การกำลัดโคลิฟอร์มในอุลลาระและธาตุอาหารพีช่ลาก น้ำโลโครกลากบ้านพักอาศัยโดยใช้คอสัมน์ของดิน

นายนิมิต บำรุ่งจิตตั

วิทยานิพนธ์นี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสู่ตรปริญญาวิทยาคำล่ตรมหาปัณฑิต ล่หล่าขาวิชาวิทยาคำล่ตร์ล่ภาวะแวดล้อม

บัณฑิตวิทยาลัย ลุฟิาลงกรณ์มหาวิทยาลัย

พ.ศ.2529

ISBN 974-563-745-7

013689

FECAL COLIFORM AND PLANT NUTRIENTS REMOVAL FROM DOMESTIC WASTE BY SOIL COLUMNS

Mr. Nimit Bamrungchitta

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science

Interdepartment of Environment Science

Graduate School
Chulalongkorn University

1986

Thesis Title

Fecal Coliform and Plant Nutrients Removal

from Domestic Waste by Soil Columns

Ву

Mr. Nimit Bamrungchitta

Interdepartment

Environmental Science

Thesis Advisor

Assistant Professor Pin-Chawee Vejjanukroh, Ph.D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of Requirements for the Master's Degree

Acting Associate Dean for Academic Affairs

for

Acting Dean for the Graduate School

Thesis Committee

P. Sáchuce Chairman

(Associate Professor Pairath Saichuae, M.Sc.)

Member

(Assistant Professor Pin-Chawee Vejjanukroh, Ph.D.)

n. Yarbrathes Member

(Archarn Nuanchavee Yaibuathes, Ph.D.)

Veut Daorok Member

(Archarn Veerote Daorerk, M.Sc.)

Copyright of the Graduate School, Chulalongkorn University

หัวข้อวิทยานิพนธ์

การกำลัดโคลิฟอร์มในอุลลาระและธาตุอาหารพีช่ลาก น้ำไล่โครกลากบ้านพักอาศัยโดยใช้คอสัมน์ของดิน

ขื่อ

นายนิมิต ปารุงจิตต์

อาจารย์ที่ปรึกษา

ผู้ช่วยคำลตราจารย์ ดร.ปิน-ฉวี เวชชานุเคราะห์

ส่หล่าขา

วิทยาคำสตร์สุภาวะแวดล้อม

ปีการศึกษา

2528

บทคัดย่อ

การศึกษานี้เป็นการศึกษาประสิทธิภาพของดิน 7 ชุดดิน (soil series) ประกอบด้วย ชุดดินลัตหีบ ชุดดินมวกเหล็ก ชุดดินบ้านปิง ชุดดินชลบุรี ชุดดินแกลง ชุดดินกำแพงแล่น และชิดดินธนบุรี ดินทั้ง 7 ชิดดิน นำมาในลักษณะเป็นคอลัมน์ทำการทดลองในชั่วงความลึก 0-50 และ 50-100 ซม. ในช่วงเวลา 45 วัน ผลการศึกษาพบว่า น้ำโล้โครกล้ามารถ ขึมผ่านชุดดินที่มีเนื้อดินประเภทดินร่วมปนทราย (sandy loam) และดินทรายปนตินร่วน (loamy sand) ออกมาได้ ดินที่มีการซึมผ่าน (permeability) สู่งจะมีประสิทธิภาพในการบำบัด น้ำโล่โครกจากบ้านพักอาคัยน้อยกว่าดินที่มีการซึมผ่านต่ำ อย่างไรก็ดี ดินทุกชนิดที่น้ำโล่โครก ขึมผ่านได้จะลดจำนวนแบคทีเรียทั้งหมด (total bacteria) และซีโอดี (COD) ในน้ำ โล่โครกได้มากกว่าร้อยละ 95 และ 71 ตามลำดับ มีดินที่ระดับความล็ก 0-50 ชม. ของ ชุดดินลัตหีบ ชุดดินมวกเหล็ก และชุดดินบ้านปิงเท่านั้นที่ยังคงล่ภาวะแอโรบิค (aerobic condition) หลังจากเติมน้ำโสโครกลงไปแล้วเป็นเวลา 45 วัน ทั้งนี้จะเห็นได้จากมีการ เปลี่ยนแอมโมเนีย-ไนโตรเจน ($\mathrm{NH}_\Delta-\mathrm{N}$) เป็นในเตรต-ไนโตรเจน ($\mathrm{NO}_\mathrm{q}-\mathrm{N}$) ทั้ง 3 ชุดดินดังกล่าวมีความลามารถในการยึดอิออน (ion) และการกรองต่ำ ดังนั้นดินทั้ง 3 ชุดนี้จึงล่ามารถลดปริมาณของออโรพ่อล่เฟต (orthophosphate) และฟีศัล โคลิฟอร์ม (fecal coliform) ได้หมดหลังจากเติมน้ำโส่โครกลงไป 5 และ 21 วันตามลำดับ คุณสมบัติดังกล่าวยังมีอิทธิพลต่อการ เพิ่มค่าพีเอย (pH) ของน้ำที่ขึมผ่านดินทั้ง 3 ปุดตินนี้ ออกมาด้วย

Thesis Title

Fecal Coliform and Plant Nutrients Removal

from Domestic Waste by Soil Columns

Name

Mr. Nimit Bamrungchitta

Thesis Advisor

Assistant Professor Pin-Chawee Vejjanukroh, Ph.D.

Interdepartment

Environmental Science

Academic Year

1985

ABSTRACT

Seven soil series ; Sattahip, Mauk Lek, Ban Bung, Chon Buri, Klaeng, Kampang Saen and Thon Buri were investigated in order to determine the efficiency of their use for domestic wastewater disposal. The soil samples were taken in two separated columns of 0-50 cm and 50-100 cm depth from each site. The wastewater was allowed to seep through the soil columns within a period of 45 days. The studies reveal that only the soils of sandy loam and loamy sand texture could allow the infiltration of the wastewater. It also indicates that the soils with higher permeability has a lower efficiency than those with lower permeability. Nevertheless, all permeable soil series could reduce the total bacteria and COD in the wastewater more than 95 and 71 % respectively. However, only the Sattahip. Mauk lek and Ban Bung soil series, with $0-50\,$ cm. depth, could maintain the aerobic condition after 45 days of wastewater treatment. This is evidenced by the transformation of $\mathrm{NH_4-N}$ to $\mathrm{NO_3-N}$ owing to their low capacity in retaining ions and filtering. Therefore, these three soil series could entirely remove the othophosphate and fecal coliform after 5 and 21 day treatment respectively. In addition, these soils could also raise the pH of the waste water to a certain extent after infiltrating through them.

ACKNOWLEDGEMENT

The author wishes to express his utmost appreciation and sincere gratitude to his thesis advisor, Dr.Pin-Chawee Vejjanukroh, for her valuable suggestion, assistance and time spent discussing various aspects in the field, and encouragement during the thesis work.

It is a pleasure to acknowledge the Department of General Science, Faculty of Science, Chulalongkorn University and Soil Analysis Division, Land Development Department, Ministry of Agriculture and Cooperatives, for offering laboratory facilities in this research.

I would like to experss any appreciation to Mr.Pairath Saichuae, Dr.Nuanchavee Yaibuathes and Mr.Veerote Daorerk, the members of thesis committee, for their advices.

Very special thanks are due to the following persons;
Mr.Pipat Sribenjalux and Miss Vannapa Srivilaisakulwong for their valuable suggestion and generous help.

 $\mbox{\sc A}_{S}$ a last opportunity, I would like to express the whole heartedly thanks and appreciation to my family for their moral support and encouragement.

CENTS

	ners eran	
* (Institut 1	intrati

		Page
THAI ABSTRA	ACT	d٠
	STRACT	e
	EMENT	f
		g
	BLES	i.
	GURES	j
		1
ABBREVIATI	ON	m
CHAPTER	31411	
1.	INTRODUCTION	1
2	LITERATURE REVIEW	2
	2.1 Permeability of Soil and Clogging in Soil	
	Pores	2
	2.2 The pH Value of Effluent Changed by Soil.	3
	2.3 The COD Removal by Soil	4
	2.4 The Nitrogen Removal by Soil	5
	2.5 The phosphorus Removal by Soil	9
ন গ	2.6 The Fecal Coliform Removal by Soil	13
3	MATERIALS AND METHODS	18
	3.1 Materials	18
	3.1.1 Wastewater	18
	3.1.2 Soils	18
	3.2 Methods	19
4 .	RESULTS AND DISCUSSIONS	23
	4.1 Characteristics of Wastewater and Soil	
	Proportios	23

CONTENTS

СНАР	TER			Page
÷	4	4.2	Soil Permeability	25
		4.3	рН	32
		4.4	Chemical Oxygen Demand (COD)	35
		4.5	Nitrogen Content	38
		4.6	Phosphate Content	40
		4.7	Total Bacteria and Fecal Coliform Counts.	44
	5	CONCI	LUSION AND RECOMMENDATION	50
REFE	RENCES	• • • • •		53
APPE	NDIX	• • • • •		63
	Appendi	ix A	Discription of 7 soil series used in the	
			experiment	64
	Append	ix B	- The Characteristics of Wastewater and	
٠.			effluent from soil columns	92
BIOG	RAPHY.	• • • • •		98
		9		

LIST OF TABLES

FABLES		Page
1	The procedures used in water analysis	20
2	The procedures used in soil physical and	
	chemical analysis	21
3	Characteristics of domestic wastewater from	;
	Huaykwang sewage treatment plant	23
4	The properties of soils used in this experiment	24

LIST OF FIGURES

Figures		Page
1	Typical soil column that used in this experiment	22
2	The volume of wastewater on upper and lower soil	
	of Sattahip series	27
3	The volume of wastewater on upper and lower soil	
	of Muak Lek series	28
4	The volume of wastewater on upper and lower soil	
	of Ban Bung series	29
5	The volume of wastewater on upper and lower soil	
	of Chon Buri series	30.
6	The volume of wastewater on upper soil of	
	Sattahip series	31
7	pH of the influent and effluent from upper soils	
	(0-50 cm)	33
8	pH of the influent and effluent from lower soils	
	(50-100 cm)	34
9	COD concentration of influent and effluent from	٠
	upper soils (0-50 cm)	36
10	COD concentration of influent and effluent from	
	lower soils (50-100 cm)	37
11	Total-N, NH ₄ -N and NO ₃ -N in the influent and	
	effluent from upper soils (0-50 cm)	39
12	Total-N and NH ₄ -N in the influent and effluent	
	from upper soils (0-50 cm)	41
13	Total-N and NH ₄ -N in the influent and effluent	
	from lower soils (50-100 cm)	42

LIST OF FICURES (CONTINUED)

Figure		Page
14	Total phosphate and orthophosphate in the	
	influent and effluent from upper soils	
	(0-50 cm)	43
15	Total bacteria in the influent and effluent	
•	form upper soils (0-50 cm)	45
16	Fecal coliform in the influent and effluent	
	from upper soils (0-50cm)	47
17	Total bacteria in the influent and effluent	
	from lower soils (50-100 cm)	48

KEYWORDS

Plant Nutrients

= the compounds of nitrogen and phosphorus that available for plants.

Fecal coliform

= <u>Escherichia coli</u>, the microorganism that may show opportunistic pathogenicity

ABBREVIATION

cm = centimetre

col = colony

d = day

E. coli = Escherichia coli

g = gram

1 = litre

m = metre

m² = square metre

mg = milligram

ml = millilitre

M = mole

mM = millimole

