	
GT-9 [206]	11.49	ถิ่งกยาว	ลย	
Quercetin	80.19	2.00	6.6	

isolated from G. tenuifolius

From Table 23, only three compounds (GT-4, GT-5, GT-6) showed free radical scavenging activity. The structures of these compounds were composed of free hydroxyl groups at C-3' and C-4'. This 3',4'-diphenolic partial structure should therefore be important for the activity.

	R ₁	R ₂	R ₃	\mathbf{R}_4	R ₅
Compound [198]	ОН	OCH ₃	OCH ₃	OCH_3	OCH ₃
Compound [200]	ОН	OCH ₃	OCH ₃	OCH_3	OH
Compound [201]	OH	OCH ₃	OCH ₃	OH	OH
Compound [202]	ОН	OH	OCH ₃	OH	OH
Compound [203]	OCH ₃	OCH ₃	OCH ₃	OH	OH
Compound [204]	OCH ₃	OCH ₃	OCH ₃	OCH_3	OCH ₃
Compound [205]	OCH ₃	OCH ₃	OCH ₃	OCH_3	OH
Compound [206]	OCH ₃	OCH ₃	OCH ₃	OH	OCH ₃

Figure 13 Structures of compounds isolated from the leaves of G. tenuifolius with free radical

scavenging activity (compounds 198-206)

CHAPTER V

CONCLUSION

From the leaves of Goniothalamus tenuifolius King (Annonaceae), eight 3methoxyflavones have been isolated, together with trans-cinnamic acid. They were identified as 5-hydroxy-3,7,3',4'-tetramethoxyflavone[198], trans-cinnamic acid [199], pachypodol [200], kumatakenin [201], 5,7,3',4'-tetrahydroxy-3-methoxyflavone [202], 3',4'-dihydroxy-3,5,7-3,5,7,3',4'-pentamethoxyflavone [203], [204], 4'-hydroxy-3,5,7,3'trimethoxyflavone tetramethoxyflavone [205] and 3'-hydroxy-3,5,7,4'-tetramethoxyflavone [206], respectively. Compound [206] is a new natural product. The unambiguous ¹H-NMR assignments of 3',4'dihydroxy-3,5,7-trimethoxyflavone [203] and the ¹³C-NMR data of 4'-hydroxy-3,5,7,3'tetramethoxyflavone [205] and 3'-hydroxy-3,5,7,4'-tetramethoxyflavone [206] were also obtained for the first time in this study. All of the isolates have been tested for free radical scavenging activity, using the DPPH assay. The active compounds were kumatakenin [201], 5,7,3',4'tetrahydroxy-3-methoxyflavone [202] and 3',4'-dihydroxy-3,5,7-trimethoxyflavone [203] with IC_{50} values of 5.8, 6.4 and 6.7 μ M, respectively, whereas quercetin (positive control) showed an IC_{50} value of 6.6 μ M.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

REFERENCES

- ปียะ เฉลิมกลิ่น. 2544. <u>พรรณไม้วงศ์กระดังงา</u>. พิมพ์กรั้งที่ 1. กรุงเทพมหานกร: สำนักพิมพ์บ้าน และสวน.
- Ahmad, F. B., Tukol, W. A., Omar, S., and Sharif, A. M. 1991. 5-Acetyl-goniothalamin, a styryl dihydropyrone from *Goniothalamus uraroides*. <u>Phytochemistry</u> 30(7): 2430-2431.
- Alali, F. Q., Rogers, L., Zhang, Y., and McLaughlin, J. L. 1999. Goniotriocin and (2,4-cis and trans)- xylomaticinones, bioactive Anonaceous acetogenins, from *Goniothalamus* giganteus. J. Nat. Prod. 62: 31-34.
- Alali, F. Q., Zhang, Y., Rogers, L., and McLaughlin, J. L. 1997. (2,4-*cis* and *trans*)-Goniotecinone and 4-deoxygigantecin, bioactive nonadjacent bis-tetrahydrofuran Anonaceous acetogenins, from *Goniothalamus giganteus*. J. Nat. Prod. 60: 929-933.
- Alali, F. Q., Zhang, Y., Rogers, L., and McLaughlin, J. L. 1998. Mono-tetrahydrofuran acetogenins from *Goniothalamus giganteus*. Phytochemistry 49(3): 761-768.
- Alkofahi, A., Ma, W.-W., McKenzie, A. T., Byrn, S. R., and McLaughlin, J. L. 1989. Goniotriol from *Goniothalamus giganteus*. J. Nat. Prod. 52(6): 1371-1373.
- Alkofahi, A., Rupprecht, J. K., Lin, Smith, D. L., Chang, C.J., and McLaughlin, J.L. 1988.
 Goniothalamicin and annonacin: bioactive acetogenins from *Goniothalamus giganteus* (Annonaceae). <u>Experientia</u> 44: 82-85.
- Alkofahi, A., Rupprecht, J. K., Lin, Smith, D. L., Chang, C. J., and McLaughlin, J. L. 1990. Goniotecin: a novel antimitotic and cytotoxic acetogenins, with nonadjacent tetrahydrofuran rings, from *Goniothalamus giganteus* (Annonaceae). <u>Experientia</u> 46: 539-541.
- Bermejo, A., Blazquez, M. A., Rao, K. S., and Cortes, D. 1998. Styryl-pyrones from *Goniothalamus arvensis*. <u>Phytochemistry</u> 47(7): 1375-1380.
- Bermejo, A., Blazquez, M. A., Serrano, A., Zafra-Polo, M. C. and Cortes, D. 1997. Preparation of 7-alkoxylated furanopyrones: semisynthesis of (-)-etharversin, a new styryl-lactone from *Goniothalamus arvensis*. J. Nat. Prod. 60: 1338-1340.
- Bermejo, A., Tormo, J. R., Cabedo, N., Estornell, E., Figadere, B., and Cortes, D. 1998. Enantiospecific semisynthesis of (+)-almuheptolide-A, a novel natural heptolide inhibitor of the mammalian mitocondrial respiratory chain. J. Med. Chem. 41: 5158-5166.

- Beutler, J. A., Hamel, E., Vlietinch, A. J., Haemers, A., Rajan, P., Roitman, J. N., Cardellina II, J. H., and Boyd, M. R. 1998. Structure-activity requirements for flavone cytotoxicity and binding to tubulin. J. Med. Chem. 41: 2333-2338.
- Bouktaib, M., Lebrun, S., Atmani, A., and Rolando, C. 2002. Hemisynthesis of all the Omonomethylated analogues of quercetin including the major metabolites, through selective protection of phenolic functions. <u>Tetrahedron</u> 58: 10001-10009.
- Burda, S., and Oleszek, W. 2001. Antioxidant and antiradical activity of flavonoids. J. Agric. Food. Chem. 49(6): 2774-2779.
- Calis, I., Kuruuzum, A., Demirezer, L. O., Sticher, O., Ganci, W., and Ruedi, P. 1999.
 Phenylvaleric acid and flavonoid glycosides from *Polygonum salicifolium*. J. Nat. Prod. 62(8): 1101-1105.
- Campos, M. G., Webby, R. F., Markham, K. R., Mitchell, K. A., and Da Cunha, A. O. 2003. Age-induced diminution of free radical scavenging capacity in Bee pollens and the constribution of constituent flavonoids. <u>J. Agric. Food. Chem</u>. 51: 742-745.
- Cao, S-G., Wu, X-H., Sim, K-Y., Tan, B. K.H., Pereira, J. T., and Goh, S-H. 1998. Styryllactone derivatives and alkaloids from *Goniothalamus borneensis* (Annonaceac). <u>Tetrahedron</u> 54: 2143-2148.
- Chen, Y., Jiang, Z., Chen, R. R., and Yu, D. Q. 1998a. Two linear acetogenins from *Goniothalamus gardneri*. <u>Phytochemistry</u> 49(5): 1317-1321.
- Chen, Y., Chen, R. R., Jiang, Z., and Yu, D. Q. 1998b. A new epimeric pair of mono-THF Annonaceous acetogenins from *Goniothalamus gardneri*. <u>Planta Med.</u> 64: 242-245.
- Choli, M. R., Paya, M., and Alcaraz, M. J. 1991. Inhibitory effects of phenolic compounds on CCl₄-induced microsomal lipid peroxidation. <u>Experientia</u> 47: 195-199.
- Colegate, S. M., Din, B. L., Latiff, A., Salleh, K. M., Samsudin, M. W., Skelton, W., Tadano, K.,
 White, A. H., and Zakaria, Z. 1990. (+)-Isoaltholactone: a furanopyrone isolated from *Goniothalamus* species. <u>Phytochemistry</u> 29(5): 1701-1704.
- Din, B. L., Colegate, S. M., and Razak, D. A. 1990. Scorazanone, A 1-aza-anthraquinone from Goniothalamus scortechinii. <u>Phytochemistry</u> 29(1): 346-348.
- Dong, H., Gou, Y-L., Cao, S-G., Chen, S-X., Chen, K-Y., Goh, S-H., and Kini, R. M. 1999. Eicosenones and methylated flavonols from *Amomum koenigii*. <u>Phytochemistry</u> 50: 899-902.

- Dugas, A. J., Castaneda-Acosta, J., Bonin, G. C., Price, K. L., Fisher, N. H., and Winston, G. W. 2000. Evaluation of the total peroxyl radical-scavenging capacity of flavonoids: structureactivity relationships. <u>J. Nat Prod</u>. 63: 327-331.
- El-Zayat, A. E., Ferrigni, N. R., McCloud, T. G., and McKenzie, A. T. 1985. Goniothalenol: a novel, bioactive, tetrahydrofurano-2-pyrone from *Goniothalamus giganteus* (Annonaceae). <u>Tetrahedron Lett</u>. 26(8): 955-956.
- Fang, X-P., Anderson, J. E., Chang, C-J., Fanwick, P. E., and Mclaughlin, J. L. 1990. Novel bioactive styryl-lactone: goniofufurone, goniopypyrone, and 8- acetylgoniotriol from *Goniothalamus giganteus* (Annonaceae). X-ray molecular structure of goniofufurone and of goniopypyrone. J. Chem. Soc. Perkin Trans. 1 6: 1655-1661.
- Fang, X-P., Anderson, J. E., Qui, X-X., Kozlowski, J. F., Chang, C-J., and Mclaughlin, J. L. 1993. Gonioheptolides A and B: novel eight-membered-ring lactones from *Goniothalamus* giganteus (Annonaceae). <u>Tetrahedron</u> 49(8): 1563-1570.
- Fang, X-P., Anderson, J. E., Smith, D. L., Mclaughlin, J. L., and Fanwick, P. E. 1991a. Two new styryl lactones, 9-deoxygoniopypyrone and 7-epi-goniofufurone from *Goniothalamus* giganteus. J. Nat. Prod. 54(4):1034-1043.
- Fang, X-P., Anderson, J. E., Smith, D. L., Mclaughlin, J. L., and Fanwick, P. E. 1991b. Three new bioactive styryllactones from *Goniothalamus giganteus* (Annonaceae). <u>Tetrahedron</u> 47(47): 9751-9758.
- Fang, X-P., Anderson, J. E., Smith, D. L., Mclaughlin, J. L., and Wood, K. V. 1992a. Gigantetronenin and gigantrionenin: novel cytotoxic acetogenins from *Goniothalamus giganteus*. J. Nat. Prod. 55(11): 1655-1663.
- Fang, X-P., Anderson, J.E., Smith, D.L., Wood, K.V. and MaLaughlin, J.L. 1992b. Giganenin, A highly potent monotetrafuran acetogenin and 4-deoxygigantecin from *Goniothalamus* giganteus. <u>Heterocycles</u>. 34(6): 1075-1083.
- Fang, X-P., Rupprecht, J. K., Alkofahi, A., Hui, Y-H., Liu, Y-M., Smith, D. L., Wood, K. V., and McLaughlin, J. L. 1991. Gigantetrocin and gigantriocin : two novel bioactive Annonaceous acetogenins from *Goniothalamus giganteus*. <u>Heterocycles</u> 32(10): 11-17.
- Goh, S. H., Ee, G. C. L., Chuah, C. H., and Wei, C. 1995. Styrylpyrone derivatives from Goniothalamus dolichocarpus. <u>Aust. J. Chem</u>. 48: 1999-205.

- Gu, Z. M., Fang, X., Zeng, L., and McLaughlin, J. L. 1994. Goniocin from Goniothalamus giganteus : the first tri-THF Annonaceous acetogenin. <u>Tetrahedron Lett</u>. 35(30): 5367-5368.
- Hanai, K., Kuwae, A., Takai, T., Senca, H., and Kunimoto, K-K. 2001. A comparative vibrational and NMR study of *cis*- cinnamic acid polymorphs and *trans*-cinnamic acid. <u>Spectrochimica Acta Part A</u> 57: 513-519.
- Haraguchi, H. 2001. Antioxidative plant constituents. In Tringali, C. (ed.), <u>Bioactive</u> <u>compounds from natural sources</u>, pp. 339-377. London: Taylor and Francis group.
- Haraguchi, H., Ishikawa, H., and Kubo, I. 1997. Antioxidative action of diterpenoids from Podocarpus nagi. <u>Planta med.</u> 63: 213-215.
- Harborne, J. B., and Mabry, T. J. 1982. <u>The flavonoids: Advances in research 1982</u>. Chapman&Hall, UK.
- Hasan, C. M., Mai, M. Y., Rashid, M. A., and Connolly, J. D. 1994. 5-Acetoxyisogoniothalamin oxide, an epoxystyryl lactone from *Goniothalamus sesquipedalis*. <u>Phytochemistry</u> 37(6): 1763-1764.
- Higa, M., Miyagi, Y., Togi, S., and Hokama, K. 1987. Flavonoid constituents of *Melicope triphylla* Merr. <u>Yakugaku Zasshi</u> 107(12): 954-958.
- Hisham, A., Harassi, A., Shuaily, W., Echigo, S., and Fujimoto, Y. 2000. Cardiopetalolactone: a novel styryllactones from *Goniothalamus cardiopetalus*. <u>Tetrahedron</u> 56: 9985-9989.
- Itokawa, H., Suto, K., and Takeya, K. 1981. Studies on a novel p-coumaroyl glucoside of apigenin and on other flavonoids isolated from Patchouli (Labiatae). <u>Chem. Pharm. Bull.</u> 29(1): 254-256.
- Jewers, K., Davis, B., Dougan, J., and Manchanda, A. H. 1972. Goniothalamin and its distribution in four *Goniothalamus* species. <u>Phytochemistry</u> 11: 2025-2030.
- Jiang, Z., and Yu, D.-Q. 1997. New type of mono-tetrahydrofuran ring acetogenins from *Goniothalamus donnaiensis*. J. Nat. Prod. 60: 122-125.
- Jiang, Z., Chen, Y., Chen, R-Y., and Yu, D-Q. 1997 Monotetrahydrofuran ring acetogenins from Goniothalamus donnaiensis. <u>Phytochemistry</u> 46(2): 327-331.
- Jiang, Z., Chen, Y., Chen, R-Y., and Yu, D-Q. 1998a. Linear acetogenins from Goniothalamus donnaiensis. <u>Phytochemistry</u> 49(3): 769-775.
- Jiang, Z., Chen, Y., Chen, R-Y., and Yu, D-Q. 1998b. Donnaienin, a new acetogenin bearing a hydroxylated tetrahydrofuran ring. <u>J. Nat. Prod.</u> 61: 86-88.

- Jiang, Z., Chen, Y., Chen, R-Y., and Yu, D-Q. 1998c. Two epimeric pair of C-4-acetyl Annonaceous acetogenins from *Goniothalamus donnaiensis*. <u>Planta Med.</u> 64: 362-366.
- Joyeux, M., Lobstein, a., Anton, R., and Mortier, F. 1994. Comparative antilipidperoxidant, antinecrotic and scavenging properties of terpenes and biflavones from *Ginkgo* and some flavonoids. <u>Planta Med.</u> 61: 126-129.
- Likhitwitayawuid, K., Wirasathien, L., Jongboonprasert, V., Aimi, N., Takayama, H., and Kitajima, M. 1997. Antimalarial alkaloids from *Goniothalamus tenuifolius*. <u>Pharm.</u> <u>Pharmacol. Lett.</u> 7: 99-102.
- Lu, S-Y., Wu, Y-C. and Leou, S-P. 1985. Alkaloids of formosan *Fissistigma* and *Goniothalamus* species. <u>Phytochemistry</u> 24(8): 1829-1834.
- Markham, K. R. 1982. <u>Techniques of flavonoids identification</u>. London: Academic Press, pp. 38-39.
- Minami, H., Kinoshita, M., Fukuyama, Y., Kodama, M., Yoshizawa, T., Sugiura, M., Nakagawa, K., and Tago, H. 1994. Antioxidant xanthones from *Garcinia subelliptica*. <u>Phytochemistry</u> 36(2): 501-506.
- Mu, Q., Tang, W., Li, C., Lu, Y., Sun, H., Zheng, H., Hao, X., Zheng, Q., Wu, N., Lou, L., and Xu, B. 1999. Four new styryllactones from *Goniothalamus leiocarpus*. <u>Heterocycles</u> 51(12): 2969-2976.
- Ohashi, H., Kyogaku, T., Isikawa, T., Kawase, S-I., and Kawai, S. 1999. Antioxidative activity of tree phenolic constituents I: Radical-capturing reaction of flavon-3-ols with radical initiator. J. Wood. Sci. 45: 53-63.
- Omar, S., Chee, C. L., Ahmad, F., Ni, J. X., Jaber, H., Huang, J., and Nakatsu, T. 1992.Phenanthrene lactams from *Goniothalamus velutinus*. Phytochemistry 31(12): 4395-4397.
- Papas, M. A. 1999. Antioxidant status, diet, nutrition and health U.S.A.: CRC Press.
- Parmar, V. S., Bisht, K. S., Jain, R., Singh, S., Sharma, S. K., Gupta, S. 1996, March. Synthesis, antimicrobial and antiviral activities of novel polyphenolic compounds. <u>Indian J. Chem.</u> 35B: 220-232.
- Parmar, V. S., Jain, R., Sharma, S.K., Vardhan, A., Jha, A., Taneja, P., Singh, S., Vyncke, B. M., Bracke, M. e., and Mareel, M. M. 1994. Anti-invasive activity of 3,7-dimethoxyflavone *in vitro*. J. Pharm. Sci. 83(9): 1217-1221.
- Paya, M., Halliwell, B., and Hoult, J. R. S. 1992. Interactions of series of coumarins with reactive oxygen species. <u>Biochem. Pharmacol</u>. 44: 205-214.

- Peng, Z. F., Strack, D., Baumert, A., Subramaniam, R., Goh, N. K., Chia, T. F., Tan, S. N., and Chia, L. S. 2003. Antioxidative flavonoids from leaves of *Polygonum hydropiper* L. <u>Phytochemistry</u> 62: 219-228.
- Peris, E., Estornell, E., Cabedo, N., Cortes, D., and Bermejo, A. 2000. 3-Acetylaltholactone and related styryl-lactones, mitochondrial respiratory chain inhibitors. <u>Phytochemistry</u> 54: 311-315.
- Pietta, P-G. 2000. Flavonoids as antioxidants. J. Nat. Prod. 63: 1035-1042.
- Sam, T. W., Chew, S-Y., Matsjeh, E. K. G., Razak, D. and Mohamed, A. L. 1987.
 Goniothalamin oxide: an embryotoxic compound from *Goniothalamus macrophyllus* (Annonaceae) <u>Tetrahedron Lett</u>. 28(22): 2541-2545.
- Seidel, V., Bailleul, F., and Waterman, P.G. 2000. (Rel)-1β,2α-di-(2,4-dihydroxy-6-methoxybenzoyl)-3β-4α-di-(4-methoxyphenyl)-cyclobutane and other flavonoids from the aerial parts of *Goniothalamus gardneri* and *Goniothalamus thwaitesii*. Phytochemistry 55: 439-446.
- Seidel, V., Bailleul, F., and Waterman, P.G. 1999. Goniothalamusin, a linear acetogenin from Goniothalamus gardneri. <u>Phytochemistry</u> 52: 1101-1103.
- Sinclair, J., A Revision of the Malayan Annonaceae. 1955. <u>The Garden's Bulletin Singapore</u> 14(2): 149-516.
- Soonthornchareonnon, N., Suwanborirux, K., Bavovada, R., Patarapanich, C. and Cassady, J. M., 1999. New Cytotoxic 1- Aza-anthraquinones and 3- aminonaphthoquinone from the Stem bark of *Goniothalamus marcanii*. J. Nat. Prod. 62(10): 1390-1394.
- Sritularak, B. 2002. <u>Bioactive phenolics from *Artocarpus gomezianus* and *Millettia erythrocalyx*. Ph. D. Thesis, Department of Pharmacognosy, Graduate school, Chulalongkorn university.</u>
- Talapatra, S. K., Basu, D., Chattopadhyay, P., and Talapatra, B. 1988. Aristolactam of Goniothalamus sesquipedalis Wall. revised structure of the 2-oxygenated aristolactam. <u>Phytochemistry</u> 27(3): 903-906.
- Talapatra, S. K., Basu, D., Deb, T., Goswami, S., and Talapatra, B. 1985. Structure&stereochemistry of four new 5,6-dihydro-2-pyrones from *Goniothalamus grifithii*. Indian J. Chem. 24B: 29-34.
- Talapatra, B., Deb, T. and Talapatra, S. K. 1985. Isolation of pinocembrin from *Goniothalamus grifithii* & Its biomimetic synthesis. <u>Indian J. Chem.</u> 24B: 561.

- Urbatsch, L. E., Bacon, J. D., and Mabry, T. J. 1975. Flavonols methyl ethers from *Chrysothamnus viscidilorus*. <u>Phytochemistry</u> 14: 2279-2282.
- Urbatsch, L. E., Mabry, T. J., Miyakado, M., Ohno, N., and Yoshioka, H. 1976. Flavonol methyl ethers from *Ericameria diffusa*. <u>Phytochemistry</u> 15: 440-441.
- Vidari, G., Finzi, P. V., Bernardi, M. D. 1971. Flavonols and quinones in stem of *Aframomum giganteum*. <u>Phytochemical Reports</u> 10: 3335-3339.
- Vinson, J. A., Dabbagh, Y. A., Serry, M. M., and Jang, J. 1995. Plant flavonoids, especially tea flavonoids, are powerful antioxidants using an *in vitro* oxidation model for heart disease. <u>J. Agric. Food. Chem.</u> 43(11): 2800-2802.
- Wang, Y., Hamburger, M., Gueho, J., and Hostettmann, K. 1989. Antimicrobial flavonoids from *Psiadia trinervia* and their methylated and acetylated derivatives. <u>Phytochemistry</u> 28(9): 2323-2327.
- Wang, P., Kang, J., Zheng, R., Yang, Z., Lu, J., Gao, J., and Jia, Z. 1996. Scavenging effects of phenylpropanoid glycosides from *Pedicalaris* on superoxide anion and hydroxy radical by the spin trapping method. <u>Biochem. Pharmacol</u>. 51: 687-691.
- Wang, S., Zhang, Y-J., Chen, R-Y., and Yu, D-Q. 2002. Goniolactones A-F, six new styrylpyrone derivatives from the roots of *Goniothalamus cheliensis*. J. Nat. Prod. 65(6): 835-841.
- Wu, Y. C., Duh, C. Y., Chang, F. R. and Chang, G. Y. 1991. The crystal structure and cytotoxicity of goniodiol-7-monoacetate from *Goniothalamus amuyon*. J. Nat. Prod. 54(4): 1077-1081.
- Wu, T. C., Chang, F. R., Duh, C. Y., Wang, S. K. and Wu, T. S. 1992. Cytotoxic styrylpyrones of *Goniothalamus amuyon*. <u>Phytochemistry</u> 31(8): 2851-2853.
- Zeng, L., Zhang, L., amd McLaughlin, J. L. 1996. Gigantransenins A, B, and C, novel mono-THF acetogenins bearing *trans* double bonds, from *Goniothalamus giganteus* (Annonaceae). <u>Tetrahedron.</u> 37(31): 5449-5452.
- Zhang, Y-J., Kong, M., Chen, R-Y. and Yu, D-Q. 1999. Alkaloids from the roots *Goniothalamus griffithii*. J. Nat. Prod. 62(7): 1050-1052.
- Zhang, Y., Zeng, L., Woo, M-H., Gu, Z-M., Ye, Q., Wu, F-E., and McLaughlin, J. L. 1995. Goniodenin, a new bioactive Annonaceous acetogenin from *Goniothalamus giganteus* and its conversion to tri-THF acetogenins. <u>Heterocycles</u> 41(8): 1743-1754.

สถาบนวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

APPENDIX

Figure 14 UV Spectrum of compound GT-1 (methanol)

Figure 15 IR Spectrum of compound GT-1 (film)

Figure 16 Mass spectrum of compound GT-1

Figure 17¹H-NMR (300 MHz) Spectrum of compound GT-1 (CDCl₃)

Figure 19 UV Spectrum of compound GT-2 (methanol)

Figure 20 IR Spectrum of compound GT-2 (film)

Figure 21 Mass spectrum of compound GT-2

Figure 22¹H-NMR (300 MHz) Spectrum of compound GT-2 (CDCl₃)

Figure 23¹³C-NMR (75 MHz), DEPT 90 and DEPT 135 Spectra of compound GT-2 (CDCl₃)

Figure 24 UV Spectrum of compound GT-3 (methanol)

Figure 25 IR Spectrum of compound GT-3 (film)

Figure 26 Mass spectrum of compound GT-3

Figure 27¹H-NMR (300 MHz) Spectrum of compound GT-3 (CDCl₃)

Figure 28¹³C-NMR (75 MHz), DEPT 90 and DEPT 135 Spectra of compound GT-3 (CDCl₃)

Figure 29 NOESY Spectrum of compound GT-3 (CDCl₃)

Figure 30 HMQC Spectrum of compound GT-3 (CDCl₃)

Figure 31 HMBC Spectrum of compound GT-3 (CDCl₃)

Figure 32 UV Spectrum of compound GT-4 (methanol)

Figure 33 IR Spectrum of compound GT-4 (film)

Figure 34 Mass spectrum of compound GT-4

Figure 35 ¹H-NMR (300 MHz) Spectrum of compound GT-4 (acetone- d_6)

Figure 36 ¹H-NMR (300 MHz) Spectrum of compound GT-4 (DMSO- d_6)

Figure 37 ¹³C-NMR (75 MHz) Spectrum of compound GT-4 (acetone- d_6)

Figure 38 ¹³C-NMR (75 MHz) Spectrum of compound GT-4 (DMSO- d_6)

Figure 39 NOESY Spectrum of compound GT-4 (acetone- d_6)

Figure 40 HMQC Spectrum of compound GT-4 (acetone- d_6)

Figure 41 HMBC Spectrum of compound GT-4 (DMSO-*d*₆)

Figure 42 UV Spectrum of compound GT-5 (methanol)

Figure 43 IR Spectrum of compound GT-5 (film)

Figure 44 Mass spectrum of compound GT-5

Figure 45 ¹H-NMR (300 MHz) Spectrum of compound GT-5 (DMSO- d_6)

Figure 46¹³C-NMR (75 MHz) Spectrum of compound GT-5 (DMSO-*d*₆)

Figure 47 NOESY Spectrum of compound GT-5 (DMSO-*d*₆)

Figure 48 HMQC Spectrum of compound GT-5 (DMSO-*d*₆)

Figure 49 HMBC Spectrum of compound GT-5 (DMSO- d_6)

Figure 50 UV Spectrum of compound GT-6 (methanol)

Figure 51 IR Spectrum of compound GT-6 (film)

Figure 52 Mass spectrum of compound GT-6

Figure 53 ¹H-NMR (300 MHz) Spectrum of compound GT-6 (acetone- d_6)

Figure 54 UV Spectrum of compound GT-7 (methanol)

Figure 55 IR Spectrum of compound GT-7 (film)

Figure 56 Mass spectrum of compound GT-7

Figure 57 ¹H-NMR (300 MHz) Spectrum of compound GT-7 (CDCl₃)

Figure 58¹³C-NMR (75 MHz), DEPT 90 and DEPT 135 Spectra of compound GT-7 (CDCl₃)

Figure 59 NOESY Spectrum of compound GT-7 (CDCl₃)

Figure 60 HMQC Spectrum of compound GT-7 (CDCl₃)

Figure 61 HMBC Spectrum of compound GT-7 (CDCl₃)

Figure 63 IR Spectrum of compound GT-8 (film)

Figure 65¹H-NMR (300 MHz) Spectrum of compound GT-8 (CDCl₃)

Figure 66¹³C-NMR (75 MHz) Spectrum of compound GT-8 (CDCl₃)

Figure 67 NOESY Spectrum of compound GT-8 (CDCl₃)

130

Figure 68 HMQC Spectrum of compound GT-8 (CDCl₃)

Figure 69 UV Spectrum of compound GT-9 (methanol)

Figure 70 IR Spectrum of compound GT-9 (film)

Figure 71 Mass spectrum of compound GT-9

Figure 73¹³C-NMR (75 MHz) Spectrum of compound GT-9 (CDCl₃)

Figure 74 NOESY Spectrum of compound GT-9 (CDCl₃)

Figure 75 HMQC Spectrum of compound GT-9 (CDCl₃)

Figure 76 HMBC Spectrum of compound GT-9 (CDCl₃) [$\delta_{\rm H}$ 3.6-8.0 ppm, $\delta_{\rm C}$ 50-180 ppm]

Figure 77 HMBC Spectrum of compound GT-9 (CDCl₃) [$\delta_{\rm H}$ 5.5-7.9 ppm, $\delta_{\rm C}$ 85-178 ppm]

VITA

Miss Chaweewan Klongsiriwet was born on April 4, 1976 in Yala, Thailand. She received her Bachelor's degree of Science in Pharmacy in 1997 from the Faculty of Pharmaceutical Sciences, Prince of Songkhla University, Thailand. She is presently working at Sirindhorn Public Health College Trang.

Poster Presentation

Klongsiriwet, C., Likhitwitayawuid, K., Wongseripipatana, S., and Jongbunprasert, V. <u>Chemical constituents of *Goniothalamus tenuifolius* leaves</u>. p. 80 The 19Th Annual Research Meeting in Pharmaceutical Sciences, December 4, 2002, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok.

