โปรแกรมการวิเคราะห์ฮาร์มอนิกในระบบไฟฟ้ากำลัง เพื่อการเรียน การสอน ด้านคุณภาพไฟฟ้า

นาย สุละไช แก้วคำพัน

สูนย์วิทยทรัพยากร

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต

สาขาวิชาวิศวกรรมไฟฟ้า ภาควิชาวิศวกรรมไฟฟ้า

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2553

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

POWER SYSTEM HARMONIC ANALYSIS PROGRAMS FOR POWER QUALITY

TEACHING AND STUDYING

Mr. Soulaxay Keokhamphan

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering Program in Electrical Engineering

Department of Electrical Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2010

Copyright of Chulalongkorn University

Thesis Title	Power System Harmonic Analysis Programs for Power
	Quality Teaching and Studying
Ву	Mr. Soulaxay Keokhamphan
Field of Study	Electrical Engineering
Thesis Advisor	Associate Professor. Chaiya Chamchoy
Thesis Co-advisor	Assistant Professor. Thavatchai Tayjasanant, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in

Partial Fulfillment of the Requirements for the Master's Degree

5. ande ... Dean of the Faculty of Engineering

(Associate Professor Boonsom Lerdhirunwong, Dr. Ing.)

THESIS COMMITTEE

Chairman

(Chanarong Banmongkol, D. Eng)

h. Chonselay Thesis Advisor

(Associate Professor Chaiya Chamchoy)

Thavatchai by pravant Thesis Co-advisor

(Assistant Professor Thavatchai Tayjasanant, Ph.D)

S. Chon tusomy Examiner

(Surachai Chaitusaney, Ph.D)

C. Jerrput External Examiner

(Assistant Professor Chuttchaval Jeraputra, Ph.D)

สุละไข แก้วคำพัน : โปรแกรมการวิเคราะห์ฮาร์มอนิกในระบบไฟฟ้ากำลัง เพื่อการเรียน การสอน ด้านคุณภาพไฟฟ้า. (POWER SYSTEM HARMONIC ANALYSIS PROGRAMS FOR POWER QUALITY TEACHING AND STUDYING) อ. ที่ปรึกษา วิทยานิพนธ์หลัก: รศ. ไชยะ แช่มข้อย, อ. ที่ปรึกษาวิทยานิพนธ์ร่วม: ผศ.ดร. ธวัชชัย เตชัลอนันต์, 136 หน้า.

วิทยานิพนธ์ นี้นำเสนอการพัฒนาโปรแกรมวิเคราะห์ฮาร์มอนิก โดยใช้ Graphic User Interface (GUI) ของโปรแกรม MATLAB โปรแกรมแบ่งได้เป็น 3 ส่วน ส่วนแรกเป็นการ สังเคราะห์รูปคลื่นฮาร์มอนิก ผู้ใช้สามารถใส่ค่าขนาดและมุมเฟสของแต่ละฮาร์มอนิก แล้วดู รูปคลื่นที่สร้างขึ้นมาได้ ส่วนที่สองวิเคราะห์การตอบสนองทางฮาร์มอนิกโดยดูผลจากโหลดเชิง เส้นและไม่เป็นเชิงเส้น ตัวเก็บประจุ ตัวกรองฮาร์มอนิกซนิดดีจูนและจูน การคำนวณหลักในส่วน นี้ คือ การสแกนอิมพีแดนซ์ การไหลกระแสฮาร์มอนิก และ การคำนวณความผิดเพี้ยนทางฮาร์ มอนิกแรงดัน การสแกนอิมพีแดนซ์ สามารถบอกการเกิดเรโขแนนซ์ได้ ส่วนสุดท้ายเกี่ยวกับการ ออกแบบตัวกรองฮาร์มอนิกและการจำลองแบบ การจำลองแบบของระบบหลังจากมีการติดตั้ง ตัวกรองฮาร์มอนิกมีความสำคัญในการที่จะตรวจสอบประสิทธิภาพการออกแบบตัวกรองฮาร์มอ นิกโปรแกรมที่พัฒนาขึ้น สามารถนำไปใช้ในการเรียนการสอนเกี่ยวกับคุณภาพไฟฟ้าได้ กรณีศึก

ษาหลายกรณี ได้ถูกจำลองแบบเพื่อการทำความเข้าใจกับคุณสมบัติของฮาร์มอนิก โปรแกรมที่ พัฒนาขึ้นใช้ง่ายสำหรับผู้ใช้ทั้งที่มีประสบการณ์และไม่มีประสบการณ์ในการเข้าใจการวิเคราะห์ ทางฮาร์มอนิก.

ศูนยวทยทรพยากร จุฬาลงกรณ์มหาวิทยาลัย

ภาควิชา วิศวกรรมไฟฟ้า ลายมือชื่อนิสิต Mr. SouLaxay ลาขาวิชา วิศวกรรมไฟฟ้า ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก ปีการศึกษา 2553 ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม

##5170678521 : MAJOR ELECTRICAL ENGINEERING

KEYWORDS : Harmonic / Waveform synthesis / impedance scan / harmonic filter design

SOULAXAY KEOKHAMPHAN: POWER SYSTEM HARMONIC ANALYSIS PROGRAMS FOR POWER QUALITY TEACHING AND STUDYING. ADVISOR: ASSOC. PROF. CHAIYA CHAMCHOY, CO-ADVISOR: ASST. PROF. THAVATCHAI TAYJASANANT, Ph. D. 136pp.

This thesis presents a graphic user interface (GUI)-based power system harmonic analysis program developed under MATLAB environment. The program can be divided into three parts. The first part performs harmonic waveform synthesis. A user can input various harmonic magnitudes and phase angles and then view the resultant distorted waveform. The second part analyzes the power system harmonic response with combination of linear and nonlinear loads, capacitor banks, a detuned filter and tuned filters. The major features of this part are impedance scan, harmonic current flow and harmonic voltage distortion calculation. The harmonic impedance scan can reveal resonance conditions of a power system. The last part deals with harmonic filter design and simulation. Simulations of system response after installation of harmonic filters are crucial in order to verify the effectiveness of the harmonic filter design. The developed program can be used for power quality teaching and studying. Various cases can be simulated for better understanding of harmonic characteristics. The developed program is user-friendly for nonexperienced and experienced users in order to understand harmonic analysis.

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Department : Electrical Engineering Field of Study : Electrical Engineering Academic Year : 2010

Student's Signature Mr. Sou Laxay Advisor's Signature. Ur Manely Co-advisor's Signature 71 12 12

ACKNOWLEDGEMENTS

Authors would like to thank his advisor, Assoc. Prof. Chaiya Chamchoy for his sincere advice, constructive criticism, knowledge, instructions and the preparation of this research. My great appreciation also goes to my co-advisor Assistant Professor Dr. Thavatchai Tayjasanant for his helpful advice for my study, instructions, guidance, care, friendly discussion, encouragement and constructive critics that substantially improve my research.

Thanks to my thesis committees: Chanarong Banmongkol. D. Eng (Chairman), Surachai Chaitusaney. Ph.D (Examiner) and Assistant Professor Chuttchaval Jeraputra, Ph.D (External Examiner) for inspecting and kindly commenting my research.

Thanks to the lecturers and professors at the Department of Electrical Engineering, Chulalongkorn University, for their invaluable sources of knowledge, and wisdoms.

I would like to thank AUN/SEED-net for the financial support, to officers and staffs of International School of Engineering (ISE) and AUN/SEED-Net for their kindness and help during my study.

Thanks to my parents, my brother and my relatives who give me encouragement all the time; Thanks to my friends for helping me with lessons during my study and encouraging me.

CONTENTS

ABSTR	ACT (THAI)IV
ABSTR	ACT (ENGLISH)V
ACKNO	OWLEDGEMENTSVI
CONT	ENTSVII
LIST O	F TABLESXII
LIST O	F FIGURESXVI
ACKNO	OWLEDGEMENTS
СНАРТ	FER I1
INTRO	DUCTION1
1.1	Motivation
1.2	Research objectives
1.3	Scope of study
1.4	Research methodology
1.5	Expected outcomes
1.6	Overview of thesis
СНАРТ	rer II4
LITER	ATURE REVIEW4
2.1	Fourier series and waveform reconstruction
2.2	Power system quantities under non sinusoidal conditions
2.2.1	Root-mean-square (rms) Values
2.2.2	Total harmonic distortion (THD)
2.2.3	Total demand distortion (TDD)7
2.2.4	Power, distortion power, displacement and power factors7
2.3	Harmonic analysis in power system

2.3.1	Harmonic resonances	Page
2.3	B.1.1 Parallel resonance	
2.3	3.1.2 Series resonance	
2.3.2	Harmonic current flow	
2.3	3.2.1 Inductive system	
2.3	3.2.2 System with a capacitor	
2.3	3.2.3 System with a passive filter	
2.4	Mitigation of harmonics	
2.5	Harmonic filter design and specification	
2.5.1	Detuned filter design	
2.5.2	Tuned harmonic filter design	
2.5.3	Tuning frequency range for detuned and tuned filter	
СНАРТ	FER III	25
HARM	ONIC MODELING OF SYSTEM COMPONENT	S25
3.1	Supply system	
3.2	Transformer	
3.3	Linear load	
3.4	Capacitor	27
3.5	Non-linear load	
3.6	Harmonic filter	
СНАРТ	FER IV	30
DETAI	LS OF DEVELOPED PROGRAM	30
4.1	Harmonic waveform synthesis	30
4.2	Harmonic response analysis and harmonic filter design	
4.2.1	Input parameters	
4.2	2.1.1 Supply system	
4.2	2.1.2 Transformer	

		Page
4.2.	1.3 Linear load	
4.2.	1.4 Non-linear load	
4.2.	1.5 Capacitor	
4.2.	1.6 Detuned filter	
4.2.2	Harmonic filter design	
4.2.	2.1 Detuned filter unit design	
4.2.	2.2 Tuned filter design	
4.3	Outputs	
4.3.1	Outputs of 14 cases studies	
4.3.2	Outputs of detuned filter unit design	41
СНАРТ	ER V	42
OUTPU'	TS AND CASE STUDIES	42
5.1	Waveform synthesis	
5.1.1	Odd harmonic order	
5.1.2	Even harmonic order	
5.1.3	Odd and even harmonic order	
5.2	Harmonic response analysis	
5.2.1	Case study 0 (supply system with linear and nonlinear load)	47
5.2.2	Case study 1 (case study 0 with capacitors)	
5.2.	2.1 Results of case study 1 for 640 kVAr / 440 V capacitor	
5.2.	2.2 Results of case study 1 for 920 kVAr / 525 V capacitor	53
5.2.3	Case study 2 (Case study 0 with Detuned filter)	55
5.2.	3.1 Result of case study 2 for 640kVAr / 440 V, 5.6% X _L	56
5.2.	3.2 Result of case study 2 for 640 kVAr / 440V, 7% X _L	60
5.2.	3.3 Result of case study 2 for 920kVAr / 525 V, $5.6\%X_L$	
5.2.	3.4 Result of case study 2 for 920kVAr / 525 V, 7% X _L	64
5.2.4	Impedance scan comparison between capacitor and detuned filter	

5.2.5	Case	study 3 (case study 0 with 5 th order tuned filter)	Page
5.2.	5.1	Results of case study 3	68
5.2.6	Case	study 4 (case study 0 with 7 th order tuned filter)	
5.2	61	Result of case study 4	71
5 2 7	Case	study 5 (case study 0 with 11 th order tuned filter)	74
5.2	7 1	Results of case study 5	
528	Case	r study 6 (case study 0 with detuned filter and capacitor)	78
5.2.0	8 1	Results of case study 6	
529	Case	study 7 (case study 0 with 5 th and 7 th tuned filter)	
5.2.9	9 1	Results of case study 7	
5 2 10	Case	r = 100000000000000000000000000000000000	
5.2.10	10.1	Results of case study 8	
5 2 11	Case	study 9 (case study 0 with 5 th and 11^{th} tuned filter)	90
5.2	11.1	Results of case study 9	
5 2 12	Case	study 10 (case study 0 with 5 th 7 th and 11 th tuned filter)	
5.2.12	12.1	Results of case study 10	
5 2 13	Case	study 11 (case study 0 with detuned filter 7^{th} and 11^{th} tuned filter	98
5.2.15	13.1	Results of case study 11 for defuned filter 5.6% XI.	
5.2.	13.1	Results of case study 11 for defuned filter 7% X.	102
5 2 14	Case	e study 12 (case study 0 with detuned filter 5^{th} and 7^{th} tuned filters)	102
5.2.14	14.1	Results of case study 12 for defuned filter 5.6% X-	105
5.2.	14.1	Results of case study 12 for defuned filter 7% X.	100
5 2 15	Com	narison of impedance scan	107
5.2.15	Com	parts of the period of the pe	1^{th} tupod
filters)	Capa	ichor delerioration for case study to (case study 0 with 5 , 7 and 1	113
5.2.	16.1	The results for 5 th tuned filter only	114
5.2.	16.2	The results for deterioration 7 th tuned filter only	115
5.2.	16.3	The results for 11 th tuned filter only	116

Page

	5.2.16.4	The results for deterioration of the capacitor in 5 th and 7 th tuned filte	ers. 117
	5.2.16.5	Results for deterioration of capacitor in 5 th and 11 th tuned filters	119
	5.2.16.6 filters	The results for deterioration of the capacitor in 5 th , 7 th and 11 th tune	d 121
5.3	Detun	ed harmonic filter unit design	124
5.	.3.1 Detu	ned filter unit design for 5.6%X _L	124
	5.3.1.1	Detuned filter unit design for capacitor deteriorate from $0 - 20 \%$	125
5.	.3.2 Detu	ned filter unit design for 7%X _L	126
	5.3.2.1	Detuned filter unit design for capacitor deteriorate from $0 - 20 \%$	127
5.4	Tuned	harmonic filter design	129
СНА	PTER V	/I	132
CON	CLUSI	ON	132
6.1	Conclu	usion	132
6.2	Future	work	132
REF	ERREN	CES	134
BIO	GRAPH	Y	136

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

LIST OF TABLES

Page

Table 2.1	Frequency of tuning point at $%X_{LF}$ (f_1 =50 Hz)	. 20
Table 2.2	Harmonic voltage limit in low voltage system (400 V)	. 20
Table 4.1	Case studies	. 32
Table 5.1	Harmonic current source	. 46
Table 5.2	The input parameters for case study 1	. 48
Table 5.3	Harmonic current flow in capacitors 80x8 kVAr / 440 V	. 50
Table 5.4	The results of harmonic current calculation (640 kVAr / 440 V capacitors)	. 51
Table 5.5	The results of harmonic voltage calculation (640 kVAr/440 V capacitors)	. 52
Table 5.6	The results of harmonic current calculation (920 kVAr / 525 V capacitors)	. 53
Table 5.7	The result of calculation.	. 54
Table 5.8	Comparison step of capacitor when used $V_{cr} = 440V$ and $V_{cr} = 525V$. 54
Table 5.9	The input parameters for case study 2	. 55
Table 5.10	Harmonic current flow in detuned filter 80x8 kVAr / 440 V, 5.6%X _L	. 57
Table 5.11	The results of harmonic current calculation (640 kVAr / 440V, 5.6%X _L)	. 58
Table 5.12	The results of harmonic voltage calculation (640 kVAr / 440V, 5.6%X _L)	. 59
Table 5.13	The results of harmonic current calculation (640 kVAr / 440V, 7%X _L)	. 60
Table 5.14	The results of harmonic voltage calculation (640 kVAr / 440V, 7%X _L)	. 61
Table 5.15	The results of harmonic current calculation (920 kVAr / 525V, 5.6%X _L)	. 62
Table 5.16	The results of harmonic voltage calculation (920 kVAr / 525V, 5.6%X _L)	. 63
Table 5.17	The results of harmonic current calculation (920 kVAr / 525V, 7%X _L)	. 64
Table 5.18	The results of harmonic voltage calculation (920 kVAr / 525V, 7%X _L)	. 65
Table 5.19	Comparison of detuned filter lading	. 65
Table 5.20	The input parameters for 5 th tuned filter	. 67
Table 5.21	The results of calculation for case study 3	. 69
Table 5.22	The design parameters of 5 th order tuned filters	. 69
Table 5.23	The input parameter of case study 4	. 70
Table 5.24	Harmonic current flow in 7 th order tuned filter	. 72
Table 5.25	The result of calculation for case study 4	. 73
Table 5.26	The design parameters of 7 th order tuned filters	. 74
Table 5.27	The input parameters for case study 5	. 74
Table 5.28	Harmonic current flow in 11 th order tuned filter	. 76
Table 5.29	The result of calculation for case study 5	. 77
Table 5.30	The design parameter of 11 th order tuned filters	. 78
Table 5.31	The input parameters	. 78
Table 5.32	The result of calculation for case study 6	. 80
Table 5.33	The input parameters	. 82
Table 5.34	The result of calculation for case study 7	. 84
Table 5.35	The design parameters of 5 th and 7 th tuned filters	. 85
Table 5.36	The input parameters for case study 8	. 86
Table 5.37	The result of calculation for case study 8	. 88
Table 5.38	The design parameters of 7 th and 11 th tuned filters	. 89
Table 5.39	The input parameters case study 9	. 90
Table 5.40	The result of calculation for case study 9	. 92
Table 5.41	The design parameters of 5 th and 11 th tuned filters	. 93

Page

Table 5.42	The input parameters for case study 10	94
Table 5.43	The result of calculation for case study 10	96
Table 5.44	The design parameters of 5 th , 7 th and 11 th tuned filters	97
Table 5.45	The input parameters for case study 11	98
Table 5.46	The results of calculation for case study $11(\text{detuned filter } 5.6\% X_L)$	100
Table 5.47	The result of calculation for case study 11 (detuned filter $7\%X_L$)	102
Table 5.48	The design parameters of detuned filters, 7 th and 11 th tuned filters	104
Table 5.49	The input parameters for case study 12	105
Table 5.50	The results of calculation for case study 12 (detuned filter $5.6\% X_L$)	107
Table 5.51	The results of calculation for case study 12 (detuned filter $7\%X_L$)	109
Table 5.52	The design parameters of detuned filters, 5 th and 7 th tuned filters	111
Table 5.53	The input parameters for case study 10	113
Table 5.54	The design parameters of 5 th , 7 th and 11 th tuned filters	113
Table 5.55	The results for deterioration of the capacitor in 5 th tuned filter	114
Table 5.56	The results for deterioration of the capacitor in 7 th tuned filter	115
Table 5.57	The results for deterioration of the capacitor in 11 th tuned filter	116
Table 5.58	The results for deterioration of the capacitor in 5 th and 7 th tuned filter	117
Table 5.59	The results for deterioration of the capacitor in 5 th and 11 th tuned filter	119
Table 5.60	The results of calculation for deterioration of the capacitor in 5 th , 7 th and 11	th
tuned filter.		121
Table 5.61	The input parameters for detuned filter unit design	124
Table 5.62	The component rating of detuned filter unit	124
Table 5.63	The results of calculation	125
Table 5.64	The rating component of detuned filter unit	126
Table 5.65	The results of calculation	127
Table 5.66	The results of calculation for tuned filter design	130
Table 5.67	The design parameters of tuned filters	131

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

LIST OF FIGURES

Page

Figure 2. 1	(a) Distorted current waveform (b) Equivalent harmonic components	4
Figure 2.2	Distorted (non-linear) waveform	5
Figure 2.3	Relationship of components of the apparent power	8
Figure 2.4	Relationship between P, Q, and S in sinusoidal condition	8
Figure 2.5	Creation of distorted current	. 10
Figure 2.6	Parallel resonance	. 11
Figure 2.7	Series resonance	. 13
Figure 2.8	Parallel and series resonances	. 14
Figure 2.9	Simple inductive system	. 15
Figure 2.10	Simple system with a capacitor	. 16
Figure 2.11	Simple system with a passive filter	. 17
Figure 2.12	Impedance daigram of filters	. 18
Figure 2.13	Electric diagrams of passive filters	. 19
Figure 3.1	Model of supply system	. 25
Figure 3.2	Model transformer	. 26
Figure 3.3	Model of linear load	. 27
Figure 3.4	Model of capacitor	. 27
Figure 3.5	Model of harmonic current source	. 28
Figure 3.6	Model of harmonic filter	. 29
Figure 4.1	Synthesis of a waveform from harmonics	. 31
Figure 4.2	Main display of program	. 31
Figure 4.3	Supply system	. 33
Figure 4.4	Transformer	. 33
Figure 4.5	Linear load	. 33
Figure 4.6	Non-linear load	. 34
Figure 4.7	Display for input harmonic data	. 34
Figure 4.8	Display to input capacitor parameters and select steps	. 35
Figure 4.9	Display to input detuned filter parameters and select steps	. 36
Figure 4.10	Display for input parameters of detuned filter unit design	. 37
Figure 4.11	Display for input parameters of tuned filter design	. 38
Figure 4.12	Example output of 14 case studies	. 39
Figure 4.13	Spectrum of harmonic voltage comparison with planning level (G 5/4 standar	cd)
		. 39
Figure 4.14	Amplification factor current	. 40
Figure 4.15	Impedance scans of case studies	. 40
Figure 4.16	Output of detuned filter unit	. 41
Figure 5.1	Main display of distorted waveform program	. 42
Figure 5.2	Distorted waveform of odd harmonics (Symmetrical waveform)	. 43
Figure 5.3	Distorted waveform of even harmonic (Asymmetrical waveform)	. 44
Figure 5.4	Distorted waveform of odd and even harmonic	. 45
Figure 5.5	Main display of program	. 46
Figure 5.6	Single-line diagram of case study 0	. 47
Figure 5.7	The result of case study 0	. 47
Figure 5.8	Single-line diagram of case study 1	. 48

Page

Results of case study 1	49
Single-line diagram of case study 2	55
Results of case study 2	56
Comparison between step selection of capacitor and detuned filter	66
Single-line diagram of case study 3	67
Results of case study 3	68
Single-line diagram of case study 4	70
Results of case study 4	71
Single-line diagram of case study 5	74
Results of case study 5	75
Single-line diagram of case study 6	78
Results of case study 6	79
Single-line diagram of case study 7	82
Result of case study 7	83
Single-line diagram of case study 8	86
Results of case study 8	87
Single-line diagram of case study 9	90
Results of case study 9	91
Single-line diagram of case study 10	94
Results of case study 10	95
Single-line diagram of case study 11	98
Results of case study 11	99
Single-line diagram of case study 12	. 105
Results of case study 12	. 106
Page for impedance scan comparison	. 112
5 th harmonic currents in 5 th order tuned filter	. 114
7 th harmonic currents in 7 th order tuned filter	. 115
7 th and 11 th harmonic currents in 11 th order tuned filter	. 116
Spectra of harmonic currents for (capacitor deteriorate in 5th and 7th tuned	
	. 118
Spectra of harmonic currents for (capacitor deteriorate in 5 th and 7 th tuned	
	. 120
Spectra of harmonic currents for (capacitor deteriorated in 5 th , 7 th and 11 th tu	uned
	. 123
Main for detuned filter unit design	. 124
Graph of detuned filter unit design for capacitor deteriorate from $0 - 20 \%$.	. 126
Graph of detuned filter unit design for capacitor deteriorate from $0 - 20 \%$.	. 128
Main display for tuned filter design	. 129
	Results of case study 1 Single-line diagram of case study 2 Results of case study 2 Results of case study 3 Results of case study 3 Results of case study 4 Results of case study 4 Results of case study 4 Results of case study 4 Results of case study 5 Single-line diagram of case study 6 Results of case study 5 Single-line diagram of case study 7 Results of case study 6 Single-line diagram of case study 7 Results of case study 7 Results of case study 7 Results of case study 7 Single-line diagram of case study 8 Results of case study 7 Single-line diagram of case study 9 Results of case study 9 Results of case study 9 Results of case study 9 Single-line diagram of case study 10 Results of case study 10 Single-line diagram of case study 12 Results of case study 12 Single-line diagram of case study 12 Results of c

CHAPTER I

INTRODUCTION

1.1 Motivation

Power system harmonic is one of major power quality disturbances in a power system. The severity of harmonic level is increasing due to an increased utilization of nonlinear loads such as adjustable-speed drives, power converters, computers and other power electronic-based devices in industrial, commercial and residential consumers. Harmonics are voltages and currents whose frequencies are integral multiples of the fundamental frequency. On a 50-Hz system, this could include 2nd harmonic (100 Hz), 3rd harmonic (150 Hz), 4th harmonic (200 Hz), and so on. Harmonic can pollute a power system and result in negative effects on electrical equipments. Major effects of harmonics are losses in transformers, machines and electrical devices, mal-operation of electrical devices, power system resonances and severe overheating of neutral lines in commercial buildings. In order to better understand the nature of harmonics in a power system, there is a need to develop a program that can analyze their characteristics [1]. The developed program must be user-friendly and accurate enough to represent harmonic characteristics. MATLAB software contains many build- in functions widely used in engineering fields. Therefore, developing a program under MATLAB software is simple to program and suitable for this task. The program can be divided into 3 parts: 1) Harmonic waveform synthesis, 2) Harmonic response analysis and 3) Harmonic filter design.

1.2 Research objectives

Objectives of this research are

- 1) To develop harmonic analysis program for power quality teaching and studying
- 2) To understand harmonic characteristics in a power system through computer simulations

1.3 Scope of study

- 1) To perform waveform synthesis with various harmonic components and calculate important harmonic indices. The reconstructed waveform will show the effect of harmonic components in a signal. Harmonic indices that will be considered are RMS and THD values.
- 2) To analyze harmonic flow in a power system. Harmonic voltages at a bus and harmonic currents in branches will be calculated. Results can reveal how harmonics flow in the system.
- 3) To design passive harmonic filter to minimize harmonic level in a power system. Frequency response in the form of frequency scan plot will be evaluated in order to verify filter performance.
- 4) This research will focus only parallel resonance.

1.4 Research methodology

In order to achieve the objectives, the following research methodology will be carried out.

- 1) Studying effects of harmonics.
- 2) Studying harmonic models of system equipments in power system
- 3) Studying and analyzing the computation of harmonic in power system as well as writing a program to analyze when capacitor, detuned filter and tuned filters are installed.
- 4) Testing the program performance.
- 5) Evaluating test results and concluding results from the testing.
- 6) Writing thesis.

1.5 Expected outcomes

Power system harmonic analysis programs for power quality teaching and studying with graphic user interface (GUI) of MATLAB software will be developed. Users can adjust parameters and perform sensitivity studies in various issues of power system analysis such as waveform synthesis, harmonic flow and harmonic filter design. Developed programs can help users to understand harmonic characteristics for power quality teaching and studying.

1.6 Overview of thesis

Chapter 2 summarizes the fundamental background and related theoretical knowledge in analyzing and estimating the harmonic current in a power system and harmonic filter design method.

Chapter 3 deals with harmonic modeling of system components. Modeling of equipment for harmonic analysis and method of simulation

Chapter 4 describes details of developed program. The program consists of 3 parts, which are: waveform synthesis, harmonic power flow and harmonic filter design.

Chapter 5 displays outputs and summarizes case studies.

Chapter 6 concludes the research work.

CHAPTER II

LITERATURE REVIEW

2.1 Fourier series and waveform reconstruction

One method of describing the non-sinusoidal waveform is Fourier series. Jean Fourier was a French mathematician of the early 19th century who discovered a special characteristic of periodic waveforms. Periodic waveforms are those waveforms comprised of identical values that repeat in the same time interval, like those shown below.

Figure 2.1 (a) Distorted current waveform (b) Equivalent harmonic components

Fourier discovered that periodic waveforms can be represented by a series of sinusoids summed together. The frequency of these sinusoids is an integer multiple of the frequency represented by the fundamental periodic waveform.

The distorted (non-linear) waveform, however, deserves further consideration. This waveform meets the continuous, periodic requirement established by Fourier. It can be described, therefore, by a series of sinusoids. This example waveform is represented by only three harmonic components, but some real-world waveforms (square wave, for example) require hundreds of sinusoidal components to fully describe them. The magnitude of these sinusoids decreases with increasing frequency, often allowing the power engineer to ignore the effect of components above the 50th harmonic [2], [3].

Figure 2.2 Distorted (non-linear) waveform

The general equation of the reconstructed current waveform is

$$I = \sum_{1}^{h} I_{h} \sin(h\omega t + \theta_{h})$$
(2.1)
where: $h = 1, 2, 3, 4, 5, 6, 7...$

The reverse process where the harmonic spectra can be computed from the distorted waveform is called waveform analysis which can be achieved through Fast Fourier Transform (FFT).

2.2 Power system quantities under non sinusoidal conditions

2.2.1 Root-mean-square (rms) Values

The rms values of the waveforms are computed as the square root of the sum of squares of all individual components [4].

rms current:
$$I_{rms} = \sqrt{\sum_{h=1}^{N} I_h^2} = \sqrt{I_1^2 + I_2^2 + I_3^2 + I_4^2 + \dots}$$
 (2.2)

rms voltage:
$$V_{rms} = \sqrt{\sum_{h=1}^{N} V_h^2} = \sqrt{V_1^2 + V_2^2 + V_3^2 + V_4^2 + \dots}$$
 (2.3)

where: I_h The single frequency rms current at harmonic h

- V_h The single frequency rms voltage at harmonic h
- *N* Maximum harmonic order to be considered

2.2.2 Total harmonic distortion (THD)

Total harmonic distortion (THD) is an important index widely used to describe power quality issues in transmission and distribution systems. It considers the contribution of every individual harmonic component on the signal. THD is defined for voltage and current signals, respectively. Total harmonic distortion is calculated as the sum of all the harmonic components (except the fundamental), divided by the magnitude of the fundamental. This value is represented as THD [3], [4].

$$THD_{V} = \sqrt{\frac{\sum_{h=2}^{N} V_{h}^{2}}{V_{1}^{2}}}$$
(2.4)
$$THD_{I} = \sqrt{\frac{\sum_{h=2}^{N} I_{h}^{2}}{I_{1}^{2}}}$$
(2.5)

 V_h The single frequency rms voltage at harmonic h

 V_1 The fundamental line-to-neutral rms voltage

 I_h The single frequency rms current at harmonic h

 I_1 The fundamental rms current

THD can be computed in term of rms value as follows:

$$THD_{V} = \sqrt{\frac{\sum_{h=2}^{N} V_{h}^{2}}{V_{1}^{2}}} = \sqrt{\frac{\sum_{h=1}^{N} V_{h}^{2} - V_{1}^{2}}{V_{1}^{2}}} = \sqrt{\left(\frac{V_{rms}}{V_{1}}\right)^{2} - 1}$$
(2.6)
or

$$V_{rms} = V_{1rms} \sqrt{1 + THD_V^2}$$
(2.7)

and

$$I_{rms} = I_{1rms} \sqrt{1 + THD_I^2}$$
(2.8)

Note that the components are summed vectorially, not algebraically, because they have different phase angles. For a waveform represented by a fundamental current of 100 A, a 5th component of 20 A, and a 7th component

of 12 A, for example, I_h would equal the square root of $(20^2 + 12^2)$, or 23 A, not (20 + 12) = 32 A. The THD is, therefore, 23/100 = 0.23 or 23%.

2.2.3 Total demand distortion (TDD)

For current harmonics, using the THD value might mislead the harmonic current level when it is under a light-load condition, I_1 is small so THD_I is large. For this reason, TDD is proposed for the measure of harmonic current level. Instead of using I_1 , the rated or maximum load current is applied [4].

Harmonic distortion is most meaningful when monitored at the point of common coupling (PCC) - usually the customer's metering point - over a period that can reflect maximum customer demand, typically 15 to 30 minutes as suggested in Standard IEEE-519. Weak sources with a large demand current relative to their rated current will tend to show greater waveform distortion. Conversely, stiff sources characterized for operating at low demand currents will show decreased waveform distortion. The total demand distortion is based on the demand current, I_L , over the monitoring period [3]:

$$TDD = \frac{\sqrt{\sum_{h=2}^{N} I_h^2}}{I_L}$$
(2.9)
where:
$$I_h \qquad \text{The single frequency rms current at harmonic } h$$
$$I_L \qquad \text{Rated or maximum load current magnitude}$$

2.2.4 Power, distortion power, displacement and power factors

- Active (Real or True) Power is measured in watts (W) and is the power drawn by the electrical resistance of a system doing useful work.
- Apparent Power is measured in volt-amperes (VA) and is the voltage on an AC system multiplied by all the current that flows in it. It is the vector sum of the active and the reactive power.
- Reactive power is measured in volt-amperes reactive (VAR). Reactive power is power stored in and discharged by inductive motors, transformers and solenoids

Active and reactive powers

$$P = \sum_{h=1}^{N} V_h I_h \cos(\theta_h - \phi_h)$$
(2.10)

$$Q = \sum_{h=1}^{N} V_h I_h \sin(\theta_h - \phi_h)$$
(2.11)

The apparent power (S) is the product of V_{rms} and I_{rms} or:

$$S = V_{rms} I_{rms}$$
(2.12)

$$S = V_{1rms} \sqrt{1 + THD_V^2} I_{1rms} \sqrt{1 + THD_I^2}$$
(2.13)

$$S = S_1 \sqrt{1 + THD_V^2} \cdot \sqrt{1 + THD_I^2}$$
(2.14)

where: S_1 is apparent power at the fundamental frequency

When the harmonics are present, S is not only comprised of P and Q, but distortion power (D) as shown in Fig 2.3.

$$S^{2} = P^{2} + Q^{2} + D^{2}$$
 or $D = \sqrt{S^{2} - P^{2} - Q^{2}}$ (2.15)

Figure 2.3 Relationship of components of the apparent power

Power factor

It is common to define the Power Factor (PF) as the cosine of the phase angle between voltage and current or the " $\cos \varphi$ ".

Figure 2.4 Relationship between P, Q, and S in sinusoidal condition

The power factor defined by IEEE and IEC is the ratio between the applied active (true) power - and the apparent power, and can in general be expressed as:

$$PF = P / S \tag{2.16}$$

where: PF = power factor

$$P$$
 = active (true or real) power (Watts)
 S = apparent power (VA, volts amps)

With an increasing harmonic distortion environment, the conventional definition of power factor as the cosine of the angle between fundamental frequency voltage and current has progressed to consider the signal's rms values, which make up the contribution of components of different frequencies. Thus, displacement power factor (DPF) continues to characterize the power frequency factor, while distortion power factor (HPF) emerges as the index that tracks rms signal variations. True power factor (PF) thus becomes the product of displacement and distortion power factors [4]:

$$PF = \frac{P}{S} = \frac{P}{S_1} \left(\frac{1}{\sqrt{1 + THD_V^2}} \cdot \frac{1}{\sqrt{1 + THD_I^2}} \right)$$
(2.17)

$$PF = PF_{disp} \cdot PF_{dist}$$
(2.18)

where:

$$PF_{disp} = \frac{P}{S_1} \tag{2.19}$$

$$PF_{disp}$$
 = Displacement power factor (DPF)

and

$$PF_{dist} = \left(\frac{1}{\sqrt{1 + THD_V^2}} \cdot \frac{1}{\sqrt{1 + THD_I^2}}\right)$$
(2.20)

$$PF_{dist} = \left(\frac{V_{1rms}}{V_{rms}}\frac{I_{1rms}}{I_{rms}}\right) = \frac{S_1}{S}$$
(2.21)

 PF_{dist} = Distortion power factor (HPF)

2.3 Harmonic analysis in power system

2.3.1 Harmonic resonances

The current drawn by non-linear loads passes through all of the impedance between the system source and load. This current produces harmonic voltages for each harmonic as it flows through the system impedance. These harmonic voltages sum and produce a distorted voltage when combined with the fundamental. The voltage distortion magnitude is dependent on the source impedance and the harmonic voltages produced. Figure 2.5 illustrates how the distorted voltage is created. As illustrated, non-linear loads are typically modeled as a source of harmonic current [2].

Figure 2.5 Creation of distorted current

With low source impedance the voltage distortion will be low for a given level of harmonic current. If harmonic current increases, however, system impedance changes due to harmonic resonance (discussed below), voltage distortion can increase significantly.

2.3.1.1 Parallel resonance

- Resonance can happen when certain harmonic frequency produced by nonlinear loads is near the natural frequency of system [4].
- The potential parallel resonance occurs when the shunt capacitor appears in parallel with the equivalent system inductance (source and transformer) at harmonic frequencies as show in Figure 2.6. (a).

(a) Simplified distribution circuit

(b) The equivalent circuit of parallel resonance circuit

Figure 2.6 Parallel resonance

- Parallel resonance occurs when the reactance of X_c and the distribution system cancel out each other as show in figure 2.6 (b).
- The frequency at which this phenomenon occurs is called the parallel resonant frequency (f_p) .
- The apparent impedance as seen from the harmonic current source becomes very large. Reactance is computed at the resonant frequency Z_p .
- Therefore, during parallel resonance, a small harmonic current can cause a large voltage drop across the apparent impedance; V_p. The voltage near the capacitor bank will be magnified and heavily distorted. The current will also be magnified resulting capacitor failure, fuse blowing or transformer overheating.
- Power systems analysis typically does not have *L* and *C* readily available and prefer to use other forms of this relationship. They commonly compute the resonant harmonic *h_p* based on fundamental frequency impedances and ratings using one of the following *h_p*.
- The current behavior during the parallel resonance. Let the current flowing in the capacitor bank or into the power system be *I*_{resonance}

$$Z_{p} = \frac{-jX_{C}(jX_{Leq} + R_{eq})}{-jX_{C} + jX_{Leq} + R_{eq}} = \frac{-jX_{C}(jX_{Leq} + R_{eq})}{R_{eq}} \approx \frac{X_{Leq}^{2}}{R_{eq}} = \frac{X_{C}^{2}}{R_{eq}}$$
(2.22)

$$f_{p} = \frac{1}{2\pi} \sqrt{\frac{1}{L_{eq}C} - \frac{R_{eq}^{2}}{4L_{eq}^{2}}} \approx \frac{1}{2\pi} \sqrt{\frac{1}{L_{eq}C}}$$
(2.23)

$$h_{p} = \sqrt{\frac{X_{c}}{X_{sc}}} = \sqrt{\frac{MVA_{sc}}{MVAR_{cap}}} = \sqrt{\frac{kVA_{Tr} \times 100}{kVAR_{cap} \times Z_{Tr}(\%)}}$$
(2.24)

or
$$h_p = \sqrt{\frac{X_C}{X_{Tr} + X_S}}$$
(2.25)

$$V_{p} = \frac{X_{Leq}^{2}}{R_{eq}} I_{h} = \frac{X_{C}^{2}}{R_{eq}} I_{h}$$
(2.26)

$$I_{resonance} = \frac{V_P}{X_C} = \frac{QX_C I_h}{X_C} = QI_h$$
(2.27)

or
$$I_{resonance} = \frac{V_P}{X_{Leq}} = \frac{QX_{Leq}I_h}{X_{Leq}} = QI_h$$
 (2.28)

where
$$Q = X_L/R_{eq} = X_C/R_{eq}$$

- R_{eq} Resistance of combined equivalent source and transformer
- *X_{Leq}* Reactance of transformer and System
- X_{Tr} Reactance of transformer at fundamental frequency
- X_s Reactance of system at fundamental frequency
- I_h Current at harmonic h^{th} from non-linear load
- Z_p Impedance at harmonic h^{th}
- f_p Frequency at parallel resonance
- h_p Parallel resonance order
- X_c Capacitor reactance at fundamental frequency
- *c* Capacitance of capacitor bank
- L_{eq} Inductance of combined equivalent source and transformer
- X_{sc} System short-circuit reactance

MVA_{sc} System short-circuit MVA

- *MVAR*_{cap} Mvar rating of capacitor bank
- $kVAR_{cap}$ kvar rating of capacitor bank
- kVA_{Tr} kVA rating of step-down transformer
- Z_{Tr} Impedance of transformer
- *Q* Quality factors of transformer and system at resonance frequency
- For example, for an industrial load bus where the transformer impedance is dominant, the resonant harmonic for a 1500-kVA, 6 percent transformer and a 500-kvar capacitor bank is approximately.

$$h_p \approx \sqrt{\frac{kVA_{tr} \times 100}{kVAr_{cap} \times Z_{tr}(\%)}} = \sqrt{\frac{1500 \times 100}{500 \times 6}} = 7.07$$

2.3.1.2 Series resonance

Shunt capacitors of customer and the inductance of a transformer or distribution line may appear as a series LC circuit to a source of harmonic currents as show in Figure 2.7 (a). If the resonance frequency corresponds to a characteristic harmonic frequency of the nonlinear loads, the LC circuit will attract a large portion of the harmonic current. The voltage at the PF factor correction capacitor is magnified and highly distorted [4].

(a) System with potential series resonance problems

(b) The equivalent circuit of a series resonance circuit.

Figure 2.7 Series resonance

• The voltage at PF capacitor bank is:

$$\frac{X_c}{X_T + X_c + R} V_h \approx \frac{X_c}{R} V_h$$
(2.29)

where: V_h is harmonic voltage corresponding to I_h

$$h_s = \sqrt{\frac{X_C}{X_T}} \tag{2.30}$$

where: $h_s =$ Series resonant order.

In many systems with potential series resonance problems, parallel resonance also arises due to the circuit topology. One of these is shown in figure 2.8. Where the parallel resonance is formed by the parallel combination between X_{source} and a series between X_T and X_C . The resulting parallel resonant frequency is always smaller than its series resonant frequency due to the source inductance contribution. The parallel resonant frequency can be represented by the following equation:

Figure 2.8 Parallel and series resonances

Comparison between parallel and series resonances

2.3.2.1 Inductive system

(b) Equivalent circuit of an inductive system

Figure 2.9 Simple inductive system

Harmonic current in an inductive system can be calculated from

$$I_{sn} = \frac{(R_L + jX_L)}{(R_L + jX_L) + (R_s + jX_s)} \cdot I_n$$
(2.32)

$$I_{Ln} = \frac{(R_s + jX_s)}{(R_L + jX_L) + (R_s + jX_s)} \cdot I_n$$
(2.33)

$$I_n = I_{sn} + I_{Ln} \tag{2.34}$$

Load Impedance > Source Impedance

$$\begin{array}{ll} (R_L + jX_L) & > & (R_s + jX_s) \\ \\ \hline \frac{(R_L + jX_L)}{(R_L + jX_L) + (R_s + jX_s)} & > & \hline \frac{(R_s + jX_s)}{(R_L + jX_L) + (R_s + jX_s)} \end{array}$$

 \Rightarrow

 R_L Load resistance

l_{sn}

 X_L Load reactance

 R_s System resistance

- X_s Reactance of system at fundamental frequency
- I_n Harmonic current from non-linear load
- I_{sn} Harmonic current through System
- I_{Ln} Harmonic current through Load

2.3.2.2 System with a capacitor

(b) Equivalent circuit of system with capacitor

Figure 2.10 Simple system with a capacitor

$$Z_{total} = \frac{(R_s + jX_s)(-jX_c)}{R_s + jX_s - jX_c}$$
(2.35)

> At parallel resonance $|X_s| = |X_c|$

$$I_n = I_{sn} + I_{cn} \tag{2.36}$$

 I_{Ln}

$$I_{cn} = \frac{R_s + jX_s}{R_s + jX_s - jX_c} \cdot I_n$$
(2.37)

$$I_{sn} = \frac{-jX_c}{R_s + jX_s - jX_c} \cdot I_n \tag{2.38}$$

At resonance

$$I_{cn} = \frac{R_s + jX_s}{R_s} \cdot I_n \qquad >> \qquad I_n$$

$$I_{sn} = \frac{-jX_c}{R_s} \cdot I_n \qquad >> \qquad I_n$$

- X_c Capacitor reactance
- I_{cn} Harmonic current through capacitor

2.3.2.3 System with a passive filter

(b) Equivalent circuit of system with a passive filter

Figure 2.11 Simple system with a passive filter

Harmonic currents in a system with a passive filter can be calculated from

$$I_n = I_{sn} + I_{fn} \tag{2.39}$$

$$I_{fn} = \frac{R_{S} + jX_{S}}{R_{S} + jX_{S} + R_{F} + jX_{LF} - jX_{CF}} \cdot I_{n}$$
(2.40)

$$I_{sn} = \frac{R_F + jX_{LF} - jX_{CF}}{R_S + jX_S + R_F + jX_{LF} - jX_{CF}} \cdot I_n$$
(2.41)

Tuned Filter: set $|X_{LF}| = |X_{CF}|$ and R_F are small

$$I_{fn} = \frac{R_s + jX_s}{R_s + jX_s + R_F} \cdot I_n \approx I_n$$
(2.42)

$$I_{sn} = \frac{R_F}{R_S + jX_S + R_F} \cdot I_n \approx 0$$
(2.43)

- R_F Filter resistance
- X_{LF} Reactance of reactor
- X_{CF} Capacitive reactance of filter
- *I_{fn}* Harmonic current through filter

2.4 Mitigation of harmonics

The most common method for control of harmonic distortion in industry is the use of passive filtering techniques that make use of single-tuned or band-pass filters. Passive harmonic filters can be designed as single-tuned elements that provide a low impedance path to harmonic currents at a punctual frequency or as band-pass devices that can filter harmonics over a certain frequency bandwidth [6].

Figure 2.12 Impedance daigram of filters

2.5 Harmonic filter design and specification

Passive filters are inductance, capacitance, and resistance elements configured and tuned to control harmonics. They are commonly used and are relatively inexpensive compared with other means for eliminating harmonic distortion. However, they have the disadvantage of potentially interacting adversely with the power system, and it is important to check all possible system interactions when they are designed. They are employed either to shunt the harmonic currents off the line or to block their flow between parts of the system by tuning the elements to create a resonance at a selected frequency [6].

Passive filters are the most commonly used filters in industry. As illustrated in figure 2.13, the following can be found under this category:

Figure 2.13 **Electric diagrams of passive filters**

2.5.1 **Detuned filter design**

Design equation for the detuned filter [7]:

$$n_{h} = \sqrt{\frac{X_{CF}}{X_{LF}}} = \sqrt{\frac{100}{\% X_{LF}}}$$
(2.44)
$$\% X_{LF} = \frac{100}{2}$$
(2.45)

$$2\% X_{LF} = \frac{100}{n_h^2}$$
 (2.45)

where:

 n_h = Tuning point of filter

 $f_{rs} = f_1 * n_h$ = frequency of series resonance (Hz)

%X _{LF}	n _h	$f_{rs}(Hz)$
5.67	4.20	210
6	4.08	204
7	3.78	189

Table 2.1Frequency of tuning point at $%X_{LF}$ (f₁=50 Hz)

- > The necessary data for detuned filter design:
 - 1) The system frequency (f_1) such as 50Hz
 - 2) The system voltage (V_s) that detuned filter be connected such as 380V, 400V
 - 3) Rated reactive power (Q_{Comp}) of detuned filter such as 25 kVAr, 50kVAr
 - 4) $\% X_L$ such as 5.67%, 6% or 7%
 - 5) The system voltage increase $(+\Delta V_s)$ that detuned filter can use and not fail
 - 6) The maximum of harmonic voltage such as V_3 , V_5 , V_7 , V_{11} and V_{13} causes harmonic current flow through the detuned filter

Table 2.2 Harmonic voltage limit in low voltage system (400 V)

Compatibility Level (CL)	Planning Level (PL)
[IEC 61000-2-2]	[ER G 5/4]
$V_3 = 5.0\%$	$V_3 = 4.0\%$
$V_5 = 6.0\%$	$V_5 = 4.0\%$
$V_7 = 5.0\%$	$V_7 = 4.0\%$
$V_{11} = 3.5\%$	$V_{11} = 3.0\%$
$V_{13} = 3.0\%$	$V_{13} = 2.5\%$
THD = 8.0%	THD = 5.0%

Specify rated of components:1) Capacitor

- 1.1) Reactive power rating of capacitor (Q_{cr} : kVAr)
- 1.2) Voltage rating of capacitor $(V_{cr}: V)$
- 1.3) Current rating of capacitor (I_{cr} : A)

2) Reactor

- 2.1) Inductance (L : mH)
- 2.2) Thermal current rating (I_{th} : A)
- 2.3) Maximum current that still causes the value of decrease less than 5% inductance (I_{Lin} : A)
- Thermal current rating $(I_{th} : A)$ condition:
 - (1) V_1 (50 Hz) = 110%
 - (2) V_3 (150 Hz) = 0.5% of V_1
 - (3) V_5 (250 Hz) = 6% of V_1
 - (4) V_7 (350 Hz) = 5% of V_1
 - (5) V_{11} (550 Hz) = 3.5% of V_1
 - (6) V_{13} (650 Hz) = 3.0% of V_1
- Equation for detuned filter design

$$I_{cr} = \frac{Q_{cr} \times 1000}{\sqrt{3} \times V_{cr}}$$
(2.46)

$$X_{C,Y} = \frac{V_{cr}^2}{Q_{cr} \times 1000}$$
(2.47)

$$X_{Total} = \left[1 - \frac{\% X_{LF}}{100}\right] \frac{V_{cr}^2}{Q_{cr} \times 1000}$$
(2.48)

$$I_{1} = \frac{V_{s}}{\sqrt{3}} \cdot \frac{100}{100 - \% X_{LF}} \cdot \frac{Q_{cr} \times 1000}{V_{cr}^{2}}$$
(2.49)

$$Q_{comp} = \frac{\sqrt{3} \cdot V_s \cdot I_1}{1000} = \left[\frac{100}{100 - \% X_{LF}}\right] \left[\frac{V_s}{V_{cr}}\right]^2 \times Q_{cr}$$
(2.50)

$$Q_{cr} = \left[\frac{100 - \% X_L}{100}\right] \left[\frac{V_{cr}}{V_s}\right]^2 \times Q_{comp}$$
(2.51)

$$Q_{comp} = P\left[\tan(\cos^{-1} PF_{old}) - \tan(\cos^{-1} PF_{new})\right]$$
(2.52)

$$\frac{Q_{cr}}{P} = \left[\frac{100 - \% X_{LF}}{100}\right] \left[\frac{V_{cr}}{V_s}\right]^2 \left[\tan(\cos^{-1} PF_{old}) - \tan(\cos^{-1} PF_{new})\right]$$
(2.53)
$$V_{cr} \ge \frac{V_s}{1 - \frac{\% X_{LF}}{100}}$$
(2.54)

$$L = \frac{X_L}{2\pi f} \tag{mH} \tag{2.55}$$

$$I_{th} = \sqrt{I_1^2 + I_3^2 + I_5^2 + I_7^2 + I_{11}^2 + I_{13}^2}$$
(A) (2.56)

$$I_{Lin} = 1.9I_1$$
 (A) (2.57)

$$X_L = \frac{\% X_L}{100} \times X_C \tag{2.58}$$

 I_{cr} Rated current of capacitor (A) V_{s} Voltage of system (V) X_{CY} Reactance of capacitor (Ω) Q_{comp} Reactive power compensation (kVAr) Real power of load (W) Р Q_{cr} Rated reactive power of capacitor (kVAr) V_{cr} Rated voltage of capacitor (V) PF_{old} Old power factor PF_{new} New power factor (target)

2.5.2 Tuned harmonic filter design

If harmonic filter is needed, on top of resonance prevention, tuned reactors are applied. The capacitor/reactor filter is tuned to absorb particular harmonic and reduce the Total Harmonic Distortion (THD).

Tuned filter design steps [7]

- 1) Calculate the value of reactive power (Q_{FT}) which needs to increase the power factor of power system.
- 2) Determine the number of set for harmonic filters. For example,
 - 2 sets of 5th harmonic filter and 1 set of 7th harmonic filter.
 - 2 sets of 5th harmonic filter, 1 set of 7th harmonic filter and 1 set of 11th harmonic filter.
- 3) Divide Q_{FT} in step 1 for each filter (Q_{Fhi}).
- 4) Specify the tuning point of each filter. For example, set a tuning point at 4.7 to 4.9 for 5th harmonic and 6.7 to 6.85 for 7th harmonic.

- 5) Select voltage rating of a capacitor, e.g. 480 V, 500 V or 525 V.
- 6) Calculate reactive power of a capacitor to be used.

$$Q_{Crhi} = Q_{Fhi} \left(\frac{V_{Cr}}{V_s}\right)^2 \left(\frac{n_{hi}^2 - 1}{n_{hi}^2}\right)$$
(2.59)

7) Calculate C value (μF) and X_C at 50Hz from steps 5 and 6:

$$C = \frac{Q_{Crhi} \times 1000}{2\pi V_{Cr}^2} = 3.183 Q_{Crhi} / V_{Cr}^2 \quad (\mu F)$$
(2.60)

$$X_{c} = \frac{V_{Cr}^{2}}{Q_{crhi} \times 1000}$$
(2.61)

8) Calculate reactor (L_{hi}) of each filter unit

$$L_{hi} = \frac{10^9}{(2\pi f n_{hi})^2 \times C} \qquad (mH)$$
(2.62)

9) Consider *Q-Factor* and calculate *R*. Normally *Q-Factor* of a harmonic filter in a low voltage system is 40 to 60.

$$R = \frac{2\pi f L_{hi} \times n_{hi}}{Q - Factor} \quad (\Omega)$$
(2.63)

- 10) Analyze harmonic current flow
- 11) Check working conditions of the capacitor
- 12) Specify current rating of reactor L

$$I_L = \sqrt{(1.1I_1)^2 + \sum I_h^2}$$
(2.64)

 Q_{Fhi} Reactive power of each filter unit

- Q_{Factor} Q-factor of the filter
- n_h Tuning point
- V_s Voltage of system (V)

Note that :

Certain voltage rating of a capacitor is available. And designed filter parameters might not be available in practice. This thesis does not consider this limitation.

2.5.3 Tuning frequency range for detuned and tuned filter

- Detuned Filter: A filter with a tuning frequency more than 10% below the lowest harmonic frequency with considerable current / voltage amplitude.
- Tuned Filter: A filter with a tuning frequency with differs by no more than 10% from the frequency with is to be filtered.

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER III

HARMONIC MODELING OF SYSTEM COMPONENTS

In this research all parameters are calculated per phase and all models of system components are simplified models, the skin effect is not involved in calculation so the resistance does not change at harmonic frequency but capacitive reactance and inductive reactance will change depending on the harmonic frequency. The models of system components in power system used in this thesis consist of supply system, transformer, linear load, non-linear load, capacitors, detuned filters and tuned filters [15], [17].

3.1 Supply system

This model is determined from point of common coupling (PCC) into system, the model is represented by resistance series with reactance. The resistance has relationship with reactance in form ratio of X/R.

Figure 3.1 Model of supply system

$$Z_s = \frac{V_s^2}{MVA_{sc}}$$
(3.1)

$$R_s = \frac{Z_s}{\sqrt{\left(\frac{X}{R}\right)^2 + 1}}$$
(3.2)

$$X_{s} = \left(\frac{X}{R}\right) \times R_{s}$$
(3.3)

$$Z_{\rm sh} = R_{\rm s} + jhX_{\rm s} \tag{3.4}$$

- Z_s The supply impedance (Ω)
- Z_{sh} Impedance of system at harmonic frequency (Ω)
- R_s Resistance of system (Ω)

X_{s}	Reactance of system at fundamental frequency (Ω)
V_{S}	Voltage of system (kV)
MVA _{SC}	Short circuit of system (MVA)
X/R	X to R ratio
h	Harmonic order

3.2 Transformer

Transformer model is represented by impedance that has resistance series with reactance, whose change due to harmonic order. So at various harmonic the value of impedance can be calculated as follows:

Figure 3.2 Model transformer

$$Z_{Tr} = \frac{\%Z}{100} \frac{V^2}{S_{Tr}}$$
(3.5)

$$R_{Tr} = \left(\frac{P_k}{3}\right) \times \left(\frac{\sqrt{3}V}{S_{Tr}}\right)^2 \Longrightarrow R_{Tr} = P_k \times \frac{V^2}{\left(S_{Tr}\right)^2}$$
(3.6)

$$Z_{Tr}^{2} = R_{Tr}^{2} + X_{Tr}^{2} \Longrightarrow X_{Tr} = \sqrt{Z_{Tr}^{2} - R_{Tr}^{2}}$$
(3.7)

$$Z_{Trh} = R_{Tr} + jhX_{Tr}$$
(3.8)

V Voltage of transformer (V)

- Z_{Tr} Impedance of transformer at fundamental frequency (Ω)
- Z_{Trh} Harmonic impedance of transformer (Ω)
- R_{Tr} Resistance of transformer (Ω)
- X_{Tr} Reactance of transformer at fundamental frequency (Ω)
- P_k Transformer load loss (W)
- %Z Percent impedance of transformer (%) Rated power of transformer (VA)
- S_{Tr}

3.3 Linear load

Linear load data is generally in the form of active power (P) and reactive power (Q) which are used for calculating the impedance. The impedance consists of resistance series/parallel with reactance depends on that linear load.

This thesis use the parallel model for linear load. The resistance and the reactance are obtained from active power (P) and reactive power (Q) according to equation (3.9) and (3.10)

$$R_L = \frac{V_s^2}{P_1} \tag{3.9}$$

$$L = h \cdot \frac{B}{Q_1} \tag{3.10}$$

 V_s Voltage system (V)

- R_L Resistance of load (Ω)
- X_L Reactance of load at harmonic order(Ω)

X

- P_1 Active power of load at fundamental frequency (W)
- Q_1 Reactive power of load at fundamental frequency (VAR)

3.4 Capacitor

Capacitor can be represented by the capacitive reactance which obtained from equation (3.11)

Figure 3.4 Model of capacitor

$$X_c = -j \frac{V_{cr}^2}{hQ_{cr}}$$
(3.11)

- X_{C} Capacitor reactance at harmonic order (Ω)
- V_{cr} Rated voltage of capacitor (V)
- Q_{cr} Reactive power of capacitor (VAR)
- *h* Harmonic order

3.5 Non-linear load

The source of harmonic is non-linear load. The non-linear loads are devices in system that make distorted current waveforms such as power electronic devices, arc furnace, rectifier etc. The model of non-linear load in figure 3.5 is harmonic current source.

The distorted harmonic current data can be obtained from measurement or equipment producer.

Figure 3.5 Model of harmonic current source

3.6 Harmonic filter

The harmonic filter is device used to filter harmonic current out of the system. When there are harmonics in power system, it may cause the problem of resonance between systems with capacitor at harmonic order which is the same as harmonic in system. Normally it is among the harmonic order 5^{th} , 7^{th} , 11^{th} , 13^{th} .

One of methods that can solve the problem is to change the capacitor in the system to be harmonic filter by adding the reactor series with capacitor.

- Harmonic filter will play two roles as follows:
 - 1. Reactive power compensation at fundamental frequency to improve power factor.

- 2. Reduce or filter harmonic current out of the system.
- Harmonic filter is divided into two types
 - 1. Detuned filter
 - 2. Tuned filter
- The steps of calculation are provided chapter 2.

This research uses model of single tuned filter as show in fig. 3.6.

Figure 3.6 Model of harmonic filter

$$X_{CFi} = \frac{V_{Cri}^2}{Q_{Cri}}$$
(3.12)

$$L_{i} = \frac{1}{\left(2\pi f n_{i}\right)^{2} C_{Cri}}$$
(3.13)

$$X_{li} = 2\pi f L_l \tag{3.14}$$

$$Z_{Fi} = R_{Fi} + j(hX_{LFi} - \frac{X_{CFi}}{h})$$
(3.15)

$$R_i = \frac{2\pi f n_i L_i}{Q - factor}$$
(3.16)

CHAPTER IV

DETAILS OF DEVELOPED PROGRAM

This chapter presents a graphic user interface (GUI)-based power system harmonic analysis program developed under MATLAB environment. The program can be divided into three parts. The first part performs harmonic waveform synthesis. The second part analyzes the power system harmonic response with combination of linear and nonlinear load, capacitor banks, a detuned filter and tuned filters. The last part deals with harmonic filter design and simulation. The developed program can also be used for power quality teaching and studying. Various cases can be simulated for better understanding of harmonic characteristics. The developed program is userfriendly for non-experienced and experienced users in order to understand harmonic analysis.

4.1 Harmonic waveform synthesis

The first part of program performs harmonic waveform synthesis. A user can input various harmonic magnitudes and phase angles and then view the resultant distorted waveforms. The shape of the distorted waveform depends on harmonic magnitudes and phase angles. Distorted waveform with certain harmonics will show typical wave shapes. This can give a clue of the major harmonic component when an actual waveform is recorded from a field measurement.

The general equation of the reconstructed waveform is

$$I = \sum_{1}^{h} I_{h} \sin(h\omega t + \theta_{h})$$
(4.1)
where: h=1, 2, 3, 4, 5, 6, 7...

The reverse process where the harmonic spectra can be computed from the distorted waveform is called waveform analysis which can be achieved through Fast Fourier Transform (FFT).

$$I_{rms} = \sqrt{(100\sin(\omega t))^2 + (A_3\sin(3\omega t + \theta_3))^2 + (A_5\sin(5\omega t + \theta_5))^2 \dots}$$
(4.2)
where: $\omega = 2^*\pi^*f$ and $f = 50Hz$

Figure 4.1 Synthesis of a waveform from harmonics

4.2 Harmonic response analysis and harmonic filter design

The second part of the program analyzes the power system harmonic response with combinations of linear and nonlinear loads, capacitor banks, a detuned filter and tuned filters. The major features of this part are 1) system harmonic impedance scan, 2) harmonic current flow between each devices and 3) harmonic voltage and current distortion calculation.

Figure 4.2 Main display of program

• Case studies

Twelve case studies are simulated in this work. Possible scenarios at an industrial plant fall into these these twelve cases. Details of case studies are summarized in table 4.1. For case studies 3-6 and 7-12, harmonic filters have to be designed as previously explained before the harmonic flows can be simulated.

Table 4.1Case studies

Case 0	Supply System with Linear and Nonlinear Loads
Case 1	Case 0 with Capacitor
Case 2	Case 0 with Detuned filter
Case 3	Case 0 with 5 th Filter
Case 4	Case 0 with 7 th Filter
Case 5	Case 0 with 11 th Filter
Case 6	Case 0 with Capacitor & Detuned filter
Case 7	Case 0 with 5 th Filter & 7 th Filter
Case 8	Case 0 with 7 th Filter & 11 th Filter
Case 9	Case 0 with 5 th Filter & 11 th Filter
Case10	Case 0 with 5 th Filter, 7 th Filter & 11 th Filter
Case11	Case 0 with Detuned filter, 7 th Filter & 11 th Filter
Case12	Case 0 with Detuned filter, 5 th Filter & 7 th Filter

4.2.1 Input parameters

On the main display, following input parameters are required from a user.

4.2.1.1 Supply system

In high voltage want to input parameters such as:

- 1) (MVA) short circuit
- 2) (kV) high voltage
- 3) X/R ratio

System	
$V_{HV}(kV) =$	22
MVAsc=	500
X/R=	10

4.2.1.2 Transformer

Need input parameters such as:

- 1) Rated (kVA)
- 2) Primary Voltage (kV)
- 3) Secondary Voltage (V)
- 4) Percent Impedance (%Z)
- 5) Power Loss (kW)

Figure 4.4 Transformer

4.2.1.3 Linear load

Need input parameters such as:

- 1) Active Power (kW)
- 2) Power Factor
- 3) Load Voltage (V)

Figure 4.5 Linear load

Need input parameters such as:

- 1) Active Power (kW)
- 2) Power Factor

Figure 4.6 Non-linear load

Odd		_				- Even				
Ouu										
lh1=	902.11		lh27=	0		lh2=	0	lh28=	0	
lh3=	0		lh29=	19.94		lh4=	0	lh30=	0	
lh5=	169.03		lh31=	14.24		lh6=	0	lh32=	0	
lh7=	107.30		lh33=	0		lh8=	0	lh34=	0	
lh9=	0		lh35=	0		lh10=	0	lh36=	0	
lh11=	80.72]	lh37=	0		lh12=	0	lh38=	0	
lh13=	66.47		lh39=	0		lh14=	0	lh40=	0	
lh15=	0]	lh41=	0		lh16=	0	lh42=	0	
lh17=	48.43		lh43=	0		lh18=	0	lh44=	0	
lh19=	39.88		lh45=	0		lh20=	0	lh46=	0	
lh21=	0		lh47=	0		lh22=	0	lh48=	0	
lh23=	31.34		lh49=	0		lh24=	0	lh50=	0	
lh25=	25.64				00	lh26=	0			
	6	นย	191	11						
								Save	Close	

Figure 4.7 Display for input harmonic data

4.2.1.5 Capacitor

Figure 4.8 shows a page which a user can select the number of steps for capacitors to be applied.

Needed input parameters are:

- 1) Target power factor
- 2) Voltage rated of capacitor
- 3) Reactive power of capacitor
- 4) Step of capacitor

Vs(V) 400 PF(%) 95 Vcr(V)	440 Ok Qc (kVAr)
Qcr (kVAr) Qcr (kVAr))k
Step 6 Ok	
Amplification Factor	
lh	
	VII
Odd (non multiple of 3)	Odd (non multiple of 3)
Odd (multiple of 3)	Odd (multiple of 3)
Even	Even
All	All
From 5 To 13	

Figure 4.8 Display to input capacitor parameters and select steps

4.2.1.6 Detuned filter

Figure 4.9 shows a display which a user can select the number of steps for detuned filter to be applied and step of calculation as shown in chapter 2.

Required inputs are:

- 1) Target power factor
- 2) Voltage rated of capacitor
- 3) Reactive power of detuned filter
- 4) Percent X_r (%)
- 5) Q-factor
- 6) Step of detuned filter

Vs(V) 400 f1(Hz) 50 pF(%) 95 🔤 Q	c (kVAr) Vcr (V) 440 🗠
Qcr (kVAr) Qcr (kVAr) Xr ((%) 5.6 QF 50 💽
Step 8 •	Ok Reset
lh 🗆	Vh
Odd (non multiple of 3)	Odd (non multiple of 3)
Odd (multiple of 3)	Odd (multiple of 3)
Even	Even
	All
From 5 To 13	

4.2.2 Harmonic filter design

4.2.2.1 Detuned filter unit design

Following parameters are required as inputs:

- 1) Fundamental frequency (f_1) such as 50Hz
- 2) System voltage (Vs) that detuned filter connected such as (400V)
- 3) Reactive power compensate (Q_{comp}) such as (50 kVAr, 90 kVAr)
- 4) Voltage rated of capacitor
- 5) Percent reactance (% X_L) such as 5.65%, 6%, 7%.
- 6) Voltage increasing $(+\Delta V)$ 10%
- 7) Maximum harmonic voltage in order (V_3 , V_5 , V_7 , V_{11} , V_{13})
- 8) Percent of maximum current

ศูนยวิทยทริพยากร จุฬาลงกรณ์มหาวิทยาลัย

Figure 4.10 Display for input parameters of detuned filter unit design

4.2.2.2 Tuned filter design

Proper design is required for harmonic filters in order to lower harmonic levels in a power system. Various types of harmonic filters are available. Tuned filters and detuned filters will be considered in the developed program. Proper selection and engineering experience plays an important role in a decision. Simulations of system response after installation of harmonic filters are also crucial in order to verify the effectiveness of the harmonic filter design. The developed program will be useful for power system harmonic analysis for various aspects. The program can also be used for power quality teaching and studying. Various cases can be simulated for better understanding of harmonic characteristics. The developed program is user-friendly for non-experienced and experienced users in order to understand harmonic analysis.

After parameters of filter are determined, harmonic flows of harmonic currents between system component and harmonic filter are required. Figure 4.11 shows the design page of harmonic filter in the developed program.

- In harmonic filter design page following input parameters are required:
 - 1) Target power factor
 - 2) Tuning point
 - 3) Reactive rated of capacitor
 - 4) Voltage rated of capacitor

5) Q-factor

Targe	st PF (%)	95	Ok	— Tuning po	int	Select (kV	Ar) of filter	·
Qft (k\	/Ar)			n5= 4.8		Vcr(V)	525 [Ok
Qf5 (%	s) 100 i	(kVAr)		-7- 69	_ 0	cr5 (kVA	r)	
Qf7 (%	5) 0 ((kVAr)	0	11/= 0.0		cr7 (kVA	r) 0	0
Qf11(9	6) 0 (0 ×	(kVAr)	0	n11= 10.8	3	Ωor11(kVA	(r) 0	0
Filter	Qcr(kVAr)	lcr(A)	C(uF)	Xc(Ohm)		XI(Ohm)	Q-Factor	R(Ohm)
5th							60	
7th	0	0	0	0	0	0	0	0
11th	0	0	0	0	0	0	0	0
							🗌 Ok	Next
				100				

Figure 4.11 Display for input parameters of tuned filter design

4.3 Outputs

4.3.1 Outputs of 14 cases studies

The output display of case study can be shown in figure 4.14. Box 1 illustrates the diagram of the case study chosen. Box 2 tabulates necessary results from the simulation. Harmonic currents from harmonic source (I_h), harmonic currents flow in the system (I_{Sh}), harmonic currents flow in a linear load (I_{Lh}), harmonic currents flow in capacitor (I_{Ch}), harmonic currents flow in detuned filters (I_{Dh}), harmonic currents flow in tuned filters (I_{Fh}) are tabulated in Box 2 with harmonic impedance (Z_h) and voltage (V_h) values at the main bus. I_{rms} value , I_{rms}/I_{cr} value, THD values of voltage and current are also provided at the bottom of Box 2. These harmonic currents and harmonic voltages are presented in a bar chart in Box 3. Box 4 shows an impedance scan of a case study and amplification factor.

Figure 4.12 Example output of 14 case studies

• Harmonic current flow and harmonic voltage distortion are also important parameters for harmonic analysis. They can provide the information of how harmonic currents propagate in a power system. Areas with high harmonic voltage distortions need mitigation methods in order to reduce the harmonic level under the limit.

Figure 4.13 illustrates harmonic values compared with the planning level of voltage in G 5/4 standard (Harmonic Voltage Limited).

Figure 4.13 Spectrum of harmonic voltage comparison with planning level (G 5/4 standard)

• Amplification factor of harmonic current is the ratio between harmonic current which flows in each equipment divided by harmonic current from source.

Figure 4.14 shows amplification factors of harmonic currents from system, load and detuned filter.

• The system harmonic impedance scan can reveal resonance conditions of a power system. This information helps us avoid damages from harmonic resonances.

Figure 4.15 compares frequency scan of case studies.

Figure 4.15 Impedance scans of case studies

4.3.2 Outputs of detuned filter unit design

Detuned filter unit design is necessary for reactive power compensation in order to improve power factor and solve the harmonic problem.

					n -				. n								
					De	etunec		er Un	it Des	sign							
4 50 H7	0 50	LAZ B.v.							1	94 —							
11 30 112	Comp	K V AI	lcr	87.98	А		Perfor	man								И	
∨ _s _ 400 ∨	%X7		max lc	114.37	A	Q Comp	50	kVA	r	93				/	·	ax lo	
	L _{Cal} 0.766	67 mH	Xc	3.4408	Ohm	n	3.78	3								_rms	
	L Select 0.76	7 mH	xı	0.24086	Ohm	fr	189.0	17 Hz	8	. 22				1			
2	1 9			0.24000			100.0	1 112	±,	91					maxlc ((%) 130	
	1.0	_	n	72.17	A	in_rms /	n 1.23	;	Sm				1		maylet	(%)	
5	l _{Lin} 137.1	2 A	lh rms	88.8	A	Ith / Icr	0.96	5	-	90					Illax ic i	150	
	V _{Cr} 525	V	l th	84.51	A	tth / max	lc 0.74	+		89					maxic ((%) 200	
	0 801	kVAr						_									
	W												1				
$\overline{}$	C_cal 00.	La Car								88 -	1		10	15	20		
$\overline{}$	© C_cal 00.	kVAr								88 -	ť Ca	; pacitor	10 deterio	15 rate(%)	20		
+V1 (%) 10	© C_cal 00. © Cr_select 80 +/1 (A) 79.3	kVAr								88 -	(Ca	; pacitor	10 deterio	15 rate(%)	20		
+V1 (%) 10 V3 (%) 0.5	Gr_select 80 +11 (A) 79.3 13 (A) 2.72	kVAr	+V1 (%)	5	V3	(%) 0	1.5	V5 (9	6) 4	88.	€ Ca V7 (%)	i pacitor 4	10 deterio	15 rate(%) v11 (%) 3	20	(%) 2.5	
+V1 (%) 10 V3 (%) 0.5 V5 (%) 6	G C_oal 00. G Cr_select 80 +11 (A) 79.3 13 (A) 2.72 15 (A) 26.8	kVAr	+V1 (%)	5	V3	(%) 0	1.5	V5 (9	6) 4	88	(Ca ∨7 (%)	j pacitor 4	10 deterio	15 rate(%) v11 (%) 3	20 	(%) 2.5	
+V1 (%) 10 V3 (%) 0.5 V5 (%) 6	Gr_select 80 +11 (A) 79.3 I3 (A) 2.72 I5 (A) 26.8	kVAr	+V1 (%)	5 L (mH)	V3	(%) 0 11(A)	I.5 I3(A)	V5 (9 I5(A)	6) 4 17(A)	88 0 I11(A)	(Ca V7 (%) I13(A)	j pacitor 4 [rms(A)	10 deterio Icr(A)	15 rate(%) v11 (%) 3 Irms / Icr(%)	20 	(%) 2.5 Qact(kVar)	fr(Hz)
+V1 (%) 10 V3 (%) 0.5 V5 (%) 6 V7 (%) 5	Gr_select 80 +I1 (A) 79.3 I3 (A) 2.72 I5 (A) 26.8 I7(A) 9.67	kVAr	+V1 (%) 3 Clear Det(%) 0	5 L (mH) 0.7670	V3 ⊂ (uF) 307.96	(%) 0 11(A) 75.67	I.5 I3(A) 2.71	V5 (9 I5(A) 17.91	6) 4 17(A) 7.73	88 0 0 111(A) 2.96	(Ca V7 (%) 113(A) 2.01	pacitor 4 (rms(A) 78.28	10 deterio Icr(A) 87.98	15 rate(%) v11 (%) 3 Irms / Icr(%) 88.98	20 V13 (Irms / Ith(%) (92.63	(%) 2.5 Qact(kVar) 49.93	fr(Hz) 189.07
+V1 (%) 10 V3 (%) 0.5 V5 (%) 6 V7 (%) 5 V11 (%) 3.5	Gr_select 80 +11 (A) 79.3 13 (A) 2.72 15 (A) 26.8 17(A) 9.67 111 (A) 3.46	kVAr	+V1 (%) Clear Det(%) 0 2	5 L (mH) 0.7670 0.7670	V3 C (uF) 307.96 301.80	(%) 0 11(A) 75.67 74.05	I3(A) 2.71 2.57	V5 (9 I5(A) 17.91 18.41	6) 4 17(A) 7.73 7.80	111(A) 2.96 2.97	€ Ca V7 (%) 113(A) 2.01 2.02	4 (rms(A) 76.83	10 deterio Icr(A) 87.98 86.22	15 rate(%) v11 (%) 3 Irms / Icr(%) 88.98 89.11 89.11	20 V131	(%) 2.5 Qact(kVar) 49.93 48.86	fr(Hz) 189.07 190.98
+V1 (%) 10 V3 (%) 0.5 V5 (%) 6 V7 (%) 5 V11 (%) 3.5	Gr_cal 60. Gr_select 80 H1 (A) 793 I3 (A) 2.72 I5 (A) 26.8 I7 (A) 9.67 H1 (A) 3.46 H2 (A) 2.65	KVAr	+V1 (%) Clear Det(%) 0 2 4 6	5 L (mH) 0.7670 0.7670 0.7670 0.7670	V3 C (uF) 307.96 301.80 295.65	(%) 0 11(A) 75.67 74.05 72.43 70.94	1.5 13(A) 2.71 2.57 2.44	V5 (9 15(A) 17.91 18.41 18.97	6) 4 17(A) 7.73 7.80 7.87	88 0 1111(A) 2.96 2.97 2.98	(Ca V7 (%) 113(A) 2.01 2.02 2.02 2.02	4 trms(A) 78.28 76.83 75.41	10 deterio Icr(A) 87.98 86.22 84.46	15 rate(%) v11 (%) 3 Irms / Icr(%) 88.98 89.11 89.29 90.21	20 V13 (92.63 90.91 89.23 87.23	(%) 2.5 Qact(kVar) 49.93 48.86 47.79	fr(Hz) 189.07 190.98 192.96
+V1 (%) 10 V3 (%) 0.5 V5 (%) 6 V7 (%) 5 V11 (%) 3.5 V13 (%) 3	Green and Contract	kVAr 0 1 2 3 4 5 4 5	+V1 (%) Clear Det(%) 0 2 4 6 8	5 L (mH) 0.7670 0.7670 0.7670 0.7670 0.7670	V3 C (uF) 307.96 301.80 295.65 289.49 283.33	(%) 0 11(A) 75.67 74.05 72.43 70.81 69.20	I.5 I3(A) 2.71 2.57 2.44 2.31 2.20	V5 (9 15(A) 17.91 18.41 18.97 19.58 20.27	6) 4 17(A) 7.73 7.80 7.87 7.94 8.02	88 0 111(A) 2.96 2.97 2.98 2.99 3.00	(Ca V7 (%) 113(A) 2.01 2.02 2.03 2.03	acitor 4 (rms(A) 78.28 76.83 75.41 74.02 72.68	10 deterio Icr(A) 87.98 86.22 84.46 82.70 80.94	15 rate(%) /11 (%) 3 Irms / Icr(%) 88.98 89.11 89.29 89.51 89.79	20 V131 Irms / Ith(%) 92.63 90.91 89.23 87.59 86.59 86.59	(%) 2.5 Qact(kVar) 49.93 48.86 47.79 46.73 45.86	fr(Hz) 189.07 190.98 192.96 195.01 197.11
+V1 (%) 10 V3 (%) 0.5 V5 (%) 6 V7 (%) 5 V11 (%) 3.5 V13 (%) 3 max lc (%) 130	G C_all 00. G C_select 80 +H (A) 79.3 I3 (A) 2.72 I5 (A) 26.8 I7(A) 9.67 H1 (A) 3.46 I13 (A) 2.42 Ih_t (A) 28.9	kVAr	+V1 (%) 2 Clear Det(%) 0 2 4 6 8 10	5 L (mH) 0.7670 0.7670 0.7670 0.7670 0.7670 0.7670 0.7670	V3 C (uF) 307.96 301.80 295.65 289.49 283.33 287.17	(%) 0 11(A) 75.67 74.05 72.43 70.81 69.20 67.60	1.5 13(A) 2.71 2.57 2.44 2.31 2.20 2.09	V5 (9 15(A) 17.91 18.41 18.97 19.58 20.27 21.03	 4 17(A) 7.73 7.80 7.87 7.94 8.02 8.10 	88 0 111(A) 2.96 2.97 2.98 2.99 3.00 3.01	(Ca V7 (%) 113(A) 2.01 2.02 2.02 2.03 2.03 2.03 2.03	4 (rms(A) 78.28 76.83 75.41 74.02 72.68 71.38	10 deterio Icr(A) 87.98 86.22 84.46 82.70 80.94 79.18	15 rate(%) /11 (%) 3 Irms / Icr(%) 88.98 89.11 89.29 89.51 89.79 90.15	20 V131 Irms / Ith(%) 92.63 90.91 89.23 87.59 86.00 84.46	(%) 2.5 Qact(kVar) 49.93 48.86 47.79 46.73 45.66 44.60	fr(Hz) 189.07 190.98 192.96 195.01 197.11 197.29
+V1 (%) 10 V3 (%) 0.5 V5 (%) 6 V7 (%) 5 V11 (%) 3.5 V13 (%) 3 max.lc (%) 130	G C_all 00. G C_select 80 +11 (A) 79.3 13 (A) 2.72 15 (A) 26.8 17 (A) 9.67 111 (A) 3.46 113 (A) 2.42 113 (A) 2.42 114 (A) 28.9	KVAr 6 1 2 3 4 5 6 7	+V1 (%) 3 Clear Det(%) 0 2 4 6 8 10 12	5 L (mH) 0.7670 0.7670 0.7670 0.7670 0.7670 0.7670 0.7670 0.7670	V3 307.96 301.80 295.65 289.49 283.33 277.17 271.01	(%) 0 11(A) 75.67 74.05 72.43 70.81 69.20 67.60 66.00	1.5 13(A) 2.71 2.57 2.44 2.31 2.20 2.09 1.98	V5 (9 15(A) 17.91 18.41 18.97 19.58 20.27 21.03 21.90	 4 17(A) 7.73 7.80 7.87 7.94 8.02 8.10 8.19 	88 0 111(A) 2.96 2.97 2.98 2.99 3.00 3.01 3.02	(Ca V7 (%) 113(A) 2.01 2.02 2.02 2.03 2.03 2.03 2.03 2.04	4 (rms(A) 78.28 76.83 75.41 74.02 72.68 71.38 70.14	10 deterio Icr(A) 87.98 86.22 84.46 82.70 80.94 79.18 77.42	15 rate(%) /11 (%) 3 Begeneration 3 89.91 89.29 89.51 89.79 90.15 90.60	20 V131 92.63 90.91 89.23 87.59 86.00 84.46 83.00	(%) 2.5 Qact(kVar) 49.93 48.86 47.79 46.73 45.66 44.60 43.55	fr(Hz) 189.07 190.98 192.96 195.01 197.11 197.11 197.29 201.54
+V1 (%) 10 V3 (%) 0.5 V5 (%) 6 V7 (%) 5 V11 (%) 3.5 V13 (%) 3 max lc (%) 130 cal_1 cal_2	G C_oal 00: G C_select 80 +H (A) 79.3 I3 (A) 2.72 I5 (A) 26.8 I7 (A) 9.67 H1 (A) 3.46 H3 (A) 2.42 Ih_t (A) 28.9	KVAr 6 1 2 3 4 5 6 7 8	+V1 (%) _3 Clear Det(%) 0 2 4 6 8 10 12 14	5 0.7670 0.7670 0.7670 0.7670 0.7670 0.7670 0.7670 0.7670	V3 C (uF) 307.96 301.80 295.65 289.49 283.33 277.17 271.01 264.85	(%) 0 11(A) 75.67 74.05 72.43 70.81 69.20 67.60 66.00 64.40	13(A) 2.71 2.57 2.44 2.31 2.20 2.09 1.98 1.89	V5 (9 15(A) 17.91 18.41 18.97 19.58 20.27 21.03 21.90 22.89	 4 17(A) 7.73 7.80 7.87 7.94 8.02 8.10 8.19 8.29 	88 0 1111(A) 2.96 2.97 2.98 2.99 3.00 3.01 3.02 3.03	(Ca V7 (%) 2.01 2.02 2.02 2.03 2.03 2.03 2.04 2.04 2.04	4 (rms(A) 78.28 76.83 75.41 74.02 72.68 71.38 70.14 68.97	10 deterio 87.98 86.22 84.46 82.70 80.94 79.18 77.42 75.66	15 rate(%) 3 Irms / Icr(%) 88.98 89.11 89.29 89.51 89.79 90.15 90.60 91.16	20 V13 (92.63 90.91 89.23 87.59 86.00 84.46 83.00 81.61	(%) 2.5 Qact(kVar) 49.93 48.86 47.79 46.73 45.66 44.60 44.60 42.49 42.49	fr(Hz) 189.07 190.98 192.96 195.01 197.11 199.29 201.54 201.54
+V1 (%) 10 V3 (%) 0.5 V5 (%) 6 V7 (%) 5 V11 (%) 3.5 V13 (%) 3 max lc (%) 130 cal_ 022	G _{C_select} 80 G _{C_select} 80 +H (A) 79.3 I3 (A) 2.72 I5 (A) 26.8 I7 (A) 9.67 H1 (A) 3.46 H3 (A) 2.42 h_t (A) 28.9	KVAr 6 1 2 3 4 5 6 7 8 9	+V1 (%) Clear Det(%) 0 2 4 6 8 10 12 14 16	5 0.7670 0.7670 0.7670 0.7670 0.7670 0.7670 0.7670 0.7670 0.7670	V3 307.96 301.80 295.65 289.49 283.33 277.17 271.01 264.85 258.69	(%) 0 11(A) 75.67 74.05 72.43 70.81 69.20 67.60 66.00 64.40 62.81	13(A) 2.71 2.57 2.44 2.31 2.20 2.09 1.98 1.89 1.79	V5 (9 15(A) 17.91 18.41 18.97 19.58 20.27 21.03 21.90 22.89 24.03	6) 4 17(A) 7.73 7.80 7.87 7.94 8.02 8.10 8.19 8.29 8.39	88 0 1111(A) 2.96 2.97 2.98 2.99 3.00 3.01 3.02 3.03 3.04	∀7 (%) 113(A) 2.01 2.02 2.03 2.03 2.03 2.04 2.04 2.05	4 78.28 76.83 75.41 74.02 72.68 71.38 70.14 68.97 67.89	10 deterio 87.98 86.22 84.46 82.70 80.94 79.18 77.42 75.66 73.90	15 rate(%) //11 (%) 3 Irms / Icr(%) 88.98 89.11 89.29 89.51 89.79 90.15 90.60 91.16 91.87	20 V13 (Irms / Ith(%) (92.63 90.91 89.23 87.59 86.00 84.46 83.00 81.61 80.34	(%) 2.5 49.93 48.86 47.79 46.73 45.66 44.60 43.55 42.49 41.44	fr(Hz) 189.07 190.98 192.96 195.01 197.11 199.29 201.54 203.87 206.29
+V1 (%) 10 V3 (%) 0.5 V5 (%) 6 V7 (%) 5 V11 (%) 3.5 V13 (%) 3 col_1 col_2	G C_oal 00. G C_select 80 +11 (A) 79.3 13 (A) 2.72 15 (A) 26.8 17 (A) 9.67 111 (A) 3.44 113 (A) 2.42 h_t (A) 28.9	KVAr 3 1 2 3 4 5 5 6 7 8 9 10	+V1 (%) 3 Clear Det(%) 0 2 4 6 8 10 12 14 16 18	5 L (mH) 0.7670 0.7670 0.7670 0.7670 0.7670 0.7670 0.7670 0.7670 0.7670	V3 307.96 301.80 295.65 289.49 283.33 277.17 271.01 264.85 258.69 252.53	(%) 0 11(A) 75.67 74.05 72.43 70.81 69.20 67.60 66.00 64.40 62.81 61.22	I.5 I.3(A) 2.71 2.57 2.44 2.31 2.20 2.09 1.98 1.98 1.79 1.70	V5 (9 15(A) 17.91 18.41 18.97 19.58 20.27 21.03 21.90 22.89 24.03 25.34	 4 17(A) 7.73 7.80 7.87 7.94 8.02 8.10 8.19 8.29 8.39 8.50 	BB 111(A) 2.96 2.97 2.98 2.99 3.00 3.01 3.02 3.02 3.04 3.05	V7 (%) 113(A) 2.01 2.02 2.02 2.03 2.03 2.03 2.04 2.04 2.04 2.05 2.06	4 (rms(A) 78.28 76.83 75.41 74.02 72.68 71.38 70.14 68.93 66.93	10 deterio 87.98 86.22 84.46 82.70 80.94 79.18 77.42 75.66 73.90 72.14	15 rate(%) 3 ms / lcr(%) 89.98 89.91 89.91 89.92 99.05 90.05 90.60 91.16 91.87 92.77	20 V131 Irms / Ith(%) 92.63 90.91 89.23 87.59 86.00 84.46 83.00 81.61 80.34 79.20	(%) 2.5 Qact(kVar) 49.93 48.86 47.79 45.86 44.60 43.55 42.49 41.44 40.40	fr(H2) 189.07 190.98 192.96 195.01 197.11 199.29 201.54 203.87 206.29 208.79

Figure 4.16 Output of detuned filter unit

CHAPTER V

OUTPUTS AND CASE STUDIES

This chapter presents the results from three parts of the developed program. The first part performs harmonic waveform synthesis. A user can input various harmonic magnitudes and phase angles and then view the resultant distorted waveform. The second part analyzes the power system harmonic response with a combination of linear and nonlinear loads, capacitor banks, detuned filters and tuned filters. The last part deals with detuned filter unit design.

5.1 Waveform synthesis

Figure 5.1 Main display of distorted waveform program

Non-linear equipment or components in the power system cause distortion of the current and to a lesser extent of the voltage. These sources of distortion can be divided in three groups:

- Loads
- The power system itself (HVDC, SVC, transformers, etc)
- The generation stage (synchronous generators)

The characteristic of the distorted current waveform, most devices are only producing odd harmonics but some devices have a fluctuating power consumption, from half cycle to half cycle or shorter, which then generates odd, even and interharmonic currents. The current distortion, for each device, changes due to the consumption of active power, background voltage distortion and changes in the source impedance.

5.1.1 Odd harmonic order

$$I = \sum_{1}^{h} I_{h} \sin(h\omega t + \theta_{h})$$
(5.1)

$$I_{rms} = \sqrt{(100\sin(\omega t))^2 + (A_5\sin(5\omega t + \theta_5))^2 + (A_7\sin(7\omega t + \theta_7))^2}$$
(5.2)

Where: h=1, 2, 3, 4, 5, 6, 7...

$$\omega = 2 * \pi * f$$
 and $f = 50 Hz$

Figure 5.2 Distorted waveform of odd harmonics (Symmetrical waveform)

5.1.2 Even harmonic order

$$I_{rms} = \sqrt{(100\sin(\omega t))^2 + (A_2\sin(2\omega t + \theta_2))^2 + (A_4\sin(4\omega t + \theta_4))^2}$$
(5.3)

Where:

$$\omega = 2 * \pi * f$$
$$f = 50 Hz$$

Figure 5.3 Distorted waveform of even harmonic (Asymmetrical waveform)

5.1.3 Odd and even harmonic order

Figure 5.4 Distorted waveform of odd and even harmonic

5.2 Harmonic response analysis

Figure 5.5 Main display of program

- System and equipment data:
- a) System: 22 kV, 500 MVA_{SC}, X/R=10
- b) Transformer: 22 kV/400V, 1000kVA, 6%Z, P_{cu loss} 19.8kW
- c) Low voltage side: 400 V
- d) Linear load: 400 V, 650 kW, 0.78 PF
- e) Non linear load: 400 V, 500 kW, 0.80 PF, harmonic current show in table 5.1

h	5	7	11	13	17	19	23	25	29	31
lh(%l1)	18.74	11.89	8.95	7.36	5.37	4.42	3.47	2.84	2.21	1.58
lh(A)	169.0	107.3	80.72	66.47	48.43	39.88	31.34	25.64	19.94	14.24

Table 5.1Harmonic current source

5.2.1 Case study 0 (supply system with linear and nonlinear load)

Figure 5.6 Single-line diagram of case study 0

Figure 5.7 The result of case study 0

The case study 0 is the reference case; it consists of a supply system, linear and non linear loads. Power factor from the analysis is 0.789, it is lower than the limited (it should improve) and the total harmonic voltage distortion value (THD_V) at low voltage bus is 7.94%, it is over the planning level of standard (for the planning level of standard THD_V \leq 5%)

5.2.2 Case study 1 (case study 0 with capacitors)

Figure 5.8 Single-line diagram of case study 1

I up to the input put united bit cube beaut	Table 5.2	The input	parameters	for cas	e study 1
---	-----------	-----------	------------	---------	-----------

Custom	Transformer	LV	Non-Linear	Linear	Conceitor	
System	Transformer	Bus	Load	Load	Capacitor	
500 MV/A	1000 41/4	400 V	500 KW	650 KW	80 kVAr / 440 V	
JUU IVIVA _{SC}	TUUU KVA	400 V	300 KW	000 KW	or	
22 kV	22 kV/400 V		PF = 80 %	PF = 75 %	115 kVAr / 525V	
X/R 10	%Z = 6	1919	กรัพย	ากร	8 Steps	
	P _{LOSS} = 19.8 kW		IND			

Case study 1 is case study 0 with capacitors. This case considers two conditions as (80 kVAr / 440 V, 8 steps) and (115 kVAr / 525 V, 8 steps).

5.2.2.1 Results of case study 1 for 640 kVAr / 440 V capacitor

Figure 5.9 Results of case study 1

Order	lh				I _C (A) at	X th step			
(h)	(A)	1	2	3	4	5	6	7	8
1	902.11	95.43	190.86	286.29	381.72	477.15	572.58	668.01	763.44
5	169.03	16.99	37. <mark>6</mark>	63.06	95.14	136.52	191.14	264.72	363.95
7	107.3	22.76	56. <mark>54</mark>	109.89	196.84	313.54	365.59	327.05	279.27
11	80.72	52.66	164.8 <mark>3</mark>	193.33	157.95	136.15	123.42	115.32	109.76
13	66.47	67.79	147.06	121.97	104.06	94.44	88.65	84.81	82.1
17	48.43	80.5	78.49	67.13	61.74	58.72	56.81	55.49	54.53
19	39.88	67.34	58.2	51.46	48.24	46.41	45.23	44.41	43.81
23	31.34	47.44	40.2	37.09	35.57	34.68	34.1	33.69	33.38
25	25.64	36.65	31.57	29.52	28.51	27.92	27.53	27.25	27.04
29	19.94	26.07	23.21	22.11	21.56	21.23	21.01	20.86	20.74
31	14.24	18	16.25	15.58	15.24	15.04	14.9	14.81	14.74
I _{h total}	239.15	154.23	257.62	280.07	304.12	390.72	448.49	452.89	486.44
I _{rms}	933.27	181.37	320.62	400.5	488.06	616.71	727.31	807.06	905.24
I _{Cr}	0	104.97	209.95	314.92	419.89	524.86	629.84	734.81	839.78
I _{rms} / I _{Cr}	0	1.73	1.53	1.27	1.16	1.17	1.15	1.1	1.08

Table 5.3Harmonic current flow in capacitors 80x8 kVAr / 440 V

50

In table 5.3, as 1^{st} step is on, harmonic currents from 13^{th} - 31^{st} are amplified and I_{rms} / I_{Cr} value is more than 130%. as 8^{th} step is on, 5^{th} and 7^{th} harmonic currents are amplifies (for 5^{th} harmonic current is amplified from 169.03 to 363.59 A and 7^{th} harmonic current is amplified from 107.3 to 279.27 A. For this condition could make capacitors to fail.

Cap Step						162	Low Volt	age Side				
	Q (kVAr)	PF	I _c			I _S			I _L			
Otep			Ihrms (A)	Irms (A)	Irms/Icr	THD (%)	Ihrms (A)	Irms (A)	THD (%)	Ihrms (A)	I Irms (A) 1205.14 1207.4 1208.0 1206.6 1206.5 1207.7 1207.8 1207.1 1207.3	THD (%)
0	0	0.789	0	0	0	0	217.85	2115.89	10.35	74.83	1205.14	6.22
1	80	0.811	154.23	181.37	1. <mark>7</mark> 3	161.62	276.63	2066.0	13.51	105.66	1207.4	8.78
2	160	0.833	257.62	320.62	1.53	134.98	323.74	2019.1	16.24	111.51	1208.0	9.27
3	240	0.855	280.07	400.50	1.27	97.83	327.48	1969.2	16.86	94.96	1206.6	7.89
4	320	0.876	304.12	488.06	1.16	79.67	368.62	1929.6	19.64	94.18	1206.5	7.83
5	400	0.897	390.72	616.71	1.17	81.89	438.33	1901.2	23.69	108.17	1207.7	8.99
6	480	0.917	448.49	727.31	1.15	78.33	461.28	1867.7	25.49	109.39	1207.8	9.09
7	560	0.936	452.89	807.06	1.10	67.80	462.16	1833.2	26.50	101.86	1207.1	8.47
8	640	0.953	486.44	905.24	1.08	63.72	504.21	1814.1	28.93	104.33	1207.3	8.67

 Table 5.4
 The results of harmonic current calculation (640 kVAr / 440 V capacitors)

Can		Low Voltage Side THDv (%)						
Cap Step	PF	Doculto	PL	(%) of				
Otop		Results	v Voltage Side THE Ilts PL (ERG5/4) 4 5 23 5 34 5 34 5 5 5 44 5 5 5 5	PL				
0	0.789	7.94	5	158.8				
1	0.811	11.23	5	224.6				
2	0.833	11.84	5	236.8				
3	0.855	10.06	5	201.2				
4	0.876	9.97	5	199.4				
5	0.897	11.44	5	228.8				
6	0.917	11.56	5	231.2				
7	0.936	10.75	5	215.0				
8	0.953	11.00	5	220.0				

 Table 5.5
 The results of harmonic voltage calculation (640 kVAr/440 V capacitors)

The analysis results of case study 1 a:

The calculation results of case study 1 for the first condition (80kVAr / 440V, 8 step), from table 5.4 we can see that when using capacitors for improved power factor in the system that has a high harmonic current source, the capacitors cannot work from the 1st to 2nd step because rms current are more than rated current of the capacitor (I_{rms} / I_{cr} > 1.3), as shown in figure 5.8.e. and the total harmonic voltage distortion value (THD_V) at low voltage bus 400V is more than planning level of standard as shown in table 5.5.

5.2.2.2 Results of case study 1 for 920 kVAr / 525 V capacitor

Table 5.6 The results of harmonic current calculation (920 kVAr / 525 V capacitors)

Cap							Low Volta	oltage Side					
	Q (kVAr)	PF	l _c			I _S			I _L				
Step			Ihrms (A)	Low Voltage Side Ic Is Is Irms (A) Irms/Icr THD (%) Ihrms (A) Irms (A) Ihrms (A) Irms (A) <th< td=""><td>Irms (A)</td><td>THD (%)</td></th<>	Irms (A)	THD (%)							
0	0	0.789	0	0	0	0	217.85	2115.9	10.35	74.83	1205.14	6.22	
1	115	0.811	155.35	182.81	<mark>1.45</mark>	161.22	277.14	2065.5	13.54	105.73	1207.5	8.79	
2	230	0.833	259.08	322.4	1. <mark>2</mark> 8	134.44	324.18	2018.2	16.27	111.40	1208.0	9.26	
3	345	0.855	279.94	402.40	1.06	96.84	327.85	1967.9	16.90	94.54	1206.5	7.86	
4	460	0.877	306.52	492.45	0.97	79.53	371.18	1928.3	19.26	94.60	1206.5	7.87	
5	575	0.898	395.25	623.17	0.99	82.04	441.08	1899.8	23.87	108.73	1207.7	9.04	
6	690	0.918	449.32	732.21	0.96	77.72	460.93	1865.5	25.50	108.91	1207.7	9.05	
7	805	0.937	453.67	812.86	0.92	67.26	463.56	1831.4	26.16	101.65	1207.1	8.45	
8	920	0.954	491.23	914.07	0.90	63.73	509.20	1813.3	29.26	104.97	1207.4	8.73	

จุฬาลงกรณ์มหาวิทยาลัย

Con		Low Voltage Side THDv (%)						
Step	PF	Results	Voltage Side TH PL (ERG5/4) 5 3 5 4 5 5 5 5 5 5 5	(%) of PL				
0	0.789	7.94	5	158.8				
1	0.811	11.23	5	224.6				
2	0.833	11.83	5	236.6				
3	0.855	10.02	5	200.4				
4	0.877	10.01	5	200.2				
5	0.898	11.50	5	230.0				
6	0.918	11.51	5	230.2				
7	0.937	10.73	5	214.6				
8	<mark>0.95</mark> 4	11.06	5	221.2				

Table 5.7The result of calculation

The resulted of calculation case study 1 for the second condition (115kVAr / 525V, 8 steps). As shown in table 5.6, the capacitor 1^{st} step cannot operate because of over load from harmonic current amplification (I_{rms} / I_{Cr} > 1.30). THD_V at a low voltage bus from table 5.7 is more than planning level of standard.

Table 5.8 Comparison step of capacitor when used $V_{cr} = 440V$ and $V_{cr} = 525V$

V _{Cr} (V)	Irms/Icr (for X th step)											
	1	2	3	4	5	6	7	8				
440	1.73	1.53	1.27	1.16	1.17	1.15	1.1	1.08				
525	1.45	1.28	1.06	0.97	0.99	0.96	0.92	0.90				

5.2.3 Case study 2 (Case study 0 with Detuned filter)

Figure 5.10 Single-line diagram of case study 2

Table 5.9	The input	parameters	for	case	study	v 2
			-			/

System	Transformar		Non-Linear	Linear	Detuned filter	
System	Transionner	LV DUS	Load	Load	Detuned litter	
500 MV/A	1000 kV/A	400 V	500 kW	650 kW	640 kVAr / 440 V	
JUU IVIVA _{SC}		400 V	500 KW	000 800	or	
22 kV	22 kV/400 V		PF = 80 %	PF = 75 %	920 kVAr / 525V	
X/R 10	%Z = 6		~	~	8 Steps	
	P _k = 19.8 kW	ทย	กรพย	ากร	%X _L =5.6 & %X _L =7	

Case study 2 is case study 0 with detuned filters which analyzing 4 conditions such as: (640kVAr / 440V, X_L =5.6%), (640kVAr / 440V, X_L =7%), (920kVAr / 525V, X_L =5.6%) and (920kVAr / 525V, X_L =7%).

5.2.3.1 Result of case study 2 for 640kVAr / 440 V, 5.6%XL

Figure 5.11 Results of case study 2

Order	lh				I _{DT} (A) a	t X th step			
(h)	(A)	1	2	3	4	5	6	7	8
1	902.11	95.43	190. <mark>86</mark>	286.29	381.72	477.15	572.58	668.01	763.44
5	169.03	31.53	53. <mark>2</mark> 3	69.05	81.09	90.55	98.18	104.46	109.72
7	107.3	9.9	18.17	25.17	31.18	36.38	40.92	44.93	48.48
11	80.72	5.47	10.28	14.55	18.36	21.77	24.84	27.61	30.14
13	66.47	4.2	7.95	11.3	14.31	17.03	19.49	21.73	23.78
17	48.43	2.77	5.28	7.55	9.63	11.52	13.25	14.84	16.3
19	39.88	2.18	4.18	6	7.66	9.19	10.59	11.88	13.08
23	31.34	1.58	3.05	4.4	5.65	6.8	7.87	8.86	9.78
25	25.64	1.25	2.4	3.48	4.48	5.4	6.26	7.07	7.81
29	19.94	0.9	1.74	2.53	3.27	3.96	4.61	5.22	5.79
31	14.24	0.62	1.2	1.75	2.26	2.75	3.2	3.63	4.03
I _{h total}	239.15	34.02	58.29	76.65	91.15	102.97	112.83	121.22	128.48
I _{rms}	933.27	101.31	199.56	296.37	392.45	488.13	583.59	678.92	774.17
I _{Cr}	0	104.97	209.95	314.92	419.89	524.86	629.84	734.81	839.78
I _{rms} / I _{Cr}	0	0.97	0.95	0.94	0.93	0.93	0.93	0.92	0.92

Table 5.10 Harmonic current flow in detuned filter 80x8 kVAr / 440 V, 5.6%X_L
When turn on detuned filters from $1^{st} - 8^{th}$, all harmonic current is not amplified and I_{rms} / I_{Cr} value is less than 1, so detuned filter can operat safety as shown in table 5.10.

Can		PF		Low Voltage Side								
Sten	Q (kVAr)		I _{DT}					I _s			Ι _L	
Step			Ihrms (A)	Irms (A)	Irms/Icr	THD (%)	Ihrms (A)	Irms (A)	THD (%)	Ihrms (A)	Irms (A)	THD (%)
0	0	0.789	0	0	0	0	<mark>217.85</mark>	2115.89	10.35	74.83	1205.14	6.22
1	80	0.812	34.02	101.31	0.97	35.65	18 <mark>9.6</mark> 8	2052.8	9.28	69.14	1204.8	5.75
2	160	0.835	58.29	199.58	0.95	30.54	169.41	1994.0	8.53	64.60	1204.5	5.37
3	240	0.859	76.65	296.37	0.94	26.77	153.89	1939.2	7.96	60.80	1204.4	5.05
4	320	0.881	91.15	392.45	0.93	23.88	141.49	1888.6	7.51	57.52	1204.2	4.78
5	400	0.903	102.97	488.13	0.93	21.58	131.26	1842.3	7.14	54.63	1204.1	4.54
6	480	0.924	112.83	583.59	0.93	19.71	122.61	1800.8	6.82	52.05	1203.9	4.33
7	560	0.943	121.22	678.92	0.92	18.15	115.19	1764.2	6.54	49.72	1203.8	4.13
8	640	0.960	128.48	774.17	0.92	16.83	108.71	1732.8	6.29	47.6	1203.8	3.96
	จุฬาลงกรณ์มหาวิทยาลัย											

Table 5.11	The results of harmonic current calculation	(640 kVAr / 440V, 5.6%X _L)
------------	---	--

58

Daturad		Low Voltage Side THDv (%)					
Step	PF	Results	PL (ERG5/4)	(%) of PL			
0	0.789	7.94	5	158.8			
1	0.812	7.34	5	146.8			
2	0.835	6.86	5	137.2			
3	0.859	6.4 <mark>6</mark>	5	129.2			
4	0.881	6.11	5	122.2			
5	0.903	5.81	5	116.2			
6	0.924	5.53	5	110.6			
7	0.943	5.29	5	105.8			
8	0.960	5.06	5	101.2			

Table 5.12The results of harmonic voltage calculation (640 kVAr / 440V, 5.6%XL)

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย 5.2.3.2 Result of case study 2 for 640 kVAr / 440V, $7\% X_L$

		PF	Low Voltage Side									
Cap	Q (kVAr)		IDT			Is			Ι			
Step			Ihrms (A)	Irms (A)	Irms/Icr	THD (%)	Ihrms (A)	Irms (A)	THD (%)	Ihrms (A)	Irms (A)	THD (%)
0	0	0.789	0	0	0	0	217.85	2115.89	10.35	74.83	1205.14	6.22
1	80	0.812	20.82	97.68	<mark>0.93</mark>	21.82	200.07	2052.9	9.79	70.81	1204.9	5.89
2	160	0.836	38.00	194.61	0. <mark>9</mark> 3	19.91	185.30	19933.7	9.33	67.29	1204.7	5.59
3	240	0.860	52.46	291.06	0.92	18.33	172.81	1938.4	8.95	64.16	1204.5	5.33
4	320	0.883	64.83	387.19	0.92	16.98	162.07	1887.3	8.62	61.35	1204.4	5.10
5	400	0.905	75.56	483.10	0.92	15.84	152.71	1840.7	8.32	58.81	1204.3	4.89
6	480	0.926	84.97	578.85	0.92	14.84	144.46	1768.9	8.06	56.48	1204.1	4.70
7	560	0.945	93.28	674.49	0.92	13.96	137.13	1762.2	7.81	54.34	1204.0	4.52
8	640	0.962	100.71	770.05	0.92	13.19	130.56	1703.9	7.56	52.37	1204.0	4.35

Table 5.13	The results of harmonic current calculation (640 kVAr / 440V, 7%XL)
------------	---

จุฬาลงกรณ์มหาวิทยาลัย

Daturad		Low Voltage Side THDv (%)					
Step	PF	Results	PL (ERG5/4)	(%) of PL			
0	0.789	7.94	5	158.8			
1	0.812	7.52	5	150.4			
2	0.836	7.15	5	143.0			
3	0.860	6.82	5	136.4			
4	0.883	6.52	5	130.4			
5	0.905	6.25	5	125.0			
6	0.926	6.00	5	120.0			
7	0.945	5.77	5	115.4			
8	0.962	5.57	5	111.4			

Table 5.14The results of harmonic voltage calculation (640 kVAr / 440V, 7%XL)

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย 5.2.3.3 Result of case study 2 for 920kVAr / 525 V, 5.6%XL

Cap				Low Voltage Side								
Cap	Q (kVAr)	PF	Т			I _s			Ι _L			
Step			Ihrms (A)	Irms (A)	Irms/Icr	THD (%)	Ihrms (A)	Irms (A)	THD (%)	Ihrms (A)	Irms (A)	THD (%)
0	0	0.789	0	0	0	0	217.85	2115.89	10.35	74.83	1205.14	6.22
1	115	0.812	34.29	102.28	<mark>0.81</mark>	35.59	187.45	2052.2	9.27	69.09	1204.8	5.74
2	230	0.836	58.69	201.45	0.80	30.46	169.07	1992.9	8.51	64.52	1204.5	5.36
3	345	0.859	77.12	299.18	0.79	26.68	153.49	1937.6	7.95	60.70	1204.3	5.05
4	460	0.882	91.65	396.17	0.78	23.78	141.05	1886.7	7.50	57.40	1204.2	4.77
5	575	0.904	103.49	492.77	0.78	21.48	130.80	1840.2	7.13	54.50	1204.0	4.53
6	690	0.925	113.36	589.15	0.78	19.61	122.15	1798.5	6.81	51.91	1203.9	4.32
7	805	0.944	121.74	685.39	0.77	18.05	114.72	1761.9	6.52	49.57	1203.8	4.12
8	920	0.961	128.99	781.57	0.77	16.73	108.23	1730.6	6.27	47.45	1203.8	3.94

Table 5.15	The results of harmonic current calculation	(920 kVAr	$(525V, 5.6\%X_L)$
------------	---	-----------	--------------------

จุฬาลงกรณ์มหาวิทยาลัย

Detuned		Low Voltage Side THDv (%)					
Sten	PF	Poculto	PL	(%) of			
Step		Results	(ERG5/4)	PL			
0	0.789	7.94	5	158.8			
1	0.812	7.34	5	146.8			
2	0.836	6.85	5	137.0			
3	0.859	6.4 <mark>5</mark>	5	129.0			
4	0.882	6.10	5	122.0			
5	0.904	5.79	5	115.8			
6	0.925	5.52	5	110.4			
7	0.944	5.27	5	105.4			
8	0.961	5.05	5	101.0			

Table 5.16The results of harmonic voltage calculation (920 kVAr / 525V, 5.6%XL)

5.2.3.4 Result of case study 2 for 920kVAr / 525 V, 7%XL

Con				Low Voltage Side								
Stop	Q (kVAr)	PF	л				۱ _s			ΙL		
Step			Ihrms (A)	Irms (A)	Irms/Icr	THD (%)	Ihrms (A)	Irms (A)	THD (%)	Ihrms (A)	Irms (A)	THD (%)
0	0	0.789	0	0	0	0	217.85	2115.89	10.35	74.83	1205.14	6.22
1	125	0.813	21.00	98.62	<mark>0.78</mark>	21.80	199.91	2052.3	9.79	70.77	1204.9	5.88
2	250	0.837	38.31	196.48	0. <mark>7</mark> 8	19.88	185.05	1992.6	9.33	67.22	1204.7	5.59
3	375	0.860	52.86	293.86	0.77	18.28	172.48	1936.9	8.94	64.08	1204.5	5.33
4	500	0.884	65.29	390.91	0.77	16.94	161.68	1885.5	8.61	61.25	1204.4	5.09
5	625	0.906	76.05	487.75	0.77	15.79	152.28	1838.6	8.31	58.68	1204.2	4.88
6	750	0.927	85.48	584.42	0.77	14.78	144.01	1796.7	8.04	56.35	1204.1	4.68
7	875	0.946	93.81	680.98	0.77	13.91	136.66	1759.9	7.79	54.20	1204.0	4.51
8	1000	0.963	101.25	777.47	0.77	13.13	130.07	1728.7	7.55	52.22	1203.9	4.34

Table 5.17	The results of harmonic current calculation (920 kVAr / 525V, 7%XL)
------------	---

จุฬาลงกรณ์มหาวิทยาลัย

Detuned		Low Voltage Side THDv (%)					
Step	PF	Results	PL (ERG5/4)	(%) of PL			
0	0.789	7.94	5	158.8			
1	0.813	7.52	5	150.4			
2	0.837	7.14	5	142.8			
3	0.860	6.81	5	136.2			
4	0.884	6.51	5	130.2			
5	0.906	6.24	5	124.8			
6	0.927	5.99	5	119.8			
7	0.946	5.76	5	115.2			
8	0.963	5.55	5	111.0			

Table 5.18The results of harmonic voltage calculation (920 kVAr / 525V, 7%XL)

From the results of calculation of case study 2 for all four conditions, when use detuned filters are used to increase power factor and partially filter harmonic current from the system, detuned filter can operate safety because the ratio of rms current to rated current of detuned filters is less than 1 (Irms / Icr < 1) as shown in table 5.11, 5.13, 5.15 and 5.17. The power factor can be improved to the target value (PF ≥ 0.95). But total harmonic voltage distortion (THD_V) at low voltage bus 400V still is over the planning level value as shown in table 5.12, 5.14, 5.16 and 5.18.

Table 5.19	Comparison of detuned filter lading	

V _{Cr} (V) %XL	0/ ¥I	I _{rms} / I _{Cr} (for X th step)								
	1	2	3	4	5	6	7	8		
440	5.6	0.97	0.95	0.94	0.93	0.93	0.93	0.92	0.92	
440	7.0	0.93	0.93	0.92	0.92	0.92	0.92	0.92	0.92	
525	5.6	0.81	0.80	0.79	0.78	0.78	0.78	0.77	0.77	
525	7.0	0.78	0.78	0.77	0.77	0.77	0.77	0.77	0.77	

5.2.4 Impedance scan comparison between capacitor and detuned filter

Figure 5.12 Comparison between step selection of capacitor and detuned filter

After change capacitors to detuned filters by connecting the reactor in series with the capacitor, it can avoid the damage that occurs from amplification of harmonic current and detuned filter can improve more value of THD_V than using the capacitor.

5.2.5 Case study 3 (case study 0 with 5th order tuned filter)

Figure 5.13 Single-line diagram of case study 3

Table 5.20	The input	parameters	for	5 th	tuned	filter
------------	-----------	------------	-----	-----------------	-------	--------

System	Transformer		Non-Linear	Linear	Tupod filtor
System	Transformer	LV Dus	Load	Load	Turied litter
500	1000 KV/A	400 \/		650 KW	640 kVAr / 440 V
MVA_{SC}		400 V	300 KW	000 KW	or
22 kV	22 kV/400 V		PF = 80 %	PF = 75 %	920 kVAr / 525V
V/D 10	0/7 - 6	91910	ມຮັ້ນເຄ	ากร	Tuning point (n)
NR IU	%Z − 0	ИD	NIINE	6 111	4.8
ລາ	P _k = 19.8 kW	รณ์เ	แหววิ	ทยาล์	Q-Factor 50

Case study 3 is case study 0 with 5^{th} order tuned filters, which analyzing 2 conditions such as: (640kVAr / 440V, n = 4.8) and (920kVAr / 525V, n = 4.8).

5.2.5.1 Results of case study 3

Figure 5.14 Results of case study 3

							Lo	w Voltage S	ide				
$V_{CR}(V)$	V _{CR} (V) Q PF (kVAr)	5th fiter			7	Is		-	THD _v (%)				
		Ihrms	Irms (A)	Irms/Icr	1./1	Irms (A)	THD (%)	Irms (A)	THD	Results	PL	(%) of	
			(A)			L/ CR	R	1112 (70)	11113 (73)	(%)	rtoouno	(ERG5/4)	PL
440	640	0.953	171.82	816.36	0.97	1.07	1734.3	4.74	1203.5	3.47	4.44	5	88.8
525	920	0.964	172.15	824.00	0.81	0.89	1732.1	4.72	1203.5	3.46	4.42	5	88.4

 Table 5.21
 The results of calculation for case study 3

Table 5.22The design parameters of 5th order tuned filters

			Reactor			
Q _{cr} (kVA)	$V_{ m cr}(V)$	I _{cr} (A)	L(mH)	I _{th} (A)	I _{Lin} (A)	
640	440	839.78	0.0418	894.54	1516.3	
920	525	1011.74	0.0414	902.97	1531.1	

Table 5.21 shows the results of calculation for case study

First condition (640kVAr / 440V, n =4.8), the power factor is 0.953, the ratio of rms current to rated current of tuned filter (I_{rms} / I_{cr} =0.97) and total harmonic voltage distortion THD_V =4.44%

Second condition (920kVAr / 525V, n=4.8), when increase rated voltage of capacitor from 440V to 525V, the power factor is 0.964, value of I_{rms} / I_{cr} =0.81, I_L / I_{cr} =0.89 and THD_V =4.42% which 5th order tuned filter can operate safely and the design parameters shown in table 5.22.

5.2.6 Case study 4 (case study 0 with 7th order tuned filter)

Figure 5.15 Single-line diagram of case study 4

Table 5.23The input parameter of case study 4

System	Transformer	LV Bus	Non-Linear Load	Linear Load	Tuned filter
500 MVA	1000 kVA	400 V	500 kW	650 kW	640 kVAr / 440
SOO WINNSC	1000 1000	-00 V		000 111	V or
22 kV	22 kV/400 V		PF = 80 %	PF = 75 %	920 kVAr /525V
V/D 10	0/7-6				Tuning point
	/02 - 0				(n) 6.8
	P _k = 19.8 kW				Q-Factor 50

Case study 4 is case study 0 with 7^{th} order tuned filters, which analyzing 2 conditions such as: (640kVAr / 440V, n = 6.8) and (920kVAr / 525V, n =6.8).

5.2.6.1 Result of case study 4

(e) Harmonic current amplification in system, load and 7th order tuned filter

Figure 5.16 Results of case study 4

Order	lh	Filter cu	rrent (A)
(h)	(A)	640 kVAr / 440 V	920 kVAr / 525 V
1	902.11	780.31	787.88
5	169.03	390.44	386.27
7	107.3	102.71	102.75
11	80.72	55.31	55.48
13	66.47	42.97	43.12
17	48. <mark>43</mark>	29.3	29.42
19	39 <mark>.88</mark>	23.6	23.69
23	31.34	17.88	17.96
25	25.64	14.4	14.47
29	<mark>19.94</mark>	10.86	10.92
31	1 <mark>4</mark> .24	7.64	7.68
I _{h total}	239 <mark>.</mark> 15	412.33	408.46
l _{rms}	933.27	882.55	887.47
I _{Cr}	0	839.78	1011.7
I _{rms} / I _{Cr}	0	1.05	0.88

Table 5.24Harmonic current flow in 7th order tuned filter

Note: 5th order current is amplified.

5th order current is ampirica.

Vor				Low Voltage Side									
CR	Q	PF		_{7th 1}	ïlter			S		L		THD_{V} (%)	
(V)	(kVAr)		Ihrms	Irme (A)	Irms/lor	1./	Irms (A)		Irms (A)	THD (%)	Results	PL	(%) of
			(A)	IIIIIS (A)		L ^{/I} CR		111D (78)		1110 (70)	Results	(ERG5/4)	PF
440	640	0.953	412.33	882.55	1.05	1.13	1753.4	13.52	1203.9	4.34	5.51	5	110.2
525	920	0.954	408.46	887.47	0.88	0.95	1750.5	1 <mark>3.</mark> 27	1203.9	4.27	5.42	5	108.4

Table 5.25The result of calculation for case study 4

Table 5.25 shows the results of calculation for case study 4

First condition (640kVAr / 440V, n = 6.8), the power factor is 0.953, the ratio of rms current to rated current of tuned filter (I_{rms} / I_{cr} = 1.05) and the total harmonic voltage distortion value at low voltage bus 400V THD_V = 5.51%, which higher than the planning level.

Second condition (920kVAr / 525V, n= 6.8), when increase rated voltage of capacitor from 440V to 525V, the power factor is 0.954, value of I_{rms} / I_{cr} = 0.88, I_L / I_{cr} = 0.95, which 7th order tuned filter can operate safely but the total harmonic voltage distortion value at low voltage bus 400V THD_V = 5.42% is still higher than the planning level.

	Capacitor		Reactor			
Q _{cr} (kVA)	V _{cr} (V)	I _{cr} (A)	L (mH)	I _{th} (A)	I _{Lin} (A)	
640	440	839.78	0.0208	952.25	1482.6	
920	525	1011.73	0.0206	958.11	1497.0	

 Table 5.26
 The design parameters of 7th order tuned filters

5.2.7 Case study 5 (case study 0 with 11th order tuned filter)

Figure 5.17 Single-line diagram of case study 5

Table 5.27The input parameters for case study 5

Custom	Transformor	LV	Non-Linear	Linear	Tupod filtor
System	Transformer	Bus	Load	Load	Turied litter
				650 KW	640 kVAr /440 V or
500 WIVA _{SC}		400 V	500 KV	000 KVV	920 kVAr / 525V
22 kV	22 kV/400 V		PF = 80 %	PF = 75 %	Tuning point (n)10.8
X/R 10	%Z = 6				Q-Factor 50
	P _{LOSS} = 19.8kW				

Case study 5 is case study 0 with 11^{th} order tuned filters, which analyzing 2 conditions such as: (640kVAr / 440V, n = 10.8) and (920kVAr / 525V, n = 10.8).

5.2.7.1 Results of case study 5

(e) Harmonic current amplification in system, load and 11th order tuned filter

Figure 5.18 Results of case study 5

Order	lh	Filter cu	rrent (A)
(h)	(A)	640 kVAr / 440 V	920 kVAr / 525 V
1	902.11	770.04	777.51
5	169.03	611.08	619.51
7	107.3	172.01	171.07
11	80.72	79.71	79.72
13	66.47	60.91	60.96
17	48. <mark>43</mark>	41.15	41.21
19	39 <mark>.88</mark>	33.16	33.21
23	31.34	25.30	25.35
25	25.64	20.47	20.51
29	<mark>19.94</mark>	15.63	15.67
31	1 <mark>4</mark> .24	11.08	11.10
I _{h total}	239 <mark>.</mark> 15	645.98	653.73
I _{rms}	933.27	1005.1	1015.8
I _{Cr}	0	839.78	1011.7
I _{rms} / I _{Cr}	0	1.2	1

Table 5.28Harmonic current flow in 11th order tuned filter

Note: the 5th and 7th order current are amplified

the 5th and 7th order current ...

Table 5.29The result of calculation for case study 5

		PF		Low Voltage Side											
$V_{op}(V)$	Q			l _{11th}	n filter		I,	6	I	L	THD _v (%)				
VCR(V)	(kVAr)	lhrms (A)	Ihrms	Irms (A)	Irms/Icr I _I /I _{CR}	Irms (A)	THD	Irms (A)	THD	Results	PL	(%) of			
			(A)			E OK	and al	(%)		(%)		(ERG5/4)	PL		
440	640	0.953	645.98	1005.1	1.20	1.27	1848.2	35.71	1208.9	10.08	12.77	5	255.4		
525	920	0.954	653.73	1015.8	1.00	1.06	1826.9	35.89	1209.0	10.12	12.81	5	256.2		

Table 5.29 shows the results of calculation for case study 5

First condition (640kVAr / 440V, n =10.8), the power factor is 0.953, the ratio of rms current to rated current of tuned filter (I_{rms} / I_{cr} =1.20) and the total harmonic voltage distortion value at low voltage bus 400V THD_V =12.77%, which higher than the planning level.

Second condition (920kVAr / 525V, n=10.8), when increase rated voltage of capacitor from 440V to 525V, the power factor is 0.954, value of I_{rms} / I_{cr} =1.00, I_L / I_{cr} =1.06, which 11th order tuned filter can operate safely but the total harmonic voltage distortion value at low voltage bus 400V THD_V =12.81% is still higher than the planning level.

	Capacitor		Reactor					
Q _{cr} (kVA)	V_{cr} (V)	I _{cr} (A)	L (mH)	I _{th} (A)	I _{Lin} (A)			
640	440	839.78	0.0083	1065.4	1463.1			
920	525	1011.73	0.0082	1076.5	1477.3			

Table 5.30The design parameter of 11th order tuned filters

5.2.8 Case study 6 (case study 0 with detuned filter and capacitor)

Figure 5.19 Single-line diagram of case study 6

Table 5.31	The input	parameters
------------	-----------	------------

System	500 MVA _{sc}	22 kV	กร	X/R 10				
Transformer	1000 kVA	22 kV/400 V	%Z = 6	P _k = 19.8 kW				
LV Bus	งกรณ์ม	400 V	ยาลั	21				
Non-Linear Load	500 kW	PF = 80 %						
Linear Load	650 kW	PF = 75 %						
Detuned filter	300,460, 620 kVAr	V _{cr} 525	525 V, Q-Factor 50, 5.6%X _L					
Capacitor	300,460, 620 kVAr	V _{cr} 525 V						

Case study 6 is case study 0 with capacitor and detuned filter. Which it's analyzing 3 conditions: first, for the capacitor (300kVAr / 525V), and detuned filter (620kVAr / 525V, $%X_L$ =5.6). Second, for the capacitor (460kVAr / 525V), and detuned filter (460kVAr / 525V, $%X_L$ =5.6) and third the capacitor (620kVAr / 525V), and detuned filter (300kVAr / 525V, $%X_L$ =5.6).

5.2.8.1 Results of case study 6

(c) Spectra of harmonic currents for case study 6

(d) Spectra of harmonic voltages for case study 6

(e) Harmonic current amplification in system, load, capacitor and tuned filter

Figure 5.20 Results of case study 6

		$\bigcap (k)/\Lambda r$						Low Voltage	e Side				
$V_{\rm CR}$			΄ Γ				I _c				I _{DT}		
(V)	Са	p De	etuned	PF	Ihrms	Irms (A)	Irms/Icr	THD (%)	Ihrms (A)	Irms (A)	Irms/Icr		THD
		,			(A)							L' CR	(%)
525	300		620	0.959	304.69	394.99	1.20	121.21	146.16	569.37	0.84	0.91	26.56
525	460		460	0.957	293.52	484.46	0.96	76.15	124.64	426.88	0.84	0.92	30.53
525	620) :	300	0.956	337.56	619.52	0.91	<mark>6</mark> 4.98	117.63	291.10	0.88	0.96	44.18
		·		Low Volt	age Side	100	en en el a						
	I _s			Ι _L	6		THD _v (%)	5					
Ihrms	Irms	THD	Ihrms	Irms	THD	Populto	PL	(9/) of DI					
(A)	(A)	(%)	(A)	(A)	(%)	Results	(ERG5/4)	(76) 01 FL					
231.24	1726.2	13.52	94.51	1206.5	7.86	10.05	5	201.0	ว				
213.56	1716.1	12.4	69.55	1204.8	5.78	7.38	5	147.6	2				
296.91	1721.3	17.51	78.76	1205.4	6.55	8.34	5	166.8	าลย				

Table 5.32The result of calculation for case study 6

The results of case study 6 are summarized in table 5.32.

- The first condition: the power factor value is 0.959, for the capacitor ($I_{rms} / I_{cr}=1.20$), capacitor may fail due to high current flow in the capacitor. For detuned filter ($I_{rms} / I_{cr}=0.84$, $I_L / I_{cr}=0.91$) so it can operate safely and the total harmonic voltage distortion THD_V=10.05% which higher than planning level.
- The second condition: the power factor value is 0.957, for capacitor ($I_{rms} / I_{cr}=0.96$). For detuned filter ($I_{rms} / I_{cr}=0.84$, $I_L / I_{cr}=0.92$) so both capacitor and detuned filter can operate safely but total harmonic voltage distortion at low voltage bus THD_V=7.38% is still higher than planning level.
- The third condition: the power factor value is 0.956, for capacitor ($I_{rms} / I_{cr}=0.91$). For detuned filter ($I_{rms} / I_{cr}=0.88$, $I_L / I_{cr}=0.96$) so both capacitor and detuned filter can operate safely and total harmonic voltage distortion at low voltage bus THD_V=8.34% is still higher than planning level.

5.2.9 Case study 7 (case study 0 with 5th and 7th tuned filter)

Figure 5.21 Single-line diagram of case study 7

System	500 MVA _{sc}	22 kV	X/R 10				
Transformer	1000 kVA	22 kV/400 V	%Z = 6	P _k = 19.8 kW			
LV Bus	ALCONTRACTOR OF	400 V	400 V				
Non-Linear Load	500 kW		PF = 80 9	%			
Linear Load	650 kW	PF = 75 %					
5 th tuned filter	50 % 460 kVA 60 % 550 kVAr	V _{cr} 525 V, Q-Factor 60					
7 th tuned filter	50 % 460 kVAr 40 % 370 kVAr	V _{cr} 525 V, Q-Factor 50					

Table 5.33The input parameters

Case study 7 is case study 0 with 5th tuned filter and 7th tuned filter. Which it's analyzing 2 conditions: first condition 5th tuned filter (460kVAr / 525V, n=4.8), 7th tuned filter (460kVAr / 525V, n=6.8). Second condition 5th tuned filter (550kVAr / 525V, n=4.8), 7th tuned filter (370kVAr / 525V, n=6.8).

5.2.9.1 Results of case study 7

Figure 5.22 Result of case study 7

	O(k)	(Δr)					Lo	ow Voltage	Side					
$V_{\rm CR}$	Q (K					5th filter				7th filter				
(V)	5 th	7 th	PF	Ihrms (A)	Irms (A)	Irms/Icr	I _L /I _{CR}	THD (%)	Ihrms (A)	Irms (A)	Irms/Icr	$I_{\rm L}/I_{\rm CR}$	THD (%)	
525	460	460	0.954	162.18	434 <mark>.</mark> 33	0.86	0.93	40.25	111.48	409.41	0.81	0.88	28.30	
525	550	370	0.955	159.97	507.60	0.84	0.92	33.21	102.16	332.93	0.82	0.89	32.24	
	Low Voltage Side													
	I _s			I_{L}		See.	THD _v (%)						
Ihrms	Irms	THD	Ihrms	Irms	THD	Results	PL	(%) of	DI					
(A)	(A)	(%)	(A)	(A)	(%)	Results	(ERG5/4	(<i>70)</i> 01						
63.36	1733.9	3.66	32.76	1203.3	2.72	3.49	5	69.8	3					
62.23	1733.3	3.59	33.79	1203.3	2.81	3.60	3.60 5 72		กร					

Table 5.34The result of calculation for case study 7

จุฬาลงกรณ์มหาวิทยาลัย

From the results of both conditions, the filters can work safely as shown in table 5.34.

- The first condition, the power factor value is 0.954, for 5th tuned filter ($I_{rms} / I_{cr} = 0.86$, $I_L / I_{cr} = 0.93$), for 7th tuned filter ($I_{rms} / I_{cr} = 0.81$, $I_L / I_{cr} = 0.88$) and the total harmonic voltage distortion at low voltage bus 400V THD_V=3.49% which lower than the planning level.
- The second condition, the power factor value is 0.955, for 5th tuned filter ($I_{rms} / I_{cr} = 0.84$, $I_L / I_{cr} = 0.92$), for 7th tuned filter ($I_{rms} / I_{cr} = 0.82$, $I_L / I_{cr} = 0.89$) and the total harmonic voltage distortion at low voltage bus 400V THD_V=3.60% which lower than the planning level.
- Note: When operate both 5th and 7th tuned filter, it should turne on 5th tuned filter first, because if turn on 7th tuned filter first, it will amplify 5th harmonic current as shown in figure 5.21.b. and when turned off the filters, it must turn off 7th tuned filter first and following by 5th tuned filter.

Table 5.35The design parameters of 5th and 7th tuned filters

5 th tuned	7 th tuned			5 th tune	od filter			7 th tuned filter					
filter	filter			U turic									
(%)	(%)		Capacitor		Reactor			Capacitor			Reactor		
		Q _{cr} (kVA) V _{cr} (V) I _{cr} (A)			L (mH)	I _{th} (A)	I _{Lin} (A)	Q _{cr} (kVA)	V_{cr} (V)	I _{cr} (A)	L (mH)	I _{th} (A)	I _{Lin} (A)
50%	50%	460	525	505.87	0.0828	471.94	765.53	460	525	505.87	0.0412	447.45	748.49
60%	40%	550	525	604.84	0.0692	553.53	915.30	370	525	406.98	0.0513	363.22	602.05

5.2.10 Case study 8 (case study 0 with 7th and 11th tuned filter)

Figure 5.23 Single-line diagram of case study 8

System	500 MVA _{sc}	22 kV		X/R 10			
Transformer	1000 kVA	22 kV/400 V	%Z = 6	P _k = 19.8 kW			
LV Bus	100000	400 V					
Non-Linear Load	500 kW		PF = 80 %	%			
Linear Load	650 kW	PF = 75 %					
7 th tuned filter	50 % 460 kVA 60 % 550 kVAr	V _{cr} 525 V, Q-Factor 50					
11 th tuned filter	50 % 460 kVAr 40 % 370 kVAr	V _{cr}	525 V, Q-Fa	actor 50			

Table 5.36The input parameters for case study 8

Case study 8 is case study 0 with 7th tuned filter and 11th tuned filter. Which it's analyzing 2 conditions: first condition 7th tuned filter (460kVAr / 525V, n=6.8), 11th tuned filter (460kVAr / 525V, n=10.8). Second condition 7th tuned filter (550kVAr / 525V, n=6.8), 11th tuned filter (370kVAr / 525V, n=10.8).

5.2.10.1 Results of case study 8

Figure 5.24 Results of case study 8

	O(k)	(Λr)					9 L	ow Voltage	Side					
$V_{\rm CR}$	Q (KV	(AI)				I 7th filter				l 11th filter				
(V)	7 th	11 th	PF	Ihrms	Irms	Irms/Icr			Ihrm	s Irms	Irms/lor	1 /1	THD (%)	
	1	(A) (A) (A)		L/ICR	11 ID (78)	(A)	(A)	11115/101	'L' 'CR	іпυ (%)				
525	460	460	0.954	348.43	525.92	1.0 <mark>4</mark>	1.10	88.45	218.9	97 446.18	0.88	0.95	56.33	
525	550	370	0.954	366.79	596.98	0.99	1.05	77.87	168.4	47 355.19	0.87	0.94	53.88	
	·		······	Low Volta	age Side		82.81				·		·	
	I _s			I _L		1993	THD _v ((%)						
Ihrms	Irms	THD	Ihrms	Irms	THD	Desults	PL	(0() of	DI					
(A)	(A)	(%)	(A)	(A)	(%)	Results	(ERG5/-	4)	PL					
387.90	1779.6	22.33	76.40	1205.2	6.35	8.04 5		160.8	3					
343.90	1770.3	19.80	68.31	1204.8	5.68	7.19	5	143.8	8					

Table 5.37The result of calculation for case study 8

จุฬาลงกรณ์มหาวิทยาลัย

From the results of both conditions, the filters can work safely as shown in table 5.37.

- The first condition, the power factor value is 0.954, for 7th tuned filter ($I_{rms} / I_{cr} = 1.04 < 1.30$, $I_L / I_{cr} = 1.10$), for 11th tuned filter ($I_{rms} / I_{cr} = 0.88$, $I_L / I_{cr} = 0.95$) and the total harmonic voltage distortion at low voltage bus 400V THD_V=8.04% which higher than the planning level.
- The second condition, the power factor value is 0.954, for 7th tuned filter (I_{rms} / I_{cr} =0.99, I_L / I_{cr} =1.05), for 11th tuned filter (I_{rms} / I_{cr} =0.87, I_L / I_{cr} =0.94) and the total harmonic voltage at low volt bus 400V THD_V=7.17% which higher than the planning level.
- Note: It should not be operated this case to solve the problem from harmonic current because when turn on 7th tuned filter, it will amplify 5th harmonic current and cause to failure of a capacitor in 7th tuned filter.

Table 5.38The design parameters of 7th and 11th tuned filters

7 th tuned	11 th tuned		7 th tuned filter											
filter	filter			0		222 A M	14.4							
(%)	(%)		Capacitor	C		Reactor			Capacitor			Reactor		
		Q _{cr} (kVA)	$V_{cr}(V)$	I _{cr} (A)	L (mH)	I _{th} (A)	I _{Lin} (A)	Q _{cr} (kVA)	$V_{cr}\left(V ight)$	I _{cr} (A)	L (mH)	I _{th} (A)	I _{Lin} (A)	
50%	50%	460	525	505.87	0.04124	556.04	748.49	460	525	505.87	0.01635	480.44	738.64	
60%	40%	550	525	604.84	0.03449	634.81	894.93	370	525	406.89	0.02032	383.01	594.12	

5.2.11 Case study 9 (case study 0 with 5th and 11th tuned filter)

Figure 5.25 Single-line diagram of case study 9

System	500 MVA _{sc}	22 kV		X/R 10				
Transformer	1000 kVA	22 kV/400 V	%Z = 6	P _k = 19.8 kW				
LV Bus	400 V							
Non-Linear Load	500 kW	PF = 80 %						
Linear Load	650 kW	PF = 75 %						
5 th tuned filter	50 % 460 kVA 60 % 550 kVAr	V _{cr} 525 V, Q-Factor 60						
11 th tuned filter	50 % 460 kVAr 40 % 370 kVAr	V _{cr} 525 V, Q-Factor 50						

Table 5.39The input parameters case study 9

Case study 9 is case study 0 with 5th tuned filter and 11th tuned filter. Which it's analyzing 2 conditions: first condition 5th tuned filter (460kVAr / 525V, n=4.8), 11th tuned filter (460kVAr / 525V, n=10.8). Second condition 5th tuned filter (550kVAr / 525V, n=6.8), 11th tuned filter (370kVAr / 525V, n=10.8).

5.2.11.1 Results of case study 9

Figure 5.26 Results of case study 9

V _{CR}	$O(10)(\Lambda r)$		Low Voltage Side											
	Q (K	Q (KVAI)		5th filter					l 11th filter					
(V)	۶ th	11 th	PF	Ihrms	Irms	Irme/lor			Ihrm	าร	Irms	Irmc/lor	1 /1	
5			(A)	(A)	ITTIS/ICF	L ^{/I} CR	IHD (%)	(A))	(A)	ITTIS/ICI	L ^{/I} CR	IHD (%)	
525	460	460	0.954	204.21	451.70	0.89	0.96	50.68	289.	73	484.85	0.96	1.02	74.53
525	550	550	0.954	183.08	515.00	0.85	0.93	37.80	168.	50	355.21	0.87	0.94	53.89
Low Voltage Side														
L														
'S				'L										
Ihrms	Irms	THD	Ihrms	Irms	THD	Deculto	PL	DL (%) of DI						
(A)	(A)	(%)	(A)	(A)	(%)	Results	(ERG5/-	4)	FL					
206.77	1746.5	11.92	57.31	1204.2	4.76	6.07	5	121.4	1					
130.41	1738.3	7.52	38.61	1203.4	3.21	4.09	5	81.8	กร					

Table 5.40The result of calculation for case study 9

จุฬาลงกรณ์มหาวิทยาลัย

From the results of both conditions, the filters can work safely as shown in table 5.40.

- The first condition, the power factor value is 0.954, for 5th tuned filter ($I_{rms} / I_{cr} = 0.89$, $I_L / I_{cr} = 0.96$), for 11th tuned filter ($I_{rms} / I_{cr} = 0.96$, $I_L / I_{cr} = 1.02$) and the total harmonic voltage distortion at low voltage bus 400V THD_V=6.07% which higher than the planning level.
- The second condition, the power factor value is 0.954, for 5th tuned filter (I_{rms} / I_{cr} =0.85, I_L / I_{cr} =0.93), for 11th tuned filter (I_{rms} / I_{cr} =0.87, I_L / I_{cr} =0.94) and the total harmonic voltage distortion at low voltage bus 400V THD_V=4.09% which lower than the planning level
- Note: When operate both 5th and 11th tuned filter, it should turn on 5th tuned filter first, because if turn on 11th tuned filter first, it will be amplify 5th harmonic current as shown in figure 5.25.b. and when turn off the filters, it must turn off 11th tuned filter first and following by 5th tuned filter.

Tuned Tuned 11th tuned filter 5th tuned filter filter 11th filter 5th (%) Capacitor Capacitor (%) Reactor Reactor $Q_{cr}(kVA)$ $V_{cr}(V)$ $I_{\text{Lin}}(A)$ $I_{cr}(A)$ L (mH) $I_{th}(A)$ Q_{cr}(kVA) $V_{cr}(V)$ $I_{cr}(A)$ L (mH) $I_{th}(A)$ $I_{I in}(A)$ 525 505.87 0.0828 765.53 460 505.87 0.0164 516.54 738.64 50% 50% 460 487.99 525 0.0692 560.32 915.30 370 525 406.89 0.0203 383.02 594.12 60% 40% 550 525 604.84

 Table 5.41
 The design parameters of 5th and 11th tuned filters
5.2.12 Case study 10 (case study 0 with 5th, 7th and 11th tuned filter)

Figure 5.27 Single-line diagram of case study 10

Table 5.42	The input	parameters	for case	study 10
-------------------	-----------	------------	----------	----------

System	500 MVA _{sc}	22 kV		X/R 10				
Transformer	1000 kVA	22 kV/400 V	%Z = 6	P _k = 19.8 kW				
LV Bus		400 V						
Non-Linear Load	500 kW	PF = 80 %						
Linear Load	650 kW	รัพยา	PF = 75 °	%				
5 th tuned filter	33 % (310 kVAr)		525 V O-E	actor 60				
5 tuned litter	40 % (370 kVAr)	v _{cr}	525 V, Q-1 8					
7 th tuped filter	33 % (310 kVAr)	V	actor 50					
r tuned litter	30 % (280 kVAr)	v _{cr}	020 V, Q-1 6					
11th tuned filter	33 % (310 kVAr)	V	525 V O-E	actor 50				
	30 % (280 kVAr)	V _{cr} 525 V, Q-Factor 50						

Case study10 is case study 0 with 5^{th} , 7th and 11^{th} tuned filters. Which it's analyzing 2 conditions: first condition 5^{th} tuned filter (310kVAr / 525V, n=4.8), 7th tuned filter (310kVAr / 525V, n=6.8) and 11th tuned filter (310kVAr / 525V, n=10.8).

Second condition 5^{th} tuned filter (370kVAr / 525V, n=6.8), 7^{th} tuned filter (280kVAr / 525V, n=6.8) and 11^{th} tuned filter (280kVAr / 525V, n=10.8).

5.2.12.1 Results of case study 10

(e) Harmonic current amplification in system, load and tuned filters

Figure 5.28 Results of case study 10

		$\bigcap (k) (\Lambda r)$		Low Voltage Side										
$V_{\rm CR}$		Q (KVAI)					I _{5th filter}					I _{7th filter}		
(V)	۶ th	− th		PF	Ihrms	Irms	Irma/lor	1 /1	THD	Ihrms	Irms	Irmo/lor	1 /1	
	5	1	41.63		(A)	(A)	IIIIIS/ICI	L/ICR	(%)	(A)	(A)		IL/ICR	IND(70)
525	310	310	310	0.955	15 <mark>9.78</mark>	315.05	0.92	0.99	58.85	104.53	285.32	0.84	0.91	39.37
525	370	280	280	0.955	157. <mark>9</mark> 6	360.52	0.89	0.96	48.74	99.83	259.74	0.84	0.92	41.63
						Low Vo	ltage Side							
		I 11th filter				I _s	a comp		Ι		-	THD _v (%)		
Ihrms	Irms	Irma/lor	1 /1	THD	Ihrms	Irms	THD	Ihrms	Irms	THD	Doculto	PL	(%)of	
(A)	(A)	11115/101	L/ICR	(%)	(A)	(A)	(%)	(A)	(A)	(%)	Results	(ERG5/4)	PL	
97.38	279.50	0.82	0.89	37.17	58.88	1733.1	3.40	21.03	1203.0	1.75	2.23	5	44.6	
94.84	254.93	0.83	0.90	40.08	51.83	1732.5	2.99	21.08	1203.0	1.75	2.24	5	44.8	

Table 5.43The result of calculation for case study 10

The summarized of the results of case study 10 in two conditions is illustrated in table 5. 43. It is noticed that the 5^{th} , 7^{th} and 11^{th} tuned filters can operate safely and the THD_V values of two conditions are within planning level.

- If compare two conditions, the second condition 5th (40%), 7th (30%) and 11th detuned filter (30%) can operate better than the first condition.

Note: In case of using all 5th, 7th and 11th tuned filter, work in the same time. There should be divided kVAr which followed harmonic current data in the system, in order to get high capacity.

When there will utilize all of tuned filters, it suggests that should be switched on the 5th tuned filter first and follows by 7th and 11th tuned filter respectively. In case, if 11th is firstly turned on it will trigger the amplification of the 5th, 7th respectively or if 7th tuned filter is switched on first, it will cause the amplification of the 5th harmonic current as a show in figure 5.27.b.

In case the 5th, 7th and 11th tuned filters are operated in the same time, when turn off, it is recommended to switch off the 11th first, 7th and 5th tuned filter must be there after turned off respectively. In order to prevented the amplification of harmonic current.

Table 5.44The design parameters of 5th, 7th and 11th tuned filters

Tuned	Tuned	Tuned			5 th tun	ed filter					7 th tu	ined filter		
filter 5 th	filter 7 th	filter 11 th	(Capacito	or		Reactor		C	Capacit	or		Reactor	
(%)	(%)	(%)	Q_{cr}	V _{cr}	l _{cr}	L	I _{th}	I _{Lin}	Q_{cr}	$V_{\rm cr}$	I _{cr}	L	l _{th}	I _{Lin}
			(kVA)	(V)	(A)	(mH)	(A)	(A)	(kVA)	(V)	(A)	(mH)	(A)	(A)
33%	33%	33%	310	525	340.9	0.123	338.73	515.9	310	525	340.9	0.0612	310.2	504.4
40%	30%	30%	370	525	406.9	0.103	389.92	615.8	280	525	307.9	0.0678	282.0	455.6

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

		11 th 1	tuned filter		
	Capacito	r		Reactor	
Q _{cr} (kVA)	$V_{cr}\left(V ight)$	I _{cr} (A)	L (mH)	I _{th} (A)	I _{Lin} (A)
310	525	340.91	0.0243	304.19	497.78
280	525	307.92	0.0269	277.04	449.60

Table 5.44The design parameters of 5th, 7th and 11th tuned filters (cont.)

5.2.13 Case study 11 (case study 0 with detuned filter, 7th and 11th tuned filter

Figure 5.29 Single-line diagram of case study 11

Table 5.45The input parameters for case study 11

System	500 MVA _{sc}	22 kV	การ	X/R 10
Transformer	1000 kVA	22 kV/400 V	%Z = 6	P _k = 19.8 kW
LV Bus	1112677	400 V	ยาล	E C
Non-Linear Load	500 kW		PF = 80 %	/0
Linear Load	650 kW		PF = 75 %	/₀
Detuned filter	400 kVAr / 525 V	Q-Fac	(5.6 & 7)	
7 th tuned filter	260 kVAr / 525 V	Q-Facto	or 50, Tuning	g point 6.8
11th tuned filter	260 kVAr / 525 V	Q-Facto	or 50, Tuning	point 10.8

Case study 11 is case study 0 with detuned filters, 7th and 11th tuned filters. Which it's analyzing 2 conditions: first condition detuned filter (50kVAr / 525V, $\%X_L$ =5.6, 8 step), 7th tuned filter (260kVAr / 525V, n=6.8), 11th tuned filter (260kVAr / 525V, n=10.8). Second condition detuned filter (50kVAr / 525V, %X_L=7, 8 step), 7th tuned filter (260kVAr / 525V, n=6.8), 11th tuned filter (260kVAr / 525V, n=10.8).

5.2.13.1 Results of case study 11 for detuned filter 5.6% XL

(e) Harmonic current amplification in system, load, detuned filters and tuned filters

Figure 5.30 Results of case study 11

			$\bigcap (k)/\Lambda r$						Lo	w Voltage	Side				
Step	$V_{\rm CR}$		Q (KVAI)					DT					 7th filter		
otop	(V)	ПТ	7 th	11 th	PF	Ihrms	Irms	Irmo/lor	1 /1	THD	Ihrms		Irma/lor	1 /1	THD
		DT	filter	filter		(A)	(A)	IIIIIS/ICI	IL/ICR	(%)	(A)	IIIIIS (A)	IIIIIS/ICI	L/ICR	(%)
1	525	50	260	260	0.899	39.07	59.12	1.08	1.14	88.03	204.22	302.14	1.06	1.12	91.72
2	525	100	260	260	0.909	65.48	110.30	1.00	1.07	73.78	179.65	286.10	1.00	1.06	80.68
3	525	150	260	260	0.918	83.85	157.34	0.95	1.02	62.98	161.83	275.26	0.96	1.03	72.68
4	525	200	260	260	0.927	97.11	202.34	0.92	0.99	54.70	148.77	267.79	0.94	1.00	66.82
5	525	250	260	260	0.935	107.02	246.36	0.90	0.97	48.23	139.01	262.49	0.92	0.98	62.43
6	525	300	260	260	0.943	114.67	289.92	0.88	0.95	43.07	131.54	258.61	0.90	0.97	59.07
7	525	350	260	260	0.951	120.74	333.29	0.87	0.94	38.87	125.68	255.68	0.89	0.96	56.44
8	525	400	260	260	0.958	125.65	376.61	0.86	0.93	35.39	120.99	253.41	0.89	0.96	54.34

Table 5.46The results of calculation for case study 11(detuned filter 5.6%XL)

จุฬาลงกรณ์มหาวิทยาลัย

						1	Low V	oltage Sid	de					
Step			I 11th filter				۱ _s			Ι _L			THD _v (%)
otop	Ihrms	Irms	Irme/lor	1 /1	THD	Ihrms	Irms	THD	Ihrms	Irms	THD	Poculto	PL	(9/) of DI
	(A)	(A)	11115/101	L ^{/I} CR	(%)	(A)	(A)	(%)	(A)	(A)	(%)	Results	(ERG5/4)	(/0) UI FL
1	140.97	261.06	0.91	0.98	64.15	367.70	1882.0	19.92	74.14	1205.1	6.16	7.81	5	156.2
2	128.92	254.76	0.89	0.96	58.65	<mark>308.5</mark> 7	1852.7	16.89	<mark>63</mark> .19	1204.5	5.25	6.66	5	133.2
3	120.49	250.60	0.88	0.94	54.83	263.8 <mark>5</mark>	1827.8	14.59	55.02	1204.1	4.57	5.80	5	116.0
4	114.49	247.77	0.87	0.94	52.10	229. <mark>6</mark> 1	1806.2	12.82	48.86	1203.8	4.06	5.15	5	103.0
5	110.11	245.78	0.86	0.93	50.11	202.88	1786.9	11.43	44.12	1203.6	3.67	4.66	5	93.2
6	106.82	244.32	0.85	0.92	48.61	181.59	1769.4	10.32	40.41	1203.5	3.36	4.27	5	85.4
7	104.28	243.22	0.85	0.92	47.46	164.31	1753.5	9.41	37.45	1203.4	3.11	3.96	5	79.2
8	102.26	242.36	0.85	0.92	46.54	150.05	1739.0	8.66	35.04	1203.3	2.91	3.70	5	74.0

Table 5.46The results of calculation for case study 11(detuned filter 5.6%XL)(continues)

- ศูนยวทยทรพยากร จุฬาลงกรณ์มหาวิทยาลัย

5.2.13.2 Results of case study 11 for detuned filter 7% X_L

			O(k)/A	-)					Low	Voltage	Side				
Step	V_{CR}		Q (KVAI)				DT					I 7th filter		
otop	(V)	ПТ	7 th	11 th	PF	Ihrms	Irms		1./1	THD	Ihrms	Irms		1 /1	THD
		DI	filter	filter		(A)	(A)	IIIIIS/ICI	IL/ICR	(%)	(A)	(A)	IIIIIS/ICI	IL/ICR	(%)
1	525	50	260	260	0.899	22.76	50.47	0.92	0.99	50.53	218.54	311.99	1.09	1.15	98.15
2	525	100	260	260	0.909	41.18	99.06	0.90	0.98	45.71	202.21	300.78	1.05	1.11	90.82
3	525	150	260	260	0.918	56.13	146.33	0.89	0.96	41.53	188.35	291.64	1.02	1.08	84.59
4	525	200	260	260	0.927	68.36	192.72	0.88	0.95	37.94	176.66	284.23	0.99	1.06	79.34
5	525	250	260	260	0.936	78.47	238.51	0.87	0.95	34.84	166.80	278.21	0.97	1.04	74.91
6	525	300	260	260	0.944	86.92	283.91	0.86	0.94	32.16	158.46	273.29	0.96	1.02	71.16
7	525	350	260	260	0.952	94.05	329.06	0.85	0.93	29.83	151.36	269.24	0.94	1.01	67.98
8	525	400	260	260	0.959	100.14	374.03	0.85	0.93	27.79	145.28	265.87	0.93	1.00	65.25

102

						2	Low V	oltage Sid	de					
Step			I _{11th filter}				۱ _s			ΙL			THD $_{\rm v}$ (%)
otop	Ihrms	Irms	Irmc/lor	1 /1	THD	Ihrms	Irms	THD	Ihrms	Irms	THD	Poculto	PL	(9/) of DI
	(A)	(A)	11115/101	L ^{/I} CR	(%)	(A)	(A)	(%)	(A)	(A)	(%)	Results	(ERG5/4)	(70) 01 FL
1	148.14	265.0	0.93	0.99	67.42	401.30	1888.6	21.75	80.41	1205.5	6.68	8.47	5	169.4
2	139.90	260.49	0.91	0.98	63.67	<mark>363.2</mark> 1	1862.0	19.89	73.28	1205.0	6.09	7.72	5	154.4
3	133.04	256.87	0.90	0.96	60.55	33 <mark>0.24</mark>	1837.8	18.27	67.14	1204.7	5.58	7.07	5	141.4
4	127.36	253.97	0.89	0.96	57.96	301. <mark>8</mark> 4	1815.8	16.85	61.88	1204.4	5.14	6.52	5	130.4
5	122.65	251.64	0.88	0.95	55.82	277.38	1795.7	15.63	57.39	1204.2	4.77	6.05	5	121.0
6	118.72	249.75	0.87	0.94	54.03	256.23	1777.3	14.57	53.53	1204.0	4.45	5.64	5	112.8
7	115.42	248.20	0.87	0.94	52.53	237.84	1760.5	13.64	50.19	1203.9	4.17	5.29	5	105.8
8	112.63	246.92	0.86	0.93	51.26	221.78	1745.2	12.81	47.30	1203.7	3.93	4.99	5	99.8

Table 5.47The result of calculation for case study 11(detuned filter 7%XL) (continues)

The results of calculation case study 11, when using detuned filters together with 7th and 11th tuned filters, are concluded in table 5.46 and 5.47. All filters can be operated satisfactory because the ratio of $I_{rms} / I_{Cr} < 1.30$.

		D	etunec	l filter					7 th tune	d filter					11 th tune	d filter		
Ca	apacito	or		Re	actor		Ca	apacito	r		Reactor			Capacito	r		Reactor	
Q _{cr} (kVA)	V _{cr} (V)	I _{cr} (A)	%X _L	L (mH)	I _{th} (A)	I _{Lin} (A)	Q _{or} (kVA)	V _{cr} (V)	I _{cr} (A)	L (mH)	I _{th} (A)	l _{Lin} (A)	Q _{cr} (kVA)	V _{cr} (V)	I _{cr} (A)	L (mH)	I _{th} (A)	I _{Lin} (A)
8x50	525	55	5.6	0.981	58.9	84.47	260	<mark>525</mark>	285.9	0.073	340.3	423.1	260	525	285.9	0.029	288.4	417.5
8x50	525	55	7.0	1.24	52.07	84.47	260	5 <mark>2</mark> 5	285.9	0.073	340.3	423.1	260	525	285.9	0.029	288.4	417.5

Table 5.48 The design parameters of detuned filters, 7th and 11th tuned filters

5.2.14 Case study 12 (case study 0 with detuned filter, 5th and 7th tuned filters)

Figure 5.31 Single-line diagram of case study 12

System	500 MVA _{sc}	22 kV		X/R 10				
Transformer	1000 kVA	22 kV/400 V	%Z = 6	P _k = 19.8 kW				
LV Bus	acress a	400 V	0					
Non-Linear Load	500 kW		PF = 80 9	%				
Linear Load	650 kW		PF = 75 9	%				
Detuned filter	400 kVAr / 525 V	Q-Fac	tor 50,%X _L	(5.6 & 7)				
5 th tuned filter	260 kVAr / 525 V	525 V Q-Factor 50, Tuning point 4.8						
7th tuned filter	260 kVAr / 525 V	/ Q-Factor 50, Tuning point 6.8						

Table 5.49The input parameters for case study 12

Case study 12 is case study 0 with detuned filters, 5th and 7th tuned filter. Which it's analyzing 2 conditions: first condition detuned filter (50kVAr / 525V, %X_L=5.6, 8 step), 5th tuned filter (260kVAr / 525V, n=4.8), 7th tuned filter (260kVAr / 525V, n=6.8). Second condition detuned filter (50kVAr / 525V, %X_L= 7, 8 step), 5th tuned filter (260kVAr / 525V, n=4.8), 7th tuned filter (260kVAr / 525V, n=6.8).

5.2.14.1 Results of case study 12 for detuned filter 5.6% X_L

(e) Harmonic current amplification in system, load, detuned and tuned filters

Figure 5.32 Results of case study 12

			$\sum (k) / \Delta r$)					Low	Voltage	Side				
Step	V_{CR})				DT					I _{5th filter}		
otop	(V)		5 th	7 th	PF	Ihrms	Irms	Impo/lon	1./1	THD	Ihrms	Irms	lana /loa	1 /1	THD
		DI	filter	filter		(A)	(A)	Inns/Ici	IL/ICR	(%)	(A)	(A)	ITTIS/ICI	IL/ICR	(%)
1	525	50	260	260	0.901	6.01	<mark>44.78</mark>	0.81	0.89	13.55	133.78	264.12	0.92	0.99	58.75
2	525	100	260	260	0.91	11.68	89.52	0.81	0.89	13.16	129.68	262.07	0.92	0.99	56.95
3	525	150	260	260	0.919	17.04	134.22	0.81	0.89	12.80	125.83	260.18	0.91	0.98	55.25
4	525	200	260	260	0.928	22.11	178.89	0.81	0.89	12.45	122.18	258.44	0.90	0.97	53.65
5	525	250	260	260	0.936	26.91	223.52	0.81	0.89	12.13	118.75	256.83	0.90	0.97	52.14
6	525	300	260	260	0.945	31.47	268.13	0.81	0.89	11.82	115.49	255.34	0.89	0.96	50.71
7	525	350	260	260	0.952	35.81	312.71	0.81	0.89	11.53	112.41	253.96	0.89	0.96	49.36
8	525	400	260	260	0.959	39.94	357.27	0.81	0.89	11.25	109.48	252.68	0.88	0.96	48.08

Table 5.50The results of calculation for case study 12 (detuned filter $5.6\% X_L$)

จุฬาลงกรณ์มหาวิทยาลัย

						2	Low V	oltage Si	de					
Step			I 7th filter				١ _s			Ι _L			THD _v (%)
orop	Ihrms	Irms	Irms/lor	1 /1	THD	Ihrms	Irms	THD	Ihrms	Irms	THD	Results	PL	(%) of Pl
	(A)	(A)	11113/101	L/ICR	(%)	(A)	(A)	(%)	(A)	(A)	(%)	Nesults	(ERG5/4)	(70) 011 E
1	99.17	243.75	0.85	0.92	44.54	85. <mark>3</mark> 4	1844.2	4.63	41.52	1203.5	3.45	4.42	5	88.4
2	98.32	243.40	0.85	0.92	44.16	83.53	1825.4	4.58	40.85	1203.5	3.40	4.35	5	87.0
3	97.49	243.07	0.85	0.92	43.78	8 <mark>1.80</mark>	1807.4	4.53	40.21	1203.5	3.34	4.28	5	85.6
4	96.69	242.75	0.85	0.92	43.43	80.1 <mark>5</mark>	1790.3	4.48	39.58	1203.5	3.29	4.21	5	84.2
5	95.92	242.44	0.85	0.92	43.08	78.58	1774.2	4.43	38.97	1203.4	3.24	4.15	5	83.0
6	95.16	242.15	0.85	0.92	42.74	77.07	1759.1	4.39	38.39	1203.4	3.19	4.08	5	81.6
7	94.43	241.86	0.85	0.92	42.41	75.63	1745.0	4.34	37.82	1203.4	3.14	4.02	5	80.4
8	93.71	241.58	0.84	0.92	42.09	74.25	1731.9	4.29	37.26	1203.4	4.29	3.96	5	79.2

Table 5.50The results of calculation for case study 12 (detuned filter 5.6%XL) (continues)

ิ - ศูนยวทยทรพยากร จุฬาลงกรณ์มหาวิทยาลัย

108

5.2.14.2 Results of case study 12 for detuned filter 7% X_L

Table 5.51	The results o	f calculation f	or case study	12	(detuned	filter	7%X _L)
------------	---------------	-----------------	---------------	----	----------	--------	------------------	---

			$O(k)/\Lambda r$						Low	Voltage S	Side				
Step	V_{CR}							DT					I _{5th filter}		
otop	(V)	DT	5 th	7 th	PF	lhrms -	Irms	Irms/Icr	1 /1	THD	Ihrms	Irms	Irms/lor	1 /1	THD
		וס	filter	filter		(A)	(A)	11115/101	L ^{/I} CR	(%)	(A)	(A)	11115/101	L/ICR	(%)
1	525	50	260	260	0.901	3.51	45.18	0.82	0.90	7.79	135.77	265.13	0.93	1.0	59.62
2	525	100	260	260	0.911	6.91	90.36	0.82	0.90	7.67	133.49	263.97	0.92	0.99	58.62
3	525	150	260	260	0.92	10.20	135.53	0.82	0.90	7.55	131.27	262.86	0.92	0.99	57.64
4	525	200	260	260	0.929	13.40	180.69	0.82	0.90	7.43	129.13	261.79	0.92	0.99	56.70
5	525	250	260	260	0.937	1 <mark>6.5</mark> 0	225.84	0.82	0.90	7.32	127.05	260.77	0.91	0.98	55.79
6	525	300	260	260	0.945	19.50	270.99	0.82	0.90	7.22	125.04	259.80	0.91	0.98	54.91
7	525	350	260	260	0.953	22.42	316.13	0.82	0.90	7.11	123.09	258.87	0.91	0.98	54.05
8	525 400 260	260	0.96	25.26	361.26	0.82	0.90	7.01	121.19	257.97	0.90	0.97	53.22		
				2	MI	61 N I I	9 9 9	ЧN		016					

							Low Vo	oltage Sid	e					
Step			I 7th filter				١ _s			ΙL			THD _v (%)
otop	Ihrms	Irms	Irmo/lor	1./1	THD 🚽	Ihrms	Irms	THD	Ihrms	Irms	THD	Doculto	PL	(%) of
	(A)	(A)	IIIIIS/ICI	L ^{/I} CR	(%) 🤞	(A)	(A)	(%)	(A)	(A)	(%)	Results	(ERG5/4)	PL
1	99.44	243.86	0.85	0.92	44.66	86.01	1844.0	4.67	41.68	1203.5	3.47	4.43	5	88.6
2	98.84	243.61	0.85	0.92	44.39	84.80	1824.9	4.65	41.17	12.03	3.42	4.38	5	87.6
3	98.25	243.38	0.85	0.92	44.13	83.63	1806.7	4.63	40.67	1203.5	3.38	4.33	5	86.6
4	97.68	243.14	0.85	0.92	43.87	82.49	1789.4	4.61	40.18	1203.5	3.34	4.27	5	85.4
5	97.11	242.92	0.85	0.92	43.61	81.38	1773.2	4.59	39.70	1203.5	3.30	4.22	5	84.4
6	96.55	242.70	0.85	0.92	43.36	80.30	1757.9	4.57	39.24	1203.5	3.26	4.17	5	83.4
7	96.01	242.48	0.85	0.92	43.12	79.24	1743.7	4.55	38.78	1203.4	3.22	4.13	5	82.6
8	95.47	242.27	0.85	0.92	42.88	78.22	1730.6	4.52	38.33	1203.4	3.19	4.08	5	81.6

Table 5.51The results of calculation for case study 12 (detuned filter 7%XL) (continues)

ิ ตุนยวทยทรพยากร จุฬาลงกรณ์มหาวิทยาลัย

110

The results of calculation case study 12, when using detuned filters together with 5^{th} and 7^{th} tuned filters in two conditions are illustrated in table 5.50 and 5.51. It is noticed that detuned filters, 5^{th} , 7^{th} tuned filters can be operated safely; the THD_V values at low voltage bus 400 V of two conditions are within planning level and can improve power factor to target value.

Table 5.52	The design p	arameters of	detuned filters.	, 5 th	and 7 th	tuned	filters
------------	--------------	--------------	------------------	-------------------	---------------------	-------	---------

		D	etuned	filter					5 th tur	ned filter					7 th tui	ned filter			
C	apacito	r		Re	actor		C	apacit	or		Reactor		C	Capacito	or		Reactor		
Q _{cr} (kVA)	V _{cr} (V)	I _{cr} (A)	%X _L	L (mH)	I _{th} (A)	I _{Lin} (A)	Q _{cr} (kVA)	V _{cr} (V)	I _{cr} (A)	L (mH)	I _{th} (A)	I _{Lin} (A)	Q _{cr} (kVA)	V _{cr} (V)	I _{cr} (A)	L (mH)	I _{th} (A)	I _{Lin} (A)	
8x50	525	55	5.6	0.981	58.9	84.47	260	525	285.9	0.1465	286.1	432.7	260	525	285.9	0.073	264.6	432.1	
8x50	525	55	7.0	1.24	52.07	84.47	260	525	285.9	0.1465	286.1	432.7	260	525	285.9	0.073	264.6	432.1	

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

5.2.15 Comparison of impedance scan

Figure 5.33 Page for impedance scan comparison

Results from case study 0 can be used as a reference case where there are linear and nonlinear loads in the system. When a capacitor is installed in the system as in case study 1, a parallel resonance can occur. For case study 2 to 12, filter(s) are added to the system in order to lower harmonic levels. The user can vary parameters of harmonic filters in order to check the effectiveness of harmonic filters based on the design steps. Figure 5.32 shows results of impedance scan of case studies 0, 1 and 10. By comparing these system characteristic results, a proper filter design can be achieved.

5.2.16 Capacitor deterioration for case study 10 (case study 0 with 5th, 7th and 11th tuned filters)

Table 5.53The input parameters for case study 10

System	Transformer	LV Bus	Non-Linear Load	Linear Load	5 th tuned filter	7 th tuned filter	11 th tuned filter
500 MVA _{sc}	1000 kVA		500 kW	650 kW	40 % (370 kVAr)	30 % (280 kVAr)	30 % (280 kVAr)
22 kV X/R 10	22 kV/400 V %Z = 6 P _k = 19.8 kW	400 V	PF = 80 %	PF = 75 %	V _{cr} 525 V Q-Factor 60	V _{cr} 525 V Q-Factor 50	V _{cr} 525 V Q-Factor 50

 Table 5.54
 The design parameters of 5th, 7th and 11th tuned filters

		5 th tun	ed filter					7 th tur	ned filter		-			11 th tune	d filter		
	Capacit	or		Reactor		С	apacit	or		Reactor	9	(Capacitor		Reactor		
Q _{cr}	V _{cr}	Ι (Δ)	L	Ι (Δ)	I _{Lin}	Q _{cr}	$V_{\rm cr}$	Ι (Δ)	ทร	Ι (Δ)	I _{Lin}	Q _{cr}	V _{cr}	Ι (Δ)	L	Ι (Δ)	I _{Lin}
(kVA)	(V)	r _{cr} (//)	(mH)	" _{th} (/~)	(A)	(kVA)	(V)		(mH)	th (~)	(A)	(kVA)	(V)	1 _{cr} (//)	(mH)	ι _{th} (/~)	(A)
370	525	406.9	0.103	389.9	615.8	280	525	307.9	0.068	282	455.6	280	525	307.9	0.027	277	449.6

5.2.16.1 The results for 5th tuned filter only

				5 ^{tt}	Filter				
Det	11	15	17	l rms	l cr	l rms/lcr	L	С	b.r
(%)	(A)	(A)	(A)	(A)	(A)	(%)	(mH)	(uF)	r i r
0	324.1	157.6	7.1	360.5	406.9	88.6	0.103	1424.3	4.8
2	317.3	159.7	7.3	355.4	398.8	89.1	0.103	1395.8	4.9
4	310.6	161.9	7.4	350.4	390.6	89.7	0.103	1367.4	4.9
6	303.8	164.2	7.5	345.5	3 <mark>82.5</mark>	90.3	0.103	1338.9	5
8	297.1	166.7	7.7	340.8	374.3	91	0.103	1310.4	5
10	290.4	169.2	7.9	336.2	366.2	91.8	0.103	1281.9	5.1
12	283.6	171.8	8	331.8	35 <mark>8</mark> .1	92.7	0.103	1253.4	5.1
14	276.9	174.6	<mark>8.</mark> 2	327.6	349.9	93.6	0.103	1224.9	5.2
16	270.3	177.4	8. <mark>5</mark>	323.5	341.8	94.7	0.103	1196.4	5.2
18	263.6	180.4	8.7	319.6	333.7	95.8	0.103	1168.0	5.3
20	256.9	183.4	9	315.9	325.5	97	0.103	1139.5	5.4

 Table 5.55
 The results for deterioration of the capacitor in 5th tuned filter

Figure 5.34 5th harmonic currents in 5th order tuned filter

When the capacitor deteriorates from 0-20% for 5th tuned filter, it make 5th harmonic current flow through 5th tuned filter increasingly as shown in table 5.55 and illustrated in figure 5.33. These results indicate that the 5th harmonic current has change in the range of 157.6 – 183.4A and for the tuning point also change from 4.8 – 5.37 and 5th tuned filter is still operated safely because I_{rms} / I_{cr} value is less than 100%.

5.2.16.2 The results for deterioration 7th tuned filter only

				7 ^{tř}	' Filter				
Det	11	Ι5	17	l rms	lcr	l rms/lcr	L	С	le ie
(%)	(A)	(A)	(A)	(A)	(A)	(%)	(mH)	(uF)	nr
0	239.8	22.5	96.3	259.7	307.9	84.4	0.0678	1077.9	6.8
2	312.6	21.5	99.3	328.9	301.8	109	0.0678	1056.3	6.9
4	306	20.4	102.7	323.7	295.6	109.5	0.0678	1034.8	6.9
6	299.5	19.5	106.3	318.7	2 <mark>89.4</mark>	110.1	0.0678	1013.2	7.0
8	292.9	18.6	110.4	313.9	283.3	110.8	0.0678	991.6	7.1
10	286.4	17.7	115	309.4	277.1	111.6	0.0678	970.1	7.2
12	279.8	16.9	120.1	305.3	271	112.7	0.0678	948.5	7.3
14	273.3	16.1	12 <mark>5.9</mark>	301.7	264.8	<mark>113</mark> .9	0.0678	927	7.3
16	266.8	15.4	132.5	298.6	258.7	115.4	0.0678	905.4	7.4
18	260.3	14.6	140	296.2	252.5	117.3	0.0678	883.9	7.5
20	253.8	14	148.5	294.7	246.3	119.6	0.0678	862.3	7.6

 Table 5.56
 The results for deterioration of the capacitor in 7th tuned filter

Figure 5.35 7th harmonic currents in 7th order tuned filter

When the capacitor deteriorates from 0-20% for 7th tuned filter, it make 7th harmonic current flow through 7th tuned filter increasingly as shown in table 5.56 and illustrated in figure 5.34. These results indicate that the 7th harmonic current has change in the range of 96.3 – 148.5A and for the tuning point also change from 6.8 – 7.6 and 7th tuned filter is still operated safely because I_{rms} / I_{cr} values is less than 130%.

5.2.16.3 The results for 11th tuned filter only

					11 th	Filter				
Det	11	Ι5	17	111	l rms	l cr	l rms/lcr	L	С	br
(%)	(A)	A)	(A)	(A)	(A)	(A)	(%)	(mH)	(uF)	111
0	236.6	76.6	8.4	12.4	249.6	307.9	81.1	0.0269	1077.9	10.8
2	231.9	66.1	8.7	12.4	242	301.8	80.2	0.0269	1056.3	10.9
4	227.1	57.7	9	12.5	235.3	295.6	79.6	0.0269	1034.8	11
6	222.3	51	<mark>9.4</mark>	12.6	229.1	289.4	79.2	0.0269	1013.2	11.1
8	217.6	45.5	9.7	12.7	223.3	283.3	78.8	0.0269	991.6	11.3
10	212.8	40.8	10.2	12.8	217.8	277.1	78.6	0.0269	970.1	11.4
12	208	36.9	10.6	12.9	212.4	271	78.4	0.0269	948.5	11.5
14	203.3	33.5	11.2	13	207.3	264.8	78.3	0.0269	927	11.7
16	198.5	30.6	11 <mark>.</mark> 9	13.1	202.2	258.7	78.2	0.0269	905.4	11.8
18	193.7	28	12.7	13.2	197.2	252.5	78.1	0.0269	883.9	11.9
20	189	25.7	13.6	13.3	192.3	246.3	78	0.0269	862.3	12.1

 Table 5.57
 The results for deterioration of the capacitor in 11th tuned filter

Figure 5.36 7th and 11th harmonic currents in 11th order tuned filter

When the capacitor deteriorates from 0-20% for 11^{th} tuned filter, it make 7^{th} , 11^{th} harmonic current flow through 11^{th} tuned filter increasingly as shown in table 5.57 and illustrated in figure 5.35. These results indicate that the 7^{th} harmonic current has change in the range of 8.4 – 13.6A, 11^{th} harmonic current 12.4 – 13.3A and for the tuning point also change from 10.8 - 12.1 and 11^{th} tuned filter is still operated safely because Irms / Icr value are less than 130%.

5.2.16.4 The results for deterioration of the capacitor in 5th and 7th tuned filters.

	5 th Filter													
Det	11	Ι5	17	111	l rms	l cr	I rms/lcr	L	С	hr				
(%)	(A)	(A)	(A)	(A)	(A)	(A)	(%)	(mH)	(uF)	r ir				
0	324.1	157.6	7.1	1.0	360.5	406.9	88.6	0.103	1424.3	4.8				
2	317.3	159.0	5.3	1.0	355.1	398.8	89.0	0.103	1395.8	4.9				
4	310.6	161.0	3 <mark>.</mark> 4	1.0	349.9	390.6	89.6	0.103	1367.4	4.9				
6	303.8	163.6	2.8	1.0	345.2	382.5	90.2	0.103	1338.9	5.0				
8	297.1	166.8	4.8	1.0	340.8	374.3	91.0	0.103	1310.4	5.0				
10	290.4	170.6	8.3	1.0	337.0	366.2	92.0	0.103	1281.9	5.1				
12	283.6	175.3	12.9	1.0	333.8	358.1	93.2	0.103	1253.4	5.1				
14	276.9	180.8	18.6	1.0	331.4	349.9	94.7	0.103	1224.9	5.2				
16	270.3	187.3	25.7	1.0	329.9	341.8	96.5	0.103	1196.4	5.2				
18	263.6	195.0	34.8	1.0	329.8	333.7	98.9	0.103	1168.0	5.3				
20	256.9	204.1	46.6	1.0	331.5	325.5	101.8	0.103	1139.5	5.4				
	1	101	111	0.01	7 th Fi	ilter	nD							
Det	11	Ι5	17	111	l rms	l cr	l rms/lcr	L	С	br				
(%)	(A)	(A)	(A)	(A)	(A)	(A)	(%)	(mH)	(uF)	111				
0	239.8	22.5	96.3	2.0	259.7	307.9	84.4	0.0687	1077.9	6.8				
2	234.9	16.8	99.3	2.0	255.9	301.8	84.8	0.0678	1056.3	6.9				
4	230.0	11.4	102.6	2.0	252.4	295.6	85.4	0.0687	1034.8	6.9				
6	225.1	6.5	106.4	2.1	249.4	289.4	86.2	0.0678	1013.2	7.0				

Table 5.58The results for deterioration of the capacitor in 5th and 7th tuned filter

8	220.2	4.0	110.7	2.1	246.9	283.3	87.1	0.0687	991.6	7.1
10	215.3	7.1	115.8	2.1	245.0	277.1	88.4	0.0678	970.1	7.2
12	210.5	12.1	121.7	2.2	243.8	271.0	90.0	0.0687	948.5	7.3
14	205.6	17.5	128.8	2.2	243.6	264.8	92.0	0.0678	927.0	7.3
16	200.7	23.3	137.5	2.2	244.8	258.7	94.6	0.0687	905.4	7.4
18	195.8	29.5	148.1	2.3	247.7	252.5	98.1	0.0687	883.9	7.5
20	191.0	36.1	161.6	2.3	253.1	246.3	102.8	0.0678	862.3	7.6

Figure 5.37 Spectra of harmonic currents for (capacitor deteriorate in 5th and 7th tuned filters)

When capacitors deteriorates from 0 - 20% for 5th and 7th tuned filter at the same rate, results can be summarized as follows.

In the 5th tuned filter; 5th and 7th harmonic current flow through 5th tuned filter increasingly as shown in table 5.58 and illustrated in figure 5.36.a. these results indicate that 5th harmonic current change in the range of 157.6 - 204.1A and 7th harmonic current 7.1 – 46.6 A and for the tuning point 4.8 - 5.4.

In the 7th tuned filter; 7th harmonic current flow through 7th tuned filter increasingly, as shown in table 5.58 and illustrated in figure 5.35.b. these results indicate that 7th harmonic current change in the range of 96.3 - 161.6 A and for the tuning point 6.8 - 7.6.

From the result of calculation in table 5.58, both 5th, 7th tuned filter still operating safely.

	5 th Filter													
Det	11	15	17	11	l rms	l cr	Irms/Icr	L	С	br				
(%)	(A)	(A)	(A)	(A)	(A)	(A)	(%)	(mH)	(uF)	r ir				
0	324.1	157.6	7.1	1.0	360.5	406.9	88.6	0.103	1424.3	4.8				
2	317.3	159.5	7.2	0.6	355.3	398.8	89.1	0.103	1395.8	4.9				
4	310.6	167.7	7.4	0.5	353.1	390.6	90.4	0.103	1367.4	4.9				
6	303.8	163.6	8.2	0.8	345.2	382.5	90.3	0.103	1338.9	5.0				
8	297.1	166.7	7.6	1.5	340.8	374.3	91.0	0.103	1310.4	5.0				
10	290.4	169.7	7.7	2.2	3 <mark>36</mark> .5	366.2	91.9	0.103	1281.9	5.1				
12	283.6	175.3	9.5	2.9	333.7	358.1	93.2	0.103	1253.4	5.1				
14	276.9	176.9	<mark>8.</mark> 1	4.2	328.8	349.9	94.0	0.103	1224.9	5.2				
16	270.3	181.1	8.3	5.5	325.6	<mark>341.8</mark>	95.3	0.103	1196.4	5.2				
18	263.6	185.9	8.5	7.1	322.8	333.7	96.7	0.103	1168.0	5.3				
20	256.9	191.1	8.8	9.1	320.5	325.5	98.5	0.103	1139.5	5.4				
		C		253	11 th F	ilter								
Det	11	15	17	11	l rms	l cr	Irms/ler	L	С	br				
(%)	(A)	(A)	(A)	(A)	(A)	(A)	11113/101	(mH)	(uF)	111				
0	236.6	13.2	10.5	75.0	259.7	307.9	84.4	0.0269	1077.9	10.8				
2	231.9	10.0	10.1	77.6	259.2	301.8	85.9	0.0269	1056.3	10.9				
4	227.1	7.2	9.7	79.8	258.9	295.6	87.6	0.0269	1034.8	11.0				
6	222.3	4.0	10.2	80.7	261.9	289.4	90.5	0.0269	1013.2	11.1				
8	217.6	2.5	9.0	87.8	258.2	283.3	91.1	0.0269	991.6	11.3				
10	212.8	4.5	8.6	92.2	258.1	277.1	93.2	0.0269	970.1	11.4				
12	208.0	7.8	9.9	88.3	265.7	271.0	98.1	0.0269	948.5	11.5				
14	203.3	11.2	7.9	103.1	258.8	264.8	97.7	0.0269	927.0	11.7				
16	198.5	15.0	7.6	110.0	259.6	258.7	100.4	0.0269	905.4	11.8				
18	193.7	19.0	7.3	118.3	261.0	252.5	103.4	0.0269	883.9	11.9				

 Table 5.59
 The results for deterioration of the capacitor in 5th and 11th tuned filter

5.2.16.5

Figure 5.38 Spectra of harmonic currents for (capacitor deteriorate in 5th and 7th tuned filters)

When capacitors deteriorates from 0 - 20% for 5th and 11th tuned filter at the same rate, results can be summarized as follows.

In the 5th tuned filter, the result of calculation as shown in table 5.59 and illustrated in figure 5.37.a. these results indicate that 5th tuned filter can be operated safely.

In the 11th tuned filter; 11th harmonic current flow through 11th tuned filter increasingly, as shown in table 5.59 and illustrated in figure 5.37.b. these results indicate that 11th harmonic current change in the range of 75.0 – 128.3 A and for the tuning point 10.8 – 12.1. The ratio I_{rms} / I_{cr} begin higher than 100%, when capacitors are deteriorated more than 16% but 11th tuned filter still operates safely because the ratio of I_{rms} / I_{cr} is less than 130%.

5.2.16.6 The results for deterioration of the capacitor in 5th, 7th and 11th tuned filters.

Table 5.60The results of calculation for deterioration of the capacitor in 5^{th} , 7^{th} and 11^{th} tuned filter

	5 th Filter													
Det	11	15	17	11	l rms	l cr	Irms/Icr	L	С	h۳				
(%)	(A)	(A)	(A)	(A)	(A)	(A)	(%)	(mH)	(uF)	rır				
0	324.1	157.6	7.1	1.0	360.5	406.9	88.6	0.103	1424.3	4.8				
2	317.3	158.8	5.2	0.6	355.0	398.8	89.0	0.103	1395.8	4.9				
4	310.6	160.7	3.4	0.5	349.8	390.6	89.5	0.103	1367.4	4.9				
6	303.8	163.4	2.8	0.9	3 <mark>45</mark> .0	382.5	90.2	0.103	1338.9	5.0				
8	297.1	166.8	4.8	1.5	340.8	374.3	91.0	0.103	1310.4	5.0				
10	290.4	171.2	8.5	2.3	337.2	366.2	92.1	0.103	1281.9	5.1				
12	283.6	176.6	<mark>13.3</mark>	<mark>3.2</mark>	334.5	3 <mark>58</mark> .1	93.4	0.103	1253.4	5.1				
14	276.9	183.3	19 <mark>.</mark> 4	4.3	332.8	349.9	95.1	0.103	1224.9	5.2				
16	270.3	191.4	27.6	5.6	332.5	341.8	97.3	0.103	1196.4	5.2				
18	263.6	201.4	38.6	7.3	334.1	333.7	100.1	0.103	1168.0	5.3				
20	256.9	213.7	54.1	9.4	338.7	325.5	104.1	0.103	1139.5	5.4				
					7 th F	ilter								
Det	11	15	17	111	l rms	l cr	Irms/Icr	L	С	h۳				
(%)	(A)	(A)	(A)	(A)	(A)	(A)	(%)	(mH)	(uF)	T IT				
0	239.8	22.5	96.3	2.0	259.7	307.9	84.4	0.0678	1077.9	6.8				
2	234.9	16.8	99.1	1.3	255.8	301.8	84.8	0.0678	1056.3	6.9				
4	230.0	11.3	102.4	1.1	252.3	295.6	85.4	0.0678	1034.8	6.9				
6	225.1	6.5	106.4	1.8	249.4	289.4	86.2	0.0678	1013.2	7.0				
8	220.2	4.0	111.4	3.1	247.2	283.3	87.3	0.0678	991.6	7.1				
10	215.3	7.1	117.5	4.7	245.8	277.1	88.7	0.0678	970.1	7.2				
12	210.5	12.1	125.2	6.7	245.6	271.0	90.6	0.0678	948.5	7.3				
14	205.6	17.7	135.0	9.1	247.0	264.8	93.3	0.0678	927.0	7.3				

16	200.7	23.8	147.7	12.1	250.9	258.7	97.0	0.0678	905.4	7.4
18	195.8	30.4	164.5	15.9	258.3	252.5	102.3	0.0678	883.9	7.5
20	191.0	37.8	187.7	20.8	271.5	246.3	110.2	0.0678	862.3	7.6
					11 th F	ilter				
Det	11	15	17	11	l rms	l cr	Irms/Icr	L	С	br
(%)	(A)	(A)	(A)	(A)	(A)	(A)	(%)	(mH)	(uF)	111
0	236.6	13.2	10.5	75.0	254.3	307.9	82.6	0.0269	1077.9	10.8
2	231.9	10.0	7.3	77.6	251.2	301.8	83.2	0.0269	1056.3	10.9
4	227.1	6.9	4.5	80.6	247.7	295.6	83.8	0.0269	1034.8	11.0
6	222.3	4.0	<mark>3.5</mark>	84.0	244.6	289.4	84.5	0.0269	1013.2	11.1
8	217.6	2.5	5.7	88.0	241.9	283.3	85.4	0.0269	991.6	11.3
10	212.8	4.5	9.4	92.5	239.7	277.1	86.5	0.0269	970.1	11.4
12	208.0	7.8	13.9	97.8	238.2	271.0	87.9	0.0269	948.5	11.5
14	203.3	11.6	19.1	104.2	237.5	2 <mark>6</mark> 4.8	89.7	0.0269	927.0	11.7
16	198.5	15.9	25 <mark>.4</mark>	111.8	238.1	258.7	92.1	0.0269	905.4	11.8
18	193.7	20.6	33.2	121.3	240.4	252.5	95.2	0.0269	883.9	11.9
20	189.0	25.9	43.3	133.1	245.4	246.3	99.6	0.0269	862.3	12.1

(a) 5th tuned filter

Figure 5.39 Spectra of harmonic currents for (capacitor deteriorated in 5th, 7th and 11th tuned filters)

When capacitors deteriorates from 0 - 20% for 5th, 7th and 11th tuned filter at the same rate, results can be summarized as follows.

In the 5th tuned filter; 5th harmonic current flow through 5th tuned filter increasingly, as shown in table 5.60 and illustrated in figure 5.38.a. these results indicate that 5th harmonic current change in the range of 157.6 – 213.7A and for the tuning point 4.8 – 5.4. The ratio I_{rms} / I_{cr} begin higher than 100%, when capacitors are deteriorated more than 18% but 5th tuned filter still operates safely because the ratio of I_{rms} / I_{Cr} is less than 130%.

In the 7th tuned filter, 7th harmonic current flow through 7th tuned filter increasingly, as shown in table 5.60 and illustrated in figure 5.38.b. these results indicate that 7th harmonic current change in the range of 96.3 – 187.7A and for the tuning point 6.8 – 7.6. The ratio I_{rms} / I_{cr} begin higher than 100%, when capacitors are deteriorated more than 18% and 7th tuned filter still operates safely because the ratio of I_{rms} / I_{Cr} is less than 130%.

In the 11th tuned filter, 11th harmonic current flow through 11th tuned filter increasingly, as shown in table 5.60 and illustrated in figure 5.38.c. these results indicate that 11th harmonic current change in the range of 75.0 – 133.1A and for the tuning point 10.8 – 12.1. The ratios I_{rms} / I_{cr} are less than 100% so it can operate safely.

5.3 Detuned harmonic filter unit design

Rated	Frequency	0	Percent X	K * I	V	Max I (%)
voltage	rrequency	COMPENSATE		1 1 ₁	V CR	Max 1 _C (70)
400 V	50 Hz	50 kVAr	5.6, 7 (%)	1.9	525 V	130 (%)
	+V1 (%)	V3 (%)	V5 (%)	V7 (%)	V11(%)	V13 (%)
Design limits	10	0.5	6	5	3.5	3
Operation	5	0.5	4	5	3	2.5

Table 5.61 The input parameters for detuned filter unit design

Figure 5.40 Main for detuned filter unit design

5.3.1 Detuned filter unit design for $5.6\% X_L$

Table 5.62 The component rating of detuned filter unit

	Detuned filter unit													
	Capacitor			Reactor										
Q _{cr} (kVA)	$V_{cr}(V)$	I _{cr} (A)	%X _L	L (mH)	I _{th} (A)	I _{Lin} (A)								
80 525 87.98 5.6 0.604 95.58 137.12														

5.3.1.1 Detuned filter unit design for capacitor deteriorate from 0 - 20 %

Table 5.63The results of calculation

	Detuned Filter Unit Design														
Det	L	С	11	13	15	17	111	113	l rms	lcr	I _{rms} /I _{cr}	I _{rms} /I _{th}	Q _{act}	fr	
(%)	(mH)	(uF)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(%)	(%)	(kVAr)	(Hz)	
0	0.604	307.96	74.48	1.99	35.57	11.05	3.91	2.62	83.43	87.98	94.84	87.29	49.15	213.05	
2	0.604	301.8	72.91	1.92	37.61	11. <mark>1</mark> 8	3.92	2.63	82.95	86.22	96.21	86.79	48.11	215.22	
4	0.604	295.65	71.34	1.84	39.99	11.33	3.93	2.64	82.72	84.46	97.94	86.55	47.07	217.45	
6	0.604	289.49	69.77	1.77	42.82	11.48	3.95	2.64	82.82	82.7	100.15	86.65	46.04	219.75	
8	0.604	283.33	68.21	1.7	46.24	11.64	3.97	2.65	83.38	80.94	103.01	87.23	45.01	222.12	
10	0.604	277.17	66.65	1.63	50.44	11.82	3.98	2.66	84.57	79.18	106.8	88.48	43.98	224.58	
12	0.604	271.01	65.09	1.57	55.74	12.01	4	2.67	86.68	77.42	111.96	90.69	42.95	227.12	
14	0.604	264.85	63.54	1.51	62.62	12.22	4.02	2.67	90.18	75.66	119.19	94.35	41.92	229.74	
16	0.604	258.69	61.99	1.45	71.92	12.44	4.04	2.68	95.89	73.9	129.76	100.33	40.9	232.46	
18	0.604	252.53	60.44	1.39	85.19	12.69	4.06	2.69	105.34	72.14	146.02	110.21	39.88	235.28	
20	0.604	246.37	58.9	1.33	105.65	12.96	4.09	2.7	121.76	70.38	173	127.39	38.86	238.2	

Figure 5.41 Graph of detuned filter unit design for capacitor deteriorate from 0 – 20 %

5.3.2 Detuned filter unit design for 7%X_L

 Table 5.64
 The rating component of detuned filter unit

	Detuned filter unit											
	Capacitor			Reactor								
Q _{cr} (kVA)	V _{cr} (V)	I _{cr} (A)	%X _L	L (mH)	I _{th} (A)	I _{Lin} (A)						
80	525	87.98	7	0.767	84.51	137.12						

5.3.2.1 Detuned filter unit design for capacitor deteriorate from 0 - 20 %

Table 5.65The results of calculation

	Detuned Filter Unit Design														
Det	L	С	11	13	15 🤞	17	111	113	I _{rms}	lcr	I _{rms} /I _{cr}	I _{rms} /I _{th}	Q _{act}	fr	
(%)	(mH)	(uF)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(%)	(%)	(kVAr)	(Hz)	
0	0.767	307.96	75.67	2.71	17.91	7. <mark>7</mark> 3	2.96	2.01	78.28	87.98	88.98	92.63	49.93	189.07	
2	0.767	301.8	74.05	2.57	18.41	7.8	2.97	2.02	7 <mark>6.83</mark>	86.22	89.11	90.91	48.86	190.98	
4	0.767	295.65	72.43	2.44	18.97	7. <mark>8</mark> 7	2.98	2.02	75.41	84.46	89.29	89.23	47.79	192.96	
6	0.767	289.49	70.81	2.31	19.58	7.94	2.99	2.03	74.02	82.7	89.51	87.59	46.73	195.01	
8	0.767	283.33	69.2	2.2	20.27	8.02	3	2.03	72.68	80.94	89.79	86	45.66	197.11	
10	0.767	277.17	67.6	2.09	21.03	8.1	3.01	2.03	71.38	79.18	90.15	84.46	44.6	199.29	
12	0.767	271.01	66	1.98	21.9	8.19	3.02	2.04	70.14	77.42	90.6	83	43.55	201.54	
14	0.767	264.85	64.4	1.89	22.89	8.29	3.03	2.04	68.97	75.66	91.16	81.61	42.49	203.87	
16	0.767	258.69	62.81	1.79	24.03	8.39	3.04	2.05	67.89	73.9	91.87	80.34	41.44	206.29	
18	0.767	252.53	61.22	1.7	25.34	8.5	3.05	2.06	66.93	72.14	92.77	79.2	40.4	208.79	
20	0.767	246.37	59.64	1.62	26.89	8.62	3.07	2.06	66.11	70.38	93.94	78.23	39.35	211.38	

Figure 5.42 Graph of detuned filter unit design for capacitor deteriorate from 0 – 20 %

The objective of detuned filter unit design is to determine components rating of detuned filter units that will be used with the system that has a high harmonic current. The components of detuned filter units consist of: Capacitor (reactive power rating Q_{cr} : kVAr, voltage rating V_{cr} :V, current rating I_{cr} :A), Reactor(inductance L:mH, thermal current rating I_{th} :A, maximum current that still causes the value of the L change less than 5% I_{Lin} :A).

With 5.6% X_L , the result of calculation has the components rating of detuned filter units as shown in table 5.64. To test decreased of the capacitor from 0-20%, the results shown in table 5.64. From the results the $I_{rms} / I_{cr} = 103\%$ with 8% decreased of capacitor and $I_{rms} / I_{cr} = 173\%$ when decreasing with 20%. The ratio of rms current and thermal current rating (I_{rms} / I_{th}) is more than 100% and $I_{rms} / I_{th} = 127.39\%$ when decreased capacitor 20%. And from the results was illustrated in figure 5. 40.

With $7\%X_L$, the result of calculation has the components rating of detuned filter units as shown in table 5.65. When to test the operating of detuned filter unit by decreasing of the capacitor from 0-20%, detuned filter unit can operate safety as shown in table 5.63 and illustrated in figure 5.41.

5.4 Tuned harmonic filter design

Figure 5.43 Main display for tuned filter design

Harmonic filter can be designed using following 12 steps as shown in chapter 2, page 23 (Tuned filter design).

After parameters of filter are determined, harmonic flows of harmonic currents between system component and harmonic filter are required. Figure 5.42 shown the design page of harmonic filter in the developed program.

For case studies 3-6 and 7-12, harmonic filters have to be designed as previously explained before the harmonic flows can be simulated.

For example in case study 10 consist of case study 0 with 5th, 7th and 11th tuned filters. Which it's analyzing 2 conditions: first condition 5th tuned filter (310kVAr / 525V, n=4.8), 7th tuned filter (310kVAr / 525V, n=6.8) and 11th tuned filter (310kVAr / 525V, n=10.8). Second condition 5th tuned filter (370kVAr / 525V, n=6.8), 7th tuned filter (280kVAr / 525V, n=6.8) and 11th tuned filter (280kVAr / 525V, n=10.8).

The results of calculation for case study 10 is show in table 5.66 and the design parameters of tuned filters as show in table 5.67.
h	I _h (A)	Z _h ohm)	V _h (%)	$I_{S}(A)$	$I_{L}(A)$	I _{F1} (A)	$I_{F2}(A)$	I _{F3} (A)
1	902.11	0.0098	100	1731.7	1202.8	324.08	239.79	236.63
5	169.03	0.0121	0.8827	43.36	8.39	157.59	22.53	13.18
7	107.3	0.008	0.3704	13.01	3.50	7.13	96.34	10.49
11	80.72	0.0035	0.1237	2.77	1.16	0.99	1.97	74.97
13	66.47	0.0218	0.6271	11.87	5.89	3.99	7.20	42.55
17	48.43	0.042	0.8799	12.74	8.26	4.01	6.68	23.74
19	39.88	0.0499	0.8616	11.16	8.09	3.46	5.64	18.34
23	31.34	0.0641	0.8693	9.30	8.16	2.82	4.49	13.27
I _{h total}	239.15	0	0	51.83	21.08	157.96	99.83	94.84
l _{rms}	933.27	0	0	1732.5	1203	360.52	259.74	254.93
I _{rms} / I _{cr}	0	0	0	0	0	0.89	0.84	0.83
THD (%)	26.51	0	2.24	2.99	1.75	48.74	41.63	40.08
I _{th}	0	0	0	0	0	389.92	282.03	277.04
I _{th} / I _{cr}	0	0	0	0	0	0.96	0.92	0.9
I _{lin}	0	0	0	0	0	615.75	455.6	449.6

 Table 5.66
 The results of calculation for tuned filter design

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Tuned Tuned Tuned			5 th tuned filter				7 th tuned filter							
filter 5 th	filter 7 th	filter 11 th	Capacitor		Reactor		Capacitor			Reactor				
(%)	(%)	(%)	Q_{cr}	$V_{\rm cr}$	I _{cr}	L	I _{th}	I _{Lin}	Q _{cr}	$V_{\rm cr}$	I _{cr}	L	l _{th}	I _{Lin}
			(kVA)	(V)	(A)	(mH)	(A)	(A)	(kVA)	(V)	(A)	(mH)	(A)	(A)
33%	33%	33%	310	525	340.91	0.123	338.73	515.90	310	525	340.91	0.0612	310.18	504.42
40%	30%	30%	370	525	406.90	<mark>0.103</mark>	389.92	615.75	280	525	307.92	0.0678	282.03	455.60
th			211											

Table 5.67 The design parameters of tuned filters

11" tuned filter									
(Capacit	or	Reactor						
Q_{cr}	$V_{\rm cr}$	I _{cr}	L	l _{th}	I _{Lin}				
(kVA)	(V)	(A)	(mH)	(A)	(A)				
310	525	340.91	0.0243	304.19	497.78				
280	525	307.92	0.0269	277.04	449.60				

. . th

CHAPTER VI

CONCLUSION

6.1 Conclusion

The harmonic analysis program can be used as a tool for power quality teaching and studying. The developed program consists of waveform synthesis, harmonic responses and harmonic filter design. With a help of graphic user interface (GUI) of MATLAB program, non-experienced and experienced users can utilize user-friendly feature and perform various sensitivity studies in order to understand harmonic analysis.

In analyzing case studies in part 2, the reference case consists of non-linear load connected and the power factor (PF) of the system is low. The solution was analysed by using capacitors to increase the power factor and using only detuned filters, tuned filter or a combination of them. For solving the problem, harmonic current flow through each component is analyzed and the total harmonic distortion voltage at low voltage bus (400 V) is compared with the planning level.

The results from analyzing case studies can be summarized as follows: when using only capacitors or combine with detuned filter, the harmonic current amplifier occurs and may cause the capacitor failure, this is because I_{rms} is greater than $1.3I_{Cr}$ and total harmonic distortion voltage at low voltage bus (400 V) is higher than the planning level. Using only detuned filters, it can solve the problem from harmonic current and operating safely but total harmonic distortion voltage value at low voltage bus is still higher than the planning level. Using only tuned filter (only 5th, 7th or 11th order tuned filter), it can solve the problem if choosing tuned filter with suitable harmonic current. If the system has high harmonic currents, combination of tuned filters is suggested but with suitable tuning frequencies and proper rating kVAR of each orders of tuned filter.

6.2 Future work

Recommendations for the future researcher who is interested to further develop this program are:

1. The objective of developing this program is for power quality teaching and studying. Therefore, this program uses the simple system models, but in

practice harmonic models could be very complicated. More advanced harmonic models can be used to improve the output accuracy.

2. In this program, phase angles of harmonic currents are not considered because there is only one harmonic source. Multiple harmonic sources can be included in the future with the help of phaser calculation.

จุฬาลงกรณ์มหาวิทยาลัย

REFERRENCES

- [1] Suhail, A. Qureshi, Ahmed Hassan, Azeem Talib. <u>Harmonic Power</u> <u>Pollution and Harmonic Study Analysis Guidelines for Industrial</u> <u>Power System</u>. U.E.T Lahore Pakistan
- [2] Larry Ray, PE; Louis Hapeshis, PE. <u>Power System Harmonic Fundamental Considerations: Tips and Tools for Reducing Harmonic Distortion in Electronic Drive Applications</u>. December 2005.
- [3] <u>IEEE Recommended Practices and Requirements for Harmonic Control in</u> <u>Electrical Power Systems</u>, ANSI/IEEE Std. 519-1992.
- [4] Thavatchai Tayjasanant. <u>2102555: Fundamentals of Power Quality</u>. Power System Research Laboratory (PSRL), EE, Chulalongkorn University.
- [5] Francisco, C. De La Rosa. <u>HARMONICS AND POWER SYSTEMS</u>. Distribution Control Systems, Hazelwood, Missouri, U.S.A.
- [6] Roger, C. Dugan, and Mark F. McGranaghan. Surya Santoso and H. Wayne Beaty. <u>Electrical Power Systems Quality</u>. Second edition.
- [7] Chaiya Chamchoy. <u>Teaching handout Harmonic in Power System</u>. Power System Research Laboratory (PSRL), EE, Chulalongkorn University.
- [8] <u>G 5/4. Planning levels for Harmonic voltage distortion and the connection</u> of non-linear equipment to transmission system and distribution network in the United.
- [9] Hassan, A, and Talib, A. <u>Design and Analysis of Harmonic Filters Using</u> <u>MATLAB</u>. Project Report 2004 U.E.T Lahore.
- [10] R. Fehr, P.E. <u>Harmonics Made Simple</u>. Engineering Consultant Jan 01 '04.
- [11] Michael, Z. Lowenstein. <u>The 3rd Harmonic Blocking Filter: A Well</u> <u>Established Approach to Harmonic Current Mitigation</u>.
- [12] Ibrahim, A. Altawil, and Hajier, O. <u>Teaching the PWM AC voltag</u> <u>controller using Matlab Graphical Using</u>. Yarmouk University, Irbid, Jordan.
- [13] Ranade, S. J., and Xu, W. <u>Chapter 1: AN OVERVIEW OF HARMONICS</u> <u>MODELING AND SIMULATION</u>. New Mexico State University.

University of Alberta. Las Cruces, NM, USA. Edmonton, Alberta, Canada.

- [14] เรวัต สุวรรณไพรัตน์. <u>การวิเคราะห์การไหลของฮาร์มอนิกในโรงงานอุตสาหกรรมโดย</u> <u>คำนึง ถึงความถูกต้องของแบบจำลองฮาร์มอนิก</u>. วิทยานิพนธ์ปริญญา มหาบัณฑิต, สาขาวิชาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย, 2545.
- [15] ไชยะ แช่มช้อย <u>เทคนิคไฟฟ้าชุดที่ 7 เรื่องน่ารู้ไฟฟ้าทั่วไป,ต่อลงดิน,ฮาร์มอนิก การ</u> ออกแบบตัวกรองฮาร์มอนิก หน้า 239-240.
- [16] ปานทอง ถิ่นสถิตย์ <u>เทคนิคไฟฟ้าซุดที่ 7 เรื่องน่ารู้ไฟฟ้าทั่วไป,ต่อลงดิน,ฮาร์มอนิก</u> <u>การวิเคราะห์ฮาร์มอนิกในระบบไฟฟ้าอุตสาหกรรม</u>หน้า 231-234.

BIOGRAPHY

Mr Soulaxay Keokhamphan was born 19 June 1984 at Phanonetai village, Champasack district, Champasack province. He graduated bachelor of engineering degree in electrical engineering at the faculty of Engineering, University of Laos in 2007. In 2008, he continued his Master of Engineering Program in Electrical Engineering at Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Thailand.

