องค์ประกอบทางเคมีของใบจั่น

นางสาวกนกวรรณ เบญจนาค

สถาบนวิทยบริการ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตรมหาบัณฑิต สาขาวิชาเภสัชเวท ภาควิชาเภสัชเวท คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2546 ISBN : 974-17-3603-7 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

CHEMICAL CONSTITUENTS OF MILLETTIA ERYTHROCALYX LEAVES

Miss Kanokwan Benchanak

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Pharmacy in Pharmacognosy Department of Pharmacognosy Faculty of Pharmaceutical Sciences Chulalongkorn University Academic Year 2003 ISBN : 974-17-3603 -7

CHEMICAL CONSTITUENTS OF MILLETTIA
ERYTHROCALYX LEAVES
Miss Kanokwan Benchanak
Pharmacognosy
Associate Professor Kittisak Likhitwitayawuid, Ph.D.

Accepted by the Faculty of Pharmaceutical Sciences, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master 's Degree

......Dean of Faculty of Pharmaceutical Sciences (Associate Professor Boonyong Tantisira, Ph.D.)

THESIS COMMITTEE

(Associate Professor Sumphan Wongseripipatana, Ph.D.)

(Associate Professor Kittisak Likhitwitayawuid, Ph.D.)

(Associate Professor Nijsiri Ruangrungsi, Ph.D.)

กนกวรรณ เบญจนาค: องค์ประกอบทางเคมีของใบจั่น. (CHEMICAL CONSTITUENTS OF *MILLETTIA ERYTHROCALYX* LEAVES) อาจารย์ที่ปรึกษา : รศ. ดร. กิตติศักดิ์ ลิขิตวิทยาวุฒิ, 125 หน้า. ISBN : 974-17-3603-7.

จากการศึกษาองค์ประกอบทางเคมีของใบจั่น สามารถแยกสารในกลุ่ม flavonoid ได้ 7 ชนิด การพิสูจน์โครงสร้างของสารทั้งหมดที่แยกได้อาศัยการวิเคราะห์เชิงสเปคตรัมของ UV, IR, MS และ NMR ร่วมกับการเปรียบเทียบข้อมูลกับสารที่ทราบโครงสร้างแล้ว พบว่าสารที่แยกได้ ประกอบด้วยสารใหม่ที่มีโครงสร้างในกลุ่ม furanoflavone คือ 3′,5′-dimethoxy[2″,3″:7,8] furanoflavone และเป็นสารที่มีรายงานมาแล้ว ได้แก่ 3′,4′-methylenedioxy-7-methoxy flavone, pongaglabrone, gamatin, milletenin C, millettocalyxin A และ millettocalyxin C

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

ภาควิชา สาขาวิชา เภสัชเวท ปีการศึกษา 2546 เภสัชเวท

ลายมือชื่ออาจารย์ที่ปรึกษา.....

##4476551533 : MAJOR PHARMACOGNOSY

KEY WORD: *MILLETTIA ERYTHROCALYX*/ FLAVONOID/ FURANOFLAVONE/ FLAVONE

KANOKWAN BENCHANAK: CHEMICAL CONSTITUENTS OF *MILLETTIA ERYTHROCALYX* LEAVES. THESIS ADVISOR : ASSOC. PROF. KITTISAK LIKHITWITAYAWUID, Ph.D., 108 pp. ISBN : 974-17-3603-7.

Chemical investigation of the constituents of *Millettia erythrocalyx* leaves led to the isolation of seven flavonoid compounds. The structure determinations of these compounds were accomplished by spectroscopic analyses (UV, IR, MS and NMR) and comparison with previously reported data of known compounds. These isolates were identified as a new furanoflavone, namely 3',5'-dimethoxy[2",3":7,8]furanoflavone, and the known compounds 3',4'-methylenedioxy-7-methoxyflavone, pongaglabrone, gamatin, milletenin C, millettocalyxin A and millettocalyxin C.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Department Pharmacognosy Field of study Pharmacognosy Academic year 2003

Student's	signature	
Advisor's	signature	

ACKNOWLEDGEMENTS

I am greatly indebted to my thesis advisor, Associate Professor Dr. Kittisak Likhitwitayawuid, Department of Pharmacognosy, Falculty of Pharmaceutical Sciences, Chulalongkorn University, for his excellent advice, valuable guidance and encouragement throughout my research study.

I would like to express my sincere appreciation to the National Center for Genetic Engineering and Biotechnology (BIOTEC), NSTDA, Science Park, Pathumthani, Thailand for MS and NMR measurements.

I would like to thank the Pharmaceutical Research Equipment Center of Faculty of Pharmaceutical Sciences, Chulalongkorn University for providing necessary research facilities.

I would like to thank the Graduate School of Chulalongkorn University for granting partial financial support to conduct this investigation.

I would like to thank the thesis committee for their constructive suggestions and critical review of this thesis.

I would like to express my heartfelt appreciation to Mr. Boonchoo Sritularak for his valuable guidance and kindness.

I am also grateful to my friend and all members of the Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University for their friendship, kindness support and encouragement.

Finally, I wish to thank my family for their invaluably great love, support and encouragement.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

CONTENTS

ABSTRACT (Thai)	iv				
ABSTRACT (English)					
ACKNOWLEDGEMENTS					
CONTENTS					
LIST OF TABLES	X				
LIST OF FIGURES	xi				
LIST OF SCHEMES	xiv				
LIST OF ABBREVIATIONS AND SYMBOLS	XV				
CHAPTER					
I INTRODUCTION	1				
II HISTORICAL					
1. Chemical Constituents of <i>Millettia</i> species	6				
III EXPERIMENTAL					
1. Sources of Plant Materials	40				
2. General Techniques	40				
2.1 Analytical Thin-Layer Chromatography	40				
2.2 Column Chromatography					
2.2.1 Vacuum Liquid Column Chromatography	40				
2.2.2 Flash Column Chromatography	41				
2.3 Spectroscopy					
2.3.1 Ultraviolet (UV) Absorption Spectra	41				
2.3.2 Infrared (IR) Absorption Spectra	41				
2.3.3 Mass Spectra	41				

2.3.4	Proton and Carbon-13 Nuclear Magnetic Resonance	
((¹ H- and ¹³ C-NMR) Spectra	41
2.4 Physica	al Properties	
2.4.1	Melting Points	42
2.5 Solven	ıts	42
3. Extraction ar	nd Isolation	
3.1 Extract	ion and Isolation of Compounds from the Leaves	
of Mille	ettia erythrocalyx	42
3.1.1	Extraction	42
3.1.2	Isolation	42
3.1.	.2.1 Isolation of Compounds from Hexane Extract	42
3.1.	.2.2 Isolation of Compound MEL1	43
3.1.	.2.3 Isolation of Compound MEL2	44
3.1.	.2.4 Isolation of Compound MEL3	44
3.1.	.2.5 Isolation of Compound MEL4	44
3.1.	.2.6 Isolation of Compound MEL5	44
3.1.	.2.7 Isolation of Compound MEL6	45
3.1.	.2.8 Isolation of Compound MEL7	46
4. Physical and	Spectra Data of Isolated Compounds	
4.1 Compo	ound MEL1	46
4.2 Compo	ound MEL2	47
4.3 Compo	ound MEL3	47
4.4 Compo	ound MEL4	47
4.5 Compo	ound MEL5	48
4.6 Compo	ound MEL6	48

	4.7 Compound MEL7	48		
IV RESULTS AND DISCUSSION				
	1. Struture Determination of Isolated Compounds			
	1.1 Structure Determination of Compound MEL1	58		
	1.2 Structure Determination of Compound MEL2	60		
	1.3 Structure Determination of Compound MEL3	62		
	1.4 Structure Determination of Compound MEL4	64		
	1.5 Structure Determination of Compound MEL5	66		
	1.6 Structure Determination of Compound MEL6	68		
	1.7 Structure Determination of Compound MEL7	70		
	V CONCLUSION	72		
	REFERENCES	73		
	APPENDICES	79		
	VITA	108		

LIST OF TABLES

Table		Page
1	Distribution of flavonoids in <i>Millettia</i> species	6
2	Distribution of miscellaneous compounds in <i>Millettia</i> species	20
3	Chromatographic fractions of the hexane extract of	
	<i>M. erythrocalyx</i> leaves	43
4	NMR Spectral data of compound MEL1 (acetone- d_6)	
	and 3',4'-methylenedioxy-7-methoxyflavone (pyridine- <i>d</i> ₅)	59
5	NMR Spectral data of compound MEL2 (CDCl ₃)	61
6	NMR Spectral data of compound MEL3 (CDCl ₃)	
	and pongaglabrone (CDCl ₃)	63
7	NMR Spectral data of compound MEL4 (CDCl ₃)	
	and gamatin (CDCl ₃)	65
8	NMR Spectral data of compound MEL5 (CDCl ₃)	
	and milletenin C (CDCl ₃)	67
9	NMR Spectral data of compound MEL6 (acetone- d_6)	
	and millettocalyxin A (acetone- <i>d</i> ₆)	69
10	NMR Spectral data of compound MEL7 (CDCl ₃)	
	and millettocalyxin C (CDCl ₃)	71

LIST OF FIGURES

Figure

Page

1	Millettia erythrocalyx Gagnep.	5
2	Structures of isoflavones isolated from <i>Millettia</i> species	25
3	Structures of chalcones isolated from Millettia species	30
4	Structures of flavanones isolated from Millettia species	32
5	Structures of flavones isolated from <i>Millettia</i> species	33
6	Structures of pterocarpene, flavonols, dibenzoylmethane	
	and flavanonols isolated from <i>Millettia</i> species	34
7	Structures of flavan and isoflavans isolated from Millettia	
	species	35
8	Structures of pterocarpans, isoflavanones and flavone glycosides	
	isolated from <i>Millettia</i> species	36
9	Structures of rotenoids isolated from <i>Millettia</i> species	37
10	Structures of 3-arylcoumarins, triterpenoid and alkaloids	
	isolated from <i>Millettia</i> species	38
11	Structures of miscellaneous compounds isolated from	
	Millettia species	39
12	ESI Mass spectrum of compound MEL1	80
13	UV Spectrum of compound MEL1 (MeOH)	80
14	IR Spectrum of compound MEL1 (film)	81
15	¹ H-NMR (300 MHz) Spectrum of compound MEL1 (acetone- d_6)	81
16	¹³ C-NMR (75 MHz) Spectrum of compound MEL1 (acetone- <i>d</i> ₆)	82
17	ESI Mass spectrum of compound MEL2	82
18	HRESI Mass spectrum of compound MEL2	83
19	UV Spectrum of compound MEL2 (MeOH)	83
20	IR Spectrum of compound MEL2 (film)	84
21	¹ H-NMR (300 MHz) Spectrum of compound MEL1 (CDCl ₃)	84
22	¹³ C-NMR (75 MHz) Spectrum of compound MEL1 (CDCl ₃)	85
23	¹³ C-NMR, DEPT 90 and DEPT 135 Spectra (75 MHz) of	
	compound MEL2 (in CDCl ₃)	85
24	HMQC Spectrum of compound MEL2 (CDCl ₃)	86

Figure		Page
25	HMBC Spectrum of compound MEL2 (CDCl ₃)	86
26	HMBC Spectrum of compound MEL2 (CDCl ₃) (expanded,	
	$\delta_{\rm H} \ 6.0\text{-}8.8 \ ppm, \ \delta_{\rm C} \ 42\text{-}194 \ ppm).$	87
27	HMBC Spectrum of compound MEL2 (CDCl ₃) (expanded,	δ
	_H 6.2-8.5 ppm, δ _C 91-195 ppm)	87
28	NOESY Spectrum of compound MEL2 (CDCl ₃)	88
29	NOESY Spectrum of compound MEL2 (CDCl ₃) (expanded,	δ
	_н 6.0-8.6 ppm)	88
30	ESI Mass spectrum of compound MEL3	89
31	UV Spectrum of compound MEL3 (MeOH)	89
32	IR Spectrum of compound MEL3 (film)	90
33	¹ H-NMR (300 MHz) Spectrum of compound MEL3 (CDCl ₃)	90
34	¹³ C-NMR (75 MHz) Spectrum of compound MEL3 (CDCl ₃)	91
35	HMQC Spectrum of compound MEL3 (CDCl ₃) (expanded,	δ
	_H 5.9-8.3 ppm, δ _C 97-150 ppm)	91
36	ESI Mass spectrum of compound MEL4	92
37	UV Spectrum of compound MEL4 (MeOH)	92
38	IR Spectrum of compound MEL4 (film)	93
39	¹ H-NMR (300 MHz) Spectrum of compound MEL4 (CDCl ₃)	93
40	¹³ C-NMR (75 MHz) Spectrum of compound MEL4 (CDCl ₃)	94
41	HMQC Spectrum of compound MEL4 (CDCl ₃)	94
42	HMQC Spectrum of compound MEL4 (CDCl ₃) (expanded,	
	$δ_{\rm H}$ 5.4-7.8 ppm, $δ_{\rm C}$ 91-123 ppm)	95
43	NOESY Spectrum of compound MEL4 (CDCl ₃)	95
44	NOESY Spectrum of compound MEL4 (CDCl ₃) (expanded,	δ
	_H 4.5-8.0 ppm)	96
45	HMBC Spectrum of compound MEL4 (CDCl ₃)	96
46	HMBC Spectrum of compound MEL4 (CDCl ₃) (expanded,	δ
	_H 5.7-9.0 ppm, δ _C 92-132 ppm)	97

LIST OF FIGURES (continued)

LIST OF FIGURES (continued)

Figur	re de la companya de	Page
47	HMBC Spectrum of compound MEL4 (CDCl ₃) (expanded,	δ
	_H 5.8-7.9 ppm, δ _C 85-190 ppm)	97
48	ESI Mass spectrum of compound MEL5	98
49	UV Spectrum of compound MEL5 (MeOH)	98
50	IR Spectrum of compound MEL5 (film)	99
51	¹ H-NMR (300 MHz) Spectrum of compound MEL5 (CDCl ₃)	99
52	¹³ C-NMR (75 MHz) Spectrum of compound MEL5 (CDCl ₃)	100
53	HMQC Spectrum of compound MEL5 (CDCl ₃)	100
54	NOESY Spectrum of compound MEL5 (CDCl ₃)	101
55	ESI Mass spectrum of compound MEL6	101
56	UV Spectrum of compound MEL6 (MeOH)	102
57	IR Spectrum of compound MEL6 (film)	102
58	¹ H-NMR (300 MHz) Spectrum of compound MEL6 (acetone- d_6)	103
59	¹³ C-NMR (75 MHz) Spectrum of compound MEL6 (acetone- d_6)	103
60	HMQC Spectrum of compound MEL6 (acetone- <i>d</i> ₆)	104
61	HMBC Spectrum of compound MEL6 (acetone- <i>d</i> ₆)	104
62	ESI Mass spectrum of compound MEL7	105
63	UV Spectrum of compound MEL7 (MeOH)	105
64	IR Spectrum of compound MEL7 (film)	106
65	¹ H-NMR (300 MHz) Spectrum of compound MEL7 (acetone- d_6)	106
66	¹³ C-NMR (75 MHz) Spectrum of compound MEL7 (acetone- d_6)	107

จุฬาลงกรณมหาวทยาลย

LIST OF SCHEMES

Schen	Scheme	
1	Separation of the hexane extract of Millettia erythrocalyx	
	leaves	49
2	Separation of fraction D4 from the hexane extract of	
	<i>M. erythrocalyx</i> leaves	50
3	Separation of fraction D5 from the hexane extract of	
	M. erythrocalyx leaves.	51
4	Separation of fraction D5-4-6A from the hexane extract of	
	M. erythrocalyx leaves	52
5	Separation of fraction D5-4-5 from the hexane extract of	
	M. erythrocalyx leaves	53
6	Separation of fraction G from the hexane extract of	
	M. erythrocalyx leaves	54
7	Separation of fraction G3 from the hexane extract of	
	M. erythrocalyx leaves	55
8	Separation of fraction H from the hexane extract of	
	<i>M. erythrocalyx</i> leaves	56
9	Separation of fraction H6-2-1C from the hexane extract of	
	M. erythrocalyx leaves.	57

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

LIST OF ABBREVIATIONS AND SYMBOLS

α	=	Alpha
Acetone- <i>d</i> ₆	=	Deuterated acetone
β	=	Beta
CA	=	Chemical Abstract
CDCl ₃	=	Deuterated chloroform
CHCl ₃	=	Chloroform
cm	=	Centimeter
cm ⁻¹	= 🤞	Reciprocal centimeter (unit of wave number)
¹³ C NMR	= /	Carbon-13 Nuclear Magnetic Resonance
d	= 🥖	Doublet (for NMR spectra)
dd	=	Doublet of doublets (for NMR spectra)
DEPT	=	Distortionless Enhancement by Polarization Transfer
δ	=	Chemical shift
ESIMS	-0	Electrospray Ionization Mass Spectrometry
EtOAc	=	Ethyl acetate
EtOH	=	Ethanol
g	ส์ถ	Gram
¹ H NMR	=	Proton Nuclear Magnetic Resonance
HMBC	<u>-</u> 8	¹ H-detected Heteronuclear Multiple Bond Coherence
HMQC	=	¹ H-detected Heteronuclear Multiple Quantum Coherence
HRESIMS	=	High Resolution Electrospray Ionization Mass Spectrometry
Hz	=	Hertz
IR	=	Infrared Spectrum
J	=	Coupling constant

LIST OF ABBREVIATIONS AND SYMBOLS (continued)

Kg	=	Kilogram
L	=	Liter
λ_{max}	=	Wavelength at maximal absorption
3	=	Molar absorptivity
m	=	Multiplet (for NMR spectra)
МеОН	=	Methanol
mg	=	Milligram
$\left[\mathrm{M+H}\right]^{+}$	=	Protonated molecular ion
MHz	=	Megahertz
ml	= /	Milliliter
MW	=	Molecular weight
m/z	=	Mass to charge ratio
MS	=	Mass Spectrometry
NMR	=	Nuclear Magnetic Resonance
NOE	=	Nuclear Overhauser Effect
NOESY	=	Nuclear Overhauser Effect Spectroscopy
0	สถ	Ortho
p	=	Para
pet. ether	<u>1</u> 0	Petroleum ether
ppm	=	Part per million
pyridine-d ₅	=	Deuterated pyridine
v_{max}	=	Wave number at maximal absorption
S	=	Singlet (for NMR spectra)
t	=	Triplet (for NMR spectra)

LIST OF ABBREVIATIONS AND SYMBOLS (continued)

		onder und visible opeen opnotomenty
UV-VIS	=	Ultraviolet and Visible Spectrophotometry
UV	=	Ultraviolet
TLC	=	Thin Layer Chromatography

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER I

Introduction

The genus *Millettia* belongs to the subfamily Papilionoideae of the family Leguminosae, with more than 200 species distributed in tropical Africa, Asia and Australia. Plants in this genus are well known for elaborating flavonoids and isoflavonoids.

The plants in the genus *Millettia* are trees or large shrubs, usually climbers. Leaves odd-pinnate. Flowers showy, in axillary racemes, often fascicled, simple or paniculate and terminal. Calyx campanulate; teeth generally short or nearly obsolete. Corolla much exerted; petals with long claws; standard broad; keel not beaked. Stamens monadelphous or diadelphous, filaments filiform; anthers uniform. Ovary sessile, linear, few-ovuled; style filiform, incurved, glabrous, stigma capitate. Pod linear or oblong, 1- or few-seeded, flat or turgid, late in dehiscing or hardly dehiscent (Chopra, Budhwar and Ghosh, 1965)

According to Smitinand (2001), the species of the genus *Millettia* found in Thailand are as follows.

Millettia atropurpurea Wall. M. brandisiana Kurz

M. caerulea Baker.

= Collerya atropurpurea(Wall.)Schott กระพี่จั่น Kra phi chan, จั่น Chan, พี่จั่น Phi Chan

(General); ปี้จั่น Pi Chan (Northern).

ปัวเปาะเด็าะ Pua-po-do (Karen Mae Hong Son); ผักเยี่ยววัว Phak yiao wua

(Nakhonsawan, Northern); หางใหลแดง Hang

Lai daeng (Kanchanaburi).

M. decipiens Prain

M. extensa Benth.

ปารี Pa ri (Malay-Narathiwat).

ก้าวเครือ Kao khruea, กวาวเครือ Kwao khruea

(Chiang Mai); ตานครบ Tan krop (Lampang).

M. glaucescens Kurz	ยะดา Ya-daa (Malay-Narathiwat); หยีน้ำ Yi
	nam (Peninsular).
M. kangensis Craib	กระเจาะ Kra cho, ขะเจาะ Kha cho, ขะเจาะน้ำ
	Kha cho nam (Chiang Mai).
M. kityana Craib	เครือข้าวเย็น Khruea khao yen, ลางเย็น Lang
	yen, ฮางเย็น Hang yen (Northern).
M. latifolia Dunn	ขะเจาะ Kha cho (General).
M. leucantha Kurz	กะเขาะ Kaso (Central); กระเจาะ Kra cho,
var. leucantha	ขะเจาะ Kha cho (Northern); กระพี้เขาควาย
	Kra phi khao khwai (Prachuap Khiri Khan);
	ขะแมบ Kha maep, คำแมบ Kham maep
	(Chiang Mai).
M. leucanthe Kurz	กระเจ้าะ Kra cho, ขะเจ้าะ Kha cho
var. buteoides (Gagnep.)P.K.Loc	(Lampang); กระท้อน Kra thon,
(M. buteoides Gagnep. var.	(Phetchabun Phitsanulok); ไม้กระทงน้ำผัก
siamensis Craib, M. pendula	Mai kra tong nam phak (Loei); สะท้อน
Benth.)	Sa thon (Saraburi); สาธร Sa thon (Ubon
	Ratchathani).
M. macrostachya Collett & Hemsl.	ขะเจาะน้ำ Kha cho nam (Chiang Mai).
var. macrostachya	
<i>M. macrostachya</i> Collett & Hemsl.	ขะเจาะหลวง Kha cho luang, ขะเจาะใหญ่
var. tecta Craib	Kha cho yai (Narathiwat).
<i>M. pachycarpa</i> Benth.	เกถะ Ke-tha (Karen-Chiang Mai); เครือไหล
	Khruea lai (Chiang Mai).

M. peguensis Ali
(*M. ovalifolia* Kurz) *M. pulcha* Benth. Kurz *M. racemosa* (Roxb.)Benth. *M. sericea* (Vent.)Benth.

M. thorelii Gagnep.*M. utilis* Dunn

M. xylocarpa Miq.

ตอหิ To-hi (Karen-Kanchanaburi).

จันพอ Chan pho (Northern). = Endosamara racemosa (Roxb.)R. Geesink จะในโค๊ะ Cha-nai-kho, ปาตู Paa-tu (Malay-Narathiwat); นอเราะ No-ro (Malay-Yala, Pattani); ยิมแมเก้าะ Yim-mae-ko (Malay-Yala); อ้อยสามสวน Oi sam suan (Nong Khai). = Derris thorelii Craib สะท้อนน้ำผัก Sathon nam phak (Loei). กะเจ้าะ Ka cho, ขะเจาะ Kha cho (General); คะแมด Kha maet (Chiang Mai); จักจั่น Chakkachan (Loei); พี้พง Phi phong (Phrae); ยะดา Ya-da (Malay-Yala); ไย่ยี่ Yai-yi (Karen-Mae Hong Son); สาธร Sa thon, หยี่น้ำ Yi nam (Pattani-Yala).

Although *Millettia erythrocalyx* Gagnep. has not been recorded in Thai Plant Names (Smitinand, 2001), but the herbarium specimens of this species have been kept at the Royal Forest Department, Ministry of Agriculture and Co-operatives.

Millettia erythrocalyx Gagnep. has a local name as Jun. It is a medium-sized tree reaching 7-8 m. Bark: grayish. Branchlets: rusty strigose, become glabrescent, spotted lenticels prominent. Leaflets 7-11, ovate- or elliptic-lanceolate, papery, 3-6 x 1.5-2 cm., base narrowly cordate, apex caudate, glabrous and shining adaxially, scarlet strigose on midrib and margins abaxially. Pseudoracemenes: axiallary on the tip of branchs, 6-7 cm., densely dark brown strigose; flower 8-9 mm., calyx 3 mm., deep red, sparsely hairy, teeth

truncate, ciliated; corolla lilac, vexillum glabrous, round tapering at base, with 2 minute callus; ovary villose, ovules 4-5. Pod: linear-oblong, 9-10 x 2 cm., flat, slightly curved, tapering to the base, brown tomentose when young, become glabrecent, valves woody, spirally twisted. Seeds: 2-3, chestnut brown, 13 x 10 mm., lens-shaped, smooth. It has been found in Thailand, Laos and Cambodia (Zhi, 2002).

The isolations of several phenolic compounds from the root and the stem bark of Millettia erythrocalyx Gagnep. have been earlier described (Sritularak, 2002a and 2002b). The compounds from the stem bark of *M. erythrocalyx* are millettocalyxins A-C, pongol methyl ether, 2'-hydroxy-3,4-methylenedioxy-4'- γ , γ -dimethylallyloxychalcone, $7-\gamma,\gamma$ -dimethylallyloxyflavanone, ponganone I, karanjin, milletenone, derricidin. milletenin C, 3',4'-methylenedioxy-7-methoxyflavone, pongaglabrone, ovalifolin, prunetin, vicenin II, isovitexin, lupeol and dihydrophaseic acid-4'-O-B-D-gluco pyranoside. The compounds found in the root of M. erythrocalyx are 6-methoxy-[2",3":7,8]-furanoflavanone, 2,5-dimethoxy-4-hydroxy-[2",3":7,8]-furanoflavan, 3.4methylenedioxy-2',4'-dimethoxychalcone, 1-(4-hydroxy-5-benzofuranyl)-3-phenyl-2propen-1-one, derricidin, purpurenone, pongaglabol, ponganone I, pongamol, ovalitenone, milletenone, ponganoneV and lanceolatin B. So far, the constituents of the leaves of this plant have not been reported. Therefore, in this investigation the following objectives are put forward:

- 1. to isolate and purify chemical constituents of the leaves of M. erythrocalyx
- 2. to determine the chemical structure of each isolated compound

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Figure 1 Millettia erythrocalyx Gagnep.

CHAPTER II

HISTORICAL

1. Chemical Constituents of Millettia species

Chemical investigations of several *Millettia* species have shown them to be a good source of flavonoids. In addition, other classes of natural compounds such as rotenoids, nitrogenous compounds, terpenoids and miscellaneous substances have been found (Tables 1 and 2).

Plant and compound	Category	Plant part	Reference
Millettia auriculata			
Auricularin [1]	Isoflavone	Root	Rao, Prasad and Ganapaty,
			1992
Auriculasin [2]	Isoflavone	Leaf	Minhaj et al., 1976
Auriculatin [3]	Isoflavone	Root	Shabbir et al., 1968
Auriculin [4]	Isoflavone	Root	Shabbir and Zaman, 1970
Aurmillone [5]	Isoflavone	Seed	Raju and Srimannarayana,
			1978
2'-Deoxyisoauriculatin [6]	Isoflavone	Root	Rao, Prasad and Ganapaty,
			1992
Isoauriculasin [7]	Isoflavone	Leaf	Minhaj <i>et al.</i> , 1976
Isoauriculatin [8]	Isoflavone	Root	Shabbir and Zaman, 1970
Isoaurmillone [9]	Isoflavone	Pod	Gupta et al., 1983
2'-O-Methylisoauriculatin	Isoflavone	Root	Rao, Prasad and Ganapaty,
[10]		NIJ	1992
Millettin [11]	Isoflavone	Seed	Raju <i>et al.</i> , 1981
Scandenone [12]	Isoflavone	Root	Rao, Prasad and Ganapaty,
			1992
M. conraui			
Conrauinone A [13]	Isoflavone	Stem bark	Fuendjiep et al., 1998a
Conrauinone B [14]	Isoflavone	Stem bark	Fuendjiep et al., 1998a
Conrauinone C [15]	Isoflavone	Stem bark	Fuendjiep et al., 1998b

Table 1 Distribution of flavonoids in Millettia species.

Plant and compound	Category	Plant part	Reference
Conrauinone D [16]	Isoflavone	Stem bark	Fuendjiep et al., 1998b
7-Hydroxy-6-methoxy-3'-4'-	Isoflavone	Stem bark	Fuendjiep et al., 1998b
methylenedioxyisoflavone [17]			
5-Methoxydurmillone [18]	Isoflavone	Stem bark	Fuendjiep et al., 1998a
M. dura			
Calopogonium isoflavone A	Isoflavone	Stem bark	Yenesew, Midiwo and
[19]			Waterman, 1996
6-Demethyldurallone [20]	Isoflavone	Seed pod	Yenesew, Midiwo and
			Waterman, 1996
7,2'-Dimethoxy-4',5'-	Isoflavone	Stem bark	Dagne, Mammo and
methylenedioxyisoflavone [21]	baa	Root bark	Bekele, 1991
Durallone [22]	Isoflavone	Seed pod	Yenesew, Midiwo and
			Waterman, 1996
Durlettone [23]	Isoflavone	Seed	Ollis, Rhodes and
	ABIRIA		Sutherland, 1967
Durmillone [24]	Isoflavone	Seed	Ollis, Rhodes and
		and and a series	Sutherland, 1967
		Stem bark	Yenesew, Midiwo and
			Waterman, 1996
Ferrugone [25]	Isoflavone	Seed pod	Yenesew, Midiwo and
0.1			Waterman, 1997
Formononetin [26]	Isoflavone	Seed pod	Yenesew, Midiwo and
			Waterman, 1997
4-Hydroxyderricin [27]	Chalcone	Stem bark	Dagne, Mammo and
	99199	Root bark	Bekele, 1991
4-Hydroxylonchocarpin [28]	Chalcone	Stem bark	Dagne, Mammo and
		Root bark	Bekele, 1991
Isoerythrin-A-4'-(3-methylbut-	Isoflavone	Seed pod	Yenesew, Midiwo and
2-enyl)ether [29]			Waterman, 1996
Jamaicin [30]	Isoflavone	Seed pod	Yenesew, Midiwo and
			Waterman, 1997

Plant and compound	Category	Plant part	Reference
Maximaisoflavone B [31]	Isoflavone	Stem bark	Dagne, Mammo and
		Root bark	Bekele, 1991
Maximaisoflavone D [32]	Isoflavone	Stem bark	Yenesew, Midiwo and
			Waterman, 1996
Maximaisoflavone H [33]	Isoflavone	Stem bark	Yenesew, Midiwo and
			Waterman, 1996
6-Methoxycalopogonium isoflavone A	Isoflavone	Seed pod	Yenesew, Midiwo and
[34]	9		Waterman, 1997
Milldurone [35]	Isoflavone	Seed	Ollis, Rhodes and
			Sutherland, 1967
Predurallone [36]	Isoflavone	Seed pod	Yenesew, Midiwo and
			Waterman, 1996
M. erythrocalyx			
Derricidin [37]	Chalcone	Stem bark	Sritularak et al., 2002a
2,5-Dimethoxy-4-hydroxy-[2",3":7,8]-	Flavan	Root	Sritularak et al., 2002b
furanoflavan [38]	C. C		
7-γ,γ-Dimethylallyloxyflavanone [39]	Flavanone	Stem bark	Sritularak et al., 2002a
1-(4-Hydroxy-5-benzofuranyl)-3-	Chalcone	Root	Sritularak et al., 2002b
phenyl-2-propen-1-one [40]			
2'-Hydroxy-3,4-methylenedioxy	Chalcone	Stem bark	Sritularak et al., 2002a
4'-γ,γ-dimethylallyloxychalcone [41]			
Lanceolatin B [42]	Flavone	Root	Sritularak et al., 2002b
6-Methoxy-[2",3":7,8]-furanoflavanone	Flavanone	Root	Sritularak et al., 2002b
[43]	91987	วิทย	าล์ย
3,4-Methylenedioxy-2',4'-dimethoxy	Chalcone	Root	Sritularak et al., 2002b
chalcone [44]			
3',4'-Methylenedioxy-6,7-dimethoxy	Flavone	Stem bark	Sritularak <i>et al.</i> , 2002a
flavone (Milletenin C) [45]			
3',4'-Methylenedioxy-7-methoxy	Flavone	Stem bark	Sritularak <i>et al.</i> , 2002a
flavone [46]			
Milletenone [47]	Chalcone	Stem bark	Sritularak et al., 2002a

Plant and compound	Category	Plant part	Reference
Millettocalyxin A [48]	Flavone	Stem bark	Sritularak et al., 2002a
Millettocalyxin B [49]	Flavone	Stem bark	Sritularak et al., 2002a
Millettocalyxin C [50]	Flavone	Stem bark	Sritularak et al., 2002a
Ovalifolin [51]	Flavone	Stem bark	Sritularak et al., 2002a
Ovalitenone [52]	Dibenzoyl-	Root	Sritularak et al., 2002b
	methane	L.,	
Pongaglabol [53]	Flavone	Root	Sritularak et al., 2002b
Pongaglabrone [54]	Flavone	Stem bark	Sritularak et al., 2002a
Pongamol [55]	Chalcone	Root	Sritularak et al., 2002b
Ponganone I [56]	Chalcone	Stem bark	Sritularak et al., 2002a
Ponganone V [57]	Flavanone	Root	Sritularak et al., 2002b
Pongal methyl ether [58]	Flavone	Stem bark	Sritularak et al., 2002a
Prunetin [59]	Isoflavone	Stem bark	Sritularak et al., 2002a
Purpurenone [60]	Chalcone	Root	Sritularak et al., 2002b
M. ferruginea			
subsp. darassana			
Barbigerone [61]	Isoflavone	Seed	Dagne and Bekele, 1990
Calopogonium isoflavone A[19]	Isoflavone	Seed	Dagne and Bekele, 1990
Durmillone [24]	Isoflavone	Seed pod	Dagne, Bekele and
			Waterman, 1989
		Seed	Dagne and Bekele, 1990
Ferrugone [25]	Isoflavone	Stem bark	Dagne, Bekele and
			Waterman, 1989
ลเท่าลงกร	ถ่าเห	Seed	Dagne and Bekele, 1990
Flemichapparin B [62]	Pterocarpene	Stem bark	Dagne, Bekele and
			Waterman, 1989
7-Hydroxy-5,6-dimethoxy-3',4' -	Isoflavone	Stem bark	Dagne, Bekele and
methylenedioxyisoflavone [63]			Waterman, 1989

Plant and compound	Category	Plant part	Reference
Ichthynone [64]	Isoflavone	Stem bark	Dagne, Bekele and
			Waterman, 1989
Jamaicin [30]	Isoflavone	Stem bark	Dagne, Bekele and
			Waterman, 1989
5-Methoxydurmillone [18]	Isoflavone	Stem bark	Dagne, Bekele and
			Waterman, 1989
Predurmillone [65]	Isoflavone	Seed	Dagne and Bekele, 1990
Prefurrugone [66]	Isoflavone	Seed	Dagne and Bekele, 1990
M. ferruginea	7		
subsp. ferruginea			
Barbigerone [61]	Isoflavone	Seed	Dagne and Bekele, 1990
Calopogonium isoflavone A[19]	Isoflavone	Seed	Dagne and Bekele, 1990
Calopogonium isoflavone B[67]	Isoflavone	Stem bark	Dagne and Bekele, 1990
Durmillone [24]	Isoflavone	Seed	Dagne and Bekele, 1990
Ferrugone [25]	Isoflavone	Seed	Dagne and Bekele, 1990
1000	a services	Root bark	Dagne et al., 1990
7-O-Geranylformononetin [68]	Isoflavone	Root bark	Dagne et al., 1990
4'-O-Geranylisoliquiritigenin [69]	Chalcone	Root bark	Dagne et al., 1990
4'-Hydroxyisolonchocarpin [70]	Flavanone	Stem bark	Dagne, Bekele and
			Waterman, 1989
4-Hydroxylonchocarpin [28]	Chalcone	Stem bark	Dagne, Bekele and
สถาบบา	9/1919	ริกา	Waterman, 1989
Isojamaicin [71]	Isoflavone	Stem bark	Dagne, Bekele and
ลหัวลงกรถ	191981	ก๊ากเ	Waterman, 1989
Jamaicin [30]	Isoflavone	Stem bark	Dagne, Bekele and
			Waterman, 1989
		Root bark	Dagne et al., 1990
5-Methoxydurmillone [18]	Isoflavone	Stem bark	Dagne, Bekele and
			Waterman, 1989
		Root bark	Dagne et al., 1990
Nordurlettone [72]	Isoflavone	Seed	Dagne et al., 1990

Plant and compound	Category	Plant part	Reference
Prebarbigerone [73]	Isoflavone	Seed	Dagne and Bekele, 1990
Pre-5-methoxydurmillone [74]	Isoflavone	Root bark	Dagne and Bekele, 1990
M. griffoniana			
Calopogonium isoflavone B [67]	Isoflavone	Root bark	Yankep, Fomum and
	Andrea -		Dagne, 1997
3′,4′-Dihydroxy-7- <i>O</i> -[(<i>E</i>)-3,7-	Isoflavone	Root bark	Yankep et al., 1998
dimethyl-2,6-octadienyl]isoflavone			
[75]			
7,2'-Dimethoxy-4',5'-methylene	Isoflavone	Root bark	Yankep, Fomum and
dioxyisoflavone [21]			Dagne, 1997
Durmillone [24]	Isoflavone	Root bark	Yankep, Fomum and
			Dagne, 1997
7-O-Geranylformononetin [68]	Isoflavone	Root bark	Yankep, Fomum and
	The Company		Dagne, 1997
4'-O-Geranylisoliquiritigenin [69]	Chalcone	Root bark	Yankep, Fomum and
			Dagne, 1997
7-O-Geranylpseudobaptigenin [76]	Isoflavone	Root bark	Yankep, Fomum and
			Dagne, 1997
Griffonianone B [77]	Isoflavone	Root bark	Yankep et al., 2001
Griffonianone C [78]	Isoflavone	Root bark	Yankep et al., 2001
7-Hydroxy-6-methoxy-3',4'-	Isoflavone	Root bark	Yankep et al., 2001
methylenedioxyisoflavone [17]	ה קערר		ร
Jamaicin [30]	Isoflavone	Root bark	Yankep, Fomum and
ลฬาลงกรร	าเจาร		Dagne, 1997
Maximaisoflavone G [79]	Isoflavone	Root bark	Yankep et al., 2001
4'-Methoxy-7- <i>O</i> -[(<i>E</i>)-3-methyl-7-	Isoflavone	Root bark	Yankep et al., 1998
hydroxymethyl-2,6-octadienyl]			
isoflavone [80]			
Odorantin [81]	Isoflavone	Root bark	Yankep, Fomum and
			Dagne, 1997

Plant and compound	Category	Plant part	Reference
M. hemsleyana			
Dihydroisomilletenone methyl ether	Chalcone	Stem bark	Mahmoud and
[82]			Waterman, 1985
Dihydromilletenone methyl ether	Chalcone	Stem bark	Mahmoud and
[83]			Waterman, 1985
Lanceolatin B [42]	Flavone	Stem bark	Mahmoud and
			Waterman, 1985
3',4'-Methylenedioxy-7-methoxy	Flavone	Stem bark	Mahmoud and
flavone [46]			Waterman, 1985
Milletenone [47]	Chalcone	Stem bark	Mahmoud and
	a tan a		Waterman, 1985
Pongaflavone [84]	Flavone	Stem bark	Mahmoud and
			Waterman, 1985
M. ichthyochtona	A Gung Dama		
3,6-Dimethoxyfurano[4",5":8,7]	Flavone	Leaf	Kamperdick et al.,1998
flavone [85]			
Jamaicin [30]	Isoflavone	Leaf	Kamperdick et al.,1998
2',4',5'-Trimethoxy-2",2"-dimethyl	Isoflavone	Leaf	Kamperdick et al.,1998
pyrano[5",6":6,7]isoflavone [86]			
M. laurentii			
Calycosin [87]	Isoflavone	Wood	Kamnaing et al., 1999
Glyricidin [88]	Isoflavone	Wood	Kamnaing et al., 1999
Laurentinol [89]	Flavonol	Wood	Kamnaing et al., 1999
Laurentiquinone [90]	Isoflavan	Wood	Kamnaing et al., 1999
M. leucantha			
Desmethoxykanugin [91]	Flavone	Stem bark	Phrutivorapongkul et al.,
			2003
Dihydromilletenone methyl ether	Chalcone	Stem bark	Phrutivorapongkul et al.,
[83]			2003
2',4'-Dimethoxy-3,4-methylene-	Chalcone	Stem bark	Phrutivorapongkul et al.,
dioxychalcone [92]			2003

Plant and compound	Category	Plant part	Reference
2'-Hydroxy-3,4,4',6'-tetramethoxy	Chalcone	Stem bark	Phrutivorapongkul et al.,
chalcone [93]			2003
Karanjin [94]	Flavone	Stem bark	Phrutivorapongkul et al.,
			2003
Lanceolatin B [42]	Flavone	Stem bark	Phrutivorapongkul et al.,
			2003
3',4'-methylenedioxy-7-methoxy-	Flavone	Stem bark	Phrutivorapongkul et al.,
flavone [46]			2003
3',4'-methylenedioxy-5,7-methoxy-	Flavone	Stem bark	Phrutivorapongkul et al.,
flavone [95]			2003
2,4,6, β -tetramethoxy-3',4'-	Chalcone	Stem bark	Phrutivorapongkul et al.,
methylenedioxychalcone [96]			2003
2',4',6'-trimethoxy-3,4-methylene-	Chalcone	Stem bark	Phrutivorapongkul et al.,
dioxychalcone [97]	The County of		2003
2',4',6'-trimethoxy-3,4-methylene-	Chalcone	Stem bark	Phrutivorapongkul et al.,
dioxydihydrochalcone [98]			2003
M. ovalifolia	20.21.82		
1-(4-Hydroxy-5-benzofuranyl)-3-	Chalcone	Root	Saxena et al., 1987
phenyl-2-propen-1-one [40]			
7-Hydroxy-6,8-di-C-prenyl	Flavanone	Seed	Gupta and Krishnamurti,
flavanone (Ovaliflavanone A) [99]			1976a
7-Hydroxy-8-C-prenylflavanone	Flavanone	Seed	Gupta and Krishnamurti,
(Ovaliflavanone B) [100]			1976a
Kanjone [101]	Flavone	Seed	Gupta and Krishnamurti,
	ичи		1976a
Karanjin [94]	Flavone	Seed	Gupta and Krishnamurti,
			1976a
Lanceolatin B [42]	Flavone	Seed	Gupta and Krishnamurti,
			1976a
Milletenin A [102]	Flavanone	Leaf	Khan and Zaman, 1974

Plant and compound	Category	Plant part	Reference
Milletenin B [103]	Flavanone	Leaf	Khan and Zaman, 1974
Milletenin C [45]	Flavone	Leaf	Khan and Zaman, 1974
Milletenone [47]	Chalcone	Leaf	Khan and Zaman, 1974
Ovalichalcone [104]	Chalcone	Seed	Gupta and Krishnamurti, 1977a
Ovalichromene [105]	Flavanone	Seed	Gupta and Krishnamurti, 1976b
Ovalichromene A [106]	Flavanone	Seed	Gupta and Krishnamurti, 1976c
Ovalichromene B [107]	Flavanone	Seed	Gupta and Krishnamurti, 1976c
Ovaliflavanone C [108]	Flavanone	Seed	Islam, Gupta and Krishnamurti,
			1980
Ovaliflavanone D [109]	Flavanone	Seed	Islam, Gupta and Krishnamurti,
			1980
Ovalifolin [51]	Flavone	Leaf	Khan and Zaman, 1974
Ovalitenin A [110]	Chalcone	Seed	Gupta and Krishnamurti, 1977b
Ovalitenin B [111]	Chalcone	Seed	Gupta and Krishnamurti, 1976c
Ovalitenin C [112]	Chalcone	Seed	Islam, Gupta and Krishnamurti,
	(MARAARA B)	THE A	1980
Ovalitenone [52]	Dibenzoyl-	Seed	Gupta and Krishnamurti, 1977b
	methane		
Pongachalcone [113]	Chalcone	Seed	Gupta and Krishnamurti, 1976c
Pongaglabrone [54]	Flavone	Seed	Gupta and Krishnamurti, 1976a
Pongamol [55]	Chalcone	Seed	Gupta and Krishnamurti, 1976b
Pongapin [114]	Flavone	Seed	Gupta and Krishnamurti, 1976b
M. pachycarpa			
Chalcone [115]	Chalcone	Seed	Singhal et al., 1983
5-Hydroxy-4'-methoxy-6",6"-	Isoflavone	Seed	Singhal et al., 1983
dimethylpyrano(2",3":7,8)			
isoflavone [116]			
Isoflavone [117]	Isoflavone	Leaf	Singhal et al., 1981
Isoflavone [118]	Isoflavone	Leaf	Singhal et al., 1981
Isoflavone [119]	Isoflavone	Leaf	Singhal et al., 1982
Isoflavone [120]	Isoflavone	Leaf	Singhal et al., 1982

Plant and compound	Category	Plant part	Reference
Isoflavone [121]	Isoflavone	Seed	Singhal et al., 1983
Isolonchocarpin [122]	Flavanone	Root	Shao <i>et al.</i> , 2001a
Lupinifolol [123]	Flavanonol	Aerial part	Singhal et al., 1980
5-Methoxykaranjin [124]	Flavone	Root	Lu et al., 1999
Pachycarin A [125]	Flavone	Root	Chen et al., 1999
Pachycarin B [126]	Flavone	Root	Chen et al., 1999
Pachycarin C [127]	Flavone	Root	Shao <i>et al.</i> , 2001b
Pachycarin D [128]	Flavone	Root	Shao <i>et al.</i> , 2001b
Pachycarin E [129]	Flavone	Root	Shao <i>et al.</i> , 2001b
Pinnatin [130]	Flavone	Root	Shao <i>et al.</i> , 2001a
Pomiferin [131]	Isoflavone	Seed	Singhal et al., 1983
Pongaflavone [84]	Flavone	Root	Shao <i>et al.</i> , 2001a
5,7,3',4'-Tetrahydroxy-6,8-diprenyl	Isoflavone	Aerial part	Singhal et al., 1980
isoflavone [132]	The Owner A	Seed	Singhal et al., 1983
5,7,4'-Trihydroxy-6,8-diprenyl	Isoflavone	Aerial part	Singhal et al., 1980
isoflavone [133]		Seed	Singhal et al., 1983
5,7,4'-Trihydroxy-6,3'-diprenyl	Isoflavone	Aerial part	Singhal et al., 1980
isoflavone [134]			
M. peguensis			
Kanjone [101]	Flavone	Stem bark	Ganapaty et al., 1998
Lanceolatin B [42]	Flavone	Stem bark	Ganapaty et al., 1998
Milletenone [47]	Chalcone	Stem bark	Ganapaty et al., 1998
Ovaliflavanone A [99]	Flavanone	Stem bark	Ganapaty et al., 1998
Ovalitenone [52]	Dibenzoyl-	Stem bark	Ganapaty et al., 1998
9 1 1 1 1 1 1 1 1 1 1 1	methane		1610
Pongaglabol [53]	Flavone	Leaf	Ganapaty et al., 1998
Pongamol [55]	Chalcone	Leaf	Ganapaty et al., 1998

Plant and compound	Category	Plant part	Reference
M. pendura			
Claussequinone [135]	Isoflavan	Heart wood	Hayashi <i>et al</i> ., 1978
Equol [136]	Isoflavan	Heart wood	Hayashi <i>et al</i> ., 1978
(-)-Maackiain [137]	Pterocarpan	Heart wood	Hayashi <i>et al</i> ., 1978
Pendulone [138]	Isoflavan	Heart wood	Hayashi <i>et al</i> ., 1978
M. pervilleana			
3'- <i>O</i> -Demethylpervilleanone [139]	Isoflavone	Root bark	Galeffi et al., 1997
Emoroidocarpan [140]	Pterocarpan	Root bark	Palazzino et al., 2003
Pervilleanone [141]	Isoflavanone	Root bark	Galeffi et al., 1997
Pervilline [142]	Pterocarpan	Root bark	Palazzino et al., 2003
Pervillinine [143]	Pterocarpan	Root bark	Palazzino et al., 2003
M. pulchra			
7,4'-Dihydroxy-8,3',5'-triprenyl	Flavanonol	Aerial part	Baruah et al., 1984
dihydroflavanol [144]	A Comp A		
(-)-Maackiain [137]	Pterocarpan	Aerial part	Baruah et al., 1984
6α-Methoxyhomopterocarpin [145]	Pterocarpan	Aerial part	Baruah et al., 1984
6α-Methoxypterocarpin [146]	Pterocarpan	Aerial part	Baruah et al., 1984
5,7,2',4'-Tetrahydroxy-6,3'-	Isoflavone	Aerial part	Baruah et al., 1984
diprenylisoflavone [147]			
5,7,4'-Trihydroxy-2'-methoxy-6,3'-	Isoflavone	Aerial part	Baruah et al., 1984
diprenylisoflavone [148]			
5,7,4'-Trihydroxy-8,3',5'-triprenyl	Flavanone	Aerial part	Baruah et al., 1984
flavanone [149]			0.7
(-)-Pterocarpin [150]	Pterocarpan	Aerial part	Baruah et al., 1984
(-)-Sophoranone [151]	Flavanone	Aerial part	Baruah <i>et al.</i> , 1984
M. racemosa			
(+)-Cyclomillinol [152]	Isoflavan	Stem	Kumar, Krupadanam
			and Srimannarayana,
			1989
Demethylvestitol [153]	Isoflavan	Stem	Rao, Prashant and
			Krupadanam, 1996

Plant and compound	Category	Plant part	Reference
(-)-Isomillinol B [154]	Isoflavan	Stem	Rao and Krupadanam,
			1994
Laxifloran [155]	Isoflavan	Stem	Rao and Krupadanam,
			1994
(+)-Millinol [156]	Isoflavan	Stem	Kumar, Krupadanam
			and Srimannarayana,
			1989
(+)-Millinol B [157]	Isoflavan	Stem	Kumar, Krupadanam
			and Srimannarayana,
			1989
Millinolol [158]	Isoflavan	Stem	Rao, Prashant and
			Krupadanam, 1996
Neomillinol [159]	Isoflavan	Stem	Rao, Prashant and
	The Out of		Krupadanam, 1996
Neovestitol [160]	Isoflavan	Stem	Rao, Prashant and
			Krupadanam, 1996
Vestitol [161]	Isoflavan	Stem	Rao and Krupadanam,
			1994
M. rubiginosa			
Durmillone [24]	Isoflavone	Root	Desai et al., 1977
Ichthynone [64]	Isoflavone	Root	Desai et al., 1977
M. sanagana	79/1819	โรกา	5
Kanjone [101]	Flavone	Root bark	Mbafor et al., 1995
Lanceolatin B [42]	Flavone	Root bark	Mbafor et al., 1995
5-Methoxyfurano[7,8:4",5"]flavone	Flavone	Root bark	Mbafor et al., 1995
[124]			
Pongamol [55]	Chalcone	Root bark	Mbafor et al., 1995
Sanaganone [162]	Flavone	Root bark	Mbafor et al., 1995

Plant and compound	Category	Plant part	Reference
M. thonningii			
Alpinumisoflavone [163]	Isoflavone	Seed	Olivares et al., 1982
3',5-Dihydroxy-4'-methoxy-2",2"-	Isoflavone	Seed	Olivares et al., 1982
dimethylpyrano-(5",6":6,7)			
isoflavone [164]	S Andrea I		
Dimethylalpinumisoflavone [165]	Isoflavone	Seed	Olivares et al., 1982
		Root bark	Asomaning et al., 1995
		Root, pod	Asomaning et al., 1999
5-O-Methylalpinumisoflavone[166]	Isoflavone	Root	Asomaning et al., 1999
4'-Methylalpinumisoflavone [167]	Isoflavone	Seed	Olivares et al., 1982
5-O-Methyl-4'-O-(3-methyl-2-	Isoflavone	Root bark	Asomaning et al., 1995
butenyl) –alpinumisoflavone [168]		Root	Asomaning et al., 1999
Robustone [169]	Isoflavone	Seed	Khalid and Waterman,
	The Owner of		1983
Thonninginisoflavone [170]	Isoflavone	Root bark	Asomaning et al., 1995
M. uraramensis			
subsp. usaramensis	EN YAMA		
Barbigerone [61]	Isoflavone	Stem bark	Yenesew, Midiwo and
			Waterman, 1998
4'-O-Geranylisoliquiritigenin [69]	Chalcone	Stem bark	Yenesew, Midiwo and
			Waterman, 1998
Isoliquiritigenin [171]	Chalcone	Stem bark	Yenesew, Midiwo and
			Waterman, 1998
Jamaicin [30]	Isoflavone	Stem bark	Yenesew, Midiwo and
9	N PON		Waterman, 1998
Maximaisoflavone G [79]	Isoflavone	Stem bark	Yenesew, Midiwo and
			Waterman, 1998
Norisojamaicin [172]	Isoflavone	Stem bark	Yenesew, Midiwo and
			Waterman, 1998
α,4,2"-Trihydroxy-4- <i>O</i> -geranyl	Chalcone	Stem bark	Yenesew, Midiwo and
dihydrochalcone [173]			Waterman, 1998

Plant and compound	Category	Plant part	Reference
M. zechiana			
Cyanidin-3,5-diglucoside [174]	Glycoside	Flower	Parvez and Ogbeide, 1990
3-Hydroxy-4'-methoxyflavone	Flavonol	Flower	Parvez and Ogbeide, 1990
[175]			
8-Hydroxyquercetin 7-glucoside	Glycoside	Flower	Parvez and Ogbeide, 1990
[176]		1	
Kaempferol 3-glucoside [177]	Glycoside	Flower	Parvez and Ogbeide, 1990
Kaempferol 3-rhamnoside [178]	Glycoside	Flower	Parvez and Ogbeide, 1990
Malvidin 3,5-diglucoside [179]	Glycoside	Flower	Parvez and Ogbeide, 1990
Pelargonidin 3-rhamnoside [180]	Glycoside	Flower	Parvez and Ogbeide, 1990
Quercetin 3-glucoside [181]	Glycoside	Flower	Parvez and Ogbeide, 1990

Plant and compound	Category	Plant part	Reference	
M. auriculata				
(-)-Sumatrol [182]	Rotenoid	Root	Shabbir et al., 1968	
		Seed	Rao, Prasad and	
			Ganapaty, 1992	
M. dura				
6a, 12a-Dehydrodeguelin [183]	Rotenoid	Seed	Ollis, Rhodes and	
			Sutherland, 1967	
Deguelin [184]	Rotenoid	Seed	Dagne, Mammo and	
			Bekele, 1991	
(-)-Millettone [185]	Rotenoid	Seed	Ollis, Rhodes and	
	N 25-2 4		Sutherland, 1967	
	A O A	Seed pod	Yenesew, Midiwo and	
			Waterman, 1997	
(-)-Millettosin [186]	Rotenoid	Seed	Ollis, Rhodes and	
	Children and		Sutherland, 1967	
(-)-Rotenone [187]	Rotenoid	Seed	Ollis, Rhodes and	
0	eren Andar		Sutherland, 1967	
(-)-Tephrosin [188]	Rotenoid	Seed	Ollis, Rhodes and	
			Sutherland, 1967	
		Seed pod	Yenesew, Midiwo and	
สถายัง		เลือ	Waterman, 1997	
M. ferruginea	79110		1 d	
subsp. darassana		200		
(-)-12a-Hydroxyrotenone [189]	Rotenoid	Seed	Dagne and Bekele, 1990	
(-)-Tephrosin [188]	Rotenoid	Seed	Dagne and Bekele, 1990	
M. ferruginea				
subsp. <i>Ferruginea</i>				
(-)-Rotenone [187]	Rotenoid	Seed	Dagne and Bekele, 1990	

 Table 2 Distribution of miscellaneous compounds in Millettia species.

Plant and compound	Category	Plant part	Reference
M. griffoniana			
Griffonianone A [190]	Rotenoid	Root	Yankep et al., 2001
4-Hydroxy-5,6,7-trimethoxy-3-	Coumarin	Root bark	Yankep et al., 1998
(3',4'-methylenedioxy)phenyl			
coumarin [191]	S-0494		
M. laurentii			
<i>O</i> -Acetylmillaurine [192]	Alkaloid	Seed	Ngamga et al., 1993
5a,9a-Dihydro-5a-hydroxy	Alkaloid	Seed	Ngamga, Free and
millaurine [193]			Fomum, 1994
Millettonine [194]	Alkaloid	Stem bark	Kamnaing et al., 1994
Millaurine [195]	Alkaloid	Seed	Ngamga <i>et al.</i> , 1993
M. ovalifolia			
Azulene [196]	Monoterpenoid	Leaf	Nigam et al., 1982
α-Boneol [197]	Monoterpenoid	Leaf	Nigam et al., 1982
1,8-Cineol [198]	Monoterpenoid	Leaf	Nigam et al., 1982
3,4-Dimethoxycinnamic acid	Phenylpropanoid	Seed	Krishnamurti and
[199]	ENERS STATE		Islam, 1987
Heptacosanol [200]	Alkane	Seed	Krishnamurti and
			Islam, 1987
Linelyl acetate [201]	Monoterpenoid	Leaf	Nigam <i>et al.</i> , 1982
Methyl chavicol [202]	Phenylpropanoid	Leaf	Nigam <i>et al.</i> , 1982
Ovalin [203]	Alkaloid	Seed	Gupta and
			Krishnamurti, 1979
19-Oxo-5α-carda-14,20(22)-	Cardenolide	Root	Bose and Chakraborty,
dienolide-3-O-β-D-			2000
glucopyrano- side [204]			
Pi-cymene [205]	Monoterpenoid	Leaf	Nigam et al., 1982
α-Pinene [206]	Monoterpenoid	Leaf	Nigam et al., 1982
β-Pinene [207]	Monoterpenoid	Leaf	Nigam <i>et al.</i> , 1982

Plant and compound	Category	Plant part	Reference
β-Sitosterol [208]	Steroid	Seed	Gupta and
			Krishnamurti, 1976b
α-Terpinolene [209]	Monoterpenoid	Leaf	Nigam <i>et al.</i> , 1982
α-Thujene [210]	Monoterpenoid	Leaf	Nigam <i>et al.</i> , 1982
M. pachycarpa			
(-)-12a-Hydroxyrotenone [189]	Rotenoid	Root	Singhal <i>et al.</i> , 1982
(+)-12a-Hydroxyrot-2'-enonic	Rotenoid	Root	Singhal <i>et al.</i> , 1982
acid [211]			
(-)-Rotenone [187]	Rotenoid	Root	Singhal <i>et al.</i> , 1982
Rot-2'-enonic acid [212]	Rotenoid	Root	Singhal <i>et al.</i> , 1982
14	1.2		
M. pendura			
β-Amyrin [213]	Triterpenoid	Stem bark	Rathore, Nagar and
	ATTA ONLY A		Gupta, 1983
Daucosterol [214]	Steroid	Seed	Rathore, Nagar and
	adden services by		Gupta, 1983
Ellagic acid [215]	Coumarin	Stem bark	Rathore, Nagar and
9			Gupta, 1983
Galactose [216]	Carbohydrate	Stem bark	Rathore, Nagar and
			Gupta, 1983
Gallic acid [217]	Benzenoid	Stem bark	Rathore,Nagar and
สถาบัย	เวิจภอเจ มี	e n n n	Gupta, 1983
β-Methylgalactoside [218]	Carbohydrate	Stem bark	Rathore,Nagar and
	ດ້ມມາດ		Gupta, 1983
Octacosan-1-ol [219]	Alkane	Stem bark	Rathore, Nagar and
9			Gupta, 1983
Rhamnose [220]	Carbohydrate	Stem bark	Rathore,Nagar and
			Gupta, 1983
Stigmasterol [221]	Steroid	Stem bark	Rathore,Nagar and
			Gupta, 1983
β-Sitosterol [208]	Steroid	Stem bark	Rathore,Nagar and
			Gupta, 1983
	1	1	i de la companya de l

Plant and compound	Category	Plant part	Reference
M. pervilleana			
3α-Hydroxyrotenone [222]	Rotenoid	Root bark	Palazzino et al., 2003
Pervilleanine [223]	3-Arylcoumarin	Root bark	Palazzino et al., 2003
(-)-Rotenone [187]	Rotenoid	Root bark	Palazzino et al., 2003
M. racemosa	s de la terretaria		
β-Amyrin [213]	Triterpenoid	Stem	Rao and
			Krupadanam,1994
Behenic acid [224]	Lipid	Stem	Rao and
			Krupadanam,1994
β-Sitosterol [208]	Steroid	Stem	Rao and
		Root	Krupadanam,1994
Stigmasterol [221]	Steroid	Root	Desai et al., 1977
M. reticulate			
1,8-Cineol [198]	Monoterpenoid	Flower	Gong and Wu, 1998
Limonene [225]	Monoterpenoid	Flower	Gong and Wu, 1998
α-Pinene [206]	Monoterpenoid	Flower	Gong and Wu, 1998
β-Pinene [207]	Monoterpenoid	Flower	Gong and Wu, 1998
δ-Pinene [226]	Monoterpenoid Flower		Gong and Wu, 1998
M. thonningii			
β-Amyrin [213]	Triterpenoid	Root bark	Asomaning et al., 1995
Robustic acid [227]	3-Aryl coumarin	Seed	Olivares et al., 1982
Thonningine-A [228]	Coumarin	Seed	Khalid and Waterman,
ลหำลง	กรกไปห		1983
Thonningine-B [229]	Coumarin	Seed	Khalid and Waterman,
			1983
Thonningine-C [230]	Coumarin	Seed	Saxena et al., 1987

Plant and compound	Category	Plant part	Reference
M. usaramensis			
susbsp. usaramensis			
(+)-12a-Epimillettosin [231]	Rotenoid	Stem bark	Yenesew, Miwido
			and Waterman, 1998
(+)-12α-Hydroxy-12-dihydro	Rotenoid	Stem bark	Yenesew, Miwido
usararotenoid A [232]			and Waterman, 1998
(+)-Usararotenoid A [233]	Rotenoid	Stem bark	Yenesew, Miwido
			and Waterman, 1998
(+)-Usararotenoid B [234]	Rotenoid	Stem bark	Yenesew, Miwido
			and Waterman, 1998
4-O-Geranylcinnamyl acetate	Phenylpropanoid	Stem bark	Yenesew, Miwido
[235]	A CA		and Waterman, 1998

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Figure 2 Structures of isoflavones isolated from *Millettia* species.

 R_2

	\mathbf{R}_1	R_2	R_3	R_4	R_5
[13]	OMe	OMe	Н	Н	OMe
[18]	OMe	OMe	Н	Н	Н
[24]	Н	OMe	Н	Н	Н
[25]	Н	Н	OMe	OMe	Н
[30]	Н	Н	Н	Н	OMe
[64]	Н	OMe	Н	Н	OMe
[67]	Н	Н	Η	Н	Н
[71]	Н	Н	OMe	OMe	Н
[77]	OMe	ОН	Н	Н	Н
[172]	Н	Н	Н	OH	Н
	 [13] [18] [24] [25] [30] [64] [67] [71] [77] [172] 	R1[13]OMe[18]OMe[24]H[25]H[30]H[64]H[67]H[71]H[77]OMe[172]H	R1 R2 [13] OMe [18] OMe [18] OMe [24] H [25] H [30] H [30] H [64] H [71] H [71] OMe [71] OMe [71] OMe [71] H [71] OMe [71] OMe	R1R2R3[13]OMeOMeH[13]OMeOMeH[14]OMeOMeH[24]HOMeH[25]HHOMe[30]HHH[64]HOMeH[64]HOMeH[71]HOMeH[71]OMeOHH[172]HOHH	R1R2R3R4[13]OMeOMeHH[18]OMeOMeHH[18]OMeOMeHH[24]HOMeHH[25]HHOMeOMe[30]HHOMeH[64]HOMeHH[64]HOMeOMeOMe[71]HOMeOMeOMe[71]OMeOHHOMe[71]HOHOMeOMe

Figure 2 Structures of isoflavones isolated from *Millettia* species (continued).

Figure 2 Structures of isoflavones isolated from *Millettia* species (continued).

Figure 2 Structures of isoflavones isolated from *Millettia* species (continued).

	R_1	R_2	R_3	R_4	R_5
[27]	OH	Н	\sim	OMe	Н
[37]	Н	Н	Н	0	Н
[69]	OH	Н	Н		Н
[93]	OMe	OMe	Н	OMe	OMe
[104]	Н	Н	${{}}$	OMe	OMe
[171]	OH	Н	ОН	Н	Н

	β	4	2′	5′	6′
[28]	Н	OH	ОН	Н	Н
[56]	ОН	Н	OMe	OMe	Н
[113]	Н	Н	OH	Н	OMe
[115]	Η	OMe	ОН	Н	Н

	R ₁	R ₂	R ₃	R_4
[41]	Н	ОН	0	Н
[47]	OH	OMe	OMe	Н
[92]	Н	OMe	OMe	Н
[97]	Н	OMe	OMe	OMe

Figure 3 Structures of chalcones isolated from *Millettia* species.

- 2 3 4 2′ 4′ β 3′ α OMe [82] OMe Η OMe Н -OCH₂O-Η [83] Η
- OMe -OCH₂O-OMe OMe Η Η
- [**173**] OH OH Η Η Η OH Н

Figure 3 Structures of chalcones isolated from *Millettia* species (continued).

|| 0

 R_3

Η

MeO

	\mathbf{K}_1	\mathbf{R}_2	K ₃
[70]	Н	Н	OH
[105]	OMe	Η	Н
[106]	OMe	-00	H ₂ O-
[107]	Η	-00	H_2O-
[122]	Н	Η	Н

[43]

Figure 4 Structures of flavanones isolated from Millettia species

	R_1	R_2	R_3	R_4
[45]	Н	Н	OMe	Н
[46]	Н	Η	Н	Н
[48]	Н	Н	Н	OMe
[49]	Н	Н		Н
[91]	OMe	Н	Н	Н
[95]	Н	OMe	Н	Н

	[84]			[13	0]		I	[162]
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{}\\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ } \\								
[126]	OMe	Н	Н	OMe	Н	Н	Н	OMe
[125]	OMe	Н	Н	Н	OMe	OMe	Н	Н
[124]	Н	OMe	Н	Н	Н	Н	Н	Н
[114]	OMe	Н	Н	Н	-OCH	₂ O-	Н	Н
[101]	Н	Н	OMe	Н	Н	Н	Н	Н
[94]	OMe	Н	Н	Н	Н	Н	Н	Н
[85]	OMe	Н	OMe	Н	Н	Н	Н	Н
[58]	Н	Н	Н	Н	OMe	Н	Н	Н
[54]	Н	Н	Н	Н	-OCH	2 O-	Н	Н
[53]	Н	OH	H	Н	Н	Н	Н	Н
[51]	Н	Н		Н	Н	Н	Н	Н
[50]	Н	Н	Н	OMe	Н	Н	OMe	Н
[42]	Н	H	Н	Н	Н	Н	Н	Н
	3	5	6	2'	3'	4′	5′	6′

Figure 5 Stuctures of flavones isolated from *Millettia* species.

Figure 6 Structures of pterocarpene (62), flavonols (89, 175), dibenzoylmethane (52) and flavanonols (123, 144) isolated from *Millettia* species.

Figure 7 Structures of flavan (38) and isoflavans (90, 135-6, 138, 152-161) isolated from *Millettia* species.

Figure 8 Structures of pterocarpans (137, 140-3, 145-6, 150), isoflavanones (139, 141) and glycosides (174, 176-181) isolated from *Millettia* species.

Figure 9 Structures of rotenoids isolated from Millettia species

Figure 10 Structures of 3-arylcoumarins (191, 223, 227-230), triterpenoid (213) and alkaloids (192-5, 203) isolated from *Millettia* species.

Figure 11 Structures of miscellaneous compounds isolated from *Millettia* species.

CHAPTER III

EXPERIMENTAL

1. Sources of Plant Materials

The leaves of *Millettia erythrocalyx* Gagnep. were collected from Tayang district, Petchaburi Province, Thailand, in April 1999. Authentication was performed by comparison with herbarium specimens (BKF No. 130496) at the National Park Wildlife and Plant Conservation Department, Ministry of Natural Resources and Environment, and voucher specimens (KL-032542) are on deposit at the Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University.

2. General Techniques

2.1 Analytical Thin-Layer Chromatography (TLC)

Technique	:	One dimension, ascending
Adsorbent	:	Silica gel 60 F ₂₅₄ (E. Merck) precoated plate
Layer thickness	:	0.2 mm
Distance	:	6 cm
Temperature	:	Laboratory temperature (30-35°C)
Detection	ċ	1. Utraviolet light (254 and 365 nm)
		2. Anisaldehyde and heating at 105°C for 10 min

2.2 Column Chromatography

2.2.1 Vacuum Liquid Column Chromatography

Adsorbent		Silica gel 60 (No. 7734) particle size 0.063-0.200 mm
		(70-230 mesh ASTM) (E. Merck)
Packing method	1611	Dry packing
Sample loading	:	The sample was dissolved with an organic solvent, mixed
		with the adsorbent, triturated, dried and then placed gently
		on top of the column.
Detection	:	Fractions were examined by TLC observing under UV light
		(254 and 365 nm).

Adsorbent	:	Silica gel 60 (No. 9385) particle size 0.400-0.063 nm
		(230-400 mesh ASTM) (E. Merck)
Packing method	:	Wet packing
Sample loading	:	The sample was dissolved with the eluent and then applied
		gently on top of the column.
Detection	:	Fractions were examined in the same manner as
		described in section 2.3.1.

2.2.2 Flash Column Chromatography

2.3 Spectroscopy

2.3.1 Ultraviolet (UV) Absorbtion Spectra

UV (in methanol) spectra were obtained on a Milton Roy Spectronic 3000 Array spectrophotometer (Pharmaceutical Reserch Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

2.3.2 Infrared (IR) Absorption Spectra

IR film spectra were recorded on a Perkin Elmer FT-IR 1760X spectrometer (Scientific and Technological Research Equipment Center, Chulalongkorn University).

2.3.3 Mass Spectra

Electrospray ionization mass spectra (ESIMS) and high resolution electrospray ionization mass spectra (HRESIMS) were measured on a mass spectrometer LCT (LC/MS) Micromass (Biotech Central Research Unit, National Center for Genetic Engineering and Biotechnology (NSTDA), Science Park, Pathumthani, Thailand).

2.3.4 Proton and Carbon-13 Nuclear Magnetic resonance (¹H and ¹³C-NMR) Spectra

¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra were obtained with a Bruker Avance DPX-300 FT-NMR spectrometer (Faculty of Pharmaceutical Sciences, Chulalongkorn University)

¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectra were obtained with a Bruker Avance DRX-500 spectrometer (Biotech Central Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA))

Solvents for NMR spectra were deuterated chloroform (chloroform-d) and deuterated acetone (acetone- d_6). Chemical shifts were reported in ppm scale using the chemical shift of the solvent as the reference signal.

2.4 Physical property

2.4.1 Melting Points

Melting points were obtained on a Gallenkamp Melting Point Apparatus (Department of Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

2.5 Solvents

Throughout this work, all organic solvents were of commercial grade and were redistilled prior to use.

3. Extraction and Isolation

3.1 Extraction and Isolation of Compounds from the leaves of Millettia erythrocalyx

3.1.1 Extraction

The dried leaves of *Millettia erythrocalyx* (3.5 kg) were macerated with hexane (3 x 20 L), ethyl acetate (3 x 20 L) and ethanol (3 x 23 L) to give a hexane extract (78 g), an ethyl acetate extract (43 g) and an ethanol extract (283 g) after evaporation of the organic solvent.

3.1.2 Isolation

3.1.2.1 Isolation of Compounds from Hexane Extract

The hexane extract (78 g) was separated by vacuum liquid column chromatography using a sintered glass filter column of silica gel 60 (No. 7734, 400 g). The eluates were collected 300 ml per fraction. Elution was performed in a polarity gradient manner with mixtures of petroleum ether and ethyl acetate (100:0 to 0:100). Seventy-five fractions were collected. Fractions with similar TLC pattern (silica gel, EtOAc-Pet. Ether 4:1) were combined to give 14 fractions, as shown in Table 3.

Fraction	Combined fractions	Weight (g)
HQ-1	1	1.5
HQ-2	2	0.5
HQ-3	3	1.6
HQ-4	4	0.3
HQ-5	5	0.9
HQ-6	6	6.1
HQ-7	7-8	10.0
HQ-8	9-12	10.3
HQ-9	13-22	12.2
HQ-10	23-30	9.7
HQ-11	31-33	2.6
HQ-12	34-57	7.8
HQ-13	58-66	0.3
HQ-14	67-75	1.2

Table 3 Chromatographic fractions of the hexane extract of *M. erythrocalyx* leaves

3.1.2.2 Isolation of Compound MEL1 (3',4'-Methylenedioxy-7methoxyflavone)

Fraction HQ-12 (7.8 g) was separated by vacuum liquid column chromatography using a sinter glass filter column of silica gel 60 (No. 9385, 100 g). Elution was performed in a polarity gradient manner with petroleum ether and ethyl acetate as the eluents (100:0 to 0:100). Fractions with similar TLC patterns (siliga gel, Pet. Ether-EtOAc 1: 4) were combined to yield 10 fractions: fractions A (464 mg), B (679 mg), C (1.7 g), D (1.2 g), E (739 mg), F (375 mg), G (1.5 g), H (541 mg), I (160 mg) and J (439 mg).

Fraction D (1.2 g) was subjected to column chromatography with petroleum ether-ethyl acetate gradient elution. Fractions with similar TLC pattern were combined to afford 15 fractions: fractions D1 (18 mg), D2 (27 mg), D3 (29 mg), D4 (179 mg), D5 (292 mg), D6 (71 mg), D7 (27 mg), D8 (23 mg), D9 (16 mg), D10 (16 mg), D11 (21 mg), D12 (21 mg), D13 (95 mg), D14 (2 mg), D15 (11 mg). Fraction D8 (23 mg) was recrystallized from petroleum ether-chloroform to give white needles of compound MEL1 (2 mg, R_f 0.33, silica gel, pet. ether-EtOAc 1:1). This compound was identified as 3',4'-methylenedioxy-7-methoxyflavone.

3.1.2.3 Isolation of Compound MEL2 (3',5'-dimethoxy[2",3":7,8] furanoflavone)

Fraction D4 (179 mg) was separated by column chromatography (silica gel 60 No. 9385) using the mixture of petroleum ether-EtOAc (4:1) as eluent. Fractions were combined according to their chromatographic pattern (pet. ether-EtOAc 1:1) to give D4-1 to D4-5. Fraction D4-2 gave compound MEL2 (2 mg, R_f 0.4, silica gel, pet. ether-EtOAc 1:1). Compound MEL2 (3 mg) was also obtained by separating fraction D4-5 (7 mg) on a silica gel column (gradient elution, pet. ether-EtOAc 83.5:16.5 to 50:50). This compound was later identified as a new furanoflavone, 3',5'-dimethoxy[2",3":7,8] furanoflavone.

3.1.2.4 Isolation of Compound MEL3 (Pongaglabrone)

Fraction D5 (292 mg) was subjected to silica gel 60 column chromatography, eluted with gradient mixtures of ethyl acetate and pet. ether (20:80 to 50:50). Six combined fractions (D5-1 to D5-6) were collected from this column. Fraction D5-4 (232 mg) was continuously separated on a silica gel 60 column with isocratic elution of pet. ether-EtOAc (6:1) until giving 6 fractions (D5-4-1 to D5-4-6). Compound MEL3 (4 mg, R_f 0.38, silica gel, pet. ether- EtOAc 1:1) was obtained as a white powder from fraction D5-4-2. This compound was identified as pongaglabrone.

Fraction D5-4-6 (88 mg) was purified by silica gel 60 column chromatography using gradient elution of pet. ether-EtOAc (83.5:16.5 to 50:50). The eluates were collected and combined according to their chromatographic pattern (pet. ether-EtOAc 1:1) to give 4 fractions (D5-4-6A to D5-4-6D). Compound MEL1 (5.6 mg, $R_{\rm f}$ 0.33, silica gel, pet. ether-EtOAc 1:1) was obtained by recrystallization of fraction D5-4-6C (13 mg) from CHCl₃-pet. ether.

3.1.2.5 Isolation of Compound MEL4 (Gamatin) and MEL5 (Milletenin C)

Fraction H (541 mg) was separated on a silica gel 60 column (gradient elution, pet. ether-EtOAc 80:20 to 50:50). Fractions with similar chromatographic pattern were combined to give 9 fractions (H1 to H9).

Fraction H6 (140 mg) was separated over a silica gel 60 column with mixtures of pet. ether-EtOAc (80:20 to 50:50) as eluent. Similar fractions were combined after examination by TLC (pet. ether-EtOAc 1:1) to give 3 fractions (H6-1 to H6-3).

Fraction H6-2 (42 mg) was further separated on a silica gel 60 column, eluted with pet. ether-EtOAc (1:2). Sixteen fractions were collected, examined by TLC (silica gel, pet. ether-EtOAc 1:2) and combined to give 4 major fractions (H6-2-1 to H6-2-4). Fraction H6-2-3 (31 mg) was subjected to silica gel 60 column chromatography, eluted with 0.5% MeOH in CHCl₃ to give 21 fractions. Fractions with similar TLC patterns (silica gel, pet. ether-EtOAc 1:2) were combined to give 3 fractions (H6-2-3A to H6-2-3C). Fraction H6-2-3C, after removal of solvent, gave compound MEL4 (4 mg, $R_{\rm f}$ 0.20, silica gel, pet. ether-EtOAc 1:2) as colorless needles, which was later identified as gamatin. Fraction H6-2-3A, after removal of solvent, gave compound MEL5 (13 mg, $R_{\rm f}$ 0.24, silica gel, pet. ether-EtOAc 1:2) as a white powder. This compound was identified as milletenin C.

Fraction H6-2-3B (14 mg) was further purified on a silica gel 60 column, eluted with 0.5% MeOH in CHCl₃ to afford 4 mg of compound MEL5 (milletenin C, $R_{\rm f}$ 0.24, silica gel, pet. ether-EtOAc 1:2) and compound MEL4 (gamatin, 7 mg, $R_{\rm f}$ 0.20, silica gel, pet. ether- EtOAc 1:2).

3.1.2.6 Isolation of Compound MEL6 (Milletocalyxin A)

Fraction G (1.5 g) was subjected to silica gel 60 column chromatography (gradient elution, pet. ether-EtOAc 85.7:14.3 to 33.3:66.7) to give 38 fractions. Similar fractions were combined after examination by TLC (pet. ether-EtOAc 1:1) to give 5 fractions (G1-G5).

Fraction G4 (915 mg) was further separated on a silica gel 60 column. Elution was performed with pet. ether-EtOAc gradient (85.7:14.3 to 50:50) to give 27 fractions. The eluates were combined on the basis of their TLC composition (silica gel, pet. ether-EtOAc 1:1) to yield 6 fractions (G4-1 to G4-6).

Fraction G4-4 (541 mg) was further separated by silica gel 60 column chromatography, eluted with gradient mixtures of pet. ether-EtOAc (85.7:14.3 to 50:50). Fractions (37 fractions) with similar chromatographic patterns were combined (TLC, silica gel, pet. ether-EtOAc 1:1) to give 5 fractions (G4-4-1 to G4-4-5).

Fraction G4-4-4 (179 mg) was purified on a silica gel 60 column with 0.5% MeOH in CHCl₃ as eluent. Fractions 5-10 from this column, after removal of the solvent, gave compound MEL6 (14 mg, R_f 0.33, silica gel, pet. ether-EtOAc 1:2) as a white powder. It was identified as millettocalyxin A.

3.1.2.7 Isolation of Compound MEL7 (Millettocalyxin C)

Fraction G2 (15 mg) was subjected to silica gel 60 column chromatography, eluted with pet. ether-EtOAc (5:1) to give 11 fractions. Similar fractions were combined after examination by TLC (pet. ether-EtOAc 1:2) to give 3 fractions (G2-1 to G2-3). Fraction G2-2 (3 mg) was recrystallized from CHCl₃ –pet. ether to give a yellow powder of compound MEL7 (1 mg, R_f 0.45, silica gel, pet. ether-EtOAc 1:2). This compound was identified as millettocalyxin C.

Fraction G3 (135 mg) was separated on a silica gel 60 (No. 9385) column. Elution was performed with pet. ether-EtOAc (5:1) to give 29 fractions. Fractions with similar TLC pattern (silica gel, pet. ether-EtOAc 1:2) were combined to give 4 fractions (G3-1 to G3-4). Fraction G3-2 (2 mg) gave compound MEL7 (millettocalyxin C, R_f 0.45, silica gel, pet. ether-EtOAc 1:2) as a yellow powder.

Repeated column chromatography of fraction G3-3 (45 mg, silica gel 60, pet. ether-EtOAc 5:1) gave 5 mg of compound MEL1 (3',4'-methylenedioxy-7-methoxyflavone, R_f 0.45, silica gel, pet. ether-EtOAc 1:2).

Fraction D5-4-6A-3 (2 mg) was purified on a silica gel 60 column (gradient elution, pet. ether-EtOAc 83.5:16.5 to 66.7:33.3) to afford 1 mg of compound MEL7 as a yellow powder (millettocalyxin C, R_f 0.45, silica gel, pet. ether-EtOAc 1:2).

Fraction D5-4-5 (3 mg) was further separated on a silica gel 60 column (gradient elution, pet. ether-EtOAc 85.7:14.3 to 80:20). Fractions (10 fractions) showing similar TLC pattern were combined (silica gel, pet. ether-EtOAc 1:2) to give 2 fractions (D5-4-5A and D5-4-5B). Repeated column chromatography of fraction D5-4-5B (2 mg) (silica gel, pet. ether-EtOAc 5:1) gave 1 mg of compound MEL7 (millettocalyxin C, $R_{\rm f}$ 0.45, silica gel, pet. ether-EtOAc 1:2).

4. Physical and Spectral data of Isolated Compounds

4.1 Compound MEL1

Compound MEL1 was obtained as a white powder (13 mg), soluble in CHCl₃. Melting Point $: 201-202^{\circ}C$

ESIMS : $[M+H]^+ m/z$ 297.11(positive ion mode); Figure 12

UV : λ_{max} nm (log ε), in methanol; Figure 13 236 (4.13), 334 (4.06)

IR	: v _{max} cm ⁻¹ , Film; Figure 14
	2916, 1643, 1609, 1589, 1502, 1449, 1240, 1202, 1165, 1134, 1032
¹ H NMR	: δ ppm, 300 MHz, in acetone- d_6 , Table 4; Figure 15
¹³ C NMR	: δ ppm, 75 MHz, in acetone- d_6 , Table 4; Figure 16

4.2 Compound MEL2

 Compound MEL2 was obtained as colorless needles (5 mg), soluble in CHCl₃.

 Melting Point : 178-180°C

 HRESIMS : $[M+H]^+ m/z$ 323.0916 (calcd. for C₁₉H₁₄O₅ = 323.0920); Figure 18

 ESIMS: $[M+H]^+ m/z$ 323.13 (positive ion mode); Figure 17

 UV : λ_{max} nm (log ε), in methanol; Figure 19

 215 (3.87), 240 (3.55), 263 (3.44), 303 (3.49)

 IR : v_{max} cm⁻¹, Film; Figure 20

 1630, 1607, 1583, 1426, 1210, 1160, 1140, 1060

 ¹H NMR : δ ppm, 300 MHz, in CDCl₃, Table 5; Figure 21

 ¹³C NMR : δ ppm, 75 MHz, in CDCl₃, Table 5; Figure 22

4.3 Compound MEL3

Compound MEL3 was obtained as a white powder (4 mg), soluble in CHCl₃.

Melting Point : 220-222°C

ESIMS	: $[M+H]^+$ m/z 307.11 (positive ion mode); Figure 30
UV	: λ_{max} nm (log ε), in methanol; Figure 31
	215 (4.50), 240 (4.35), 326 (4.24)
IR	: v _{max} cm ⁻¹ , Film; Figure 32
	2917, 1641, 1596, 1505, 1447, 1405, 1347, 1256, 746
¹ H NMR	: δ ppm, 300 MHz, in CDCl ₃ , Table 6; Figure 33
¹³ C NMR	: δ ppm, 75 MHz, in CDCl ₃ , Table 6; Figure 34

4.4 Compound MEL4

Compound MEL4 was obtained as colorless needles (11 mg), soluble in CHCl₃.

Melting Point : 227-228°C

ESIMS	: $[M+H]^+$ m/z 337.13 (positive ion mode); Figure 36
UV	: λ_{max} nm (log ε), in methanol; Figure 37
	250 (4.38), 333 (4.24)
IR	: v _{max} cm ⁻¹ , Film; Figure 38
	2920, 1646, 1583, 1507, 1452, 1329, 1261, 1160, 1072, 756

¹ H NMR : δ ppm, 300 MHz, in CDCl ₃ , Table 7; Figur	re 39
---	-------

¹³C NMR : δ ppm, 75 MHz, in CDCl₃, **Table 7; Figure 40**

4.5 Compound MEL5

Compound MEL5 was obtained as a white powder (17 mg), soluble in CHCl₃.

Melting Point : 250-252°C

ESIMS	: [M+H] ⁺ <i>m/z</i> 327.16 (positive ion mode); Figure 48
UV	: λ_{max} nm (log ε), in methanol; Figure 49
	211 (4.71), 240 (4.47), 333 (4.50)
IR	: v _{max} cm ⁻¹ , Film; Figure 50
	2918, 1639, 1591, 1508, 1478, 1453, 1335, 1265, 1085, 752
¹ H NMR	: δ ppm, 300 MHz, in CDCl ₃ , Table 8; Figure 51
¹³ C NMR	: δ ppm, 75 MHz, in CDCl ₃ , Table 8; Figure 52
4.6 Co	mpound MEL6
Compo	ound MEL6 was obtained as a white powder (14 mg), soluble in CHCl ₃ .
Melting Point	: 210-212°C
ESIMS	: $[M+Na]^+ m/z$ 350.06 (positive ion mode)
	$[M+H]^+$ m/z 327.12 (positive ion mode); Figure 53
UV	: λ_{max} nm (log ε), in methanol; Figure 54
	247 (4.31), 300 (4.14), 360 (4.27)
IR	: v _{max} cm ⁻¹ , Film; Figure 55
	1648, 1620, 1569, 1502, 1262, 1195, 1170, 1023, 826
¹ H NMR	: δ ppm, 300 MHz, in acetone- d_6 , Table 9; Figure 56
¹³ C NMR	: δ ppm, 75 MHz, in acetone- d_6 , Table 9; Figure 57
4.7 Co	mpound MEL7
Compo	ound MEL7 was obtained as a yellow powder (5 mg), soluble in CHCl ₃ .
Melting Point	: 166-168°C
ESIMS	: $[M+H]^+ m/z$ 323.14 (positive ion mode); Figure 60
UV	: λ_{max} nm (log ε), in methanol; Figure 61
	248 (4.25), 293 (3.95)
IR	: v _{max} cm ⁻¹ , Film; Figure 62
	1626, 1588, 1466, 1411, 1362, 1239, 1186, 1074, 753
¹ H NMR	: δ ppm, 300 MHz, in CDCl ₃ , Table 10; Figure 63
¹³ C NMR	: δ ppm, 75 MHz, in CDCl ₃ , Table 10; Figure 64

Scheme 1 Separation of the hexane extract of *Millettia erythrocalyx* leaves.

Scheme 2 Separation of fraction D4 from the hexane extract of *M. erythrocalyx* leaves.

Scheme 3 Separation of fraction D5 from the hexane extract of *M. erythrocalyx* leaves.

Scheme 4 Separation of fraction D5-46A from the hexane extract of *M. erythrocalyx* leaves.

Scheme 5 Separation of fraction D5-45 from the hexane extract of *M. erythrocalyx* leaves.

Scheme 6 Separation of fraction G from the hexane extract of M. erythrocalyx leaves.

Scheme 7 Separation of fraction G3 from the hexane extract of *M. eythrocalyx* leaves.

Scheme 8 Separation of fraction H from the hexane extract of *M. erythrocalyx* leaves.

Scheme 9 Separation of fraction H6-21C from the hexane extract of *M. erythrocalyx* leaves.

CHAPTER IV

RESULTS AND DISCUSSION

The leaves of *Millettia erythrocalyx* Gagnep. (3.5 kg) were extracted with hexane, ethyl acetate and ethanol, successively, to give a hexane extract (78 g), an ethyl acetate extract (43 g) and an ethanol extract (283 g), respectively. The hexane extract was further separated using several chromatographic techniques to yield seven pure compounds (MEL1 to MEL7).

The structures of all of the isolates were determined by interpretation of their UV, IR, NMR and MS data, and further confirmed by comparison of these spectral properties with literature values.

1. Structure Determination of Isolated Compounds

1.1 Structure Determination of Compound MEL1

Compound MEL1 was obtained as a white powder. It has a molecular formula of $C_{17}H_{12}O_5$, as indicated by the molecular ion peak at m/z 297.1 in the ESIMS (Figure 12). The IR spectrum (Figure 14) showed absorption bands at 1643 (conjugated carbonyl), 1589 (conjugated C=C) and 1449 (CH₂ bending)cm⁻¹, and the UV absorptions at 236 and 334 nm (Figure 13) were indicative of a flavone nucleus (Markham, 1982). The ¹H NMR spectrum (Table 4, Figure 15) exhibited signals for an aromatic singlet signal (H-3) at δ 6.67 (1H, s), a methoxyl at δ 3.97 (1H, s) and a methylenedioxy at δ 6.14 (2H, s). The presence of two doublets at δ 7.23 (J = 2.1 Hz, H-8) and δ 7.98 (J = 8.7 Hz, H-5) and a double doublet at δ 7.03 (J = 8.7, 2.1 Hz, H-6) placed the methoxyl group at C-7. The ABM splitting system at δ 7.55 (d, J = 1.5 Hz, H-2'), 7.02 (d, J = 8.4 Hz, H-5') and 7.65 (dd, J = 8.4, 1.5 Hz, H-6'), along with the ³J correlation peak of H-2' with C-2 (δ 163.14), indicated the location of the methylenedioxy group at C-3' and C-4'. These ¹H and ¹³C NMR data were in good agreement with those reported for 3',4'-methylenedioxy-7-methoxyflavone [46] (Mahmoud and Waterman, 1985).

Position	Compound MI	3',4'-methylenedioxy-7- methoxyflavone	
	¹ H (mult., <i>J</i> in Hz)	¹³ C	¹ H (mult., J in Hz)
2	-	163.1	-
3	6.67 (s)	106.8	7.08 (s)
4	- 0	177.1	-
5	7.98 (d, 8.7)	127.2	8.35 (d, 9.0)
6	7.03 (d, 8.7, 2.1)	115.1	7.05 (dd, 9.0, 2.0)
7		165.1	-
8	7.23 (d, 2.1)	101.5	7.15 (d, 2.0)
9	- 18 0	158.7	-
10	- 5000	118.5	-
1′	- State	126.7	-
2'	7.55 (d, 1.5)	106.9	7.60 (d, 2.0)
3'		149.5	-
4′	A -	151.5	-
5′	7.02 (d, 8.4)	109.4	6.99 (d, 8.0)
6′	7.65 (dd, 8.4, 1.5)	122.1	7.54 (dd, 8.0, 2.0)
MeO-7	3.97 (s)	56.4	3.80 (s)
-OCH ₂ O-	6.14 (s)	103.0	6.08 (s)

Table 4 NMR Spectral data of compound MEL1 (acetone-d6) and 3',4'-methylenedioxy-7-methoxyflavone (pyridine-d5)

จุฬาลงกรณมหาวทยาลย

1.2 Structure Determination of Compound MEL2

Compound MEL2, colorless needles, exhibited a molecular ion $[M+H]^+$ peak at m/z 323.1 in the ESIMS, indicating a molecular formula of C₁₉H₁₄O₅. The IR spectrum displayed absorption bands at 1630 (conjugated C=O stretching), 1583 (conjugated C=C) and 1210 and 1060 (C-O stretching) cm⁻¹(Figure 20), and the UV absorptions at 240, 263 and 303 nm (Figure 19) were indicative of a furanoflavone (Mbafor et al., 1995). This was supported by the ¹H and ¹³C NMR signals (Table 5, Figures 21 and 22) for H-3 at δ 6.84 (1H, s) and C-3 at δ 106.8, for a furan ring at δ 7.18 (d, J = 2.1, H-4")/ δ 104.2(C-4") and δ 7.76 (d, J = 2.1, H-5")/ δ 145.8 (C-5"). The furan ring could be fused in an angular position at C-7 and C-8, as supported by the presence of two doublets at δ 8.15 (d, J = 9.0, H-5) and δ 7.55 (d, J = 9.0, H-6) and the HMBC correlations of H-5 with C-4 (δ 178.2) and H-6 with C-10 (8 119.4) (Figures 25-27). Furthermore, the HMBC correlations of C-7 (§ 158.4) with H-4" and H-5" and C-8 (§ 117.2) with H-4" and H-5" were also observed. The presence of two methoxyl groups was revealed by the proton resonance at δ 3.88 (6H, s) and the carbon signal at δ 55.6. To determine the location of the two methoxyls on ring B, a NOESY experiment (Figures 28 and 29) was carried out. The NOE interactions of the methoxyl protons with the proton at δ 7.07 (d, J = 2.1, H-2') and with the proton at δ 6.63 (t, J = 2.1, H-4') placed the methoxyls at C-3' and C-5'. Interactions through ${}^{3}J$ coupling of C-2 with H-2' and H-6', and C-4' (δ 103.3) with H-2' and H-6', were also observed in the HMBC spectrum. On the basis of the above spectroscopic data, compound MEL2 was identified as a new compound, 3',5'-dimethoxy [2",3":7,8]furanoflavone [236].

Position	Compound MEL2		НМВС	
	¹ H (mult., <i>J</i> in Hz)	¹³ C		
2	_	162 5	Н-3 Н-2′ Н-6′	
3	6.84 (s)	102.5	-	
4	-	178.2	H-3, H-5	
5	8.15 (d. 9.0)	121.8	-	
6	7.55 (d. 9.0)	110.2	_	
7	-	158.4	H-6, H-5, H-4″, H-5″	
8		117.2	H-6, H-4″, H-5″	
9		150.8	Н-5	
10		119.4	H-3, H-6	
1′	- 1000	133.7	H-3, H-2′, H-6′	
2'	7.07 (d, 2.1)	104.5	H-4′	
3'	- Andreas	161.3	H-2′, H-4′, MeO-3′	
4′	6.63 (t, 2.1)	103.3	H-2′, H-6′	
5′	-	161.3	H-4′, H-6′, MeO-5′	
6'	7.07 (d, 2.1)	104.5	H-4′	
4″	7.18 (d, 2.1)	104.2	H-5″	
5″	7.76 (d, 2.1)	145.8	H-4″	
MeO-3'	3.88 (s)	55.6	~ -	
MeO-5'	3.88 (s)	55.6	d _	

 Table 5 NMR Spectral data of compound MEL2 (CDCl3)

จฬาลงกรณมหาวทยาลย

1.3 Structure Determination of Compound MEL3

Compound MEL3 was obtained as a white powder. The molecular formula was determined as $C_{18}H_{10}O_5$ by ESIMS of its $[M+H]^+$ ion at m/z 307.1. Its IR spectrum (Figure 32) exhibited absorption bands at 1641 cm⁻¹ (conjugated C=O), 1596 cm⁻¹ (conjugated C=C) and 1447 cm⁻¹(CH₂ bending). The UV spectrum maximum absorptions at 240 and 326 nm (Figure 31) and the ¹H NMR signal at δ 6.74 (1H, s, H-3) were suggestive of a furanoflavone nucleus (Table 6, Figure 33). The ¹H and ¹³C NMR signals for a furan ring at δ 7.18 (1H, d, J = 1.8, H-4″)/ δ 104.1 (C-4″) and δ 7.75 (1H, d, J = 1.8, H-5″)/ δ 145.8 (C-5″) were observed. In the ¹H NMR spectrum, the signal for 3′, 4′-methylenedioxy substitution on ring B appeared at δ 6.08 (2H, s), and three protons signals at δ 7.38 (1H, d, J = 1.8 Hz), 6.95 (1H, d, J = 8.1 Hz) and 7.51 (1H, dd, J = 8.1, 1.8 Hz) were assigned to H-2′, H-5′ and H-6′, respectively. Compound MEL3 was identified as pongaglabrone [54] based on the above spectral data. Its ¹H NMR properties are in agreement with previously published values (Garcez *et al.*, 1988).

สถาบนวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Position	Compound M	Pongaglabrone	
	¹ H (mult., <i>J</i> in Hz)	¹³ C	¹ H (mult., J in Hz)
2		162.3	_
3	6.74 (s)	107.1	6.80 (s)
4	-	178.1	-
5	8.14 (d, 9.0)	121.8	8.22 (d, 8.0)
6	7.54 (d, 9.0)	110.1	7.59 (d, 8.0)
7		158.3	-
8		117.1	-
9	4 2 20	150.7	-
10		119.3	-
1′		125.8	-
2	7.38 (d, 1.8)	106.2	7.44 (d, 2.0)
3′	alenwin an	148.5	-
4′	Q -	150.6	-
5′	6.95 (d, 8.1)	108.9	7.00 (d, 8.0)
6'	7.51 (dd, 8.1, 1.8)	121.3	7.59 (dd, 8.0, 2.0)
4″	7.18 (d, 1.8)	104.1	7.20 (d, 2.0)
5″	7.75 (d, 1.8)	145.8	7.82 (d, 2.0)
-OCH ₂ O-	6.08 (s)	101.9	d 6.14 (s)

 Table 6 NMR Spectrum data of compound MEL3 (CDCl₃) and pongaglabrone (CDCl₃)

จพาลงกรณมหาวทยาลย

1.4 Structure Determination of compound MEL4

Compound MEL4 was obtained as colorless needles. The ESI mass spectrum (Figure 36) displayed the quasi-molecular ion peak $[M+H]^+$ at m/z 337.13, analysed for C₁₉H₁₂O₆. The UV spectrum (Figure 37) exhibited absorption maxima at 250, 333 nm. The IR spectrum (Figure 38) showed v_{max} at 1646 (conjugated C=O), 1583 (conjugated C=C) and 1452 (CH₂ bending) cm⁻¹. The ¹H NMR signal at δ 6.55 (1H, s, H-3) was characteristic of a furanoflavone nucleus. The ¹H NMR signals (Table 7, Figure 39) at δ 7.03 (1H, d, J = 2.1 Hz) and δ 7.58 (1H, d, J = 2.1 Hz) were assigned as H-4" and H-5" for the furan ring. The methoxyl signal appeared at δ 4.18 ppm. The HMBC correlations (Figures 45-47) of H-8 with C-6 and C-10 indicated the location of the furan ring on C-6 and C-7, and the correlations of C-5 with protons of the methoxyl group suggested the attachment of the methoxyl group at C-5. This was supported by the NOESY correlation between H-4" and the methoxyl group at C-5 (Figures 43 and 44). The characteristic signal for the methylenedioxy substituented B-ring was found at δ 6.05 (2H, s). The presence of an ABX spin system at δ 7.32 (1H, d, J = 1.5 Hz, H-2'), δ 6.90 (1H, d, J = 8.1Hz, H-5') and δ 7.46 (1H, dd, J = 8.1, 1.5 Hz, H-6') in the ¹H NMR spectrum placed the methylenedioxy group at C-3' and C-4' positions. Based on the above spectral evidence, compound MEL4 was identified as gamatin [237] (Pathak and Khanna, 1981).

Position	Compound N	IEL4	Gamatin	НМВС
	¹ H (mult., <i>J</i> in Hz)	¹³ C	¹ H (mult., <i>J</i> in Hz)	
2	-	161.0	-	H-3, H-2′, H-6′
3	6.55 (s)	106.9	6.43 (s)	-
4		178.4	-	Н-3
5	-	153.6	-	MeO-5
6	-	117.3	-	H-8, H-4″, H-5″
7	-	158.0	-	H-4″, H-5″
8	7.34 (s)	106.2	6.75 (s)	-
9	-	155.7	-	H-8
10	-	112.8	-	H-3, H-8
1′	-	125.6	-	H-3, H-2′, H-5′
2'	7.32 (d, 1.5)	95.4	7.19 (d, 9.0)	-
3'	_	148.4	- 0	H-5′, -OCH ₂ O-
4′	-	150.4	-	H-6′, -OCH ₂ O-
5′	6.90 (d, 8.1)	108.7	6.89 (d, 8.5)	-
6'	7.46 (dd, 8.1, 1.5)	121.2	7.19 (d, 9.0)	H-2′
4″	7.03 (d, 2.1)	105.4	7.30 (d, 2.0)	H-5″
5″	7.58 (d, 2.1)	145.2	7.47 (d, 2.5)	H-4″
MeO-5	4.18 (s)	61.9	4.12 (s)	-
-	6.05 (s)	101.9	5.94 (s)	- v
OCH ₂ O-	ฬาลงกร	ถไบเ	หาวิทยาก	3 8

 Table 7 NMR Spectral data of compound MEL4 (CDCl₃) and gamatin (CDCl₃)

1.5 Structure Determination of compound MEL5

Compound MEL5, a white powder, showed its quasi-molecular ion $[M+H]^+$ at m/z 327.2 in the ESIMS (Figure 48), indicating a molecular of C₁₈H₁₄O₆. The UV spectral data displayed maximum absorptions at 211, 240 and 333 nm (Figure 49). The IR spectrum showed v_{max} at 1639 (conjugated C=O), 1591 (conjugated C=C) and 1453 (CH₂ bending) cm⁻¹ (Figure 50). The ¹H NMR spectrum exhibited a singlet signal of H-3 at δ 6.65 (Table 8, Figure 51). These data were indicative of a flavone nucleus. Two proton singlet signals at δ 7.54 and 6.95 were assigned to the aromatic protons H-5 and H-8 of ring A. The methylenedioxy group on ring B was observed at δ 6.05 (2H, s) and $\delta_{\rm C}$ 101.9 ppm. Furthermore, the ¹H NMR spectrum revealed the presence of two methoxyl groups at δ 3.97 and 3.99 ppm. The NOESY correlation of the methoxyl groups with H-5 and H-8 suggested the attachment of the methoxyls group at C-6 and C-7 (Figure 54). By analyses of the ¹H and ¹³C NMR data and comparison with previously reported data (Parma, Gupta and Sharma, 1989), compound MEL5 was identified as milletenin C [45].

[45]

66

Position	Compound MEL5		Milletenin C	
	¹ H (mult., <i>J</i> in Hz)	¹³ C	¹ H (mult., <i>J</i> in Hz)	¹³ C
2	-	162.5	-	162.4
3	6.65 (s)	106.2	6.62 (s)	101.8
4		177.6		177.4
5	7.54 (s)	104.5	7.60 (s)	121.1
6	-	147.7	-	126.1
7	-	154.4	-	162.4
8	6.95 (s)	99.7	6.96 (s)	99.8
9	-	152.1	-	147.8
10	- / / /	117.3	-	104.7
1′	- / / .	126.0	-	121.1
2	7.33 (d, 1.5)	106.2	7.34 (d, 1.5)	106.2
3'	- / 6	148.5	-	147.8
4′	-	150.4	-	147.8
5′	6.91 (d, 8.4)	108.7	6.93 (d, 8.0)	106.3
6'	7.45 (dd, 8.4, 1.5)	121.1	7.44 (dd, 8.0, 1.5)	108.7
MeO-6	3.97 (s)	56.4	3.98 (s)	56.4
MeO-7	3.99 (s)	56.5	4.00 (s)	56.4
-OCH ₂ O-	6.05 (s)	101.9	6.05 (s)	101.8
	861 IUV	6 8 1 1 1	61116	

Table 8 NMR Spectral data of compound MEL5 (CDCl₃) and milletenin C (CDCl₃)

จุฬาลงกรณมหาวทยาลย

1.6 Structure Determination of compound MEL6

Compound MEL6 was obtained as a white powder. It showed a quasi-molecular $[M+H]^+$ ion peak at m/z 327.1 in the ESIMS (Figure 55), suggesting a molecular formula of C₁₈H₁₄O₆. The UV spectrum showed maximum absorptions at 247, 300, 360 nm (Figure 56). The IR spectrum displayed v_{max} at 1648 (conjugated C=O), 1620 and 1569 cm⁻¹ (conjugated C=C) (Figure 57). The ¹H NMR signal at δ 6.88 (1H, s, H-3) was indicative of a flavone skeleton. The ¹H and ¹³C NMR spectra (Table 9, Figures 58 and 59) revealed the presence of a methylenedioxy group at δ_H 6.10 (2H, s) and δ_C 102.8 ppm and two methoxyl groups at δ_H 3.96 (s)/ δ_C 56.1 and δ_H 3.96 (s)/ δ_C 56.8 ppm. For ring A, the two doublets at δ 7.98 (d, J = 9.0 Hz, H-5) and δ 7.21 (d, J = 2.4 Hz, H-8) and the double doublet at δ 7.01 (dd, J = 9.0, 2.4 Hz, H-6), placed one of the methoxyls at C-7. The two proton signals at δ 6.90 (1H, s) and δ 7.47 (1H, s) suggested their *para*-relation on ring B (H-3' and H-6'). Thus, the other methoxyl group should be located at C-2'. The ¹H and ¹³C NMR data were in good agreement with those of millettocalyxin A [48], a flavone earlier isolated from the stem bark of this plant (Sritularak *et al.*, 2002a).

สถาบนวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Position	Compound MEL6		Millettocalyxin A	
	¹ H (mult., <i>J</i> in Hz)	¹³ C	¹ H (mult., <i>J</i> in Hz)	¹³ C
2	-	160.5	_	160.8
3	6.88 (s)	111.5	6.94 (s)	111.7
4	-	177.2	-	177.6
5	7.98 (d, 9.0)	126.9	8.03 (d, 8.8)	127.1
6	7.01 (dd, 9.0, 2.4)	114.6	7.06 (dd, 8.8, 2.4)	114.9
7	-	164.7	-	165.0
8	7.21 (d, 2.4)	101.1	7.26 (d, 2.4)	101.4
9	- / / / 3	158.6	-	158.9
10	- / / .	118.1	-	118.4
1′	- / / /	113.1	-	113.5
2'	- 6	155.8	-	156.1
3′	6.90 (s)	95.9	6.95 (s)	96.1
4′	0-	151.7		151.9
5′	-	142.4		142.7
6′	7.47 (s)	108.0	7.52 (s)	108.2
-OCH ₂ O-	6.10 (s)	102.8	6.15 (s)	103.1
MeO-7	3.96 (s)	56.1	4.02 (s)	56.4
MeO-2′	3.96 (s)	56.8	4.02 (s)	57.1

Table 9 NMR Spectral data of compound MEL6 (acetone-d6) and millettocalyxin A(acetone-d6)

จฬาลงกรณมหาวทยาลย

1.7 Structure Determination of compound MEL7

Compound MEL7, a yellow powder, exhibited a quasi-molecular ion $[M+H]^+$ peak at *m/z* 323.1 in the ESIMS (**Figure 62**), analyzed for C₁₉H₁₄O₅. It showed UV absorptions at 248 and 293 nm (**Figure 63**). The IR spectrum displayed absorption bands at 1626 (conjugated C=O), 1588 (conjugated C=C), 1186 and 1074 (C-O stretching) cm⁻¹ (**Figure 64**). The ¹H NMR signal at 7.20 (1H, s, H-3) was suggestive of a furanoflavone nucleus (**Table 10, Figure 65**) (Mbafor *et al.*, 1995). The ¹H NMR spectrum provided signals for a furan ring at δ 7.15 (1H, d, *J* = 1.5 Hz, H-4") and 7.73 ppm (1H, d, *J* = 1.8 Hz, H-5"). This spectrum also exhibited the presence of two methoxyls at δ 3.86 (3H, s) and 3.89 ppm (3H, s). The *ortho*-coupled protons at δ 8.15 (1H, d, *J* = 8.7 Hz) and 7.54 ppm (1H, d, *J* = 8.7 Hz) were assigned to H-5 and H-6, respectively. The three coupled aromatic protons at δ 6.98 (1H, d, *J* = 9.0 Hz), 7.04 (1H, dd, *J* = 9.0, 3.0 Hz) and 7.49 (1H, d, *J* = 3.0 Hz) were assigned to H-3', H-4' and H-6', respectively. By comparing the above spectral information with reported the ¹H and ¹³C NMR data, compound MEL7 was identified as millettocalyxin C [**50**], which was previously isolated from the stem bark of this plant (Sritularak *et al.*, 2002a).

Position	Compound MEL7		Millettocalyxin C	
	¹ H (mult., <i>J</i> in Hz)	¹³ C	¹ H (mult., <i>J</i> in Hz)	¹³ C
2	-	159.8	_	159.8
3	7.20 (s)	113.2	7.23 (s)	113.2
4		178.6	-	178.7
5	8.15 (d, 8.7)	121.8	8.16 (d, 9.0)	121.8
6	7.54 (d, 8.7)	110.0	7.54 (d, 9.0)	110.0
7	-	158.3	-	158.3
8	-	117.1	-	117.2
9	-	151.0	-	151.0
10	- / / /	119.2	-	119.3
1′	-	121.4	-	121.4
2'	- / /	152.4	-	152.5
3'	6.98 (d, 9.0)	113.1	6.99 (d, 9.0)	113.2
4′	7.04 (dd, 9.0, 3.0)	117.2	7.04 (dd, 9.0, 3.0)	117.3
5′	-	153.5	-	153.6
6'	7.49 (d, 3.0)	114.7	7.50 (d, 3.0)	114.7
4″	7.15 (d, 1.8)	104.2	7.16 (d, 2.0)	104.3
5″	7.73 (d, 1.8)	145.6	7.75 (d, 2.0)	145.7
MeO-2′	3.89 (s)	56.2	3.95 (s)	56.2
MeO-5'	3.86 (s)	55.9	3.91 (s)	56.0

Table 10NMR Spectral data of compound MEL7 (CDCl3) and millettocalyxin C(CDCl3)

CHAPTER V

CONCLUSION

Phytochemical investigation of the leaves of *Millettia erythrocalyx* Gagnep. led to the isolation of seven flavonoid compounds. The structure of all of these isolates were determined by extensive spectroscopic studies, including comparison of their UV, IR, MS and NMR properties with previously reported data. These include a new furanoflavone compound, namely 3', 5'-dimethoxy[2",3":7,8]furanoflavone, and the known flavone compounds 3',4'-methylenedioxy-7-furanoflavone, pongaglabrone, gamatin, milletenin C, millettocalyxin A and millettocalyxin C.

สถาบนวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

REFERENCES

- Asomaning, W. A., Amoako, C., Oppong, I. V., Phillips, W. R., Addae-Mensah, I., Osei-Twum, E. Y., Waibel, R., and Achenvach, H. 1995. Pyrano-and dihydrofurano-isoflavones from *Millettia thonningii*. <u>Phytochemistry</u> 39: 1215-1218.
- Asomaning, W. A., Otoo, E., Akoto, O., Oppong, I. V., Addae-Mensah, I., Waibel,
 R., and Achenvach, H. 1999. Isoflavones and coumarins from *Millettia thonningii*. <u>Phytochemistry</u> 51: 937-941.
- Baruah, P., Barua, N. C., Sharman, R. P., Baruah, J. N., Kulanthaivel, P., and Herz,W. 1984. Flavonoids from *Millettia pulchra*. <u>Phytochemistry</u> 23: 443-447.
- Bose, C., and Chakraborty, A. 2000. 19-Oxo-5α-carda-14,20(22)-dienolide-3-*O*-βD-glucopyranoside from *Millettia ovalifolia* roots. <u>Asia J. Chem.</u> 12: 663-667.
 (CA. 133: 190469v)
- Chen, F. T., Zhong, S. Z., Lu, J. H., Chen, G., Guo, J. G., Yan, X. Z., and Zhu, Y. F.
 1999. Chemical constituents of thickfruit Millettia root (*Millettia pachycarpa*)
 I. <u>Chung IT' AO Yao</u> 30: 3-5. (CA. 131: 2779h)
- Chopra, R. N., Badhwar, R. L., and Ghosh, S. 1965. <u>Poisonous plants of India vol. I.</u> pp. 289-356. The National Printing Works, New Dehli.
- Dagne, E., and Bekele, A. 1990. *C*-Prenylated isoflavones from *Millettia ferruginea*. <u>Phytochemistry</u> 29: 2679-2682.
- Dagne, E., Bekele, A., and Waterman, P. G. 1989. The flavonoids of *Millettia* ferruginea subsp. Ferruginea and subsp. Darassana in Ethiopia.
 <u>Phytochemistry</u> 28: 1897-1900.
- Dagne, E., Bekele, A., Noguchi, H., Shibuya, M., and Sankawa, U. 1990. *O*-Geranylated and *O*-prenylated flavonoids from *Millettia ferruginea*.
 <u>Phytochemistry</u> 29: 2671-2673.
- Dagne, E., Mammo, W., and Bekele, A. 1991. Flavonoids of *Millettia dura*. <u>Bull.</u> <u>Chem. Soc. Ethiop.</u> 5: 81-86.
- Desai, H. K., Gawad, D. H., Joshi, B. S., Parthasarathy, P. C., Ravindranath, K. R., Saindane, M. T., Sidhaye, A. R., and Viswanathan, N. 1977. Chemical investigation of Indian plants: part X. <u>Indian J. Chem.</u> 15B: 291-293.

- Fuendjiep, V., Nkengfack, A. E., Formum, Z. T., Sondengam, B. L., and Bodo, B. 1998a. Conrauinones C and D, two isoflavones from stem bark of *Millettia conraui*. J. Nat. Prod. 61: 380-383.
- Fuendjiep, V., Nkengfack, A. E., Formum, Z. T., Sondengam, B. L., and Bodo, B. 1998b. Conrauinones C and D, two isoflavones from stem bark of *Millettia conraui*. <u>Phytochemistry</u> 47: 113-115.
- Galeffi, C., Rasoanaivo, P., Federici, E., Palazzino, G., Nicoletti, M., and
 Rasolondratovo, B. 1997. Two prenylated isoflavanones from *Millettia pervilleana*. <u>Phytochemistry</u> 45: 189-192.
- Ganapaty, S., Pushpalatha, V., Babu, G. J., Naida, K. C., and Waterman, P. G. 1998.
 Flavonoids from *Millettia peguensis* Ali (Fabaceae). <u>Biochem. Sys. Ecol.</u> 26: 125-126.
- Garcez, F. R., Scramin, S., Nascimento, M. C., and Mors, W. B. 1988. Prenylated flavonoids as evolutionary indicators in the genus *dahlstedtia*. <u>Phytochemistry</u> 27: 1079-1083.
- Gong, Z. W., and Wu, C. C. 1998. Preliminary study on the chemical constituents of the fragrance released from fresh flowers of *Millettia reticulate*. <u>Linchan</u> <u>Huaxue Yu Gongye</u> 18: 65-68. (Napralert: J15943)
- Gupta, B. B., Bhattacharyya, A., Mitra, S. R., and Adityachaudhury, N. 1983.
 Isoaurmillone, an isoflavone from the pods of *Millettia auriculata*.
 <u>Phytochemistry</u> 22: 1306-1307.
- Gupta, R. K., and Krishnamurti, M. 1976a. Prenylated flavanones from *Millettia ovalifolia* seeds. <u>Phytochemistry</u> 15: 832-833.
- Gupta, R. K., and Krishnamurti, M. 1976b. Pyranoflavanone from *Millettia ovalifolia* seeds. <u>Phytochemistry</u> 15: 1795.
- Gupta, R. K., and Krishnamurti, M. 1976c. Chromenoflavanones from *Millettia ovalifolia*. <u>Phytochemistry</u> 15: 2011.
- Gupta, R. K., and Krishnamurti, M. 1977a. A prenylated chalkone from *Millettia ovalifolia*. <u>Phytochemistry</u> 16: 293.
- Gupta, R. K., and Krishnamurti, M. 1977b. New dibenzoylmethane and chalcone derivatives from *Millettia ovalifolia* seeds. <u>Phytochemistry</u> 16: 1104-1105.
- Gupta, R. K., and Krishnamurti, M. 1979. Ovalin, a new pipecolic acid from *Millettia ovalifolia* seeds. <u>Phytochemistry</u> 18: 2021-2022.

- Hayashi, Y., Shirato, T., Sakurai, K., and Takahashi, T. 1978. Isoflavonoids from the heartwood from *Millettia pendura*. <u>Mokuzaki Gakkaishi</u> 24: 898. (CA. 90: 100111p)
- Islam, A., Gupta, R. K., and Krishnamurti, M. 1980. Furano chalcone and prenylated flavanones from *Millettia ovalifolia* seeds. <u>Phytochemistry</u> 19: 1558-1559.
- Kamnaing, P., Fanso Free, S. N. Y., Fomum, Z. T., Martin, M. T., and Bodo, B.
 1994. Millettonine, a guanidine alkaloid from *Millettia laurentii*.
 <u>Phytochemistry</u> 36: 1561-1562.
- Kamnaing, P., Fanso Free, S. N. Y., Nkengfack, A. E., Folefoc, G., and Fomum, Z. T.
 1999. An isoflavan-quinone and a flavonol from *Millettia laurentii*.
 <u>Phytochemistry</u> 51: 829-832.
- Kamperdick, C., Phoung, N. M., Sung, T. V., and Adam, G. 1998. Flavones and isoflavones from *Millettia ichthyochtona*. <u>Phytochemistry</u> 48: 577-579.
- Khalid, S. A., and Waterman, P. G. 1983. Thonningine-A and thonningine-B: two 3phenylcoumarins from the seeds of *Millettia thonningii*. <u>Phytochemistry</u> 22: 1001-1003.
- Khan, H., and Zaman, A. 1974. Extractives of *Millettia ovalifolia*. <u>Tetrahedron</u> 30: 2811-2815.
- Krishnamurti, M., and Islam, A. 1987. Isolation of isolonchocarpin, 3,4-dimethoxy cinnamic acid, and heptacosanol from *Millettia ovalifolia* seeds. J. Bangladesh <u>Acad. Sci.</u> 11: 133-135. (Napralert: M17606)
- Kumar, N. S., Krupadanam, G. L. D., and Srimannarayana, G. 1989. Isoflavans from *Millettia racemosa*. <u>Phytochemistry</u> 28: 913-916.
- Lu, J. H., Zeng, J. X., Kuang, Z. T., and Chen, F. T. 1999. Chemical constituents of thickfruit Millettia roots (*Millettia pachycarpa*) II. <u>Chung TS'Ao Yao</u> 30: 721-723. (Napralert: H26738)
- Mahmoud, E. N., and Waterman, P. G. 1985. Flavonoids from the stem bark of *Millettia hemsleyana*. <u>Phytochemistry</u> 24: 369-371.
- Markham, K. R. 1982. <u>Techniques of flavonoids identification</u>. pp. 36-49. London: Academic Press Inc. (London) Ltd.
- Mbafor, J. T., Atchade, A. T., Nkengfack, A. E., Fomum, Z. T., and Sterner, O. 1995.
 Furanoflavones from root bark of *Millettia sanagana*. <u>Phytochemistry</u> 40: 949-952.

- Minhaj, N., Khan, H., Kapoor, S. K., and Zaman, A. 1976. Extractives of *Millettia* auriculata-III. <u>Tetrahedron</u> 32: 749-751.
- Ngamga, D., Fanso Free, S. N. Y., and Fomum, Z. T. 1993. Millaurine and acetylmillaurine: alkaloids from *Millettia laurentii*. <u>J. Nat. Prod.</u> 56(12): 2126-2132.
- Ngamga, D., Fanso Free, S. N. Y., and Fomum, Z. T. 1994. A new guanidine alkaloid from *Millettia laurentii*. J. Nat. Prod. 57(7): 1022-1024.
- Nigam, S. S., Saxena, V. K., Sahai, A., and Seema, B. 1982. Gas chromatographic examination of the volatile constituents of the essential oil of the leaves of *Millettia ovalifolia*. Indian Perfumer 26: 140-141.
- Olivares, E. M., Lwande, W., Momache, F. D., and Bettolo, G. B. M. 1982. A pyrano-isoflavone from seeds of *Millettia thonningii*. <u>Phytochemistry</u> 21: 1763-1765.
- Ollis, W. D., Rhodes, C. A., and Sutherland, I. O. 1967. The extractives of *Millettia dura*. The constituents of durlettone, durmillone, milldurone, millettone and millettosin. <u>Tetrahedron</u> 23: 4741.
- Palazzino, G., Rasoanaivo, P., Federici, E., Nicoletti, M., and Galeffi, C. 2003. Prenylated isoflavonoids from *Millettia pervilleana*. <u>Phytochemistry</u> (in press).
- Parmar, V. S., Gupta, S., and Sharma, V. K. 1989. Synthesis of 2,3-dihydro-6,7dimethoxy-2-(3,4-methylenedioxyphenyl)-[1]-benzopyran-4-one and its dehydro derivative. <u>Indian J. Chem.</u> 28B: 268-269.
- Pathak, V. P., and Khanna, R. N. Synthesis of gamatin, a naturally occurring linear furanoflavone. 1981. <u>Indian J. Chem.</u> 20B: 622-624.
- Parvez, M., and Ogbeide, O. N. 1990. 3-Hydroxy-4'-methoxyflavone from *Millettia zechiana*. <u>Phytochemistry</u> 29: 2043-2044.
- Phrutivorapongkul, A., Lipipun, V., Ruangrungsi, N., Kirtikara, K., Nishikawa, K., Maruyama, S., Watanabe, T., and Ishikawa, T. 2003. Studies on the chemical constituents of stem bark of *Millettia leucantha*: isolation of new chalcones with cytotoxic, anti-herpes simplex virus and anti-inflammatory activities. <u>Chem. Pharm. Bull.</u> 51(2): 187-190.
- Raju, K. V. S., and Srimannarayana, G. 1978. Aurmillone, a new isoflavone from the seeds of *Millettia auriculata*. <u>Phytochemistry</u> 17: 1065-1066.
- Raju, K. V. S., and Srimannarayana, G., Ternai, B., Stanley, R., and Markham, K. R.

1981. ¹³C NMR studies of some complex natural oxygen heterocyclics: structure of millettin, a novel isoflavone isolated from *Millettia auriculata*. Tetrahedron 37: 957-962.

- Rao, C. P., and Krupadanam, G. L. D. 1994. An isoflavan from *Millettia racemosa*. <u>Phytochemistry</u> 35: 1597-1599.
- Rao, C. P., Prashant, A., and Krupadanam, G. L. D. 1996. Two prenylated isoflavans from *Millettia racamosa*. <u>Phytochemistry</u> 41: 1223-1224.
- Rao, E. V., Prasad, Y. R., and Ganapaty, S. 1992. Three prenylated isoflavones from *Millettia auriculata*. <u>Phytochemistry</u> 31: 1015-1017.
- Rathore, J. S., Nagar, A., and Gupta, S. R. 1983. Minor constituents of *Millettia pendura*. <u>Proc. Natl. Acad. Sci. India</u> 53A: 106. (Napralert: M07154)
- Saxena, D. B., Tomar, S. S., Singh, R. P., and Mukerjee, S. K. 1987. A new chalcone from *Millettia ovalifolia*. Indian J. Chem. 26B: 704.
- Shabbir, M., and Zaman, A. 1970. Structure of isoauriculatin and auricurin, extractives of *Millettia auriculata*-II. <u>Tetrahedron</u> 26: 5041-5044.
- Shabbir, M., Zaman, A., Crombie, L., Tuck, B., and Whiting, D. A. 1968. Structure of auriculatin, extractive of *Millettia auriculata*. J. Chem. Soc. (C) 1899-1901.
- Shao, W. Y., Huang, X. F., Zhu, Y. F., Guan, S. Y., Chen, F. T., and Zhong, S. Z.
 2001b. NMR study on three new furanoflavones. <u>Fenxi Ceshi Xuebao</u> 20: 8-11. (Napralert: H28309)
- Shao, W. Y., Zhu, Y. F., Guang, S. Y., Zhang, S. Z., and Chen, F. T. 2001a. Study on chemical constituents of thickfruit *Millettia* root aoo. <u>Tianran Chanwu</u> <u>Yanjiu Yu Kaifa</u> 13: 1-4. (Napralert: H28568)
- Singhal, A. K., Barua, N. C., Sharma, R. P., and Baruah, J. N. 1983. A chalcone and an isoflavone from *Millettia pachycarpa* seeds. <u>Phytochemistry</u> 22: 1005-1006.
- Singhal, A. K., Sharma, R.P., Baruah, J. N., Govindan, S. W., and Herz, W. 1982. Rotenoids from roots of *Millettia pachycarpa*. <u>Phytochemistry</u> 21: 949-951.
- Singhal, A. K., Sharma, R. P., Madhusudanan, K. P., Thyagarajan, G., Herz, W., and Govindan, S. W. 1981. New prenylated isoflavones from *Millettia pachycarpa*. <u>Phytochemistry</u> 20: 803-806.
- Singhal, A. K., Sharma, R. P., Thyagarajan, G., Herz, W., and Govindan, S. W. 1980. New prenylated isoflavones and prenylated dihydroflavonol from *Millettia pachycarpa*. <u>Phytochemistry</u> 19: 929-934.

- Smitinand, T. 2001. <u>Thai plant names (botanical names-vernacular names) revised</u> <u>edition.</u> pp. 56-57 and 359-360. Bangkok: The Forest Herbarium, Royal Forest Department.
- Sritularak, B., Likhitwitayawuid, K., Conrad, J., Vogler, B., Reeb, S., Klaiber, I., and Kraus, W. 2002a. New flavones from *Millettia erythrocalyx*. <u>J. Nat. Prod.</u> 65: 589-591.
- Sritularak, B., Likhitwitayawuid, K., Conrad, J., and Kraus, W. 2002b. Flavonoids from the roots of *Millettia erythrocalyx*. <u>Phytochemistry</u> 61: 943-947.
- Yankep, E., Fomum, Z. T., Bisrat, D., Dagne, E., Hellwig, V., and Steglich, W. 1998.
 O-Geranylated isoflavones and a 3-phenylcoumarin from *Millettia griffoniana*.
 <u>Phytochemistry</u> 49: 2521-2523.
- Yankep, E., Fomum, Z. T., Dagne, E. 1997. An O-Geranylated isoflavone from Millettia griffoniana. <u>Phytochemistry</u> 46: 591-593.
- Yankep, E., Mbafor, J. T., Fomum, z. T., Steinbeck, C., Messanga, B. B., Nyasse, B., Budzikiewicz, H., Lenz, C., and Schmickler, H. 2001. Further isoflavonoid metabolites from *Millettia griffoniana* (Bail). Phytochemistry 56: 363-368.
- Yenesew, A., Midiwo, J. O., and Waterman, P. G. 1996. Four isoflavones from *Millettia dura*. <u>Phytochemistry</u> 41: 951-955.
- Yenesew, A., Midiwo, J. O., and Waterman, P. G. 1997. 6-Methoxycalopogonium isoflavone A: a new isoflavone from the seed pods of *Millettia dura*. J. Nat. <u>Prod.</u> 60: 806-807.
- Yenesew, A., Midiwo, J. O., and Waterman, P. G. 1998. Rotenoids, isoflavones and chalcone from the stem bark of *Millettia usaramensis* subspecies *usaramensis*. <u>Phytochemistry</u> 47: 295-300.
- Zhi, W. [2002, M D]. FABACEAE Millettia erythrocalyx Gagnep. in Lecomte, Not. Syst. 2: 356. 1913. Available from: <u>http://hua.huh.harvard.edu/china/mss/</u> volume10/Fabaceae.MO.various_edited.htm.

APPENDICES

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Figure 12 ESI Mass spectrum of compound MEL1

Figure 13 UV Spectrum of compound MEL1 (MeOH)

Figure 14 IR Spectrum of compound MEL1 (film)

Figure 15 ¹H-NMR (300 MHz) Spectrum of compound MEL1 (acetone- d_6)

Figure 16 ¹³C-NMR (75 MHz) Spectrum of compound MEL1 (acetone-*d*₆)

Figure 17 ESI Mass spectrum of compound MEL2

Figure 18 HRESI Mass Spectrum of compound MEL2

Figure 19 UV Spectrum of compound MEL2 (MeOH)

Figure 21 ¹H-NMR Spectrum (300 MHz) of compound MEL2 (CDCl₃)

Figure 22¹³C-NMR Spectrum (75 MHz) of compound MEL2 (CDCl₃)

Figure 23 ¹³C-NMR, DEPT 90 and DEPT 135 Spectra (75 MHz) of compound MEL2 (in CDCl₃)

Figure 24 HMQC Spectrum of compound MEL2 (CDCl₃)

Figure 25 HMBC Spectrum of MEL2 (CDCl₃)

Figure 27 HMBC Spectrum of compound MEL2 (CDCl₃) (expanded, δ_{H} 6.2-8.5 ppm, δ_{C} 91-195 ppm)

Figure 28 NOESY Spectrum of compound MEL2 (CDCl₃)

Figure 29 NOESY Spectrum of compound MEL2 (CDCl₃) (expanded, $\delta_{\rm H}$ 6.0-8.6 ppm)

Figure 30 ESI Mass spectrum of compound MEL3 (CDCl₃)

Figure 31 UV Spectrum of compound MEL3 (MeOH)

Figure 32 IR Spectrum of compound MEL3 (film)

Figure 33 ¹H-NMR Spectrum (300 MHz) of compound MEL3 (CDCl₃)

Figure 34 ¹³C-NMR Spectrum (75 MHz) of compound MEL3 (CDCl₃)

Figure 35 HMQC Spectrum of compound MEL3 (CDCl₃) (expanded, δ_H 5.9-8.3 ppm, δ_c 97-150 ppm)

Figure 36 ESI Mass spectrum of compound MEL4

Figure 37 UV Spectrum of compound MEL4 (MeOH)

Figure 38 IR Spectrum of compound MEL4 (film)

Figure 39 ¹H-NMR Spectrum (300 MHz) of compound MEL4 (CDCl₃

Figure 40 ¹³C-NMR Spectrum (75 MHz) of compound MEL4 (CDCl₃)

Figure 41 HMQC Spectrum of compound MEL4 (CDCl₃)

Figure 42 HMQC Spectrum of compound MEL4 (CDCl₃) (expanded, δ_{H} 5.4-7.8 ppm, δ_{C} 91-123 ppm)

Figure 43 NOESY Spectrum of compound MEL4

Figure 45 HMBC Spectrum of compound MEL4 (CDCl₃)

Figure 47 HMBC Spectrum of compound MEL4 (CDCl₃) (expanded, δ_H 5.8-7.9 ppm, δ_C 85-190 ppm)

Figure 48 ESI Mass spectrum of compound MEL5 (CDCl₃)

Figure 49 UV Spectrum of compound MEL5 (MeOH)

Figure 50 IR Spectrum of compound MEL5 (film)

Figure 51 ¹H-NMR Spectrum (300 MHz) of compound MEL5 (CDCl₃)

^{185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40} ppm

Figure 52 ¹³C-NMR Spectrum (75 MHz) of compound MEL5 (CDCl₃)

Figure 53 HMQC Spectrum of compound MEL5 (CDCl₃)

Figure 54 NOESY Spectrum of compound MEL5 (CDCl₃)

Figure 55 ESI Mass spectrum of compound MEL6

Figure 56 UV Spectrum of compound MEL6 (MeOH)

Figure 57 IR Spectrum of compound MEL6 (film)

Figure 58 ¹H-NMR Spectrum (300 MHz) of compound MEL6 (acetone-*d*₆)

Figure 59 13 C-NMR Spectrum (75 MHz) of compound MEL6 (acetone- d_6)

Figure 60 HMQC Spectrum of compound MEL6 (acetone-*d*₆)

Figure 61 HMBC Spectrum of compound MEL6 (acetone-*d*₆)

Figure 62 ESI Mass spectrum of compound MEL7

Figure 63 UV Spectrum of compound MEL7 (MeOH)

Figure 64 IR Spectrum of compound MEL7 (film)

Figure 65 ¹H-NMR Spectrum (300 MHz) of compound MEL7 (CDCl₃)

Figure 66 ¹³C-NMR Spectrum (75 MHz) of compound MEL7 (CDCl₃)

VITA

Miss Kanokwan Benchanak was born on June 14, 1976 in Nakhonratchasima, Thailand. She received her Bachelor's degree of Science in Pharmacy in 1998 from the Faculty of Pharmaceutical Sciences, Chulalongkorn University. She currently works at Buayai Hospital, Nakhonratchasima.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย