A. Properties of Griseofulvin Tablets ${ }^{*}$ (Formula 1-7, and Formula 22-24)

A. 1 Weight Variation of Tablets

N

The average weight, standard deviation, and the coefficient of variation of tablets weight are listed in table ${ }^{8}$. Each formula of griseofulvin tablets possessed the weight variation in the limit of USP standard ${ }^{(61)}$.

A. 2 Thickness of Tablets

Although the thickness of tablet is not official in quality control of tablet, but the uniformity of tablet thickness can predict the uniformity of tablet content. The average thickness and standard deviation of tablets thickness are demonstrated in table 9.

A. 3 Hardness of Tablets

The average hardness, standard deviation, and the coefficient of variation of tablets hardness are demonstrated in table 10 .

The friability of griseofulvin tablets is listed in table 11.
It was found that the friability of tablets was slightly increased as the concentration of $A c-D i-S o l^{R}$ increased. Tablets manufactured by dry granulation seem to have higher friability than those manufactured by wet

* Griseofulvin tablets manufactured by dry granulation with the hardness of $9-11 \mathrm{~kg}$ were capped and were not evaluated.

Table 8 Effect of Disintegrants on Weight Variation of Griseofulvin Tablets.

Table 9 Effect of Disintegrants on Thickness of Griseofulvin Tablets

Table. 10 Effect of Disintegrants on Tablet Hardness of Griseofulvin Tablets

Table 11 Effect of Disintegrants on the Friability of Griseofulvin Tablets

granulation. Tablets with lower hardness also showed a higher friability. However, all tablets exhibited less than 1.0% friability

A. 5 Disintegration Time of Tablets

The disintegration times of griseofulvin tablets containing different conrentrations of Ac-Di-SO1 ${ }^{R}$ in $1: 100$ Hill in aqueous solution are shown in figure 6 and figure 7. At the hardness of $5-7 \mathrm{kp}$, the disintegration times of tablets manufactured by wet granulation were ranked as the following : formula $1(>60 \mathrm{~min})>$ formula 2 $(15.08 \pm 0.3705)\rangle$ formula $3(5.12 \pm 0.1173)>$ formula 4 (0.43 ± 0.0409) \sim formula $5(0.36 \pm 0.0376) \sim$ formula $6(0.32 \pm 0.0279) \sim$ formula 7 (0.21 ± 0.0376) 。For tablets manufactured by dry granulation, the disintegration time of tablets was less than the tablets manufactured by wet granulation at every ievel of $\mathrm{Ac}-\mathrm{Di}-\mathrm{Sol}{ }^{\mathrm{R}}$ concentration. Their disintegration times of tablets ware ranked as the following : formula 1 ($>60 \mathrm{~min})>$ formula $2(0.14 \pm 0.0279) \sim$ formula $3(0.12 \pm 0.0289)$ \sim formula $4(0.11 \pm 0.0240) \sim$ formula $5(0.10 \pm 0.0126) \sim$ formula 6 (0.10 ± 0.0126) \sim formula 7 (0.10 ± 0.0154) .

When the hardness of tablets was increased to $9-11 \mathrm{kp}$, the disintegration times of tablets were prolonged as shown in figure 6. The disintegrationtimes of tabjets were ranked as the fol 2owing : formula $1(>60 \mathrm{~min})>$ formula $2(17.51 \pm 0.1942)>$ formula $3(14.38 \pm$ $0.1048)\rangle$ formula $4(2.27 \pm 0.0937) \sim$ formula $5(2.28 \pm 0.4050)$ \sim formula $6(2.20 \pm 0.0836) \sim$ formula $7(2.06 \pm 0.1076)$.

For tablets manufactured by wet granulation and dry granulation and tablet hardness high or low, the disintegration time was markedly decreased when Ac-Di-Sol ${ }^{R}$ was used as a tablet disintegrant at the

Table 12 Effect of Different Disintegrants on Disintegration Time of Griseofulvin Tablets

Figure 6. Effect of extent of disintegrant on disintegration time of griseofulvin tablets made by wet granulation

concentration as low as 0.5%. However when the concentration of Ac-Di-So1 ${ }^{R}$ increased from 2.0% to 5.0%, the disintegration time was non-significantly decreased.

Table 12 shows the effects of four disintegrants : Ac-Di-Sol ${ }^{R}$, Avicel ${ }^{R}$ PH 101, Polyplasdone ${ }^{R} X L$, and Explotab ${ }^{R}$ on disintegration rime Uf tablets. With the haidiness oif 5-? kp, the semparisun of tablets containing the same diluents but different disintêgrants of 1% concentration, the disintegration times of tablets were ranked as the following : formula 22 (1% Avicel $^{R} \mathrm{PH} 101$) \rangle formula 24
$\left(1 \%\right.$ Explotab $\left.\left.{ }^{R}\right)\right\rangle$ formula 23 (1% Polyplasdone ${ }^{R} X L$) $>$ formula 3 (1 \% Ac-Di-Sol ${ }^{R}$) both in wet and dry granulation. When the hardness of tabiets was increased to $9-11 \mathrm{kP}$, the disintegration times of tatlets were prolonged as demonstrated in table 12.

A. 6 Dissolution Rates of Tablets

A.6.1 Effect of Disintegrant on Dissolution Rates

The dissolution profiles of griseofulvin tablets are demonstrated in figure 8,9 , and 10. The tablets containing Ac-Di-Sol ${ }^{R}$ as tablet disintegrant showed higher dissolution rates than those containing no disintegrant in both wet and dry granulation.

griseofulvin tablets both in high tablet hardness ($9-11 \mathrm{kp}$) and low tablet hardness (5-7 $\mathbf{k p}$).

The dissolution times of tablets in this study, expressed as the time required for 85% of griseofulvin to dissolve (62), were demonstrated in figure 11.

6 TIME, MIN.

Figure 8. Dissolution profiles of griseofulvin tablets, fórmula 1-7,

	formula 1 (No disintegrant)
$\longrightarrow 0-0$	formula 2 (0.5\% Ac-Di-Sol ${ }^{\text {R }}$)
	formula 3 (1.0% Ac-Di-Sol ${ }^{\text {R }}$)
\cdots	formula 4 (2.0\% Ac-Di-Sol ${ }^{\text {R }}$)
- - - - -	formula 5 (3.0\% Ac-Di-Sol ${ }^{\text {R }}$)
$-x-x-$	formula 6 (4.0% Ac-Di-Soi ${ }^{\text {R }}$)
	formula 7 (5.0\% Ac-Di-Sol ${ }^{\text {R }}$)

Figure 9 Dissolution profiles of griseofulyin tablets, formula 1-7, hardness $9-11 \mathrm{Kp} \cdot$ (Wet granulation). $\hat{\rho}$


```
    —00-00 formula 2(0.5% Ac-Di-Sol }\mp@subsup{}{}{R}\mathrm{ )
    -..-.- formula 3(1.0% Ac-Di-Sol R)
    formula 4 (2.0% Ac-Di-Sol }\mp@subsup{}{}{R}\mathrm{ )
    formula 5 (3.0 % Ac-Di-Sol R)
    -x—X一 formula 6 (4.0% Ac-Di-Sol ')
    #.-. - formula 7 (5.0% Ac-Di-Sol ')
```


Figurcil. Relationshiphetween extent of distniegrant and dissolution time ($\mathrm{t} 85 \%$) of griseofulvin tablets.

Key :
—— Dry granulation, hardness $5-7 \mathrm{Kp}$.
—————Wet granulation, hardness $9-11 \mathrm{Kp}$.
———O Wet granulation, hardness $5-7 \mathrm{Kp}$.

A.6.2 Effect of Different Disintegrants on Dissolution

Rates

The effect of four tablet disintegrants : Ac-Di-Sol ${ }^{R}$, Avice1 ${ }^{R}$ PH 101, Polyplasdone ${ }^{R}$ XL, and Explotab ${ }^{R}$ on dissolution rates of griseofulvin tablets had been studied. The dissolution profiles of griseofuivia íuleiñ, containing 1 \% or different disintegianta were shown in figure 12,13 , and 14. Table 13 shows the dissolution times of tablet containing 1% Ac-Di-Sol ${ }^{R}$ (formula 3), 1% Avicel R PH 101 (formula 22), 1% Polyplasdone ${ }^{R}$ XL (formu1a 23), and 1% Explotab ${ }^{\mathrm{R}}$ (formula 24) as tablet disintegrant. It can be seen that tablets containing $A C-D i-S o 1^{R}$ were superior than tablets containiñy other disintegrants whether manufactured by wet or dry granulation wethods with 5-7 or $9-11 \mathrm{kp}$ of hardness. The dissolution times(85%) of tablets manufactured by wet granulation and hardness of $5-7 \mathrm{kp}$ were ranked as the following : formula $22(53.25 \pm 3.8890)=$ formula $2 \overline{4}$ $(53.25 \pm 3.8890)\rangle$ formula $23(47.25 \pm 2.8284)\rangle$ formula 3 (22.25 ± 1.4142). When the hardness was changed to $9-11 \mathrm{kp}$, the dissolution times ($\mathrm{t} 85 \%$) were ranked as the following : formula $22(>60 \mathrm{~min})=$ formula 24 $>$ formula $23(56,25 \pm 1.767\} 9\rangle$ formula $39 /(27.15 \pm 1.6263)$. tablets containing different disintegrants were less than those obtained from tablets manufactured by wet granulation as shown in figure 12 and 14. Their dissolution times (85%) were ranked as the following : formula $22(>60 \mathrm{~min})=$ formula $24=$ formula $23>$ formula 3 (51.25 ± 2.4748.

Table 13 Effect of Differetic Disintegrants on Dissolution Time (885%) of (riseofulvin tablets

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

TIME, MINe

Figure 12 Effect of different disintegrants on dissolution of griseo-
fulvin from tablets made by wet granulation, hardness $5-7 \mathrm{kp}$. ฉหาลงกิริณมหาวทยาลย

 Figure 13 Effect of different disintegrants on dissolution of griseoR 901 fulvin from tablets made by wet granulation, hardness 9-11 kp. Key : 1 N/ OV

	$\begin{aligned} & \text { formula } 1 \text { (No Disintegrant) } \\ & \text { formula } 22 \text { (} 1 \text { \% Avice1 }{ }^{R} \mathrm{PH} \text { 101) } \end{aligned}$
-00-00	formula 23 (1 \% Polyplasdone ${ }^{R} \mathrm{XL}$)
$x-x$	ormula 24 (1\% Explotab ${ }^{\text {R }}$)
$0-$	ormula 3 (1 \% Ac-Di-Sol ${ }^{\text {R }}$)

Figure 14 Effect of aifferent/disintegrants on dissolution of griseo fulvin from tablets made by dry granulation, hardness $5-7 \mathrm{kp}$. Rey:9\%?
—————. formula 1 (No Disintegrant)
\ldots _ formula 22 (1% Avicel ${ }^{R}$ PH 101)
\longrightarrow - formula 23 (1 \% Polyplasdone ${ }^{R}$ XL)
—x————formula 24 (1% Explotab ${ }^{R}$)
————formula 3 (1 \% Ac-Di-So1 ${ }^{\text {R }}$)

Both in wet granulation and dry granulation, and high, or low tablet hardness, Ac-Di-So1 ${ }^{\text {R }}$ was considered satisfactory and found to be the best among four tablet disintegrants for dissolution study of griseofulvin tablets.

A.6.3 Effect of Tablet Hardness on Dissolution Rates

The effect of two different ranges of tablet $\underset{\sim}{\text { hardness }}$:
5-7 kp and $9-11 \mathrm{kp}$ on dissolution rates of tablets was shown in figure 15 and 16. The hardness of tablet did not significantly affect the dissolution rate of griseofulvin tablets containing Ac-Di-Sol ${ }^{R}$ as tablet disintegrant, $\left(t_{2,0.05}=4.303, \pm t_{\text {observed }}=3.220\right)$. Conversely, increasing the hardness of tablet containing no disintegrant or Avicel ${ }^{R}$ PH 101 as tablet disintegrant decreased the dissolution rate as shown in figure 15, 16

A.6.4 Effect of Processing on Dissolution Rates

The effect of two different procedures of tablet manufacturing : wet granulation and dry granulation on the dissolution rates of griseofulvin tablets have been studied. The dissolution profiles of the effect of processing on dissolution rate of tablets were shown in figure 17. The tablets manufactured by wet granulation had better dissolution profiles than those manufactured by dry granulation. The dissolution times (t 85%) were significantly different $\left(t_{2,0.05}=4.303, \pm t_{\text {observed }} \leftrightharpoons 14.388\right)$.

A.6.5 Effect of the Methods of Incorporating Disintegrant on Dissolution Rates

The effect of three different methods of incorporating disintegrant into granules : intragranular, extragranular, and 50% intragranular plus 50% extragranular on dissolution rates have been
studied. The dissolution profiles of griseofulvin tablets manufactured by different methods of incorporating disintegrant into granules were shown in figure 18. Extragranular method seemed to exhibit the highest dissolution at the first 20 minutes, follow by intragranular and 50 : 50 intragranular : extragranular. However,
 the highest dissolution, and about 100% of the drug was dissolved at 60 minutes. The dissolution times(t 85%) of griseofulvin tablets manufactured by three different/methods of incorporating disintegrant into granules were not significantly different $\left(F_{2,3,0.05}=9.55\right.$, $F_{\text {ratio }}=4.85$).

TIME, MIN
Figure 15° Effect of tablet hardnesses on dissolution of griseofulvin tablets (Wet granulation).
ฉ.ใสาลงกรณมหาวิทยาลัย

Figure 16 Effect of tablet hardnesses on dissolution of griseofulvin
 Key :

formula 3 (1 \% Ac-Di-Sol ${ }^{R}$, hardness $5-7 \mathrm{Kp}$)
$-x — x$ formula 3 (1 \% Ac-Di-Sol ${ }^{R}$, hardness'g-11 Kp)
$\rightarrow 0$ formula 22 (1 \% Avicel ${ }^{R}$ PH 101, hardness 5-7 Kp)
———formula 22 (1 \% Avice1 R^{PH} 101, hardness 9-11. Kp)

 hardness $5-7 \mathrm{Kp}$.

Figure 18 Effecto the methods of fnclefpoting disintegrant into
granules on dissolution of griseofulvin from tablets made
a 98 by wetgranulation, hargness $5-7 / \mathrm{kP}$:
Key :

```
formula 3 (Intragranular)
\(\longrightarrow\) - formula 3 (Extragranular)
—X—X—formula 3 (50: 50 Intragranular : Extragranular)
```

B. Properties of Prednisolone Tablets ${ }^{* *}$ (Formula 8-14 and Formula 25-27)

B. 1 Weight Variation of Tablets

The average weight, standard deviation, and the coefficient of variation of tablets weight are listed in table 14. Each formula of prednisolone tablets possessed the weight variation in the limit of USP standard ${ }^{(61)}$.
B. 2 Thickness of Tablets

The average thickness and standard deviation of tablets thickness are tubulated in tabie 15.

B. 3 Hardness of Tablets

The average hardness, standard deviation, and the coefficient of variation of tablets hardmess are listed in table 16.
B. 4 Friability of Tablets

The friability of prednisolone tablets is listed in table 17.
B. 5 Disintegration Time of Tablets

The disintegration times of prednisolone tablets containing different concentration of $\mathrm{ACDI-SOl} \mathrm{R}^{\mathrm{R}}$ in $1: 100 \mathrm{HC1}$ in aqueous solution are shown in figure 19 and figure 20 . At the hardness of $1-2 \mathrm{kp}$, the disintegration times of tablets manufactured by wet granulation were
** Prednisolone tablets manufactured by dry granulation with the hardness of $3-5 \mathrm{~kg}$ were capped and were not evaluated.

Table, 14 Effect of Disintegrants on Weight variation of Prednisolone Tablets

Table 15 Effect of Disintegrants on Thickness of Prednisolone Table:s

Formula Number	Wet granulation Tablet Hardness 1-2 Kp Average Thickness (mm \pm S.D.)	Wet granulation Tablet Hardness 3-5 Kp. Average Thickness (mm \ddagger S.D.)	Dry granulat Tablet Hardness Average. Thickness
8	3.85 ± 0.0100	3.73 ± 0.0479	. 4.01 ± 0.0324
9	3.90 ± 0.0200	0.040	4.04 ± 0.0529
10	4.24 ± 0.0574	0.0200	4.07 ± 0.0234
11	4.25 ± 0.0458	3.80 ± 0.0681	4.09 ± 0.0223
12	4.31 ± 0.0158	4.12 ± 0.0648	4.10 ± 0.0100
13	4.38 ± 0.0264	413 ± 0.0264	4.12 ± 0.0254
14	4.59 ± 0.0200	4.34 ± 0.0839	4.12 ± 0.0200
25	4.16 ± 0.0360	4.04 ± 0.05140	4.11 ± 0.0324
26	4.51 ± 0.0316	4.38 ± 0.0158	$\mathrm{r}_{4.45} \pm 0.0458$
27	4.12 ± 0.0254	$9 ? 4.05 \pm 0.0608 ? 9 \% ?$	$8 / 4.15 \pm 0.0353$

Table - 16 Effect of Disintegrants on Tablet Hardness of Prednisolone Tablets

Table 17 Effect of Disintegrants on the Friability of Prednisolone Tablets

ranked as the following : formula 8. (30.33士 0.2984) $)$ formula 9 $(0.21 \pm 0.0240)\rangle$ formula $10(0.08 \pm 0.0275) \sim$ formula 11 ($0.07 \pm 0.0275)$ $=$ formula $12(0.07 \pm 0.0178) \sim$ formula $13(0.06 \pm 0.0118) \sim$ formula 14. (0.05 ± 0.0109). When the hardness of tablets was changed to $3-5 \mathrm{kp}$, the disintegration times of tablets(min) were ranked as the following :
 $(0.30 \pm 0.0562) \sim$ formula $11(0.27 \pm 0.0238) \sim$ formula $12(0.25 \pm 0.0343)$
\sim formula $13(0.20 \pm 0.0256) \sim$ formula $14 .(0.18 \pm 0.0352)$. When the hardness of tablets was increased, the disintegration times of tablets was also increased as shown in figure 19.

The disintegration times of prednisolone tablets manufactured by dry granulation was less than those obtained from tablets manufactured by wet granulation, the disintegration times (min) were ranked as the following : formula $8(1.17 \pm 0.0236)>$ formula $9(0.15 \pm 0.0412) \sim$ formula 10 $(0.10 \pm 0.0154) \sim$ formula $11(0.09 \pm 0.0346) \sim$ formula $12\left(0.08 \pm{ }^{\circ} 0.0167\right)$ $=$ formula $13(0.08 \pm 0.0167)=$ formula $14(0.08 \pm 0.0200)$.

It was noted that $\mathrm{Ac}-\mathrm{Di}-\mathrm{Sol}^{R}$ was shown to be very effective as a tablet disintegrant in prednisolone tablets at level as low as 0.5%. When the concentration increased from 1% to 5% the disintegration time was non-significantly decreased.

Table 18 shows the effects of four disintegrants : Ac-Di-So1 ${ }^{R}$ Avicel ${ }^{R}$ PH 101, Polyplasdone ${ }^{R} X L$, and Explotab ${ }^{R}$ on disintegration time of tablets. With the hardness of $1-2 \mathrm{~kg}$, the comparison of the tablets containing the same diluents but different disintegrants of 1% concentration, disintegration times of tablets were ranked as the following : formula 25 (1 \% Avicel ${ }^{R}$ PH 101) \rangle formula 27 (1% Explotab ${ }^{\mathrm{R}}$) $>$ formula 26 (1 \% Polyplasdone ${ }^{\mathrm{R}} \mathrm{xL}$) $>$ formula 10 , (1 \% Ac-Di-Sol ${ }^{R}$), both in wet granulation and dry granulation. When the
 prednisolone tablets made by wet granulation.

Figure 20 Effect of extent of disintegrant on disintegration time of prednisolone tablets made by dry granulation, hardness $1-2 \mathrm{kp}$.

Table 18 Effect of Different Disintegrants on Disintegration Time of Prednisolone Tablets

hardness of tablets was increased to $3-5 k_{p}$, the disintegration times of tablets were increased as demonstrated in table 18.

B. 6 Dissolution Rates of Tablets.

B.6.1 Effect of Disintegrant on Dissolution Rates

The ijssctution profsles of preanitisoione sibjets are shown in figure 21,22 , and 23 . The tablets containing Ac-Di-Sol ${ }^{R}$ as tablet disintegrant showed higher dissolution rates than the tablets containing no disintegrant in both wet and dry granulation.

Ac-Di-Sol ${ }^{R}$ also Increased the dissolution rates of prednisolone tablets both in high tablet hardness ($3-5 \mathrm{kp}$) and low tablet hardness ($1-2 \mathrm{kp}$).

The dissolution time of tablets in this study, expressed as the time required for 70% of prednisolone to dissolve, (63) were demonstrated in figure 24 .
B.6.2 Effect of Different Disintegrants on Dissolution Rates

The effect of four tablet disintegrants : Ac-Di-Sol, Avicel R PH 101, Polyplasdone ${ }^{R}$ XL, and Explotab ${ }^{R}$ on dissolution rates of prednisolone tablets had been studied. The dissolution profiles of prednisolone tablets, containigg $1 / \%$ of different disintegrants were shown in figure 25, 26 and 27 . Table 19 shows the dissolution times of tablet containing 1% Ac-Di-Sol ${ }^{R}$ (formula 10), 1% Avicel R PH 101 (formula 25), 1 \% Polyplasdone ${ }^{R}$ XL (formula 26) and 1 \% Explotab (formula 27) as tablet disintegrants. It can be seen that tablets containing Ac-Di-Sol ${ }^{R}$ were superior than tablets containing other disintegrants whether manufactured by wet granulation or dry granulation methods with $1-2$ or $3-5 \mathrm{kp}$ of hardness. The dissolution
times(t 70%) of tablets manufactured by wet granulation and hardness $1-2 \mathrm{kp}$ were ranked as the following : formula 25 (33.25 ± 3.8890)
$>$ formula $27(20.10 \pm 1.2727)\rangle$ formula $26(15.20 \pm 0.8485)\rangle$ formula 10 (12.25 ± 1.0606). When the hardness was changed to $3-5 \mathrm{kp}$, the dissolution times (t $70 . \%$) were ranked as the following : formula 25 $(45.25 \pm 5.3033)\rangle$ formula $27(30.10 \pm 2.6870)>$ formula 26 ($27.05 \pm$ $2.8284)>$ formula $10(20.10 \div 2.6870)$

By dry granulation, the dissolution rates of tablets containing various disintegrants were less than those obtained from tablet manufactured by wet granulation as shown in figure 25 and 27 . Their dissolution times (t 70%) were ranked as the following : formula $25(>60$ min) $=$ formula $26=$ formula $27 \geqslant$ formula 10 (59.25士 1.4142).

Both in wet granulation and dry granulation, and high or low tablet hardness, Ac-Di-So1 ${ }^{R}$ was considered satisfactory and found to be the best among four tablet disintegrants for dissolution study. of prednisolone tablets.

B.6.3 Effect of Tablet Hardness on Dissolution Rates

The effect of two different ranges of tablet hardness : 1-2 kp and 3-5 kp on dissolution rates of tablets was shown in figure 28 and 29. The hardness of tablet did not significantly affect the dissolution rate of prednisolone tablets containing Ac-Di-Sol ${ }^{R}$ as tablet disintegrant, $\left(t_{2,0.05}=4.303, \pm t_{\text {observed }}=3.843\right)$. Conversely,increasing the hardness of tablet containing no disintegrant or Avicel ${ }^{\text {R }} \mathrm{pH} \cdot 10^{d}$ as tablet disintegrant decreased the dissolution rate as shown in figure 28 and 29 .

Table 19 Effect of Different Disintegrants on Dissolution Times (t 70\%) of Prednisolone Tablets

TIME, MIN.
Figure 21. Dissolutdon profifes of prednisolpne tablets, formula 8-14, hardness $1-2 \mathrm{kp}$ (Wet granulation). จฬาลงกรณณมหาว่ทยาลัย

- ${ }^{-0-00}$	formula 9 ($0.5 \% \mathrm{Ac}-\mathrm{Di}-\mathrm{So} 1^{\text {R }}$)
-.. -	formula $10\left(1.0 \% \mathrm{Ac}-\mathrm{DI}-\mathrm{Sol}{ }^{\text {R }}\right.$)
-*-*	formula $11\left(2.0\right.$ \% Ac-Di-Sol ${ }^{\text {R }}$)
-----	formula 12 ($3.0 \% \mathrm{Ac}-\mathrm{Di}-\mathrm{Sol}{ }^{\text {R }}$)
-x-x-	formula $13\left(4.0 \% \mathrm{Ac}-\right.$ D1-So1 ${ }^{\text {R }}$)
-・ー・-	formula 14 (5.0 \% Ac-Di-Sol ${ }^{\text {R }}$)

TIME, MIN.
Figure 22 Dissolution profiles of prednisolone tablets, formula 8-14, hardness 3-5 Kp_{p}. (Wet granulation). ฉดาดงกกรณมหาวทยาลย

	formula 8 (No Disintegrant)
$\longrightarrow 000$	formula 9 (0.5\% Ac-Di-Sol ${ }^{\text {R }}$)
	formula $10\left(1.0 \%\right.$ Ac-Di-Sol $\left.^{R}\right)$
\longrightarrow	formula $11\left(2.0 \%\right.$ Ac-Di-Sol ${ }^{R}$)
------	formula $12\left(3.0 \%\right.$ Ac-Di-Sol ${ }^{\text {R }}$)
-x-x	formula $13\left(4.0 \%\right.$ Ac-Di-Sol ${ }^{R}$)
\cdots	formula $14\left(5.0 \% A C-D i-S o l ~^{R}\right)$

Figure 23 Dissolution profiles of prednisolone tablets, formula 8-14, Q hardness $1-2 \mathrm{Kp}$ (Dry granulation)?

$$
\begin{aligned}
& \text { - } 0 \text { - formula } 9 \text { (} 0.5 \text { \% Ac-Di-Sol }{ }^{R} \text {) } \\
& \ldots \text {-.... formula } 10\left(1.0 \% \text { Ac-Di-Sol }{ }^{R}\right. \text {) } \\
& \text { ———enormula } 11\left(2.0 \% \text { Ac-Di-So1 }^{R}\right) \\
& \text { ————— formula } 12 \text { (3.0 \% Ac-Di-Scl }{ }^{R} \text {) } \\
& \text {-x—x—eormula } 13\left(4.0 \% \text { Ac-Di-So1 }{ }^{R}\right. \text {) } \\
& \text {-.... formula } 14\left(5.0 \% \text { Ac-D1-So1 }^{\text {R }}\right. \text {) }
\end{aligned}
$$

Figure 24 Relationship between extent of disintegrant and dissolution time (70%) of prednisolone tablets

Key :

```
        I
            ~ Dry granulation, hardness 1-2 Kp
    -X-X- Wet granulation, hardness 3-5 Kp
    @o-\infty-Wet granulation, hardness 1-2 Kp
```


Figure $25 \rho^{\text {Effect of different }}$ odfintegrants $\sigma^{o n}$ dissolution of prednisolone

Figure 26 Efffect dfafiferent disintegtants on dissolution of prednisolone
from tablets made by wet granulation, hardness 3-5 kp.

—_ formula 25 (1.0 \% Avicel ${ }^{\mathrm{R}} \mathrm{PH}$ 101)
$\rightarrow 0$ formula 26 (1.0% Polyplasdone ${ }^{R} \mathrm{XL}$)
—x—X— formula 27 (1.0% Explotab ${ }^{R}$)
————formula 10 (1.0% Ac-D1-Sol ${ }^{R}$)

Figure 27 Effect of different disintegrants on dissolution of prednisolone Key : . from tabiets made by dry granulation, hardness $1-2 . k_{p}$. ค 9% ค 9 ค $\longrightarrow-\infty$ formula 26 (1 \% polyplasdone ${ }^{R}$ XI)
—x—x—formula 27 (1 E Explotab ${ }^{R}$)
\longrightarrow formula 10 (1 \% Ac-Di-So1 ${ }^{R}$)

Figure .28 Effect of tablet hardnesses on dissolution of prednisolone tablets (Wet granulation) $9 / ? ?$

TIME, MIN
Figure 29 Effect of tablet hatanesses on dissolution of prednisolone Tablets (Wet granulation).

formula 10 (1 \% Ac-Di-Sol ${ }^{R}$, hardness $1-2 \mathrm{Kp}$) - x - X formula 10 (1 \% Ac-Di-Sol ${ }^{R}$, hardness $3-5 \mathrm{Kp}$) $\longrightarrow 0-0$ formula 25 (1 \% Avice $1^{R} \mathrm{PH} 101$, hárdness $1-2 \mathrm{Kp}$)
-ـ. formula 25 (1% Avicel $^{R} \mathrm{PH} 101$, hardness $3-5 \mathrm{Kp}$)

B.6.4 Effect of Processing on Dissolution Rates

The effect of two different processing of tablet manufacturing : wet granulation and dry granulation on dissolution rates of prednisolone tablets have been studied. The dissolution profiles of the effect of processing on dissolution rate of tablets were sham in figure 30 .

The tablets manufactured by wet granulation had better dissolution profiles than those manufactured by dry granulation. The dissolution times ($t 70 \%$) were significantly different $\left(t_{2,0.05}=4.303, \pm t_{\text {observed }}=37.603\right)$

B.6.5 Effect of The Methods of Incorporating Disintegrant

on Dissolution Rates

The effect of three different methods of incorporating disintegrant into granules: Intragranular, extragranular, and 50% intragranular plus 50% extragranular on dissolution rates have been studied. The dissolution profiles of prednisolone tablets manufactured by different methods of incorporating disintegrant into granules were shown in figure 31.0 The dissolution times. t 70\%) of prednisolone tablets manufactured by three dffferent methods of incorporating disintegrant intogranules were not significantly different (F2, 3,0.05 $=9.55, \mathrm{~F}$ ratio $=5.43$)

Figure 30 Effect of processing on dissolution of prednisolone tablets

Key :
$\begin{aligned} \text {. } 99 \text { ค } 9 & \rightarrow x-x \rightarrow \text { formula } 10 \text { (Wet/granulation) } \\ & \rightarrow 0-0-\text { formula } 10 \text { (Dry granulation) }\end{aligned}$

Figure 31 Effect of the methods of incorporating disintegrant into granules on dissolution of prednisolne from tablets made Key : formula 10 (Intragranular)
$-\infty$ formula 10 (Extragranular)
$-\infty-x —$ formula 10 (50:50 Intragranular:Extragranular)
C. Properties of Furosemide Tablets ${ }^{* * *}$ (Formula 15-21 and Formula 28-30)

C. 1 Weight Variation of Tablets

The average weight, standard deviation, and the coefficient of variation of tablets weight are listed in table 20. Each formula of furosemide iáuiets possessec the watght variation in the imit of USP standard ${ }^{(61)}$.
C. 2 Thickness of Tablets

The average thickness and standard deviation of tablets thickness are tubulated in table 21 .

C. 3 Hardness of Tablets

The average hardness, standard deviation, and the coefficient of variation of tablets hardness are listed in table 22.

C. 4 Friability of Tablets

The friability of furosemide tablets is listed in table 23. It was found that the tablets manufactured by dry granulation seems to have higherfriability than thosemanufactured by wet granulation. However all tablets exhibited less than 1.0% friability.
จุหาลงกรณมมหาวิทยาลัย
*** Furosemide tablets manufactured by dry granulation with the hardness of $8-11 \mathrm{~kg}$ were capped and were not evaluated.

Table 20 Effect of Disintegrants on Weight Variation of Furosemide Tablets

Formula Number	Wet granulation Tablet Hardness $4-6 \mathrm{Kp}$.		Wet granulation Tablet Hardness $8-11 \mathrm{Kp}$	Dys granulation Tablet Hardness 4-6 Kp	
	Average weight (gm \pm S.D.	\% C.V.	Average weight (gm \pm S.D. $) \%$ c.v.	Average weight (gm \pm s.b)	\% C. V .
15	0.1460 ± 0.0009	0.64	± 0.0015	0.1465 ± 0.0019	1.30
16	0.1459 ± 0.0005	0.37	0.42	0.1461 ± 0.0014	1.01
1.7	0.1463 ± 0.0009	0.64	0.1465 ± 0.0020 1.43	0.1481 ± 0.0015	1.06
18	0.1487 ± 0.0010	0.70	$0.147 t+0.000400$	0.1400 ± 0.0015	1.06
19	0.1484 ± 0.0010	0.70	$\begin{array}{ll}0.1498 \pm 0.0013 & 0.87\end{array}$	0.1499 ± 0.0010	0.69
20	0.1500 ± 0.0006	0.42	$0.1553 \pm 0.0044 \quad 2.85$	$0.151 \pm \pm 0.0014$	0.92
21	0.1514 ± 0.0005	0.36	60.1537 ± 0.0035	$0.152 \div \pm 0.0004$	0.29
28	0.1488 ± 0.0007	0,52	-0.1495士0.0007/ 0.47 d	0.1488 ± 0.0008	0.56
29	0.1786 ± 0.0013	0.92	$0.0006 \sim 0.42$	0.1487 ± 0.0008	0.60
30	0.1497 ± 0.0004	0.29	$\mid \sqrt{0.0494 \pm 0.0007})^{7} \mid(0.47 \mid$	$0_{0.1493} \pm 0.0010$	0.67

Table 21 Effect of Disintegrants on Thickness of Furosenide Tablet!

Table 22 Effect of Disintegrants on Tablet Hardness of Furosemide Tablets

Table 23 Effect of Disintegrants or the Friability of Furosemide Iablets

C. 5 Disintegration Time of Tablets

The disintegration times of furosemide tablets containing different concentration of $\mathrm{AC}-\mathrm{DI}-\mathrm{Sol}^{\mathrm{R}}$ in $1: 100 \mathrm{HCl}$ in aqueous solution are shown in figure-32 and 33 . At the hardness of $4-6 \mathrm{k} p$, the disintegration times of tablets manufactured by wet granulation were ranked äs the following: formula $15(>60$ min) $>$ formiala $i t$, $(0.40 \pm 0.0340) \sim$ formula $17(0.36 \pm 0.0240)\rangle$ formula $18(0.20 \pm 0.0240)$ $=$ formula $19(0.20 \pm 0.0240) \sim$ formula $20(0.19 \pm 0.0240) \sim$ formula 21 (0.15 ± 0.0236). When the hardness of tablets was changed to $8-11 \mathrm{kp}$, the disintegration times of tablets were ranked as the following : formula $15(>60 \mathrm{~min})>$ formula $16(8.54 \pm 0.5657)\rangle$ formula 17 $(2.27 \pm 0.1038)\rangle$ formula $18(1.31 \pm 0.0376) \sim$ formula $19(1.26 \pm 0.0878)$ \sim formula $20(1.19 \pm 0.0734) \sim$ formula $21(1.12 \pm 0.0440)$. When the hardness of tablets was increased, the disintegration times of tablets were increased as shown in figure 32 . The disintegration times of furosemide tablets manufactured by dry granulation were less than those obtain from tablets manufactured by wet granulation, the disintegration times were ranked as the following : formula $15(2.14 \pm 0.0813)$ formula 16 $(0.10 \pm 0.0126)>$ formula $17(0.05 \pm 0.0077) \sim$ formula $18(0.04 \pm 0.0063)$ $=$ formula $19(0.04 \pm 0.0077)=$ formula $20(0.04 \pm 0.0063) \sim$ formula 21

It was noted that $A c-D i-S o 1^{R}$ was shown to be very effective as a tablet disintegrant in fur osemide tablets at level as low as 0.5 to 1.0%. When the concentration increased from 2.0% to 5.0% the disintegration times were non-significantly decreased.

Figure 32 Effect of extent of disintegrant on disintegration time of furosemide tablets made by wet granulation

Figure 33 Effect of extent of disintegrant on disintegration time of furosemide tablets made by dry granulation, hardness 4-6 kp.

Table 24 shows the effects of four disintegrants : Ac-Di-Sol ${ }^{R}$, Avicei ${ }^{R} \mathrm{PH}$ 101, Polyplasdone ${ }^{R} \mathrm{XL}$, and Explotab ${ }^{R}$ on disintegration time of tablets. With the hardness of $4-6 \mathrm{kp}$, the comparison of tablets containing the same diluents but different disintegrants, of 1 \% concentration, the disintegration times of tablets were ranked
 ~formula 29 (1 \% Polyplasdone XL^{R}) formula 17, (1% Ac-Di-Nol $^{\mathrm{R}}$) both in wet granulation and dry granulation. When the hardness of tablets was increased to $8-11 \mathrm{kp}$, the disintegration times of tablets were increased as demostrated in table 24.

C. 6 Dissolution Rates of Tablets

C.6.1 Effect of Disintegrant on Dissolution Rates

The dissolution profiles of furosemide tablets are
shown in figure 34,35 and 36 . The tablets containing Ac-Di-So1 ${ }^{\text {R }}$. as tablet disintegrant showed higher dissolutionsates than the tablets containing no disintegrant in both wet and dry granulation. Ac-Di-Sol ${ }^{R}$ also increased the dissolution rates of furosemide tablets both in high tablet hardness $/(8-11 / \mathrm{kg})$ and Iow tablet hardness ($4-6 \mathrm{~kg}$).

The dissolution rates of tablets in this study, expressed as the time requited for 65% of furosemide to discolve ${ }^{(64)}$, were demonstrated in figure $37 .:$
C.6.2 Effect of Different Disintegrants on Dissolution Rates

The effect of four tablet disintegrants : Ac-Di-Sol ${ }^{R}$, Avicel ${ }^{R}$ PH 101, Polyplasdone ${ }^{R}$ XL, and Explotab ${ }^{R}$ on dissolution rates of furosemide tablets had been studied. The dissolution profiles of furosemide tablets, containing 1% of different disintegrants were

Table 24 Effect of Different Disintegrants or Disintegration Time of Furostmide Tablets

shown in figure 38,39 and 40 . Table 25 shows the dissolution times of tablet containing 1% Ac-Di-Sol ${ }^{R}$ (formula 17), 1% Avice1 R PH 101 (formula 28), 1% Polyplasdone ${ }^{R}$ XL (formula 29), and 1% Explotab (formula 30) as tablet disintegrants. It can be seen that tablets containing Ac-Di-Sol ${ }^{R}$ were superior than those containing other disintegrants whether manufactured by wet or dry granulation metnods with 4-6 or 8-11 kp of hardness. The dissolution times ($t^{2} 65 \%$) of tablets manufactured by wet granulation and hardness $4-6 \mathrm{kp}$ were ranked as the following : formula $29(17.45 \pm 2.1000)\rangle$ formuls 30 $(11.10 \pm 1.2727)\rangle$ formula $29(9.45 \pm 1.4142)>$ formula $17 \overline{(8.45 \pm 1.5556)}$. When the hardness was changed to ($8-11 k p$, the discolution times ($t 65 \%$) were ranked as the following : formula $28(>60 \mathrm{~min})>$ formula 30 $(24.25 \pm 2.4748)\rangle$ formula $29(22.25 \pm 1.7677) \geqslant$ formulal7 (16.45士2.8284).

By dry granulation, the dissolution rates of tablets containing various disintegrants were less than those obtained from tablets manufactured by wet granulation as shown in figure 38 and 40. Their dissolution times ($\mathrm{t} 65 \%$) were ranked as the following : formula 28 ($>60 \mathrm{~min}$) $>$ formula $30(47.45+4,2426)\rangle$ formula $29(45,25 \pm 1.7677)\rangle$ formula 17 (43.20 ± 3.9597).

Q 98, Both fn wet granulation and dry granulation, and high or low tablet hardness, Ac-Di-Sol ${ }^{R}$ was considered satisfactory and

 found to be the best among four tablet disintegrants for dissolution study of furosemide tablets.
C.6.3 Effect of Tablet Hardness on Dissolution Rates

The effect of two different ranges of tablet hardness:
4-6 kp and $8-11 \mathrm{kp}$ on dissolution rates of tablets were shown in figure 41 and 42. The hardness of tablet did not significantly affect

Table 25 Effect of Different Disintegratits on Dissolution Time (t65\%) af Furosemide Tablets

Formula . Number	Dissolut: Con Time ($\mathrm{t} 65 \%$), min \pm S.D.		
	Wet granulation Tablet Hardness $4-6$ \%	Wet granulation Tablet: Hardness 8-11 kp	Dry granulation Tablet Hardness $4-6 \mathrm{kp}$
\# 15in (No Disintegrant)	20.10 ± 2.6870	>60	>60
\# 17 ($1 \% \mathrm{Ac}-\mathrm{Di}$-Soi ${ }^{\text {R }}$)	8.45 ± 1.5556	16.45 ± 2.8284	43.20 ± 3.9597
\# 28 (1\% Avicel ${ }^{\text {R }}$ PH 101)	17.45 ± 2.1000	$3>60$	>60
\# 29 (1\% Polyplasdone ${ }^{\mathrm{R}} \mathrm{XL}$)	.45 ± 1.4142	22.25 ± 1.7677	45.25 ± 1.7677
\# 30 (1% Explotab ${ }^{\text {R }}$)	11.10 ± 1.2727	24.25 ± 2.4748	47.45 ± 4.2426

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Figure 34 pissolution proffles.of furosemide tablets, formula 15-21, hardness $4-6 \mathrm{kp}$. (Wet granulation)

Figure 35 Dissolution profiles of furosemide tablets, formula 15-21,
hardness 8-11 K_{D} (Wet granulation)

Figure 37 Relationship between extent of disintegrant and of aissolution ©imé $9 \mathrm{t} 98 \%$ of furnsemidetablets.

Key :
——_ Dry granulation, hardness 4-6 Kp .
TX——— Wet granulation, hardness 8-11 Kp
-0-mo Wet granulation, hardness 4-6 Kp

Figure 38 Effect of cifferent disintegrants on dissolution of furosemide from tablets made by wet granulation, hardness $4-6 \mathrm{kp}$.

—_ formula 28 (1 \% Avice 1^{R} PH 101)
\longrightarrow ———on formula 29 (1 \% Polyplasdóne ${ }^{R}$ XL)
—x———formula 30 (1 \% Explotab ${ }^{R}$)
—————formula 17 (1 \% Ac-DI-Sol ${ }^{\text {R }}$)

TIME，MIN
Figure 39 Effect of different disintegrants on dissolution of furosemide from tablets made by wet gramulation，hardness $8-11 \mathrm{kp}$ ． จูผาาลงกรรณมหาวทยาลย

ー ー ー－formula 15 （No Disintegrant）
\longrightarrow formula 28 （ 1 \％Avicel $1^{\mathrm{R}} \mathrm{PH}^{\prime} 101$ ）
$\rightarrow 0-\infty$ formula 29 （ 1 \％Polyplasdone ${ }^{R}$ XL）
－x—x－formula 30 （ 1 \％Explotab ${ }^{R}$ ）
————formula 17 （ 1 \％Ac－D1－So1 ${ }^{R}$ ）

Figure 40 Effect of different disintegrants on dissolution of furosemide from tablets made by dry granulation, hardness $4-6 \mathrm{kp}$.
Key :

$$
\begin{aligned}
& \longrightarrow \text { formula } 28 \text { (} 1 \text { \% Avicel }{ }^{R} \text { PH 101) } \\
& \rightarrow \text { formula } 29 \text { (} 1 \text { \% Polyplasdone }{ }^{R} \text { XL) } \\
& \text {-x—x— formula } 30 \text { (} 1 . \% \text { Explotab }{ }^{R} \text {) } \\
& \text {-———formula } 17 \text { (} 1 \text { \% Ac-Di-So1 }{ }^{R} \text {) }
\end{aligned}
$$

Figure 41 Effect of tablet hardnesses on dissolution of furosemide $P{ }_{\text {tablets (Wet granulation) }}$

Figure 42 Effect of tablet hardnesses on dissolution of furosemide tablets(Wet granulation) Mc 〕

the dissolution rate of furosemide tablets containing Ac-Di-Sol ${ }^{R}$ as tablet disintegrant, $\left(t_{2,0.05}=4.303, \pm_{t_{\text {observed }}}=3.506\right)$. On the other hand, increasing the hardness of tablet containing no disintegrant or Avicel ${ }^{R}$ PH 101 as tablet disintegrant decreased the dissolution rate as shown in figure 41 and 42.

C.6.4 Effect of Processing on Dissolution Rates

The effect of two different processing of tablet
manufacturing : wet granulation and dry granulation on dissolution rates of furosemide tabiets have been studied. The dissolution profiles of the effect of processing on dissolution rate of tablets
 had better dissolution profiles than the tablets manufactured by dry granulation. The dissolutiontimes ($t_{65} \%$) were significantly different $\left(t_{2,0.05}=4.303, t_{\text {observed }}=11.5517\right)$
C.6.5 Effect of The Methods of Incorporating Disintegrant on

Dissolution Rates

The effect of three different methods of incorporating disintegrant into granules : intragranular, extragranular, and 50% intragranular plus 50% extragranular on dissolution rates have been studied. The dissolution proíiles of furosenide tablets manufactured by different methods of incorporating disintegrant into granules were shown in figure 44. The dissolution times (t 65\%) of furosenide tablets manufactured by three different methods of incorporating disintegrant into granules were not significantly different ($\mathrm{F}_{2,3,0.05}$ $=9.55, \mathrm{~F}_{\text {ratio }}=5.43$)

Figure 43 Effect of processing on dissolution of furosemide tablets,

Key :

Figure 44 Effect of the methods of incofporating disintegrant into granules on dissolution of furosemide from tablets made by

Key :

