CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

In this research, the effect of starting Zn/Ga and Zn/Al of $ZnGa_2O_4$ and $ZnAl_2O_4$ spinel type catalysts on oxidative dehydrogenation of propane. The conclusions of these results are summarized as follows:

- 1. The ZnGa₂O₄ and ZnAl₂O₄ spinel catalysts are active and selective catalysts in oxidative dehydrogenation of propane to propylene at reaction temperatures 400°C-500°C.
- 2. $ZnGa_2O_4$ atomic ratio Zn/Ga 0.50 showed highest yield at reaction temperature 525°C-600°C as compared with all atomic ratios of $ZnGa_2O_4$ and $ZnAl_2O_4$.
- 3. $ZnGa_2O_4$ ratio 0.50 has lower selectivity than $ZnAl_2O_4$ atomic ratio 0.5 at reaction temperatures $400^{\circ}C$ - $600^{\circ}C$.
- 4. It suggested that the Ga-O center is active in oxidative dehydrogenation of propane to propylene at reaction temperature 400°C-500°C.

It suggested that the differences in the activity and selectivity observed for the ZnGa₂O₄ and ZnAl₂O₄ spinel may be due to different coordination of Ga ions and Al ions (confirmed by XRF measurement [20]).

From this work, the recommendations for further study can be as follows:

Study the other spinel material as catalysts to improve the oxidative dehydrogenation of propane to propylene or other reaction.

Study in life time of $ZnGa_2O_4$ and $ZnAl_2O_4$ catalyst on oxidative dehydrogenation of propane to propylene.

The ZnGa₂O₄ and ZnAl₂O₄ catalyst should be characterized by higher efficiency techniques.

From this work, the recommendations for further study can be as follows:

Study the other spinel material as catalysts to improve the oxidative dehydrogenation of propane to propylene or other reaction.

Study in life time of $ZnGa_2O_4$ and $ZnAl_2O_4$ catalyst on oxidative dehydrogenation of propane to propylene.

The ZnGa₂O₄ and ZnAl₂O₄ catalyst should be characterized by higher efficiency techniques.

