CHAPTER II HISTORICAL

2.1 Introduction to the Artemisia family

Artemisia is a fairly large genus within the family Asteraceae (Compositae), with 200 individual species known, which are usually found in dry areas such as Europe and Asia (Pappas and Sheppard-Hanger, 2000). In Thailand, Artemisia has been found 8 species, namely (Smitinand, 2001)

Artemisia annua L.

Artemisia dubia Wall, ex Bess.

Artemisia indica Willd. var. indica

Artemisia indica Willd. var. heyneana Pampan.

Artemisia lactiflora Wall. ex Bess. var. genuine Pampan.

Artemisia pallens Wall. ex Bess.

Artemisia roxburghiana Bess.

Artemisia scoparia Waldst. & Kit.

They are invariably found as small fragrant shrubs or herbs and most yield essential oils. Some of these oils have found uses in perfumery and medicine (as, for example, vermifuges, stimulants, etc.) whereas the leaves of some species are used as culinary herbs. The plant themselves as are popular among gardeners as cultivated ornamentals (Pappas and Sheppard-Hanger, 2000).

2.2 Example of the Artemisia species that produce essential oils

The genus *Artemisia* is a rich source of terpenoids which are used in perfumery and pharmaceutical industries (Benjamin *et al.*, 1990). Several of the *Artemisia* species that produce essential oils are presented in table 9 (Pappas and Sheppard-Hanger, 2000).

Table 9 Selected examples of the Artemisia species that produce essential oils (Pappas and Sheppard-Hanger, 2000)

Plant	Common name	Habitat	Essential oil use	Safety information
A.afra afra von Jacquin	Lanyana, layana,		Exhibits antifungal activity	No formal safety testing of
*	African absinthe,			EO; appears possible irritant,
	wildeals, South African			moderately toxic; potentially
	wormwood			very toxic
A. absinthium L.	Absinthe, absinthium,	Europe	Antihelmintic, insect	Test at low doses non toxic;
	wormwood,		repellant, digestive stimulant,	non irritant and non
,	green ginger, armoise	2.423	mild tonic, febrifuge, One of	sensitizing; banned for use
		<u> </u>	the best sources of azulene	bases on absinthe poisoning
A. annua L.	Annual wormwood,	Europe,	Antihelmintic, antispasmodic,	No formal safety testing of -
	sweet Annie	naturalized in	carminative, mucolytic	EO; presumed moderately
		North America		toxic
A. arborescens	Artemisia,	Morocco, Pacific,	Anti-inflammatory,	No formal safety testing;
	great mugwort,	North West USA	antihistamine, anticatarrh,	appears safe at lo doses
	arborescent mugwort	เงกรกโบหา	choleretic, mucolytic	

Table 9 Selected examples of the Artemisia species that produce essential oils (Pappas and Sheppard-Hanger, 2000) (cont.)

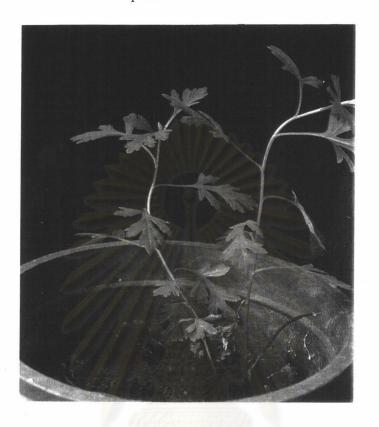
Plant	Common name	Habitat	Essential oil use	Safety information
A dracunculus L.	tarragon	Eurasia	Antihelmintic, antibacterial,	Tested at low dose: not toxic,
		MMas	anti-inflammatory	non irritant, non sensitizing
)		antispasmodic, carminative	Mutagenic data
A. herba alba Asso	White mugwort	Mediterranean	Anti-infectious, antibacterial,	Non-irritant, non-sensitizing,
			emmenagogue, lipolytic,	and non-phototoxic
			mucolytic, cholagogue,	Assumed very toxic
			parasiticide, viricide	
			(the genuine "Armoise oil" of	
			perfumery)	
A. pallens Wall.	Davana		Used in flavor (cakes, pastries,	Non-irritant, non-sensitizing
			tobacco and costly beverages);	and non-phototoxic
			anticatarrh, bactericidal,	Low toxicity
			cicatrizant, mucolytic, nervine	
	· 6		(arti-anxiety, low dose)	
A. vulgaris L.	Common mugwort,	Eurasia	Antihelmintic, antispasmodic,	Oral toxin, low dose on skin:
	armoise, Indian wormwood		stimulant, tonic, vermifuge	non-irritant, non-sensitizing

2.3 Production of essential oil from Artemisia spp. cell and tissue cultures

Production of essential oil from *Artemisia* spp. cell and tissue cultures has been studied since 1990. The selected examples of *Artemisia* spp. have been studied in essential oil production from cell and tissue cultures are presented in table 10

Table 10 Selected examples of *Artemisia* spp. which have been studied in essential oil production from cell and tissue cultures

Plant species	Reference	
Artemisia absinthium L.	Kennedy et al., 1993, Nin et al., 1996, Nin, et al., 1997	
Artemisia an <mark>nu</mark> a L.	Brown et al., 1994, Fulzele et al., 1995	
Artemisia balcha <mark>norum L.</mark>	Bavrina et al., 1994	
Artemisia dracunculus L.	Cotton et al., 1991	
Artemisia pallens Wall. ex Bess.	Benjamin et al., 1990	


2.4 Artemisia dubia Wall. ex Bess.

Artemisia dubia Wall. ex Bess. (Fig. 3) is belonging to the plant family Asteraceae (Compositae), subfamily Anthemideae. It has synonym namely A. vulgaris L. var. indica Maxim. This plant is commonly known as Akajedaw, Fleabane, Indian wormwood, Mugwort, Mug-wort and Titepati. It is native to Europe and continental Asia. The used of this plant are in the various ways such as; anthelmintic, asthma, scabies, skin rashes, headache, stomachache, homeostatic for nose bleed and bleeding wound, antiseptic and antipyretic (NAPRALERT database).

The description of this plant is as below (Harada et al., 1987):

Perennial herb. Stem erect, ascending, branched, furrowed, densely whitish hairy. Leaves alternate, short-stalked to sessile, pinnatipartile to bipinnate, densely white-lanate-arachnoid beneath, and thinly hairy above. Inflorescences terminal and axillary panicles, heads sessile, corolla light green.

Common weed in open localities, fallow fields, waste places, roadsides, rare in regularly cultivated fields. Propagated mainly by underground stolons. Blooming period: November-April.

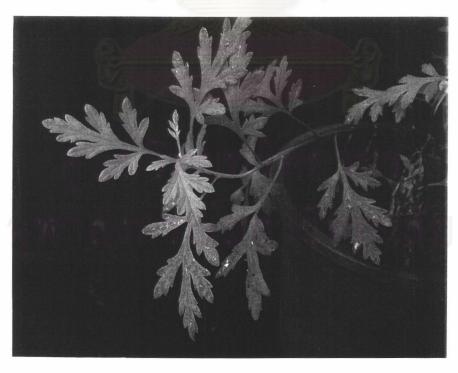


Figure 3 Artemisia dubia Wall. ex Bess. (A. vulgaris L. var. indica Maxim.)

2.5 Davanone

(+)-Davanone, a sesquiterpene ketone isolated from the flowering herb *Artemisia pallens*, was first characterized in 1968 by Sipma and van der Wal (Bartlett *et al.*, 1983). During the past decade there have been several syntheses of davanone and related compounds by several groups (Bartlett *et al.*, 1983), and in recently, the total synthesis of (±)-davanone has been described in 1999 (Molander and Haas, 1999).

Davanone is also found in other plants, for example *Tanacetum vulgare* (Hethelyi et al., 1981), *Artemisia pallen* (Benjamin et al., 1990), *Artemisia thuscula* (Perfumi et al., 1995), and *Artemisia persica* (Bicchi et al., 1985).

Davanone has been reported the spasmolytic activity by Perfumi *et al.* in 1995. It demonstrated a strong dose-dependent antispasmodic action, with an IC_{50} of 0.0495 µg/ml (Perfumi *et al.*, 1995).

2.6 Biosynthesis of davanone

A novel biosynthesis of davanone has been described by Akhila et al. as shown in Fig. 4. Isopenthenylpyrophosphate (IPP) condenses dimethylvinylcarbinylpyrophosphate (DMVCPP) to give geranylpyrophosphate, which further condenses with another molecule of IPP to produce farnesylpyrophosphate (FPP), the traditional precursor It is well established now that FPP sesquiterpenes. isomerises nerolidylpyrophosphate to metabolise many acyclic and cyclic sesquiterpenoids. In this case, -OPP from C-5 of FPP would shift to C-3 to give nerolidylpyrophosphate (analogy to geraniol-linalool interconversion). Nerolidylpyrophosphate is expected to undergo cyclization and oxidation at C-2 to metabolise davanone (Akhila et al., 1986).

Figure 4 Possible biosynthetic pathway of davanone (I = Isopenthenylpyrophosphate (IPP),

II = dimethylvinylcarbinylpyrophosphate (DMVCPP), III = geranylpyrophosphate, IV = farnesylpyrophosphate (FPP),

V = nerolidylpyrophosphate and VI = davanone) (Akhila *et al.*, 1986)