อิทธิพลของปัจจัยสภาวะแวดล้อมที่มีต่อผลผลิตปฐมภูมิในทะ เลใกล้ผั่ง ภูเก็ต

โดยวิธีการศึกษาแบบชีววิเคราะท์

นางส่าวนี้ภาวรรณ วรมงคล

วิทยานิพษธ์นี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสู่ตรปริญญาวิทยาคำลัตรมหาปัณฑิต

ภาควิขำวิทยาคำสตร์ทางทะเล

ปัณฑิตวิทยาสัย ลุฬาลงกรณ์มหาวิทยาลัย

พ.ศ. 2527

ISBN 974-563-238-4

013169

116913572

A BIOASSAY APPROACH TO ENVIRONMENTAL FACTORS

INFLUENCING MARINE PRIMARY PRODUCTION IN

PHUKET COASTAL WATERS

Miss Nipavan Voramongkol

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science

Department of Marine Science

Graduate School

Chulalongkorn University

1984

Thesis Title A bicassay approach to environmental Factors influencing marine primary production in Phuket coastal waters. สถาบัน

Miss Nipavan Voramongkol

Department

By

Marine Science

Thesis Advisors

Assistant Professor Suraphol Sudara Associate Professor Jorgen Hylleberg

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirments for the Master's Degree.

> S. Bunag Dean of Graduate School

(Associate Professor Supradit Bunnag, Ph.D.)

Thesis committee

(Associate Professor Piamsak Menasveta, Ph.D.)

Member

(Assistant Professor Suraphol Sudara, Ph.D.)

"Hylle, Member

(Associate Professor Jorgen Hylleberg)

Nittlanstana Explansit Member

(Associate Professor Nittharatana Paphavasit)

Copyright of the Graduate School, Chulalongkorn University

ห้วข้อวิทยานิพนธ์

อิทธิพลของปัจจัยล่ภาวะแวดล้อมที่มีต่อผลผลิตปฐมภูมิในทะเลใกล้ฝั่งภูเก็ต

פות עונוה או ביו

โดยวิธีการศึกษาแบบชีววิเคราะห์ นางล่าวนิภาวรรณ วรมงคล

2526

อาจารย์ที่ปรึกษา

ภาควิชา

สื่อนิลิต

ปีการศึกษา

ผู้ช่วยค่าล่ตราจารย์ คร.สุรพล สุดารา รองค่าล่ตราจารย์ยอห์น ฮิลลิแบร์ก วิทยาค่าล่ตร์ทางทะเล

บทค้อย่อ

การศึกษาทางชีววิเคราะห์เกี่ยวกับผลของล่ารประกอบเคมีที่เป็นอาหารของแพลงตอน พืช ได้แก่ ล่ารพวกไนเตรท, ฟอล่เฟต, แอมโมเนีย, ซีลิกอน, เหล็ก และล่ารศึเลเตอร์ EDTA ตลฮดจนอิทธิพลของน้ำจากแห่ล่งที่มีระบบนิเวคน์แตกต่างกัน คือ จากปะการัง, ป่าช่ายเล่น น้ำทิ้งจากบ้านเรือน และเหมืองแร่บนบก เมื่อเติมล่ารอาหารดังกล่าวแต่ละชนิดลงไปในน้ำ ทะเล ล่ารประกอบพวกไนเตรทและฟอล่เฟตจะจำเป็นที่ลุ่ดจำหรับการเจริญเติบโตลังเคราะห์ แล้งของแพลงตอนพืช และในกรณีการเติมล่ารมากกว่าหนึ่งชนิด ปรากฏว่าเมื่อเติมล่ารลงไป ในน้ำทะเลพร้อมกันทั้งหมดจะทำให้ค่าผลผลิตปฐมภูมิมีค่าสู่งที่ลุ่ด

น้ำจากปะการังซึ่งได้จากน้ำภายในถุงพลาล่ติกที่หุ้มปิดหัวปะการังไว้ 4 ชั่วโมง เมื่อนำ มาผล่มกับน้ำทะเลในอัตราล่วนต่าง ๆ กัน 4 อัตราล่วน ทุกอัตราล่วนจะมีผลทำให้ผลผลิตปฐมภูมิ ของน้ำทะเลล่งขึ้นในระดับต่าง ๆ กัน ทั้งนี้แล่ดงว่ามีล่ารพวกฟอล่เฟตและแอมโมเนียถูกปล่อย ออกมาจากหัวปะการัง และหมุนเวียนอยู่ภายในถุงพลาล่ติกเพื่อให้แพลงตอนพีชนำไปใช้ได้

น้ำจากบริเวณป่าช่ายเลนไม่แล่ดงผลทางชีววิเคราะห้อย่างขัดเจน ทั้งนี้เพราะมีปัจจัย ที่เป็นตัวแปรหลายชนิดที่มีอิทธิพลต่อผลผลิตปฐมภูมิ การเปรียบเทียบจาก 3 บริเวณ ของป่าช่ายเลน คือ ล่วนในลุด ล่วนกลาง และล่วนนอก ปรากฎว่าน้ำจากล่วนในลุดของป่าช่ายเลนจะ แล้ดงลักษณะลักษณะของการให้ผลผลิตปฐมภูมิที่สู่งกว่าบริเวณอื่น และผลการทดลองยังแล้ดงว่า คงมีบัจจัยบางประการที่จำกัดการผลิตปฐมภูมิของแพลงตอนพืชเมื่อเดิมน้ำจากป่าช่ายเลน

น้ำทิ้งจากบ้านเรือนบริเวณเมืองภูเก็ตบางครั้งจะมีสำรอาหารอยู่ด้วยมาก ซึ่งไปเสริม การผลิตปฐมภูมิให้สู่งขึ้น แต่บางครั้งจะมีบางสิ่งซึ่งจะเป็นผลเสียต่อการสังเคราะห์แล่งของ แพลงตอนพีซ ทำให้ผลผลิตปฐมภูมิลุดต่ำลงเมื่อผล่มน้ำทิ้งตั้งกล่าวแล้วลงไปในน้ำทะเล

น้ำจากเหมืองแร่บนบ<mark>กจะมีล่ารอาหารสู่งมากเช่นกัน</mark> เมื่อนำมาผล่มกับน้ำทะเลจะ ทำให้ผลผลิตปฐมภูมิของน้ำทะเลล่งขึ้น

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Thesis Title

A bioassay approach to environmental factors influencing marine primary production in Phuket coastal waters.

Name

Miss Nipavan Voramongkol

Thesis advisors

Assistant Professor Suraphol Sudara, Ph.D. Associate Professor Jorgen Hylleberg

Department

1983

Marine Science

Academic Year

ABSTRACT

Bioassay experiments concerning nutrient limitation and effect of water from different habitats such as coral head, mangrove, domestic sewage and on-land tin mine were carried out. The micronutrients NO_3^- -N, NH_4^+ - N, PO_4^{Ξ} - P, Si, Fe^{+3} - F and the chelator EDTA, were use either seperately or in combination to mix with coastal sea water in order to show the effect on gross primary production of the natural phytoplankton population. Nitrate and phosphate were found to be the most essential nutrients, when these compounds were added separately However, combination of all elements used in the assay showed the highest increase of gross primary production.

Water obtained in a big plastic bag enclosed a coral head showed the highest value of dissolved oxygen after 4 hours of incubation. This coral water when mixed with sea water in 4 dilutions all showed high rates of gross primary production. It shows that nutrients such as

phosphate and ammonia released from the coral polyps are recycled and make the coral reef self-sustained to some degree.

vii

Mangrove water did not give specific results in the bioassays, probably due to many variable factors influening the primary production. A comparison of the 3 stations, inner, middle and outer part of the mangrove, shows that the inner part seems to be more productive than the others. The results also show that there are some factors which limited the production of phytoplankton in the sea water when mangrove water was added.

Sewage discharge from Phuket Town sometimes were rich in nutrients and stimulated primary production, but sometimes it might contain some parameters which caused harmful effect on phytoplankton photosynthesis.

Water from tin mines were also rich in nutrients, when mixing with sea water the gross primary production of sea sater increased.

ACKNOWLEDGEMENTS

This work was carried out at Phuket Marine Biological Center, of which I am grateful to Mr. Urupan Boonprakob, Director of the center and to Mr. Charoen Chirastit, Director of Phuket Marine Fisheries Station for providing facilities and encouragement. I would also like to express my deepest gratitude to Associate Professor Jorgen Hylleberg for his comments and his close attention to this work. I would like to thank Mr. Vudhichai Janekarn for his assistance in chemical analyses; Mr. Somchai Bussarawich, Mr. Pisan Tawan and Mr. Chada Wangboonkong for their assistance in my field work; Miss Supaporn Ackthaweewatanadej and Miss Sukontha Ackthaweewatanadej for typing. My special thanks to Miss Ajcharaporn Udomkij and Miss Somthawin Dechaprompun for all their helps.

Finally, I would like to dedicate my work to my mother and father for their love and patience.

ศูนยวิทยทรพยากร จุฬาลงกรณ์มหาวิทยาลัย

CONTENTS

PAGE

Abstract in Thai	iv
Abstract in English	vi
Acknowledgement	viii
List of Tables	x
List of Figures	xii
Chapter	
1 Introduction	1
2 Materials and Methods	13
3 Results	32
4 Discussion	75
5 Conclustions and Recommendations	85
References	90
Vita	101

LIST OF TABLES

TABLE

1	Six different kind of chemical compounds used	
	in the experiment on nutrient limitation.	15
2	Four different dilutions of the coral water	
	and sea water mixtures in the experiment.	17
3	Four different dilutions of mangrove water and	
	sea water mixtures.	20
4	Four different dilutions of domestic waste water	
	and sea water mixtures used in the experiment	23
5	Three different dilutions of the tin mine water	
	and sea water mixture	26
6	The range of variations of $PO_4^{\pm} - P$, $NO_3^{\pm} - N$,	•
	NO_2^{-} - N, temperature, pH and salinity, of sea	
	water at the PMBC pier at monthly intervals from	
	May 1981 to March 1982 to be used as reference	• •
	for all bioassay.	34
7	The amount of phosphate, nitrate and nitrite in	•
	ug-at/1 of sea water, initial coral water before	
	being covered with plastic bag, pure coral water	52
	and ambient water.	36

PAGE

TABL	2	
8	The salinity of sea water and mangrove water of	
	3 station at 4 different height of waters above	
	the lowest low water.	53
9	Gross primary production at different dilutions	
	of mangrove and sea water at each station	54
10	Relative differences in gross primary produc-	
	tion calculated for mixtures of sea water (SW)	
	and mangrove water (MW) in relation to pure	
	sea water	55
11	Environmental factors measured in Klong Bang Yai	
	(St. I - III) on five sampling occasions during	
	the month of April 1982	63
12	Environmental factors at station 1 - 4 in the	
	Phuket tin mining area I	73
	จุฬาลงกรณ์มหาวิทยาลัย	
		•

PAGE

xi

LIST OF FIGURES

,

FIGURE		PAGE
1	Practical method used in sampling coral water	16
2	The position of Ao Yon mangrove in Phuket	
	Island	18
3	Sampling station in Phuket Island	21
4	Sampling station for tin mine experiment	24
5	Schematic diagrame of Gravel Pump Mining	
	Process	25
6	Comparison between gross primary production	
	of sea water incubated in situ at the pier	
	of PMBC (Surface, 3M and 6M depth) and	
	incubated in constant climate chamber	33
7	Gross primary production (GPP) with addition	
•	of different concentrations of N and P sepera-	
	tety and in combination	35
8	$_{4}^{\rm NH}$ - N was used as nitrogen nutrient in	
	comparison with $NH_3 - N$. Addition of each	
	nutrient seperately and in combination	38
9	Comparison of addition of combination of P+S,	
	P+NH, P+N, P+NH+S, P+N+S into sea water in	
	order to see the effect of silicon	39

FIGURE

ı

10	Gross primary production as the result of	
	different nutrient added, seperately and in	
	combination	40
11	Dissolved oxygen in coral water inside the	
	experimental bag. Time period: 10.30 - 16.30.	
	Date : 15/1/1982.	42
12	Dissolved oxygen in coral water inside the	
	experimental bag. Time period: 9.50 - 15.50.	
	Date: 11/2/1982	43
13	Dissolved oxygen in light and dark bottles in	
1	different dilutions of mixed coral and sea	
	water. Date: 11/2/1982.	44
14	Dissolved oxygen in light and dark bottles in	
	different dilutions of mixed coral and sea	
	water. Date: 5/2/1982.	47
15	The gross primary production of each dilution	
ିବ	of mixed coral and sea water. Date: 5/2/1982	48
16	Dissolved oxygen in light and dark bottles in	
	different dilution of mixed sea water and	
	ambient water. Date: 11/2/1982	49
17	Comparison of gross primary production when	
	coral water and ambient water are mixed with	
	sea water	50

PAGE

FIGURE

PAGE

18	The gross primary production of mangrove water	
	(MW) and sea water (SW) mixtures in different	
	dilutions (height of water 15 - 16 dm above the	
	lowest low water).	56
19	The gross primary production of mangrove water	
	(MW) and sea water (SW) mixtures in different	
	dilutions (height of water 18 - 18 dm above the	
	lowest low water).	58
20	The gross primary production of mangrove water	
	(MW) and sea water (SW) mixtures in different	
	dilutions (height of water 21 - 27 dm above the	
	lowest low water).	59
21	The gross primary production of mangrove water	
	(MW) and sea water (SW) mixtures in different	
	dilutions (height of water 31 - 32 dm above the	
	lowest low water).	61
22	The gross primary production of domestic sewage	
	(SE) and sea water (SW) in different dilutions.	
	Туре - 1	62
23	The gross primary production of domestic sewage	
	(SE) and sea water (SW) in different dilution.	
	Туре - 2	65

xiv

24	The gross primary production of domestic sewage	
	(SE) and sea water (SW) in different dilutions.	
	Type - 3 and Type - 4	67
25	The gross primary production of tin mine water	
	(TW) or distilled water (DW) and sea water (SW)	
	in different dilutions. Tin mine area I,	
	station 4. Date: 1/12/1982	69
26	Comparison of the gross primary production of	
	tin mine water (TW) and sea water (SW) in	
	different dilution between station 4A and	
	station 3A from tin mining area II.	70
27	Variation of the gross primary production of	
	tin mine water (TW) and sea water (SW) in	
	different dilution. Tin mine area II. station	
	3, date: 14/12/1981	71
28	Variation of the gross primary production of	
	tin mine water (TW) and sea water (SW) in dif-	
	ferent dilution when Fe (F) and EDTA (E) were	·
	added. Tin mine area II, station 4, date:	
	14/12/1981.	72
29	Variation of the gross primary production of	
	the mixtures of 1:1 ratio between tin mine water	
	(TW) and sea water (SW) when nutrient were mixed	
	seperately and in combination. Tin mine area II,	
	station 4, date: 7/1/1981.	74

PAGE

74