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CHAPTER I
INTRODUCTION

Fixn € N| let X1, Xs,..., X, be independent Bernoulli random variables with

P(X;=1)=p =1— P(X; =0)

for i = 1,2,...,n. Let U, denote a Poisson random variable with mean A > 0,
ie.,

e\
PU,=1x) = forz =0,1,...; M\, —szandzar—{O,l,Q 3.

x!
Successively improved estimates of the total variation distance between the

distribution of S, = X; + X5 4+ -+ + X, and U, have been obtained by many
mathematicians. The followings are examples of bounds of the difference between
the distribution of \S,, and U,.
In 1960, Le Cam[5] showed that
sup |P(S, < x)— P(U,, <x)| < pr
z€LY i=1
Observe that the above bound does not depend on x. We call such a bound a
uniform bound. The examples of uniform bounds in Poisson approximation for
the distribution of S,, are the followings. Kerstan[4] gave his result in the form
sup |P(S, < x)— P(Uy, <z)] <105\, Zpl, 1f max p; < 1/4.
xGZg =1
Chen[2] used Stein method to obtain the following bound
sup |P(S, <x)—P(U,, <z)| < 5/\;1219?
xEZJ =1
and then Barbour and Hall[1] improved the result of Chen[2] as follows.

sup |P(S, <z)— P(Uy, <z)| < X1 —e Zpl

IEZJ



In 2003, Neammanee[6] gave a bound in the form
1 n
P(S,=xz)—-PU,, =) < - :
P(S =) (U, =21 < ;3

forz=1,2,...,n—1and \, € (0,1].

Notice that the bound in Neammanee[6] depends on z. It is called a non-
uniform bound. The following are examples of non-uniform bounds between
the distribution of S,, and U,. In the same year, Neammanee|7]| generalized his

result to the case of any positive A\, in the form

1 n
P — S > = < mi ! 2 1.1
[P(S, = 2) = P(Uy, xn_mm{x,xn }}iﬂjpz (1)

forx=1,2,...,n—1.

Teerapabolarn and Neammanee [8] gave some result, in 2006, as follows.

}Zp (12)

P(S. < 0) — PO, <o)l A= e min {1,
forx=1,2,...,n.

Let X1, X5, ... be a sequence of independent Bernoulli random variables and N
a positive integer-valued random variable. Assume N, X, X,, ... are independent.
Define the random sums of the sequence (X,,) to be Sy = X; + Xo + - + Xy.
Let Ay = ipi and A = E)\y.

i=1
In 1991, Yannaros[9] gave uniform bounds of the difference of the distribution

of Sy and U,. The following is the result.
Theorem 1.1. [9] Let X1, Xo, ... be independent Bernoulli random variables with

and N a positive integer-valued random variable which is independent of the X;’s.

Then

1—ev &
sup |P(Sy < z) — P(Uy < z)| SE‘)\N—)\‘—l—E(—NZp?). (1.3)
i=1

xezg A

In his work, Yannaros[9] also gave the bound in (1.3) in the case that X;’s are

indentically distributed.



Theorem 1.2. [9] Let X1, Xs, ... be independent and identically distributed Bernoulli

random variables with

and N a positive integer-valued random variable which is independent of the X;’s.
Then

sup |P(Sy < z) — P(Uppn < )

xEZ&

1 Var (N
,pE(l—e_pN)}+§ D al;(v)min{lﬂ pEN}.

<min{ —2—

- 2/1—p

In this work, uniform and non-uniform bounds in Poisson approximation for
random sums of Bernoulli random variables are given. The followings are the

results.
Theorem 1.3. Let Xy, Xs,... be independent Bernoulli random variables with

and N a positive integer-valued random variable which is independent of the X;’s.

Then
1) |P(Sy=2)—PUy=z)| <2 wherex € {1,2,...},

3\
2) sup |P(Sy =xz)— P(Uy,=2x)| < > + 2min {A, E|X — Ax|}.
T€Zt
Note that, when x = 0 the exact probability can be explicitly computed, that
is,

P(Sy=0)=) P(N=n)P(S,=0)=> P(N=n)[J(1—p)=E]J1-p).

=1 i=1
If X;’s are identically distributed, we obtained the following corollary.

Corollary 1.4. Let X1, X, ... be independent and identically distributed Bernoulli

random variables with

and N a non-negative integer-valued random variable which is independent of the

X,;’s. Then



1) |P(Sy=z)— P(Uy =) < 22X where x € {1,2,...},

9) sup |P(Sy = a) — P(Uy = o) < “PEN

+ 2pmin { EN, E|N — EN|}.
x€Zt 2

Theorem 1.5. Let X1, Xs,... be independent Bernoulli random variables with

and N a positive integer-valued random variable which is independent of the X;’s.

Then
3A -1 - : e S 2
|P(SN§x)—P(U,\§x)|§?+E Ay (1—e N>mm{l’x—+1}2pi
where x € {1,2,...}.

Corollary 1.6. Let X1, Xy, ... be independent and identically distributed Bernoulli

random variables with

and N a positive integer-valued random variable which is independent of the X;’s.

Then

|P(Sy < z) — P(Uy <) <

3pEN N . epN
E|(l—e® 1, ——
T e {( ‘ )mm{ 1

where x € {1,2,...}.



CHAPTER 11
PRELIMINARIES

In this chapter, we review some basic knowledge in probability which will be
used in our work.

Let (92, F, P) be a measure space. If P(Q) = 1, then (2, F, P) is called a
probability space and P is called a probability measure. The set ) will
be refered as sample space and its elements are called points or elementary
events and the elements of F are called events. For any event A € F, the
value P(A) is called the probability of A. We will use the notations P(X € B)
in place of P({w € Q : X(w) € B}). In the case where B = (—o0,a] or [a,b],
P(X € B) is denoted by P(X < a) and P(a < X < b), respectively. Let
X :Q— R If{we 5X(w) <z} belong to F for all x € R, then X is called a
random variable.

Let X be a random variable. A function F : R — [0, 1] which is defined by
F(z)=P(X <x)

is called the distribution function of X.
A random variable X with its distribution function F is said to be a discrete
random variable if the image of X is countable and said to be a continuous

random variable if F' can be written in the form

F(z) = / @t

for some nonnegative integrable function f on R. In this case, we say that f is
the probability function of X.
Let X1, Xo,..., X, be random variables. Then X;, X,,..., X, are indepen-



dent if and only if
P(X, <x,Xo<mg,....X,, <x,) = P(X; <x1)P(Xy < 3)--- P(X,, < )

for all x; € R wheret=1,2,...,n.
A sequence of random variables (X,,) is said to be independent if X, X;,, ..., X,
are independent for all distinct 1,75, ...,7; and for all kK € N.

The followings are examples of discrete random variables.
Example 2.1. Let X be a random variable with
P(X=1)=p and P(X=0)=1-p

where 0 < p < 1. Then X s called a Bernoullt random variable with param-

eter p, and denoted by X ~ Ber(p).

Example 2.2. Let X, Xo,..., X, be independent Bernoulli random variable with
parameter p. Then X = X; + Xo + --- + X, is called a binomial random
variable with parameter n,p, and denoted by X ~ B(n,p).

Example 2.3. Let X be a random variable. If

e AN\
P(X =k)= o
where k = 0,1,2,..., then X 1is called a Poisson random wvariable with pa-

rameter A > 0, and denoted by X ~ U).

Let X be a discrete random variable. Assume Z |z| P(X = z) < co. Then

z€ImX
the expected value or mean value of X can be defined by

EX =) zP(X=u)
z€lmX
If EX? < 0o, then the variance of X is defined by

Var (X) = E[X — EX)? = EX? — (EX)*.

The following proposition is the properties of £X and Var (X).



Proposition 2.1. Let X,Y be random variables and a,b € R. Then
1. E(X+Y)=EX+EY,
2. E(aX)=aFEX,

3. If X <Y, then EX < EY,

S

- |EX| < E|X],

5. (EX)? < BE(X?),

6. if X,Y are independent, then E(XY)= EXFEY,
7. Var (aX + b) = Var (aX) = a*Var (X).

The following inequality is useful in our work.
Chebyshev’s inequality : Let X be a random variable. Then
E|XP

P(X|2 g < =2

for all €,p > 0.



CHAPTER II1
POINTWISE APPROXIMATION FOR
RANDOM SUMS OF
BERNOULLI RANDOM VARIABLES

Let (X,,) be a sequence of independent Bernoulli random variables with

where p; € (0,1) and ¢ € N, U, a Poisson random variable with mean A > 0.

Let N be a positive integer-valued random variables. Assume N, X7, X, ...

N
are independent. Define Sy = X7 + Xo + -+ + Xy, Ay = Zpl- and A = E)y.
i=1
In this chapter, we give bounds of |P(Sy = x) — P(U, = z)|. This approxi-

mation always called pointwise approximation. The followings are our results.
Theorem 3.1. Let X1, X5, ... be independent Bernoulli random variables with

and N a positive integer-valued random variable which is independent of the X; ’s.
Then

1) |P(Sy=2)—PUy=2)|<2 forz=12,...,

3\ .
2) sup |P(Sy =xz) — P(Uy,=1x)| < -5 1 2min {\, E|]A — Ay|}.
€Lt

Note that, when x = 0 the exact probability can be explicitly computed, that

is,

N

P(Sy=0)=) P(N=n)P(5,=0)=) P(N=n)][(1-p)=E]](1-p)

n= i=1 =1

If X;’s are identically distributed, we obtained the following corollary.



Corollary 3.2. Let X1, X, ... be independent and identically distributed Bernoulli

random variables with

and N a positive integer-valued random variable which is independent of the X; ’s.

Then
< TpEN
- 2z

3pEN
2) sup |[P(Sy =xz)— P(Uy=1x) < P
x€ZT 2

1) |P(Sy =xz)— P(Uy=12)| forx=1,2,...,

+ 2pmin { EN, E|N — EN|}.

3.1 Proof of Theorem 3.1

Proof. 1) Let A\, = Zpi and x € {1,2,...}. Note that

i=1

|P(Sy =2) = P(Uy=12)| < A1 + Ay (3.1)
where

Ay =Y P(N =n)|P(U,, =) — P(Us = z)|,

o0

Ay =Y P(N =n)|P(S, =z) = P(Uy, = 2)|.

n

B

By Chebyshev ’s inequality, we obtain

<SN"P(N =n) [EUA" + —EUA}
1 x X
1 o
= EZP(N =n)(A\, + A)
n=1
1
= —(EAy + )
X
2\
=, 2
. (32)

To bound A,, we note that

A2 == A21 + A22 (33)



10

where

n

Ay =) P(N =n)|P(S, = x) - P(Uy, = ),
"7
Ay = P(N = x)|P(S, = x) — P(Uy, = x)|.
From (1.1), Chebyshev’s inequality and the fact that P(S, = x) =0 for

n=12,...,x — 1, we have

Agy = i P(N = n)|P(S, = 2) — P(Uy, = 2)|

+ Y P(N =n)|P(8, = x) — P(Uy, = )]
n=x+1
z—1 1 00 n
< = L = _ 2
<Y P(N=n)P(U, =)+ - > P(N=n)> p;
n=1 n=x+1 i=1
z—1 00
1
<> P(N=n)P(Uy, Z2)+= Y PN =n),
n=1 n=xz+1
1 z—1 00
< —_— - =y —_— =
<=D P(N=n)EU,, +- > P(N=n)\,
n=1 n=x+1
1 oo
= EZP(N:n)/\n (3.4)
n=1
By AM-GM inequality, it follows that
f R R R
Hp“ (sz) < £ ; (3.5)

Observe that if z = 1, then

_ _ 3\
|P(Se =) = P(Uy, =2)| = |pr —e P'prl =pi|]l —e™| <p1 < 71 (3.6)

Assume that x > 2. If A, < x — 1, then

r—2 r—1
Az Ax

Az

S P TR P T
-1
 (z—1)! (x —1)!

et r—1
“woota Y
| 2!

(x —1)!



this implies that

For A\, = x, we have

Thus

From (3.7) and (3.8), we have

forO0< A\, <zxandx=23,...

By (3.5) and (3.9), we obtain

P(S: =) = Pl = < [Tt s e g = B
forx=23,....
From (3.6) and (3.10), we have
Agy < iP(N =T\,

2x
forx=1,2,....
From (3.3), (3.4) and (3.11), we obtain

Ay < éip(]\/ = )\, + %P(N —2)), < 3E22N = %
n#w
Hence by (3.1), (3.2) and (3.12),
203X T

P(Sy=2)— P(Uy=2)| < 22+ 22 = 2,
P(Sy =2)— PO =2)| £ =+ 5 = =~

11

(3.9)

(3.10)

(3.11)

(3.12)
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2) Freedman ([3], pp. 260) showed that for any p, po > 0,

SUI)|}D<LCH f;aﬂ __}3<[Zu2f§ I>|f£ “Ll'_/LQL

xEZg

This implies that

Ay P(N =n)|P(U,, =x) — P(Uy = x)|

IN

M+ 10

P(N =n){|P(Uy, < 2) — P(Uy < 2)| + |P(Uy <2 — 1) = P(Uy, < —1)|}

S

IN
E\% [
8 —_

P(N =mn)|A = Al

n=1

— 2|\ — Ayl.

From this fact and (3.2), we have
Ay £ 2min {\, E|X = Ay|}. (3.13)
From (3.1), (3.12) and (3.13), we obtain
3 :
sup |P(Sy = x) — P(Uy =x)| < = 2min {\, E|A — Ay|}.

reZt

3.2 Examples

Example 3.1. Fizn € N, let N be a random variable defined by

Let X1, X5, ... be independent Bernoulli random variables with
Assume N, X1, Xs, ... are independent. Then
TAn
1) |P(Sy =)~ P(Uy, =2)| < 2 foro=1,2,...
x

2) sup |P(Sy =xz) — P(Uy, =) < —.

reZt 2
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Furthermore if py = po = --- = p, then

1) |P(Sy = 2) — P(U, = 2)| < %’”fom:m,...,

3
2) sup |P(Sy =) — P(Upy = 2)| < L.
reZt+ 2
Proof. Note that
A= Ely = P(N =)\, = A, (3.14)

and
E|\X = Ay| = P(N =n)|\, — \n| = 0.
By Theorem 3.1, we get
TAn
|P(Sy =) — P(Uy, =x)| < B forx=1,2,...
x
and
3\, . 3\,
sup |[P(Sy =x) — P(Uy, =2)| < — 4+ 2min< \, E|]\ — Ay| p = —.
reZt 2 2
Example 3.2. Fizn € N, let N be a random variable defined by
1 1
P(N =n) = 3 and P(N =2n) = 3"
Let X1, X5, ... be independent Bernoulli random variables with

Assume N, X1, Xo, ... are independent. Then

T(An + Aoy
1) |P(Sy =x)— P(Uy =2 S% forx=1,2,...,
1
2) sup |P(Sy =z)— P(U),=12x)| < Z(?Agn — ).

reZt
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Furthermore if py = po = --- = p, then
21np
1) |P(Sy=2)—PUy,=12)| < P forx=1,2,...,
x
13
2) sup [P(Sy =2) — P(Uy=2)| < — 2.
T€ZT 4

Proof. Since

A= EXy = P(N =n)\, + P(N = 2n))\a, = % + % = %(/\n + X2,)  (3.15)
and
E|\Ay — Al = P(N =n)|\, = A+ P(N =2n)|Ag, — Al
1 1 1 1
:5‘)\71_5()\n+)\2n)‘+§‘)\2n_§()\n+)\2n)‘
_ L ey LA A
_2‘ 7 /72 ‘+2 AN
1
:§‘A2n_An}
1
- §(>\2n 2 )\n)7
we have

1 1 1
By Theorem 3.1, we have

|[P(Sy =2) — P(Uy=1)| <



Example 3.3. Let N be a random variable defined by
1
P(N:n):2—n form=1,2,....
Let X1, X5, ... be independent Bernoulli random variables with
Assume N, Xy, Xs, ... are independent. Then
p
1) |P(Sy =x2)—P(Uy =2)| < — forz=12,...,
T

2) sup |P(Sy =) — P(Uy, = x)| < 5p.

zeZt
= n
Proof. Si EN = ——9
roof. Since ; o /

ol
E|N—EN\:Z-2—E|n—2|

1=

i
=it 2l
n=1
—1+0+1+2+3+
) 23 1 94 1 95
1+1 1+2+3+
2 92\ 2 192 93
1 1 <<n
=5 tEl
n=1

= 1.

By Corollary 3.2, we get
p
|P(Sy =x) — P(Uy, =2)| < — forx=1,2,...
x
and

sup |P(Sy =) — P(Uy, = )| < 3p+ 2pmin{2, 1} = 5p.

reZt



Example 3.4. Let 0 < u <1 and let N be a random variable defined by
e—u’un—l
(n—1)!

Let X1, X5, ... be independent Bernoulli random variables with

P(N =n)= formn=1,2,....

P(X;=1)=p; =1 - P(X; = 0).

Assume N, X1, Xo, ... are independent. Then

1
1) |P(Sy =x)—P(U,, =x)| < % forz=1,2,..,
Tp(p+1)

2) sup [P(Sy = x) = P(Uyp = x)| <

TeZt | 2

Proof. Note that

n=1
_n:1 (n—1)!
_i (n 4 1)e Hu™
7/ = n!
y 2 ne~ry, et
= n Z n!
n=0 n=0
and
G_M,U/n_l
E|N—EN|_Z( _1)"n—(u+1)|
B o e—uMn 1
= e u+22(n 1)'(n—(/url))
—p,,n—1 x —p,n—1
_ u ne *u 1 e Pu
pe D CEE G )Z(n—l)'
n=2 n=2
B oo ne—uﬂn—l B oo e—u'un
— 1 A 1
e —|—(; CE e )+(u+ ); o
_ue_“+(u+l—6_“>+(u+1)(z n'“ —e_“)
n=0 ’

=pet+pu+l—et—(u+1)(1—e*)

= 2ue ",

16



Then
min { EN, E|N — EN|} = min{p + 1,2ue™™"} < p+ 1.
By Corollary 3.2, we get

|P(Sy = x) — P(U,, = z)| < lpt1)

f =12, ...
— 21} or xr , 2,

and

Tl 1)

17



CHAPTER IV
NON-UNIFORM BOUND IN POISSON
APPROXIMATION FOR RANDOM SUMS
OF BERNOULLI RANDOM VARIABLES

In this chapter we give the non-uniform bounds of |P(Sy < z) — P(Uy < z)|.
The notation in chapter 3 can be refered in this chapter.
In 1991, Yannaros[9] gave uniform bounds of the difference between the dis-

tribution of Sy and U),. The following is his result.
Theorem 4.1. [9] Let X1, Xy, ... be independent Bernoulli random variables with

and N a positive integer-valued random variable which is independent of the X;
’s. Then
1—ev &
sup |P(Sy < 2) — P(Uy < 2)| < E|Ay — A + E(— Zp?). (4.1)
cerd Avo o
In his work, Yannaros[9] improved (4.1) and obtained the bound as stated in

the following theorem.

Theorem 4.2. [9] Let X1, Xs, ... be independent and identically distributed Bernoulli

random variables with

and N a positive integer-valued random variable which is independent of the X;’s.
Then we have

sup |P(Sy < z) — P(Uppn < )

wGZg

1 Var (N
§min{2\/pr,pE(1—e_pN)}—l—§ D a;](v)min{l,Z pEN}.
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The following theorem is our main result.
Theorem 4.3. Let X1, X5, ... be independent Bernoulli random variables with
PX;=1)=p;=1—P(X;=0)

and N a positive integer-valued random variable which is independent of the X;’s.
Then

|P(SN<Q:)—P(U,\<17)|<%—I—E A (1 —e™Y)min < 1 e
- - ~ N "+ 1

oA

forx=1,2,....

Corollary 4.4. Let X1, X5, ... be independent and identically distributed Bernoulli

random variables with

and N a positive integer-valued random variable which is independent of the X;’s.
Then

EN pN
P(Sy <)~ P(Uy s 2)] < +pE{(1 — ) min {1, i H
- X

forx=1,2,....

4.1 Proof of Theorem 4.3

Proof. We note that

where
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Using Chebyshev’s inequality, we obtain

ZP n)|P(S, < z) — P(Uy, < z)|

_ ZP(N =n)[1— P(U,, < )]

< ZP P(Uy, > z)
= EU,
< P(N = =
<3Py =[]
z A?L
=> P(N=n) -1—]
n=1
< P(N =n) ﬁ}
x
n=1
_A
==,
and using (1.2) to get
Y P(N =n)|P(S, <7)— P(U, <o)
n=z+1
< i PN =)A= (1 — e~ yshin {1, "2
— . € m 7l‘+ pZ

1
00 /\_1 "1 . ) 6)‘" n ,
S;P(N:n)n(l—e ) min 2T T ini
:E/\]_V1<1—e_)\1\r)m1n{ _‘_1}2]?1

This implies that

B <A+E/\_1(1—6_AN)min 1 i ipg (4.3)
l_ZL‘ N 71‘ . 7 :
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Similar to (3.2), we can show that

n)|P(Uy > z) — P(Uy, > )|

M8iM
v w

n=1
2\
= —. 4.4
; (4.0
From (4.2), (4.3) and (4.4), we complete the proof. O

Example 4.1. Fixn € N, let N be a random variable defined by

Let X1, X5, ... be independent Bernoulli random variables with
Assume N, X1, Xo, ... are independent. Then

3\, -
1) |P(Sy <x)—P(Uy, <) < x+1 sz

T

forx=1,2,...,

1_ TL
2) sup |P(Sy <z)— P(U,, <x) =X Zpl

mGZg
Furthermore if p1 = ps = -+ = p, then

3np - p(e"” —1)
+
T r+1

forx=1,2,...,
.. . P _
ii) sup |P(Sy <z)— P(Up <=z gmm{—,p 1—e™ ™ }
() 500 [P(Sy <) = Pl < )] < min 51 =)
Proof. 1) From Example 3.1, we have A = A, and E|Ay — A\| = 0.
Note that

E[ANlu - e’\N)mln{ — 1}2@}

)




By Theorem 4.3, we have

n

3 et — 1
P <z)-P < gz)| < 22 2.
|P(Sy <z)— P(Uy, <2)| < " +)‘"($+1)i21p1

2) Since E|Ay — Al =0,

(155 - (5 5) -

and Theorem 4.1, we have 2).
Note that (i) follows directly from Corollary 4.4.
To show (ii), note that EN = P(N = n)n = n and

Var (N) = E[N — EN]* = E[N —n)* = P(N =n)[n —n]* = 0.
By Theorem 4.2, we have
\ p _
sup |P(Sy <x)— P(U,, <=z Smln{—,pl—e np }
ezt | ( N ) ( 1% )| 2m ( )
Example 4.2. Fixn € N, let N be a random variable defined by
1 1
P(N =n) = a and P(N =2n) = 5
Let X1, X5, ... be independent Bernoulli random variables with
Assume N, X1, Xo,... are independent. Then

1) |P(Sy <x)— P(U < z)|

22

3\, -+ Aoy 1 A1 & Aon 1 I
< Bt Ao) ){e S opi- Zp?}forle,z...,

2x 2(x +1
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Furthermore if py = po = --- = p, then

(i) |P(Sy <) = P(Usme <)

9np P 9
< P " _ 9 =12 ...
S5 +2<x+1){e +e for x 2, .,

- i 1 _ B n
(ii) zseuZIZ+|P(SN < ZE)—P(U? <) < gmln{\/l—Tp,Q—e " _e 2"”}4—7]9.
Proof. 1) By Example 3.2, we have E|Ay — A| = %(A% — ).
Note that
—1 A e al 9
ElNy(1—e N)mm{l,x_i_l}sz}
1 A v . A -
=P(N=n)\, (1—e ")mm{l, +1};pl
Aoy Y 210

1 et —1 O et — 1
< 2 2.
_Q(M)[ NI izpz]

From this fact and Theorem 4.3, we get

|P(Sy < x) = P(Ux < 7))

3(An + Aon) 1 M — 1 s, 1N,
< . 2L fora =1,2,....
< = UL > i+ D_pipfora=1.2,

2) Observe that

1l , l—oetngh
== 4.5
(o 3 I (45
1
From E[Ay — A| = 5()\% — An), (4.5) and Theorem 4.1, we obtain
sup |P(Sy < z) — P(Uy < )|



(i) Note that EN = nP(N =n) + 2nP(N

E{(l - e_pN)min{l, e }

|
= P(N =n) {(1 — e ") min {1, - H + P(N

1 o]
“2(xz+1)  2x+1)
1

. (Pwew ),
2($+1)(6 +e )

By Corollary 4.4, we get (i) holds.

(77) We note that

Var (N) = E[N — EN)?

and

2n)

3
zgand

24
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Example 4.3. Let N be a random variable defined by
1
P(N=n)=— forn=12....

Assume p1 = py = --- =p and e? < 2. Let X1, Xs,... be independent Bernoulli

random variables with

Assume N, X1, Xo, ... are independent. Then

6p 2p(e? — 1)
1) 1P(Sy s 2) = P(Uy s 0l < 2+ 5 e

forx=1,2,..,

_ 1 2P —1)
P(Sx < z) — P(Uy, < 2)| < 2p.
2) :;Z%| (Sn <) ( 2p—x)|—pmm{2./1—p’ 2er — 1 }—i—\/_p

Proof. From Example 3.3, we have EN = 2.
1) By Corollary 4.4 and the fact that

so-emn i S S a5

—1
T e N1
—m{;g—n—;g—n}
1 P
= Hel _
934—1[2—61” }
2(eP — 1)

we obtain

6
|P(SN§£B)—P(UQPSZE)|§;—|— forx=1,2,....

2) Observe that

= B[N —2?
B = (n—2)?
; o



and

e P
—1—
EE: 2n
n=1
=132 ()
n=1
B 1
T 2er—1
~2(e? - 1)
 2er—1°
Applying Theorem 4.2, we have
sup |P(Sy < 2) = P(Uy, < )]
xEZ&
. 1 2(e? — 1) N/
< ~— 1,24/2
<pmin{ gt FE= Db P min1,20/%)
) 1 2(eP —=1)
< 2p.
_pmln{%/l —p' 2P —1 } +Vap

Example 4.4. Let 0 < u <1 and let N be a random variable defined by

e—uun—l
P(N =n) = (n s 1] form=1,2,....
Let X1, X5, ... be independent Bernoulli random variables with

Assume N, X1, Xo, ... are independent. Then

3p(p+1) | ple” ™% — 1)

< — < <
1) IP(Sy <2) = P(U, < )] < L —

2) sup |P(Sy <z)— PU, < z)|

mGZg

1 S
< 3 1 — et —p+p / 2.
_pmln{2\/1Tp7 € }+p /”L+

26

forx=1,2, ..,
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Proof. From Example 3.4, we have EN = p + 1.
1) Note that

6pN > ef,ulunfl e"P
e U R o e (R L Uy
o e—ulun—l enp
< 1— e
_;(n—l)!{( ‘ )a:+1]
1 e tynt »
_ "
x+1z(n—1)'(e )
=1
1 i 6—,u€nplun—1 & e—p,lun—I:|
$+1_; (n—1)! ;(n—l)!
y 1 'i 6_“€(n+1)pﬂn B i (Iue—u)n
T+ 1~ n! ~ nl
L[ e ()"
== “+p - ]_
Zh- 1 _e ; n! }

epre?—ptp _ q

g +\1
By (4.6) and Corollary 4.4,

Bt 1) | pler 7~ 1)

P < < = < <
|P(Sy < ) (U =2z)I-< T T+ 1

2) Note that

o0 2 ,—pu,n—1
, s nlete
ENT= Z (n—1)!

n=1

B i (n+1)%e Hen
B — n!

0 2 ,—,n e — ,n X —u,n
n-e e ne e e e
R DR anhd D Bl
n=

n=0 ’ n=0

=220 +1)+1,

then Var (N) = EX? — [EXP? =+ p+2(u+1)+1— (p+1)* =pu+2.



Observe that

E(l—e™)=1—Ee ™

n—1

B (n—1)!

I
—_
|
M 2

n!

— ey (pe )"

n=0

i
o

— 1 — etleTP=1)=p
By Theorem 4.2, we obtain

sup |P(Sy < z) — P(U,, < ©)|

xEZg
<pmin{ ———
—

f;])nﬂnﬁ{§:7fffg,1'—(#wp_u+p} +‘p\/ﬂ'+fl

6_(n+1)pe_/"/1/n
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