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CHAPTER I 

INTRODUCTION 

1.1 Background 
              

            In recent years, an increasing of energy consumption led to rapidly deplete 

energy sources. The nonrenewable sources of energy available in the nature are coal 

and petroleum. The combustion of these hydrocarbons is not only a common source 

of energy, but common byproducts of the combustion process also produced carbon 

dioxide, carbon monoxide and nitrogen. For example, carbon dioxide is one of the 

greenhouse gases generated with a large amount each year, it was considered as one 

of the major effects of the global warming. For this reason, the global temperature 

continuously increases. Thus, the exploration of the substituting energy sources is the 

urgent issues to fulfill this recruitment. To reduce the demand of fossil fuels, many 

researchers have paid their attention to other sources of clean energy such as solar, 

wind, tides, geothermal heat and biomass. It should be note that biomass was a good 

candidate which has been employing a lot attention. Biomass is a biological material 

including biodegradable wastes that can be burnt as fuel. It excludes organic materials 

such as fossil fuels which have been transformed by geological processes into 

substances. Many researchers also showed its viability for large scale production of 

biomass. Moreover, biomass energy generation will cause lower green house effect 

due to the recycling process of the plant rotation [1]. There are various biomass 

materials available in Thailand. Especially, agricultural waste such as cob, husk, 

bagasse, sawdust, coconut shell and palm kernel shell which are abundant and 

inexpensive. Some of them could be used as promising sources of renewable energy.  

           Many countries in the world including Thailand are the producers of palm oil. 

Figure 1.1 shows the market share of palm oil production in 2008. Particularly, 

Thailand is the third palm oil production in the world. It could be supposed that the 

production of palm oil can be successfully mainstreamed in Thailand in the future. 
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Figure 1.1 Palm oil exporting market shares 

            

            Taking into account that palm oil production is a large industry in the south of 

Thailand, generating annually 386,930 tons of empty fruit bunches, 165,830 tons of 

palm press fibers and 110,550 tons of palm kernel shells [2]. 

 

Table 1.1 Chemical components of palm oil [3] 

 

           Types of biomass residues                              Chemical compositions (%) 

                                                  

                                                                    Cellulose    Hemicellulose   Lignin    Ash 

 

Empty fruit bunch                                         38.3              35.3                22.1       1.6 

Palm kernel shells                                         20.8               22.7               50.7       1.0 

Palm tree trucks                                             34.5              31.8                25.7       4.3 

Fronds                                                           30.4               40.4               21.7        5.8 

Mesocarp fibers                                             33.9               26.1               27.7       3.5 

 

            Table 1.1 shows the chemical composition of palm oil biomass residues in 

Malaysia. In addition, the compositions of palm oil biomass residues dependent on the 

species of palm oil, landscape and atmospheric conditions. The components of palm 
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fuel ethanol, including hydrothermal treatment, acid treatment, steam explosion and 

enzymatic hydrolysis [6-8]. Besides to these approaches, subcritical and supercritical 

water treatments have also been investigated and have shown some particular 

advantages, such as high reaction rate, no catalyst requirement and no product 

inhibition [9]. 

           The transformations of cellulose hydrolysis in subcritical and supercritical 

water have been investigated and reported. When cellulose aqueous is hydrothermally 

treated at high temperature, cellulose chains are hydrolyzed, leading to the conversion 

of the cellulose into water-soluble oligosaccharides, including cellobiose, cellotriose, 

cellotetraose and cellopentaose. Thereafter, the original cellulose is converted further 

into glucose, fructose and fragmentation products, such as 1,6-anhydroglucose, 

erythrose and 5-hydroxymethylfurfural (5-HMF) [10].  

           One promising chemical transformation of biomass is 5-hydroxymethylfurfural 

(5-HMF), which is suitable for alternative polymers and for liquid bio-fuels. 5-HMF 

is a versatile chemical platform that can be used to integrate a wide range of 

chemicals derived from petroleum such as 2,5-furandicarboxylic acid (FDA) and 2,5-

dimethylfuran (DMF). In addition, FDA has been proposed as a replacement both of 

polyethylene terephthalate and polybuthelene terephthalate for the production of 

biodegradable plastic [11-12]. Especially, DMF has been proposed as a replacement 

of ethanol for the production of liquid bio-fuel [13-14]. However, it should be noted 

that there is no clear evidence of reported results of preparation of 5-HMF from palm 

kernel shell residues via hydrothermal treatment process. Therefore, the objective of 

this study is to investigate the preparation of 5-HMF from palm kernel shell residues 

using subcritical water treatment as well as to find out an optimal conditions to obtain 

a high yield of 5-HMF products in this process.  

 

1.2 Objectives  

            

           The object of this research is to examine condition for preparing 5-HMF from 

palm kernel shell residues in subcritical water and to find out an optimal condition for 

increasing high yield of 5-HMF products.  
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1.3 Scope of research  

            

           1. Palm kernel shell residues (feedstock) will be dried in the conventional oven 

at 80 °C for 10 minutes in order to remove the volatile matter. 

           2. Dried palm kernel shell residues will be used as a biomass feed stock under 

hydrothermal treatment conditions. 

           3. Cellulose will be extracted from the palm kernel shell residues by alkali 

treatment. 

           4. The experimental conditions for hydrothermal treatment process of palm 

kernel shell residues will be focused by variation of following parameters. 

            -Effect of reaction temperature in a range of 200-300 oC. 

            -Effect of heating rate ranging from 5-10 oC/min. 

            -Effect of concentration of palm kernel shell residues in a range of 10–20 

wt%. 

            -Effect of lignin content in feedstock.   

            -Effect of extracting solvent and homogeneous catalyst consisted of 2-butanol, 

dimethyl sulfoxide (DMSO) and phosphoric acid (H3PO4). 

 

1.4 Expected benefits 

            

           1. To obtain the guideline for preparing 5-HMF from palm kernel shell 

residues under subcritical water and to find out an optimal condition for gaining high 

yield of 5-HMF products.  

           2. To gain additional experimental data to support biomass technology in 

Thailand for the future renewable energy sources. 

           3. To discover the production of 5-HMF from palm kernel shell residues as real 

biomass material.  

 

 

 

 
    



CHAPTER II 

 

LITERATURE REVIEW 
 

2.1 The hydrothermal treatment of cellulose with non-catalytic conversion under 

subcritical and supercritical water. 

 

Zhang, Keitz, and Valentas (2007) studied the effect of heating times in the 

range of 30 to 60 min. The hydrothermal liquefaction was performed by used batch 

pressure vessels reactor. In the chemical point of view, the heating rate can possibly 

affect yields and the composition of the resultant liquid products. It could be indicated 

that the mode of heat transfer becomes uncontrolled variable in kinetic studies and 

can seriously impact scale-up. To ensure this hypothesis, they designed a batch 

pressure vessel coupling with an induction heating system allowing the reduction of 

heat up times by about two orders of magnitude to several seconds, compared to tens 

of minutes with standard pressure reactors. This system was used to study the direct 

liquefaction of corn stove and aspen wood with a pretreatment. They observed that the 

heating rate have no significantly effect on the composition of liquid products. 

However, the liquid yields are dependent on the heating rate. In addition, the cooling 

rate does not obviously show effects on the composition and liquid yields of liquid 

products. The results confirm that the heating rate, as governed by the mode of heat 

transfer, is an important factor that needs to be considered during scale-up [15]. 

 

           Kruse and Dinjus (2007) investigated the degradation of glycerol, a model 

substance for carbohydrates and biomass on hot compressed water (HCW) at the 

reaction temperature above 200 ◦C. This reaction shows a strong dependence on the 

properties of HCW. They found that water accelerates biomass de-polymerization by 

hydrolysis. The glycosidic bond of cellulose and hemicellulose were hydrolyzed very 

fast in HCW. Then, they are split in sugar units and the whole biomass structure 

breaks down. This improves a further attack by water molecules. Subcritical water 

conditions supports water eliminations from carbohydrates and alcohols because of 

the high ionic product increasing the reaction rate of this usually acid-catalyzed 
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reaction. Moreover, other reaction like aldol condensation is enhanced by the special 

properties of subcritical water [16]. 

 

Eiji et al (2008) proposed on the effect of heating rate on the liquefaction of a 

microcrystalline cellulose particle by using a batch type reactor with a temperature 

controller. The Experiments were carried out over the temperature range of 443–553 

K with the heating rate ranged from 0.0167 to 0.167 K/s. The resulting concentration 

profiles of cellulose, oligosaccharides, monosaccharides and pyrolyzed products were 

analyzed using a theoretical model which considered temperature variation during the 

reaction. The calculated results showed a reasonable fit to the experimental data. The 

predicted cellulose concentration profiles over a wide range of heating rate indicated 

that the liquefaction of cellulose was affected when the heating rate is below 1 K/s. It 

was concluded that the consideration of the heating process necessary in the modeling 

of liquefaction when using slow heating [17]. 

 

2.2 The behavioral decomposition of pure 5-hydroxymethylfurfural (5-HMF) 

under subcritical and supercritical water. 

          

           Chuntanapum et al (2008) studied the decomposition behavior of 5-HMF in 

both subcritical and supercritical water in the temperature range from 175-450 °C. 

The decomposition of 5-HMF had Arrhenius characteristics, which can be described 

by a first-order serial reaction. The 5-HMF clearly resisted decomposition at low 

temperatures of up to 250 °C. But the decomposition began at higher temperatures 

from 300 to 450 °C and complete decomposition at 450 °C. Moreover, they found that 

the reaction of pure 5-HMF in water did not produced any tar or char [18].  

          

2.3 The hydrothermal treatment of D-fructose, D-glucose and xylose with 

catalytic conversion under subcritical and supercritical water for 5-HMF 

production. 

 

           Chen, Kuster, and Van Der Wiele (1991) studied a new procedure for the 

preparation of 5-HMF from D-fructose. The reaction was performed in a continuous 

tubular reactor. 1,2:4,5-di-o-isopropylidene-B-D-fructopyranose (DIpF) was used as a 

reactant dissolved in ethylene glycol dimethyl ether (EGDE) containing some water 
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and sulfuric acid as a catalyst. They found that 5-HMF yields amounted to more than 

70 mol% without the problem of plugging from insoluble solid. These results were 

obtained for several combinations of temperature, concentrations of both acid and 

water [19]. 

 

            Bicker et al (2005) investigated the dehydration of D-fructose in various kind 

of solvent including Acetone/water, Methanol, Acetic acid and water in subcritical 

and supercritical water condition by using continuous high pressure reactor. They 

concluded that acetone molecule, which is very similar to dimethyl sulphoxide 

(DMSO) might be the reason for the high 5-HMF selectivity. Because of a 

fructose/DMSO associated, which the furanoid form of fructose would promote that is 

why the highest 5-HMF selectivity was obtained in that solvent and favor the 

formation of 5-HMF [20]. 

            

           Watanabe et al (2005) discovered the use of titanium dioxide (TiO2) and 

zirconium oxide (ZrO2) as catalysts in hot compressed water (HCW). The TiO2 

showed both basic, acidic and catalyst properties. The selectivity of D-glucose to 5-

HMF was more than 90 %; however the yields were only 20% [21]. 

 

           Asghari and Yoshida (2006) used D-fructose as substrate with zirconium 

phosphates (Zr(HPO4)2·nH2O) under subcritical water. They found that 5-HMF yields 

up to 50 mol% with the highest 5-HMF selectivity were not more than 61 %. In 

addition, they observed the liquid by products were furaldehyde and humins. The 

rehydration products were not found [22]. 

 

            Leshkov et al (2007) demonstrated a batch process for dehydration of D-

fructose to 5-HMF using a two-phase reactor system. The process for preparation of 

5-HMF consist of stimulated countercurrent extraction and evaporation steps. In the 

process system, they used water, DMSO and poly-1-vinyl-2-pyrrolidinone (PVP) for 

the aqueous phase with the use of hydrochloric acid (HCl), sulphuric acid (H2SO4), 

phosphoric acid (H3PO4) or acidic ion-exchange resin which acts as catalysts, 

combined with the organic extracting phase, the mixture of methyl isobutyl ketone 

(MIBK) and 2-butanol. The selective dehydration of fructose to 5-HMF dependent on 
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the fructose concentrations, with 80% 5-HMF selectivity at 90% conversion of 

fructose. In addition, 5-HMF was separated from the aqueous and extracting phase by 

the extractor [23]. 

 

            Chheda et al (2007) studied the preparation of 5-HMF and furfural by 

dehydration of D-glucose, fructose and xylose. The reaction was performed in a 

biphasic reactor system; consist of an organic extracting phase, the mixture of MIBK 

and 2-butanol, combined with a reactive aqueous phase modified with DMSO. They 

concluded that, the process parameters that influence the selectivity and yields of 5-

HMF and furfural were the concentration of sugar, nature of extracting solvent and 

the concentration of DMSO in aqueous phase. Moreover, it was concluded that the 

high conversion of feedstock could be led to the good selectivity of 5-HMF and 

furfural [24]. 

            

            Bao et al (2008) investigated the dehydration of D-fructose in the presence of 

the Bronsted acidic ionic liquid, 3-allyl-1-(4-sulfobutyl) imidazolium 

trifluoromethanesulfonate, with its Lewis acid derivative, 3-allyl-1-(4-sulfurylchloride 

butyl) imidazolium trifluoromethanesulfonate as catalysts to obtain 5-HMF products. 

They concluded that this reaction could be smoothly carried out in the presence of 

both Bronsted and Lewis acidic ionic. As a results of their experiments, the ionic 

liquid was an importance catalyst and easy to use for the preparation of 5-HMF. The 

yields of 5-HMF were found to be dependent on the acidity type of the ionic liquids, 

the concentration, reaction temperature and time [25]. 

 

           Amarasekara, Williams, and Ebede (2008) proposed a mechanism by using 

NMR spectra technique for the dehydration of D-fructose to 5-HMF in DMSO at 150 
°C, which the solvent acts as catalyst. They showed the mechanism of the dehydration 

of the two furanose forms of D-fructose to 5-HMF by way of the elimination of three 

water molecules. Particularly, this experiment was the first specification of DMSO in 

the dehydration of D-fructose [26]. 

             

           Takeuchi et al (2008) reported on the catalytic effect of H3PO4, H2SO4 and 

HCl as catalysts in the direct conversion of D-glucose to 5-HMF in water. They 

concluded that the weakest acid, H3PO4, was the best catalyst for the conversion of 
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glucose into 5-HMF, yields of up to 40%, and the strongest acid, HCl, was the best 

catalyst for the conversion of 5-HMF to levulinic acid [27]. 

 

2.4 The hydrothermal treatment of cellulose and biomass with catalytic 

conversion under subcritical and supercritical water for 5-HMF production. 

 

           Sinag et al (2009) studied hydrothermal treatments on cellulose and sawdust. 

They used potassium carbonate (K2CO3), zeolite (HZSM-5), nickel (Ni) on silicon 

dioxide (SiO2) as catalyst with a ratio 0.5 % (w/w). They found the highest amounts 

of 5-HMF in case of cellulose and sawdust at 225 ◦C. The concentration of 5-HMF 

were 183.4 mg/g and 122 mg/g from cellulose and sawdust respectively. An increase 

in temperature led to a decrease in 5-HMF content of the aqueous phases obtained by 

hydrothermal conversion of both feed stocks. Degradation of 5-HMF to acids, 

aldehydes and phenols was enhanced by the temperature increase. Subsequently, they 

concluded that the use of catalysts have no significantly effect on the composition of 

5-HMF liquid products [28]. 

 

           Su et al (2009) found a new catalytic system using an ionic liquid that could be 

converted cellulose to 5-HMF in one step under mild conditions. They used copper 

(II) chloride (CuCl2) and chromium (II) chloride (CrCl2) as catalyst with a ratio 

ranged from 0-1. A balanced metal chloride composition, such as CuCl2 and CrCl2 at 

(XCuCl2) = 0.17, offers the highest yields of 5-HMF [29]. 

 

           Zhao, Lu, and Wang (2009) used a supercritical water technology as a pre-

treatment and hydrolysis method for ethanol production from microcrystalline 

cellulose. The batch reactor was conducted under the desirable reaction temperature 

and reaction time. They found that a complete decomposition of hydrolysis products 

occurred at higher temperatures and longer reaction times. They achieved yields of 5-

HMF only about 4.4 % [9]. 
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           Though there would be many literatures related to biomass conversion, it 

should be noted that preparation of 5-HMF from palm kernel shell residues has not 

been thoroughly examined and understood. Effect of treatment condition on the 

conversion and yield of 5-HMF converted from dried palm kernel shell residues 

would be experimentally investigated using various analytical methods.  

 

 

 

 

 

 

 



CHAPTER III 

 

FUNDAMENTAL KNOWLEDGE 
 

3.1 Biomass 

 

            Biomass is a biological organic material from living which is commonly 

planted to produce energy or heat. The heat can be used directly, for heating, cooking, 

and industrial processes, or indirectly, to produce electricity. Biomass consists of 

carbon, hydrogen and oxygen based. Nitrogen and small quantities of other atoms, 

including alkali, alkaline earth and heavy metals can be found. Metals and magnesium 

are often found in the functional molecules of porphyrins and chlorophyll. Moreover, 

this renewable energy source may also include biodegradable wastes that can be used 

as an energy source. Biomass is presumably our oldest source of energy after the sun. 

Since people have burnt wood to heat their homes and cook their food for thousands 

of years ago. Particularly, biomass differences from organic materials such as fossil 

fuels, which have been transformed by geological processes into substances such as 

coal and petroleum. Environmentally, biomass is used as a replacement of fossil fuel, 

even though when they are burnt, the same amount of carbon dioxide (CO2) is 

released into the atmosphere but when they are used for the energy production, it 

could be noted that a net amount of greenhouse gases are decreased because of the 

offset of methane (CH4 is a much stronger greenhouse gas than CO2) that would have 

otherwise entered the atmosphere. Thereby, biomass has some advantages over fossil 

fuels. Moreover, since they contain little amount of sulfur and nitrogen, that is why 

they cannot cause the acid rain. By the way, they can remove carbon dioxide, one of 

the greenhouse gases from the atmosphere when they have photosynthesized. 

            According to the photosynthesis process as shown in equation 3.1, the sun 

always gives plants the energyand then plants would convert water and carbon 

dioxide into oxygen and sugars. Eventual, the whole organic matter contains stored in 

their leaves, stems and roots. 

 

6H2O + 6CO2 + Radiant Energy                C6H12O6 + 6O2                (3.1) 
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           Figure 3.1 shows the physical structure of the whole plants, these sugars found 

in cellulose, hemicellulose and lignin, they area starting point for the major fractions 

in all of the terrestrial plants. For this reason, biomass is a renewable energy source 

because its supplies are not limited.  

 

  

 

 
 

 

 

Figure 3.1 The essential element of plants 

 

           From the industrial point of view, biomass can be grown from many kinds of 

plants such as miscanthus, switchgrass, hemp, corn, poplar, willow, sorghum, 

sugarcane eucalyptus and oil palm. This particular plant is not only used to the end 

products, but it also affects the processing of the raw material. Even thoughfossil fuels 

have their origin in ancient biomass, they are not considered biomass as the generally 

accepted definition because they contain carbon that has been "out" of the carbon 

cycle for a very long time. Their combustion therefore disturbs the carbon dioxide 

content in the atmosphere. 

           The non-combustion processes convert raw biomass into a variety of gaseous, 

liquid, or solid fuels that can be used directly in a power plant for energy generation. 

The carbohydrates in biomass, which are comprised of oxygen, carbon, and hydrogen, 

can be broken down into a variety of chemicals which are used as fuels. This 

conversion can be done in two ways. Firstly, for thermo-chemical process, when plant 

matter is heated, it breaks down into various gases, liquids, and solids. These products 

can be used for further processed and refined into useful fuels such as methane and 

alcohol. Biomass gasifies capture methane which are released from the plants and 

burn it in a gas turbine to produce electricity. Another approach is to take these fuels 
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of the monomer units are beta-D-glucose, and all the beta acetal links connect C#1 to 

C#4 of the next glucose. Carbon#1 is called the anomeric carbon and is the center of 

an acetal functional group. A carbon that has two ether oxygens attached is an acetal. 

The Beta position is defined as the ether oxygen being on the same side of the ring as 

the C#6.  

 

 

Figure 3.2.2 The chemical structure of cellulose connected by a beta acetal linkage 

[31] 

 

           The beta acetal linkage is the monomer unit in cellulose that is mostly a linear 

chain. On the other hand, starch is the monomer linkage of alpha acetal, as a result of 

the starch-amylose actually forms a spiral much like a coiled spring which makes it 

different from starch as shown in figure 3.2.3. Moreover, cellulose is higher 

crystalline than starch. Whereas starch could be transformed from a crystalline to 

amorphous when heated beyond 60-70 °C in water.  
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Figure 3.2.3 The different of chemical structure of cellulose and starch [31] 

 

            Difference in acetal linkages results in a major difference in digestibility in 

humans. Humans are unable to digest cellulose because the appropriate enzymes to 

breakdown the beta acetal linkages are lacking (More on enzyme digestion in a later 

chapter.). Indigestible cellulose is the fiber which aids in the smooth working of the 

intestinal tract. Animals such as cows, horses, sheep, goats, and termites have 

symbiotic bacteria in the intestinal tract. These symbiotic bacteria possess the 

necessary enzymes to digest cellulose in the GI tract. They have the required enzymes 

for the breakdown or hydrolysis of the cellulose; the animals do not, not even termites 

and have the correct enzymes. No vertebrate can digest cellulose directly. 

            It is well understood that cellulose is derived from D-glucose units, which 

condense through β (1→4)-glycosidic bonds. This linkage motif contrasts with that 

for α (1→4)-glycosidic bonds present in starch, glycogen, and other carbohydrates. 

The multiple hydroxyl groups on the glucose from one chain form hydrogen bonds 

with oxygen molecules on the same or on a neighbor chain, holding the chains firmly 

together side-by-side and forming microfibrils with high tensile strength. This 

strength is important in cell walls, where the microfibrils are meshed into a 

carbohydrate matrix, conferring rigidity to plant cells. Cellulose can be broken down 

into its glucose units by treating it with concentrated acids at high temperature. Many 

properties of cellulose depend on its degree of polymerization or chain length, the 
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number of glucose units that make up one polymer molecule. Cellulose from wood 

pulp has typical chain lengths between 300 and 1700 units; cotton and other plant 

fibers as well as bacterial celluloses have chain lengths ranging from 800 to 10,000 

units. Molecules with very small chain length resulting from the breakdown of 

cellulose are known as cellodextrins; in contrast to long-chain cellulose, cellodextrins 

are typically soluble in water and organic solvents. Plant-derived cellulose is usually 

contaminated with hemicellulose, lignin, pectin and other substances, while microbial 

cellulose is quite pure, has much higher water content, and consists of long chains. 

            For industrial use, cellulose is mainly obtained from wood pulp and cotton. It 

is mainly used to produce paperboard and paper; to a smaller extent it is converted 

into a wide variety of derivative products such as cellophane and rayon. Converting 

cellulose from energy crops into bio-fuels such as cellulosic ethanol is under 

investigation as an alternative fuel source. 

 

3.3 Hemicellulose 

 

            Hemicellulose is some of several hetero-polymerssuch as arabinoxylans, 

accompany along with cellulose in almost all of the plant cell walls. Besides glucose, 

sugar monomers in hemicellulose consist of xylose, mannose, galactose, rhamnose, 

and arabinose as shown in figure 3.3. In contrast, cellulose contains only anhydrous 

glucose. Moreover, xylose is always the sugar monomer present in the largest amount. 

They consists of shorter chains about 500-3,000 sugar units as objected to 2,000-

26,000 glucose molecules per polymer as seen in cellulose. In addition, hemicellulose 

is a branched structure, while cellulose is unbranched. The structure of hemicellulose 

has a random, amorphous with little strength while cellulose is crystalline, strong, and 

resistant to hydrolysis. 



 

 

3.4 Lignin 
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3.6 Hydrothermal treatment process 

 

            Hydrothermal treatment technology employs the combination of heat and 

water as a media to convert unutilized resources in various shapes and characteristics 

into uniform product. The treatment begins by loading the raw material into a reactor, 

and then injecting hot-compressed water or saturated steam of about 200 °C and 2 

MPa into the reactor. Mixing process is conducted by a stirrer in the reactor while 

holding the temperature and pressure. After finishing the holding period and discharge 

of the steam, liquid and solid product can be obtained, and both of them will be 

separated by filter of the filtration system.   

 
 
 
 



CHAPTER IV 

 

EXPERIMENTAL PROCEDURE 
 

4.1 Preliminary analysis of chemical component of palm kernel shell residues 

 

            First of all, palm kernel shell residues were analyzed by American Society for 

Testing and Materials (ASTM) and Elemental Analyzer (CHNS/O Analyzer; Perkin 

Elmer, PE2400 Series II) to obtain the information of proximate and ultimate analysis, 

respectively. The chemical composition of palm kernel shell residues was illustrated 

in Table 4.1.1 and Table 4.1.2.   

 

Table 4.1.1 Proximate analysis of palm kernel shell residues 

 

            Composition                                                     Amount (wt %) 

 

Fixed carbon content                                                             30.90 

 

Volatile matter content                                                          58.59 

 

Moisture content                                                                     8.56 

 

Ash content                                                                             1.57 
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Table 4.1.2 Ultimate analysis of palm kernel shell residues 

 

            Composition                                                       Amount (wt %) 

 

Carbon                                                                                    49.06 

 

Hydrogen                                                                                 7.41 

 

Nitrogen                                                                                   0.63 

 

Oxygen                                                                                   42.79 

 

          

            Next step, the content of cellulose in feedstock was determined following the 

procedure recommended by the United States Department of Agriculture (USDA), 

this method is performed by preparing of acid-detergent fiber, which was mainly 

consisted of lignin, cellulose, and insoluble minerals. Lignin is oxidized with an 

excess of acetic acid-buffered potassium permanganate solution [39]. Deposited 

manganese and iron oxides are dissolved with an alcoholic solution of oxalic and 

hydrochloric acid leaving cellulose and insoluble minerals. Lignin is measured as the 

weight lost by these treatments; whereas, cellulose is determined as the weight loss 

upon ash. Table 4.1.3 and Table 4.1.4 illustrated the components of the palm kernel 

shell residues particles and other biomass residues (dry weight basis) which were 

determined by the USDA’s method.  

 

Table 4.1.3 Chemical compositions of the palm kernel shell residues  

(dry weight basis) employed in this work 

            Types of biomass residues                              Chemical compositions (%) 

                                                  

                                                                    Cellulose    Hemicellulose    Lignin    Ash 

 

 Palm kernel shell residues                              58                 33                    6           3 
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Table 4.1.4 Chemical composition of other agricultural wastes residues  

(dry weight basis)                   

            Types of biomass residues                              Chemical compositions (%) 

                                                  

                                                                    Cellulose    Hemicellulose    Lignin    Ash 

 

 Water hyacinth                                                9                  72                  17            2 

 Rubber wood                                                 39                  29                  28            4 

 

            From the previous work the hydrothermal pretreatment of rubber wood residue 

could provide substantial amount of glucose. They have discovered the glucose could 

be generated from cellulose. Nonetheless, the large amount of lignin in both water 

hyacinth and rubber wood could hinder hydrolysis process of cellulose. Based on this 

preliminary result, the composition of lignin in palm kernel shell was significantly 

less than in both water hyacinth and rubber wood. Thus, it is reasonable to deduce 

high yield of glucose which converted to be 5-HMF.  

 

4.2 Feedstock 

 

 
                            

Figure 4.2.1 Palm kernel shell residues 

 

Palm kernel shell residues were initially ground and sieved to a powder with a 

particle size around 0.8 mm. Then, the ground residues were dried at 80 °C for 10 

minutes to remove the volatile matter. Figure 4.2.1 shows the palm kernel shell 

residues before crushed by grinder. 
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4.3 Hydrothermal treatment 

 

4.3.1 Tubular reactor  

           Hydrothermal treatment of palm kernel shell residues conducted in a tubular 

reactor. 

 

 

 
 

Figure 4.3.1 Schematic diagram of a tubular reactor 

 

           Figure 4.3.1 shows the schematic of a tubular reactor. In addition, the physical 

properties of a tubular reactor were illustrated in Table 4.3.1.  

 

Table 4.3.1 The physical properties of a tubular reactor used in this work 

Material                                                                                  Stainless steel 

Volume (ml)                                                                                24.70 

Outside diameter (mm)                                                               19.05 

Wall thickness (mm)                                                                   1.65 

Tolerant temperature (°C)                                                           537  

Tolerant pressure (atm)                                                               177                                                       

             

 

 

 

 

K-type thermocouple 
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            For the proceeding, at first, cellulose was extracted from the palm kernel shell 

residues by the following steps. Briefly, the residues were pretreated by soaking into 1 

w/v% sodium hydroxide (NaOH; Suksapan) solution at 80 °C for 2 h, followed by 

washing with adequate distilled water to remove the epidermis. The pretreated 

residues were treated further in a mixture of 1 w/v% NaOH solution and 1 w/v% 

sodium sulfide (Na2S⋅xH2O; Panreac) with a volumetric ratio of 1:30 at 80 °C for 1.5 

h to obtain cellulose fibers. The cellulose fibers were then bleached by a mixture of 

0.7 v/v% sodium chlorite (NaClO4; Ajax Chemicals) aqueous solution and an acetate 

buffer at 80 °C for 1.5 h to remove the lignin residues [40]. The acetate buffer was 

prepared by dissolving 2.7 g of NaOH solid in a solution of 7.5 ml of glacial acetate 

acid (CH3COOH; QREC) in 100 ml of distilled water. The bleached fibers were 

washed repeatedly by distilled water and subsequently dried in oven at 90 °C for 10 

minutes.  

 

 
 

Figure 4.3.2 Schematic diagram of experimental apparatus 

 

           A series of experiment of hydrothermal treatment of palm kernel shell residues 

were conducted in a batch-type tubular reactor system. The system consists of a 

tubular reactor with a vertical-tubular electrical furnace incorporated with a 

temperature controller as shown in figure 4.3.2. 
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using High Performance Liquid Chromatography (HPLC; Varian, Prostar) analyzer 

equipped with a fluorescent detector and an Octadecyl Silane (ODS) C18 column as 

shown in figure 4.3.4. The amount of 5-HMF contained in the solid part was 

negligible because of 5-HMF is a highly water-soluble substance. For the solid part, 

they were taken for the investigation of the functional groups on the surface by 

Fourier Transform Infrared Spectrometer (FT-IR; Perkin Elmer, Spectrum One) in 

order to compare with the functional groups on the surface of palm kernel shell 

residues before reaction. Figure 4.3.5 illustrated a schematic of different steps in the 

hydrothermal treatment. 

 

 
Figure 4.3.5 Schematic diagram of different steps in the hydrothermal treatment 
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4.4 Experimental condition 

 

4.4.1 The effect of reaction temperature in a range of 200 – 300 °C 

 

            At first, in this study, the effect of reaction temperature on a hydrothermal 

treatment of palm kernel shell residues has been investigated. By varies in a range of 

200 – 300 °C to find out the optimal temperature of this process. Palm kernel shell 

residues were ground and sieved to a powder with a particle size around 0.8 mm. 

Table 4.4.1 illustrates the condition for studied on the effect of reaction temperature. 

 

Table 4.4.1 Reaction temperature conditions for the hydrothermal treatment. 

 

 

 

 

 

 

 

 

4.4.2 The effect of heating rate in a range of 5-10 °C/min 

 

            By varies the heating rate of 5, 7.5 and 10 °C/min. The heating rate could be 

identified as the soaking time which was defined how long of the contact time 

between palm kernel shell residues subjected with the water vapor. Table 4.4.2 

illustrates the heating rate condition. 

 

 

 

 

 

 

 

 

 

Reaction  temperature (°C) 220, 240, 260, 280 and 

300 

 

Palm kernel shell residues (g)                1 

De-ionized water (g)               9 
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Table 4.4.2 Heating rate conditions for the hydrothermal treatment 

 

 

 

 

 

 

 

 

 

 

4.4.3 The effect of concentration of feedstock on the hydrothermal treatment 

 

            Palm kernel shell residues were varied concentration in ranging from 10 - 20 

wt% for the hydrothermal treatment. When we know the optimal temperature and 

optimal heating rate for the hydrothermal treatment therefore they were used in this 

condition for studied the effect of concentration of feedstock on the hydrothermal 

treatment of palm kernel shell residues. Table 4.4.3 illustrates the concentration 

conditions. 

 

Table 4.4.3 Concentration conditions for the hydrothermal treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Heating rate (°C/min)                                     

 

Reaction  temperature (°C) 

5, 7.5 and 10 

 

220, 240, 260, 280 and 

300 

 

Palm kernel shell residues (g)              1 

De-ionized water (g)             9 

Concentration of palm kernel 

shell residues (wt%)  

                10 and 20 

De-ionizer water (g)                   9 and 8  

Reaction  temperature (°C)                  220, 240, 260, 280 and 

                 300 
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4.4.4 The effect of lignin content on the hydrothermal treatment 

 

            In this study, at first, the content of lignin in palm kernel shell residues were 

varied by varying the reaction time in the elimination of lignin step and then the 

content of lignin in treated palm kernel shell residues were determined by the 

USDA’s method. Table 4.4.4 illustrates the effect of lignin content conditions. 

 

Table 4.4.4 Lignin content conditions for the hydrothermal treatment. 

 

 

 

 

 

 

 

4.4.5 The effect of extracting solvent and homogeneous catalyst on the hydrothermal 

treatment 

 

           As shown in figure 4.4.5.1 and figure 4.4.5.2, we have found a good result in 

the previous work using H3PO4 or DMSO as homogeneous catalysts and 2-butanol as 

extracting solvent. It could be noted that sulfuric acid (H2SO4) is too strong, and they 

are suffering from post treatment. In this study, the hydrothermal treatment was 

performed at the same concentration of feedstock with 10 wt%.  

Table 4.4.5.1 illustrates the varying of concentration of 2-butanol for the 

hydrothermal treatment.  

Table 4.4.5.2 illustrates the varying of concentration of DMSO for the hydrothermal 

treatment.  

Table 4.4.5.3 illustrates the varying of concentration of H3PO4 for the hydrothermal 

treatment.  

Table 4.4.5.4 illustrates the adding of 2-butanol as extracting phase and DMSO as 

homogeneous catalyst conditions for the hydrothermal treatment. 

Table 4.4.5.5 illustrates the adding of 2-butanol as extracting phase and H3PO4 as 

homogeneous catalyst conditions for the hydrothermal treatment. 

 

Lignin content in feedstock         

(wt%) 

Palm kernel shell residues (g)  

                 3.59, 5.78, 6.93  

                      and 9.98 

                             1 

De-ionizer water (g)         9  

Reaction  temperature (°C)     280 
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Figure 4.4.5.1 Yields of 5-HMF from glucose by acid catalytic hydrothermal reaction 

under 250 °C [27] 

Figure 4.4.5.2 Effect on 5-HMF selectivity of adding an extracting organic solvent 

7:3 (w/w) MIBK: 2-butanol and DMSO (60 wt%) to the aqueous phase for 10 wt% 

glucose dehydration at 170 °C using HCl as catalyst [24] 
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Table 4.4.5.1 Adding of 2-butanol conditions for the hydrothermal treatment 

 

 

 

 

 

 

 

Table 4.4.5.2 Adding of DMSO conditions for the hydrothermal treatment. 

 

 

 

  

 

 

Table 4.4.5.3 Adding of H3PO4 conditions for the hydrothermal treatment. 

 

 

 

 

 

 

 

Table 4.4.5.4 Adding of 2-butanol as extracting phase and DMSO as  

 

    homogeneous catalyst conditions for the hydrothermal treatment. 

 

 

 

 

 

 

Concentration of 2-butanol 

(v/v%) 

Palm kernel shell residues (g) 

Reaction  temperature (°C) 

                 20, 30, 40, 50 and 60  

                                                     

                            1 

                          280 

Concentration of DMSO 

(v/v%) 

Palm kernel shell residues (g)  

                 20, 40, and 60 

                            

                           1 

Reaction  Temperature (°C)     280 

Concentration of H3PO4 

(v/v%) 

Palm kernel shell residues (g)  

                 1, 3 and 5 

                              

                        1 

Reaction  Temperature (°C)                        280 

Concentration of 2-butanol         

99 v/v % (g) 

Concentration of DMSO 

(v/v%) 

Palm kernel shell residues (g)  

                       4.5 

                  

                 20, 40, 60 

                              

                          1 

Reaction  Temperature (°C)  280 
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Table 4.4.5.5 Adding of 2-butanol as extracting phase and H3PO4 as homogeneous                              

 

                       catalyst conditions for the hydrothermal treatment.     

                           

 

 

 

 

 

 

 

 

 

 

Concentration of 2-butanol         

99 v/v% (g) 

Concentration of H3PO4 

(v/v%) 

Palm kernel shell residues (g)  

                       4.5 

                  

                 1, 3 and 5 

                              

                           1 

Reaction Temperature (°C)                           280 



CHAPTER V 

 

RESULTS AND DISCUSSIONS 
 

Characterization of liquid products 

 

5.1 Calculation of conversion of glucose, yield of 5-HMF and selectivity of  

5-HMF  

 

            Conversion of glucose (X g), yield of 5-HMF (Y h) and selectivity of 5-HMF  

(S h) in this study could be dertermined using equations 5.1.1, 5.1.2 and 5.1.3. 

 

Xg (%) = [Go – G]  × 100                                                           

   G    

whereas Go is the concentration of glucose before reaction (mg/l) and G is the 

concentration of glucose after reaction (mg/l). 

 

Yh (%) = [H − Ho] × 100 

    Go  

Ho is the concentration of 5-HMF before reaction (mg/l) and H is the concentration of 

5-HMF after reaction (mg/l). 

 

                                            S h (%) =       Yh        × 100 

                                                                  Xg 

 

 

 

 

 

 

 

 

(5.1.1) 

(5.1.2) 

      (5.1.3) 
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5.2 Calibration curves of HPLC for determing glucose and 5-HMF for 

concentration in liquid product 

             

            First, calibration curves of glucose and 5-HMF were obtained by calibrating 

the HPLC (model) with standard samples (99%) of glucose and 5-HMF with various 

concentraion. For a better precision, the caribration curves of 5-HMF are prepared in 

order to separated ranges as shown in figure 5.2.1 and 5.2.2, respectively. Meanwhile, 

the calibration curve of pure glucose illustrated in Figure 5.2.3 could be employed in a 

single chart because of its higher accuracy. The standard of variation (R2) of each 

calibration curve is acceptably higher than 92%. Based on, the calibration curve of 

pure glucose and 5-HMF illustrated in figures 5.2.1, 5.2.2 and 5.2.3. 

 

 
 

Figure 5.2.1 The calibration curve of pure 5-HMF was used to calculate the 

concentration of 5-HMF in liquid product when area less than 6.5E+7 counts 
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Figure 5.2.3 The calibration curve of pure glucose was used to calculate the           

concentration of glucose in liquid product 
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5.3 Direct conversion of various carbohydrates feedstock compound for 5-HMF 

production 

 

            In this study, I would like to investigate the in situ of 5-HMF, “blank test”, 

which obtain from these preliminary tests. All experiments were performed under 

condition of 280 °C with 50 minutes, containing 10 wt% cellulose, glucose and 

fructose. Essentially, the usage of several sorts of raw material could lead to a 

variation of 5-HMF yield. Nonetheless, pure cellulose and pure fructose could not be 

employed as referable blank samples for our work because of both of them are not 

consistent in a proportion of molecules compare with biomass. Naturally, biomass is 

complicated molecules which are composes of cellulose, hemicellulose, lignin and ash 

for this reason the utility of pure cellulose is better alternative for “blank sample”. In 

addition, it is because the close proximity between simulate test and substantial test. 

With a tuning of processing parameters, it is found that the formation of 5-HMF could 

be generated from the dehydration process of cellulose, glucose and fructose with 

different yield as shown in figure 5.3. Furthermore, it could be confirmed that the 

majority of cellulose hydrolysis is glucose and fructose, leading to a possibility of 

their further degradation to form 5-HMF. Subsequently, it could be inferred that 

cellulose and glucose are viable substrates for 5-HMF production with a yield of 34 % 

and 37%, respectively. 

                    

 

 

 

 

 

 

 

 

 

 

 

 

 



40 
 
 

 

 

 

 

 
Figure 5.3 Effect of various carbohydrates feedstock compound on 5-HMF yield 

from pure cellulose, pure glucose and pure fructose 

 

 

 

 

 

 

 

 

 

0

5

10

15

20

25

30

35

40

Cellulose Glucose Fructose

5-
H

M
F 

yi
el

d
(%

)

Types of  raw  material

Blank sample



41 
 
5.4 Thermal stability of reactants  

             

            Figure 5.4.1 and 5.4.2 display the thermal stability of glucose and fructose 

dissolved in water. Some previous works also show that glucose and fructose could 

undergo the dehydration process, leading to 5-HMF production. In this work, the 

thermal stability of each pure substance dissolved in water that examined in a 

temperature range of 220-300 °C. The initial concentration of glucose was rather high 

with a local maximum of 848 mg/l. After that, when the reaction temperature is 

greater than 220 °C the concentration of glucose decreased because of the degradation 

of molecule of glucose to form other substances such as 1,6-anhydroglucose, 

erythrose, glyceraldehyde, glycolaldehyde, di-hydroxyacetone and 5-HMF while the 

detectable concentration of fructose in the range of  interested reaction temperature 

was not found [21].  

 

 
 

Figure 5.4.1 Concentration curve of glucose   
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Figure 5.4.2 Concentration curve of fructose 

 

5.5 Effect of reaction temperature  

 

       In this work, effect of each operating parameters on 5-HMF yield was examined 

experimentally. Among these parameters, reaction temperatures which are defined as 

a maximum temperature within the reactor, which could be achieved by a constant 

heating rate of 5 °C/min. Because of the reactor configuration, it is designed to heat 

up the reactor until the designated temperature is achieved and then the reactor will be 

immediately cooled down by quenching in water to stop the reaction in prior to sampling 

the product and residue from the reactor. Palm kernel shell residues were 

hydrothermally treated with the reaction temperature in a range of temperature 220 to 

300 °C. Other operating parameters which are weight of palm kernel shell residues 

and weight ratio of de-ionized water to palm kernel shell residues were set constant at 

9 g and 1 g, respectively. Figure 5.5.1 shows the temperature history inside tubular 

reactor at a constant heating rate of 5 °C/min. 
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Figure 5.5.1 Temperature history regarding with different target temperature   

 

            After hydrothermal treatment within the tubular reactor, liquid products with 

distinctively different appearance could be obtained. At least two experiments were 

conducted for confirming repeatability. In each experiment, solid and liquid sample 

were separated and then the liquid part analyzed for determining quantities of 5-HMF 

and other hydrolyzed products. Based on observation, the higher the reaction 

temperature was set the more transparent the appearance of the liquid products could 

be prepared as shown in figure 5.5.2. 
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Figure 5.5.3 The concentration of 5-HMF varied with different temperature in the 

range of 220 – 300 °C, average particle size 0.8 mm 
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Figure 5.5.4 Yield of 5-HMF varied with different reaction temperature compared 

between palm kernel shell residues (this work) and saw dust [28] 
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The dependence of 5-HMF concentration on the heating rate (soaking time) within the 

range of 5 to 10 oC/min at different temperature shows in figure 5.6.5. At the 

beginning with the lowest of the reaction temperatures of 220 °C, glucose is the main 

component in the liquid products, which was indicated in the previous study 

meanwhile 5-HMF will be converted from glucose therefore yield of 5-HMF can 

cause to the lowest concentration accordingly. Secondly, at the reaction temperatures 

of 260°C, the yield of 5-HMF became lower when the heating rate was increased. 

This result suggests that with a lower heating rate the palm kernel shell was subjected 

to water vapor with a longer contact time, resulting in a larger amount of cellulose 

converted to 5-HMF. Thirdly, a corresponding result was observed at the higher 

reaction temperature of 280 °C and above when the heating rate was increased from 5 

to 7.5 °C/min. On the other hand, at the highest of heating rate, the contact time with 

water vapor was too short to allow the conversion of cellulose into 5-HMF 

sufficiently. This leads to a decrease in concentration of 5-HMF at all reaction 

temperature. This experimental result is accordance with the previous studied, Bao et 

al (2008), they synthesized of 5-HMF by the dehydration of fructose in the presence 

of the bronsted acidic and lewis acid derivative ionic liquid [25]. Figure 5.6.6 

illustrates the yield of 5-HMF derived from two types of feedstock including palm 

kernel shell residues and fructose, respectively. This corresponding results show that 

yield of 5-HMF steadily decreases when the heating rate was increased. 
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Figure 5.6.5 Heating-rate dependence of 5-HMF concentration at difference reaction 

temperatures of 220-300 °C 
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Figure 5.6.6 Yield of 5-HMF varied with heating rate compared between palm kernel 

shell residues (this work, upper) and fructose ([25], lower) 
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initial concentration of pure fructose from 10 to 30 wt% significantly increased in the 

concentration of 5-HMF in liquid product.   

Figure 5.7.4 Concentration changes of 5-HMF at heating rate of 5 °C/min  

with 10 and 20 wt% of feedstock concentration 

Figure 5.7.5 Concentration changes of 5-HMF at heating rate of 7.5 °C/min 

with 10 and 20 wt% of feedstock concentration 

0

200

400

600

800

1000

1200

1400

1600

1800

2000
10 wt% of feedstock
20 wt% of feedstock

Reaction temperature (oC)
260220 300280

C
on

ce
nt

ra
tio

n 
of

 5
-H

M
F 

in
hy

dr
ol

yz
ed

 
pr

od
uc

t (
m

g/
l)

0

200

400

600

800

1000

1200

1400

1600

1800
10 wt% of feedstock
20 wt% of feedstock

220 260 280 300

Reaction temperature (oC)

C
on

ce
nt

ra
tio

n 
of

 5
-H

M
F 

in
hy

dr
ol

yz
ed

 
pr

od
uc

t (
m

g/
l)



57 
 

 

Figure 5.7.6 Concentration changes of 5-HMF at heating rate of 10 °C/min 

with 10 and 20 wt% of feedstock concentration 

 
 

Figure 5.7.7 Concentration of 5-HMF varied with heating rate at the reaction 

temperature of 280 °C 
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5.8 Effect of lignin content of palm kernel shell residues  

 

           This study investigates the effect of lignin content of palm kernel shell residues 

on the hydrothermal treatment process. 

 

Table 5.8 The lignin content in several physical properties of 

feedstock

Sample A = Raw material residues treated with alkali solution for 3 hrs. 

Sample B = Raw material residues treated with alkali solution for 1.5 hrs. 

Sample C = Original raw material residues without alkali treatment and sift with size 

800 µm. 

Sample D = Original raw material residues without alkali treatment and sift with size 

250 µm.   

             

           As shown in Table 5.8, it was not clear about how to control the lignin content 

in feedstock and how much its composition might be varied. A non-uniform lignin 

distribution should have to exist in palm kernel shell on account of variations in 

species of palm oil characteristics. Dried palm kernel shell residues were conducted in 

the hydrothermal treatment at different fiber lignin contents. The elimination of lignin 

contents from raw material were usually performed by alkali treatment method and 

determination the composition by USDA’s method. Nonetheless, at least two times of 

experiment were significantly conducted for confirming repeatability.  

Sample D Sample C Sample BSample A 
9.98 6.93 5.78 3.59 Lignin 

Chemical composition
wt % 
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Figure 5.8 Concentration and yield of 5-HMF varied with the lignin content under the 

reaction temperature and heating rate of 280 °C and 5 °C/min, respectively 

 

           As shown in figure 5.8, this experimental result indicated that the influence of 

lignin content led to decrease the concentration and yield of 5-HMF with an increase 

in lignin fraction. Furthermore, this study suggests that the amount of lignin content 

should be considered an important process parameter which affects the efficiency of 

hydrothermal treatment process. To the best of our knowledge, lignin is the major 

barrier to efficient extraction of cellulose fibers for pulp and paper production. 

Especially, for the bio-energy industry, lignin is a barrier to saccharification process 

and hydrolysis process for production of liquid bio-fuel [41-42]. In 2000, Demirba et 

al studied the effect of lignin content on the process of aqueous liquefaction, they 

concluded that when increasing in lignin content the oil yield decreased and the char 

yield increased [43]. 
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5.9 Effect of 2-butanol as extracting solvent  

 

           The aim of this study is to set up the viscous portion called “extracting phase or 

black portion” from 2-butanol as petroleum-derived product. Naturally, 5-HMF is 

water-soluble molecule. It could be converted into levulinic and formic acid by 

rehydration reaction. Moreover, when the temperature increase, the degradation of 5-

HMF can be formed to acids, aldehydes and phenols [28]. According to the 

calculation of solubility of 5-HMF in water and 2-butanol, it could be noted that 5-

HMF can more dissolve in 2-butanol than water. For this reason, the hydrothermal 

treatment of palm kernel shell residues should be expected with the presence of 2-

butanol as extracting solvent in order to suppress the rehydration and degradation 

reaction. 

            Figure 5.9.1 shows the effects of adding 2-butanol at 20, 30, 40, 50 and 60 

v/v% on the total volume of liquid product. It could be seen that an increasing in 

concentration of 2-butanol led to increase in the portion of extracting phase obtained 

from the hydrothermal treatment as shown in figure 5.9.2. After reaction, the liquid 

products consisted of portions of the aqueous and organic phase were separated and 

taken to determine the amount of 5-HMF using HPLC analysis.  
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Figure 5.9.1 Effect of concentration of 2-butanol on the total volume of liquid 
product 
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Figure 5.9.3 Effect of 2-butanol loading on the concentration and yield of 5-HMF in 

liquid product under 280 °C and 5 °C/min 
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Figure 5.10.2 Effect of DMSO loading on the concentration of 5-HMF in liquid 

product under 280 °C and 5 °C/min 
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Figure 5.11.2 Effect of H3PO4 loading on the concentration of 5-HMF in liquid 

product under 280 °C and 5 °C/min 
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5.12 Effect of 2-butanol as extracting solvent in the presence of DMSO as 

homogeneous catalyst  

 

           In this studied, we investigated the production of 5-HMF by hydrothermal 

treatment of palm kernel shell residues using a batch-type tubular reactor system, 

consisted of reactive aqueous phase modified with DMSO, combined with an organic 

extracting phase applied with 2-butanol. As shown in figure 5.12.1, the overall 

concentration and yield of 5-HMF increased with the increase in DMSO loading, in 

particular at 40 and 60 v/v% of DMSO, the highest yield was found in this study, 

compared with previous experiment in this research.  

           This is suggested about the catalyzed capability of DMSO. Beside, DMSO not 

only can suppress the formation of condensation byproducts and the 5-HMF 

rehydration reaction, but it is also stabilized molecule for the furanose form at higher 

temperatures [46]. In 2008, Ananda et al investigated the mechanism of the 

dehydration of D-fructose to 5-HMF in DMSO without added acid by using NMR 

spectra method [26]. From the chemical point of view, they suggested a mechanism to 

explain the dehydration of the two furanose forms of D-fructose to 5-HMF as shown 

in figure 5.12.2. The liquid samples obtained from this hydrothermal treatment shows 

in figure 5.12.3 to 5.12.5. 
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5.13 Effect of 2-butanol as extracting solvent in the presence of H3PO4 as 

homogeneous catalyst or acid-catalyzed  

 

            Similar to a previous study, we investigated the production of 5-HMF by 

hydrothermal treatment of palm kernel shell residues using a batch-type tubular 

reactor system, the system is comprised of reactive aqueous phase modified with 

H3PO4, combined with an organic extracting phase applied with 2-butanol. Figure 

5.13.1 illustrates the effect of H3PO4 content in the presence of 2-butanol as extracting 

solvent on the concentration of 5-HMF in liquid products, it could be concluded that 

the concentration of 5-HMF decrease when the high loading of H3PO4 was carried 

out. In addition, the high loading of H3PO4 led to increase the amount of condensation 

byproduct such as furfural obtained from HPLC’s chromatograms. Unfortunately, this 

experiment could not discover the extracting phase owing to the effect of corrosive 

mineral acids such as H3PO4 as shown in figure 5.13.2. Based on Kuster et al (1990) 

work, they demonstrated the use of acid-base mixtures for increasing the yield of 5-

HMF, but they found the system containing furans, pyrroles, and pyridines which this 

experimental result is in accordance with our work [44]. 
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CHAPTER VI 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

             

              Palm kernel shell residues could be converted to liquefied products including 

5-HMF within a batch-type tubular reactor operated under subcritical water 

conditions. The process parameters which could affect the final yield of 5-HMF are 

reaction temperature, heating rate, concentration of feedstock, lignin content and 

concentration of extracting solvent and homogeneous catalysts. Moreover, the solid 

residues which were sampled before and after process we were investigated the 

change in physical structure and chemical component existing on surface as 

concluded in the previous content. Particularly, this research put the emphasis on the 

liquid product for preparing 5-HMF and find out for optimal conditions for increasing 

yield of 5-HMF in liquefied product alike.  

The major conclusions of all experiments were summarized as follows;  

- A remarkable yield of 5-HMF obtained under the reaction temperature ranging 

between 280-300 oC.  

- An increase in heating rate decreased the yield of 5-HMF because a contact 

time between water vapor and cellulose was depleted.  

- An increase in concentration of feedstock led to increase the yield of 5-HMF 

because the larger amount of palm kernel shell residues could increase the 

surface area of cellulose for hydrolysis process.   

- The larger amount of lignin content in feedstock reduced the yield of 5-HMF 

because lignin is a striking barrier between cellulose and water vapor in the 

hydrolysis process.      

- The addition of 2-butanol as extracting phase to the hydrothermal process of 

palm kernel shell residues could increase the total yield of 5-HMF with the 
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increase in the concentration of 2-butanol of which the optimum value was 40 

v/v%. 

- The addition of homogeneous catalysts could not increase the yield of 5-HMF, 

neither with DMSO nor H3PO4.  

- The addition of 2-butanol as extracting solvent with the presence of DMSO as 

homogeneous catalyst could increase the total yield of 5-HMF to the highest 

value when compared with other results of this work. 

- The addition of 2-butanol as extracting solvent with the presence of H3PO4 as 

homogeneous catalyst could not increase the yield of 5-HMF because the 

extracting phase did not exist in this case. 

 

6.2 Recommendations 

 

      - To study designed experiments using the smallest particles size of palm kernel 

shell residues before treated by alkali treatment. 

      -  To study effect of common parameters such as reaction temperature, heating 

rate and lignin content on 5-HMF yield. 

      - To study separation process to extract 5-HMF and furfural from the extracting 

solvent and homogeneous catalyst. Meanwhile, simulation should be conducted for 

developing the understanding of this process.       

-  To study the hydrogenolysis reaction to convert 5-HMF into 2,5-dimethylfuran 

(DMF) which this molecule is the best candidate for replacement of ethanol for the 

production of liquid bio-fuel. 
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APPENDIX A 

 

HPLC chromatogram of 5-HMF solution 

 

Figure A1 HPLC chromatogram of 5-HMF solution at 20 ppm, 5µl,  

area 8,815,117 counts 

 

 

Figure A2 HPLC chromatogram of 5-HMF solution at 20 ppm, 5µl,  

area 12,582,159 counts 
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Figure A3 HPLC chromatogram of 5-HMF solution at 40 ppm, 5µl,  

area 14,599,178 counts 

 

 

Figure A4 HPLC chromatogram of 5-HMF solution at 40 ppm, 5µl,  

area 24,200,936 counts 
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Figure A5 HPLC chromatogram of 5-HMF solution at 60 ppm, 5µl,  

area 49,064,040 counts 

 

 

Figure A6 HPLC chromatogram of 5-HMF solution at 60 ppm, 5µl,  

area 39,436,527 counts 
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Figure A7 HPLC chromatogram of 5-HMF solution at 80 ppm, 5µl,  

area 73,112,464 counts 

 

 

Figure A8 HPLC chromatogram of 5-HMF solution at 80 ppm, 5µl,  

area 58,085,390 counts 
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Figure A9 HPLC chromatogram of 5-HMF solution at 200 ppm, 5µl,  

area 191,403,792 counts 

 

 

Figure A10 HPLC chromatogram of 5-HMF solution at 200 ppm, 5µl,  

area 216,642,096 counts 
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Figure A11 HPLC chromatogram of 5-HMF solution at 600 ppm, 5µl,  

area 275,978,048 counts 

 

 

Figure A12 HPLC chromatogram of 5-HMF solution at 600 ppm, 5µl,  

area 288,983,488 counts 
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Figure A13 HPLC chromatogram of 5-HMF solution at 1,000 ppm, 5µl,  

area 320,728,192 counts 

 

 

Figure A14 HPLC chromatogram of 5-HMF solution at 1,000 ppm, 5µl,  

area 332,015,136 counts 
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Figure A15 HPLC chromatogram of 5-HMF solution at 1,400 ppm, 5µl,  

area 377,027,328 counts 

 

 

Figure A16 HPLC chromatogram of 5-HMF solution at 1,400 ppm, 5µl,  

area 387,283,264 counts 

 

 



88 
 

 

Figure A17 HPLC chromatogram of 5-HMF solution at 1,800 ppm, 5µl,  

area 390,223,744 counts 

 

 

Figure A18 HPLC chromatogram of 5-HMF solution at 1,800 ppm, 5µl,  

area 416,521,280 counts 
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Figure A19 HPLC chromatogram of 5-HMF solution at 2,200 ppm, 5µl,  

area 537,328,488 counts 

 

 

Figure A20 HPLC chromatogram of 5-HMF solution at 2,200 ppm, 5µl,  

area 495,760,672 counts 

 

 



90 
 

 

Figure A21 HPLC chromatogram of 5-HMF solution at 2,600 ppm, 5µl, 

area 761,128,448 counts 

 

 

Figure A22 HPLC chromatogram of 5-HMF solution at 2,600 ppm, 5µl,  

area 877,233,344 counts 
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APPENDIX B 

 

USDA’s method 

Equipment:  

1. Crucible 

2. Shallow enamel pan 

3. Suck dry 

4. Oven 

5. Cooling bath 

6. Reflux set 

Reagents: 

1. acid-detergent fiber (1 L) 

Sulfuric acid       49.04    g 

Cetyl trimethylammonium bromide (CTAB) 20         g  

 Weigh sulfuric acid and make up to volume with distilled water at 

20°C.  Check normality by titration before addition of detergent. Then add 

CTAB and stir. 

2. Decahydronaphthalene  

3. Acetone 

4. Hexane 

5. Saturated potassium permanganate  (1 L) 

‐ Distilled water     1 L 

‐ Potassium permanganate    50 g 

‐ Silver sulfate    0.05  g  

Dissolve potassium permanganate and silver sulfate in distilled water. 

Keep out of direct sunlight. 

6. Lignin buffer solution: (1 L) 

‐ Ferric nitrate nanohydrate  6 g 

‐ Silver nitrate   0.15 g 

‐ Acetic acid   500  ml 

‐ Potassium acetate   5 g 
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‐ Tertiary butyl alcohol  400  ml 

‐ Distilled water   100 ml 

Dissolve ferric nitrate nonahydrate and silvernitrate in distilled water. 

Combine with acetic acid and potassium acetate. Add tertiary butyl alcohol 

and mix.  

7. Combined permanganate solution : (1 L) 

Combine and mix saturated potassium permanganate and lignin buffer 

solution in the ratio of 2:1 by volume, before use. Unused mixed solution kept 

about a week in a refrigerator (purple). 

      8.   Demineralizing solution (1 L) 

  Oxalic acid dehydrate   50  g 

 Ethanol 95 %    700  ml 

 Hydrochloric acid   50  ml 

  Distilled water    250 ml 

 Dissolve oxalic acid dehydrate in ethanol .Add concentrated 

hydrochloric acid and distilled water and mix. 

      9.  Ethanol 80 % 

                         95 % ethanol     845   ml  

       Distilled water   155   ml                                                                  

Step;   

1. Dry sample at less than 65 °C. And grind through 20-30 mesh (1mm). Add 

acid-detergent fiber to 1 (g) samples in crucibles in a shallow enamel pan 

containing cold water 1 cm. 

Acid-detergent fiber:  

1) Weight 1 g air dry sample ground to pass 1 mm. 

2) Add 100 ml acid detergent solution and 2 ml 

decahydronaphthalene. Heat to boiling in 5 to 10 minutes. Reflux 

60 min. 

3) Filter on a previous tare crucible and suck dry. Break up the 

filtered and wash twice with hot water (90-100 °C).  
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4) Repeat wash with acetone until remove no more color: break up all 

lumps. 

5) Optional wash with hexane. Suck dry the acid detergent fiber free 

of hexane. Dry overnight at 100 °C. 

2. Add 25 ml of combined saturated potassium permanganate and Lignin buffer 

solution (2:1 by volume) to crucibles in the enamel pan containing cold water. 

Adjust level (2-3cm.) of water in pan. Stir contents to break lump and draw 

permanganate solution up on side of crucibles to wet all particles. 

3. Allow crucible to stand at 20-25 °C for 90-100 min. add more mixed 

permanganate solution if necessary. Purple color must be present at all time. 

4. Remove crucibles to filtering apparatus. Suck dry. Do not wash. Place in a 

clean enamel pan, and fill crucibles no more than half full with Demineralizing 

solution, maybe added directly to crucible. Care must be taken foaming. 

       After 5 min, suck dry on filter and refill haft full with Demineralizing 

solution. Repeat after second interval of solution is very brown. Rinse side 

crucible with solution from a wash bottle with a fine stream. Treat until fiber is 

white (20-30 min). 

5. Fill and thoroughly wash crucible and contents with ethanol. Suck dry and 

repeat two times. Wash twice in similar manner with acetone. Suck dry. 

6. Dry at 100 °C overnight. And weigh. Calculate lignin content as loss weight 

from ADF. 

7. Ash at 500 °C for 3 hr, cool and weigh. Calculate residual ash as the 

difference between the weigh original tares of crucible. Calculate cellulose by 

weight loss upon ash.   
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APPENDIX C 

 

CALCULATION OF PRESSURE CHANGE IN THE REACTOR UNDER 

SUBCRITICAL WATER CONDITION 

 

            Temperature – pressure table of water at subcritical water condition were 

exhibited in appendix C. The density of water under subcritical condition was 

calculated from amount of water added and volume of reactor by; 

 

ρ T,P   =    M  

                       V reactor 

      ρ T,P =  density of water at each temperature (°C) and pressure (psia) 

      M        = amount of water added to reactor (g) 

      V reactor =   volume of tubular reactor (ml) 

 

            In this work, the density of water was calculated from mentioned correlation, 
0.364 g/ml, with 9 g of water added and 24.7 ml of reactor volume.  
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APPENDIX D 

 

Table D1 Isochoric properties of pure water at D = 0.364 g/ml 

(NIST for thermo-physical properties of fluid systems calculation program: 

http://webbook.nist.gov/chemistry/fluid/) 

Temperature (°C) 
Pressure  

(psia)  

Internal Energy 

(kJ/mol) 

Enthalpy 

(kJ/mol) 
Entropy (J/mol*K) Phase 

30.00 0.615 2.267 2.267 7.876 liquid and vapor 

40.00 1.071 3.021 3.022 10.32 liquid and vapor 

50.00 1.791 3.777 3.777 12.699 liquid and vapor 

60.00 2.893 4.533 4.534 15.005 liquid and vapor 

70.00 4.525 5.292 5.294 17.250 liquid and vapor 

80.00 6.876 6.054 6.056 19.437 liquid and vapor 

90.00 10.179 6.819 6.822 21.573 liquid and vapor 

100.00 14.709 7.588 7.593 23.663 liquid and vapor 

110.00 20.795 8.362 8.369 25.710 liquid and vapor 

120.00 28.815 9.142 9.152 27.720 liquid and vapor 

130.00 39.201 9.930 9.943 29.697 liquid and vapor 

140.00 52.437 10.725 10.743 31.645 liquid and vapor 

150.00 69.062 11.529 11.553 33.569 liquid and vapor 

160.00 89.667 12.344 12.374 35.470 liquid and vapor 

170.00 114.90 13.169 13.209 37.355 liquid and vapor 

180.00 145.45 14.007 14.057 39.225 liquid and vapor 

190.00 182.06 14.859 14.922 41.084 liquid and vapor 

200.00 225.52 15.726 15.803 42.935 liquid and vapor 

210.00 276.68 16.608 16.704 44.781 liquid and vapor 

220.00 336.43 17.508 17.625 46.625 liquid and vapor 

230.00 405.68 18.427 18.567 48.470 liquid and vapor 

240.00 485.43 19.366 19.534 50.318 liquid and vapor 

250.00 576.70 20.327 20.526 52.172 liquid and vapor 

260.00 680.55 21.311 21.546 54.035 liquid and vapor 

270.00 798.14 22.320 22.595 55.909 liquid and vapor 

280.00 930.65 23.355 23.676 57.799 liquid and vapor 

290.00 1079.3 24.420 24.793 59.706 liquid and vapor 

300.00 1245.6 25.517 25.947 61.637 liquid and vapor 



 

 

Figurre D1 The ccorrelation b
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APPENDIX E 

 

Characterization of solid residues 

 

The thermal behavior of raw material 

 

          Figure E1 shows the thermal behavior of raw palm kernel shell residues, which 

was analyzed by the Simultaneous Thermal Analyzer (STA; Netzsch, STA490C). It is 

clear that weight loss of palm kernel shell residues could be divided in to four steps, 

happened between 274 °C and 620 °C. Complete decomposition of palm kernel shell 

residues is observed above 620 °C. According to the thermo gram, it could be cleared 

that palm kernel shell residues structure decomposed in extensive temperature region 

because of the complicated structure comprised of glucose, hemicelluloses, lignin and 

ash.  

 

 

Figure E1 Thermo gravimetric (TG) analysis results of raw palm kernel shell residues 
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 Surface characteristic of solid residues         

             

           As shown in figure E2 , the scanning electron microscope (SEM-EDS; JEOL, 

JSM-5800LV) and tranmission electron microscope (TEM; JEM-2100)  illustrates the 

unprocessed and processed of palm kernel shell residues. For the unprocessed sample, 

the surface was dense and flat without any cracks. This would account for its poor or 

negligible BET surface area [47]. In contrast, for the processed one, it could be 

apparently seen that there were no lingo-cellulosic structures on the surface but many 

small cavities over the surface because of the surface were hydrolyzed by hot 

compressed water. 
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 Identification of functional groups on surface of solid residues 

 

            As shown in figure E3, the Fourier Transform Infrared spectra (FT-IR; Perkin 

Elmer, Spectrum One) of the raw palm kernel shell residues, the alkali pretreated of 

palm kernel shell residues and the palm kernel shell residues after hydrothermal 

treatment were displayed the following bands: 

 

1647 cm-1: C=C stretching vibration in quinines; 

1,513 – 1,517 cm-1: C=C stretching vibration in aromatic rings; 

1,269 – 1,272 cm-1: C-O stretching vibration in ethers; 

712 and 812 cm-1: C-H out-of-plane bending in benzene derivatives 

 

Figure E3 FT-IR spectra of the raw palm kernel shell residues, the alkali pretreated of 

palm kernel shell residues and the palm kernel shell residues after hydrothermal 

treatment 
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           The major surface functional groups showed in the raw palm kernel shell 

residues were aromatic rings, the carbonyl groups such as ethers and benzene 

derivatives. After the alkali pretreatment, the surface displayed the functional groups 

of quinines, aromatic rings and benzene derivatives. For the palm kernel shell residues 

after hydrothermal treatment, the ketonic groups should be absent owing to their 

thermal degradation at high temperatures [47]. Anyway, the hydrothermal treated 

surfaces were composed of aromatic rings, ethers and benzene derivatives. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



102 
 

BIOGRAPHY 
 

            Mr. Pawit Tongrod was born in Bangkok, Thailand on 25 December 1986. He 

is the younger of the two children of Mr. Komol and Mrs. Poungtip Tongrod. He later 

moved to Nonthaburi province where he has lived until now with his family. He 

completed high school at Horwang School before accessing to Chulalongkorn 

University. At the University he completed a Bachelor of Science, majoring in 

Chemical Technology. After four years of study he gained admission to Graduate 

School of Chulalongkorn University. On 22-23 November 2010, he participated The 

17th Regional Symposium on Chemical Engineering with the content of “Preparation of 5-

hydroxymethylfurfural by hydrothermal treatment of palm kernel shell residues”. 

(CET 520), pp. 79. Eventually, in 2011, he graduated with the thesis entitled “Preparation 

of 5-HMF by hydrothermal treatment of palm kernel shell residues”.  
 

 

 


	Cover (Thai) 
	Cover (English) 
	Accepted 
	Abstract (Thai)
	Abstract (English) 
	Acknowledgements 
	Contents 
	CHAPTER I INTRODUCTION
	1.1 Background
	1.2 Objective
	1.3 Scope of research
	1.4 Expected benefits

	CHAPTER II LITERATURE REVIEW
	2.1 The hydrothermal treatment of cellulose with non-catalytic conversionunder subcritical and supercritical water
	2.2 The behavioral decomposition of pure 5-hydroxymethylfurfural (5-HMF)under subcritical and supercritical water
	2.3 The hydrothermal treatment of D-fructose, D-glucose and xylose withcatalytic conversion under subcritical and supercritical water for 5-HMFproduction
	2.4 The hydrothermal treatment of cellulose and biomass with catalyticconversion under subcritical and supercritical water for 5-HMFproduction

	CHAPTER III FUNDAMENTAL KNOWLEDGE
	3.1 Biomass
	3.2 Cellulose
	3.3 Hemicellulose
	3.4 Lignin
	3.5 5-hydroxymethylfurfural
	3.6 Hydrothermal treatment process

	CHAPTER IV EXPERIMENTAL PROCEDURE
	4.1 Preliminary analysis of chemical component of palm kernel shellresidues
	4.2 Feedstock
	4.3 Hydrothermal treatment
	4.4 Experimental condition

	CHAPTER V RESULTS AND DISCUSSIONS
	5.1 Calculation of conversion of glucose, yield of 5-HMF and selectivity of5-HMF
	5.2 Calibration curves of HPLC for determing glucose and 5-HMF forconcentration in liquid product
	5.3 Direct conversion of various carbohydrates feedstock compound for5-HMF production
	5.4 Thermal stability of reactants
	5.5 Effect of reaction tempe
	5.6 Effect of heating rate or soaking time
	5.7 Effect of concentration of palm kernel shell residues
	5.8 Effect of lignin content of palm kernel shell residues
	5.9 Effect of 2-butanol as extracting solvent
	5.10 Effect of dimethyl sulfoxide (DMSO) as homogeneous catalyst
	5.11 Effect of H3PO4 as homogeneous catalyst or acid-catalyzed
	5.12 Effect of 2-butanol as extracting solvent in the presence of DMSO ashomogeneous catalyst
	5.13 Effect of 2-butanol as extracting solvent in the presence of H3PO4 ashomogeneous catalyst or acid-catalyzed

	CHAPTER VI CONCLUSIONS AND RECOMMENDATIONS
	6.1 Conclusions
	6.2 Recommendations

	References 
	Appendix 
	Vita



