CHAPTER IV

RESULTS AND DISCUSSION

By means of several chromatographic techniques, two compounds, C-1 and C-2 were isolated from crude hexane extract of the stem bark of *Croton roxburghii* N.P. Balakr.

Spectroscopic data (UV, IR, MS, and NMR) were used to determine the chemical structure of the two compounds. The structures were confirmed by comparative analysis using previous reports as references.

Structure Determination of the isolated compounds

1. Structure determination of compound C-1

Compound C- 1 was obtained as colouress prism crystal (2.03 g) with a melting point of 147-148°C. The FT-IR spectrum (Figure 12) displayed bands indicating a conjugated carbonyl group (1655 cm⁻¹).

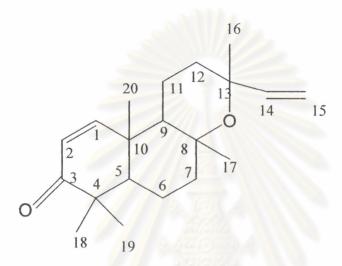
Table 6. The IR absorption band assignments of compound C-1

Wave number(cm ⁻¹)	Tentative assignments		
3025, 3075	alkene C-H stretching		
2860-2960	alkane C-H stretching		
1655	C=O stretching		
1615, 994, 913, 825	C=C stretching & bending		

The 1 H-NMR spectrum (Figure 14) of compound C-1 showed five methyl group at $\delta_{\rm H}$ 1.05 (3H, s; H-20), 1.08 (3H, s; H-19), 1.16 (3H, s; H-18), 1.32 (3H, s; H-16), 1.38 (3H, s; H-17) and five olefinic protons at 4.94 (1H, dd; H-15a), 5.15 (1H, dd; H-15b), 5.86 (1H, d; H-2), 5.89 (1H, dd; H-14), 7.10 (1H, d; H-1).

The 13 C-NMR spectrum (Figure 15) of compound C-1 showed twenty carbon resonances, four of which are olefinic carbons ($\delta_{\rm C}$ 110.7, 125.8, 147.4, 157.6) and one of ketocarbonyl carbon ($\delta_{\rm C}$ 205.1) was also observed.

In DEPT experiment (Figure 16), three sp² methine carbon signals ($\delta_{\rm C}$ 125.8, 147.4 and 157.6) together with two saturated methine carbons ($\delta_{\rm C}$ 49.9 and 53.2) and five methylene carbon signals at $\delta_{\rm C}$ 15.5, 20.2, 35.4, 44.6 and 110.7 were shown. The downfield $\delta_{\rm C}$ 110.7 signal was assigned as a terminal methylene carbon. Five methyl signals resonated at $\delta_{\rm C}$ 18.6, 21.9, 25.6, 27.6, 28.6. The two most downfield methyl signals their proximity to an oxygen atom in the molecule. According to the ¹³C-NMR and experiment DEPT, it could be concluded that there were five quaternary carbons ($\delta_{\rm C}$ 39.4, 42.3, 73.7, 75.0 and 205.1) in this structure.


In the EI-MS spectrum (Figure 13), compound C-1 gave a molecular ion peak $[M]^+$ at m/z 302. The base peak at m/z 287 indicated the loss of a CH_3 group from the molecule.

The molecular formula of compound C-1 was assigned as $C_{20}H_{30}O_2$ based on elemental analysis, ¹H and ¹³C NMR spectra (Table 7) and EIMS. The IR stretching indicated conjugated carbonyl group at 1655 cm⁻¹, olefinic groups at 1615, 994, 913, 825 cm⁻¹. The ¹³C NMR spectrum and DEPT experiments

revealed the presence of 20 non-equivalent carbons, of which 15 are sp^3 (five methyl, four methylene, two methine and four quartenary carbons) and four sp^2 (one methylene, three methine carbons) hybridized carbons, together with a carbonyl carbon [$\delta_{\rm C}$ 205.1(s)], two double bond groups [$\delta_{\rm C}$ 125.8 (d), 157.6 (d), 110.7 (t), 147.4 (d)] and two oxygenated carbons [$\delta_{\rm C}$ 73.7 (s), 75.0 (s)]. The molecular formula $C_{20}H_{30}O_2$ of compound C-1 defined a degree of unsaturation of six; therefore, compound C-1 must consist of three rings in addition to the two double bonds and one carbonyl group. Several 2D-NMR techniques were then used to assist in the interpretation of the structure of this compound. All of the proton-proton spin systems were traced by using data from a COSY experiment (Figure 17). Heteronuclear correlation experiments, HMQC (Figure 18) and HMBC (Figure 19) allowed unambiguous assignment of all ¹H-NMR and ¹³C-NMR resonances in compound C-1.

From HMBC spectrum, methyl groups at 1.16 ppm (H-18) and 1.08 ppm (H-19) correlated with a conjugated carbonyl at 205.1 ppm. Therefore, the carbonyl group must be C-3 and the olefinic double bond was between C-1 and C-2. The methyl group at 1.05 ppm (H-20) correlated with olefinic carbon at 157.6 ppm. Therefore, this carbon must be C-1 and a carbon at 125.8 ppm must be C-2 with confirmed by the COSY spectrum that showed correlated between H-1 and H-2. The HMBC spectrum showed methyl group at 1.32 ppm (H-16) correlated with olefinic carbons at 147.4 ppm (C-14) and 110.7 ppm (C-15) with confirmed by the COSY spectrum that showed correlated between H-14 and H-15 together. Moreover, the methyl group at 1.32 ppm (H-16) was correlated with

a quaternary carbon at 73.7 ppm (C-13) that carbon connected to an oxygen atom and the methyl group at 1.38 ppm (H-17) was correlated with a quaternary carbon at 75.0 ppm (C-8) together. Thus the cyclic ether must form between C-13 and C-8. Therefore, the structure of compound C-1 should be as the following

From a comparison of the 13 C NMR data of compound C-1 with that of ribenone (Fraga, B. M. *et al.*, 1999) (Table 8). It was deduced that C-1 possesses olefinic carbon signals at $\delta_{\rm C}$ 157.6 ppm and 125.8 ppm instead of methylene carbon signals at $\delta_{\rm C}$ 38.1 ppm and 33.7 ppm at position C-1 and C-2 in ribenone, namely, 8, 13-epoxylabda-14-diene-3-one. This was verified by 1 H- 13 C chemical shift correlation spectroscopy (COSY) NMR. The relative stereochemistry of compound C-1 was established by X-ray crystallography (Figure 6). The circular dichroism (CD) spectrum of compound C-1 showed a positive cotton effect at 342.6 nm and negative at 260.6 nm (Figure 11), analogous to that of ribenone. Therefore, the absolute stereostructure of compound C-1 was determined to be as (5S, 8S, 9S, 10R, 13S)- 8, 13-epoxylabda-1,14-diene-3-one (Figure 5).

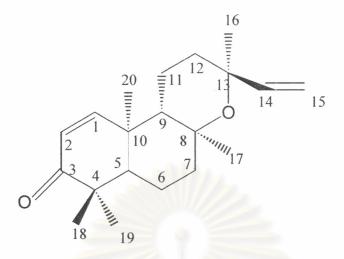


Figure 5: Structure of compound C-1

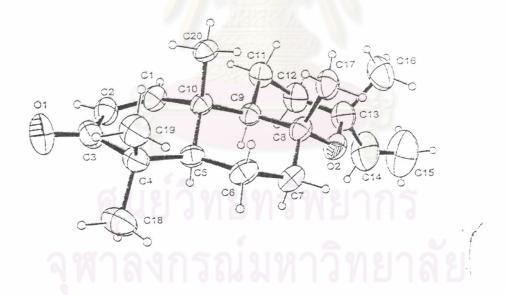


Figure 6: ORTEP structure of compound C-1

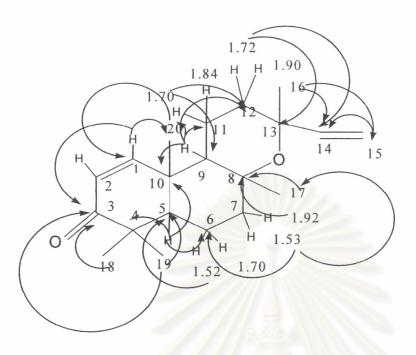


Figure 7: Long-range correlation from HMBC spectrum of compound C-1

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Table 7 ¹H-NMR, ¹³C-NMR and HMBC spectral data of compound C-1

Position	$\delta_{\rm c}$ (ppm)	$\delta_{\rm H}({\rm ppm}) {\it J}({\rm Hz})$	НМВС
1	157.6	7.10 d (<i>J</i> =10.0)	C-3, C-6, C-20
2	125.8	5.86 d (<i>J</i> =10.0)	-
3	205.1	-	-
4	42.3	- 9	-
5	53.2	1.78 m	C-4, C-6, C-7, C-9, C-10, C-20
6	20.2	1.52 m	C-4, C-5, C-8, C-17
		1.70 m	C-5, C-8
7	44.6	1.53 m	C-6 ,C-17
		1.92 m	C-5, C-8, C-9
8	75.0	(46) // A //	-
9	49.9	1.62 m	C-8, C-10, C-11,C-12, C-17, C-20
10	39.4	-	-
11	15.5	1.70 m	C-9, C-12, C-13
		1.84 m	C-8, C-16
12	35.4	1.72 m	C-9, C-11, C-13, C-14, C-16
8		1.90 m	C-9
13	73.7	เทริพยา	15
14	147.4	5.89 dd (<i>J</i> =16.0 ,10.0)	1 0
15	110.7	4.94 dd (<i>J</i> =10.0 , 2.0)	เกลีย
	101/11/19/1	5.15 dd (<i>J</i> =18.0 , 2.0)	C-14
16	28.6	1.32 s	C-12, C-13, C-14, C-15,
17	25.6	1.38 s	C-8, C-9
18	27.6	1.16 s	C-3, C-5, C-19
19	21.3	1.08 s	C-3, C-5, C-18
20	18.6	1.05 s	C-1, C-9, C-10

Table 8 ¹³C NMR data of compound C-1 and ribenone

Position	$\delta_{\rm c}$ Compound C-1 (ppm)	δ_c Ribenone (ppm)
1	157.6	38.1
2	125.8	33.7
3	205.1	217.4
4	42.3	47.2
5	53.2	54.5
6	20.2	20.7
7	44.6	42.0
8	75.0	75.5
9	49.9	57.5
10	39.4	36.3
11	15.5	16.3
12	35.4	34.7
13	73.7	73.6
14	147.4	147.2
15	110.7	109.7
16	28.6	32.5
17	25.6	23.2
18	27.6	26.6
19	21.3	20.8
20	18.6	15.4

2. Structure determination of compound C-2

Compound C-2 was obtained as long prism crystal (1.02g) with a melting point of 141-142 °C. The FT-IR spectrum of compound C-2 (Figure 22) displayed bands indicating a hydroxyl group at 3521 cm⁻¹ and a conjugated carbonyl group at 1660 cm⁻¹.

Table 9 The IR absorption band assignments of compound C-2

Wave number(cm ⁻¹)	Tentative assignments
3521	O-H stretching
3086	alkene C-H stretching
2925	alkane C-H stretching
1660	C=O stretching
1463, 992, 915, 828	C=C stretching & bending
1156, 1082	C-O-C stretching

The 1 H-NMR spectrum (Figure 24) of compound C-2 showed five methyl group at $\delta_{\rm H}$ 1.04 (3H, s; H-20), 1.09 (3H, s; H-19), 1.16 (3H, s; H-18), 1.38 (3H, s; H-17), 1.39 (3H, s; H-16) and five olefinic protons at 5.26 (1H, dd; H-15a), 5.44 (1H, dd; H-15b), 5.81 (1H, dd; H-14), 5.88 (1H, d; H-2), 7.13 (1H, d; H-1).

The 13 C-NMR spectrum (Figure 25) of compound C-2 showed twenty carbon resonances, four of which are olefinic carbons ($\delta_{\rm C}$ 125.9, 142.5, 115.8, 157.3) and one ketocarbonyl carbon ($\delta_{\rm C}$ 205.0) was also observed.

In DEPT experiment (Figure 26), three sp^2 methine carbon signals ($\delta_{\rm C}$ 125.9, 142.5 and 157.3) were shown, together with three saturated methine carbons ($\delta_{\rm C}$ 43.5, 53.2 and 70.0) and showed four methylene carbon signals at 20.1, 22.9, 41.5 and 115.8. The downfield $\delta_{\rm C}$ 115.8 signal implied that methylene carbon should be olefinic carbon. Five methyl signals were shown at $\delta_{\rm C}$ 18.9, 21.2, 25.3, 27.4, 27.6. According to the ¹³C-NMR, DEPT data, it was concluded that there were five quaternary carbons ($\delta_{\rm C}$ 38.7, 44.6, 75.3, 76.7 and 205.0) in this structure.

In the EIMS spectrum (Figure 23), compound C- 2 gave a molecular ion peak $[M]^+$ at m/z 318. Its mass spectrum exhibited a peak at m/z 300 corresponding to $[M^+-H_2O]$.

Several 2D-NMR techniques were then used to assist the interpretation of the structure of this compound. All of the proton-proton spin systems were traced by using data from a COSY experiment (Figure 27). Heteronuclear correlation experiments, HMQC (Figure 28), HMBC (Figure 29) and NOESY (Figure 30) allowed unambiguous assignment of all ¹H-NMR and ¹³C-NMR resonances in compound C-2.

The molecular formula of compound C-2 was assigned as C₂₀H₃₀O₃ base on elemental analysis, ¹H and ¹³C NMR spectra and EIMS that defined a degree of unsaturation of six. The IR spectrum of compound C-2 showed a hydroxyl (3521 cm⁻¹), conjugated ketocarbonyl (1660 cm⁻¹), olefinic (1463, 992, 915, 828 cm⁻¹) and ether (1156, 1082 cm⁻¹) groups.

The 1 H and 13 C NMR spectra of compound C-2 were similar to those of compound C-1 (Table 11), except at methine proton on the carbon bearing a hydroxyl group of H-12 [$\delta_{\rm H}$ 3.80 (q, J=2.5 Hz)] and at oxygenated carbon of C-12 [$\delta_{\rm C}$ 70.0 (s)]. From the HMBC spectrum, the methyl group at 1.39 ppm (H-16) correlated with an oxygen bearing carbon at 70.0 ppm. Therefore the hydroxyl group must connect to C-12. The compound C-2 was assigned as 8,13-epoxy-12-hydroxylabda-1.14-diene-3-one. These observation showed that the relative stereochemistry of compound C-2 was the same as compound C-1. The circular dichroism (CD) spectrum of compound C-2 showed a positive cotton effect at 342.6 nm and negative at 260.8 nm (Figure 21), analogous to that compound C-1 was determined to be (5*S*, 8*S*, 9*S*, 10*R*, 12*S*, 13)- 8, 13-epoxy-12-hydroxylabda-1, 14-diene-3-one (Figure 8).

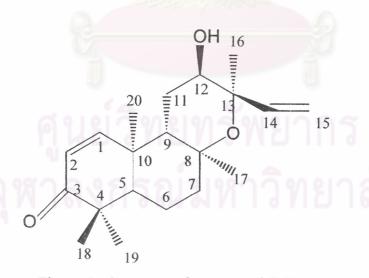


Figure 8: Structure of compound C-2

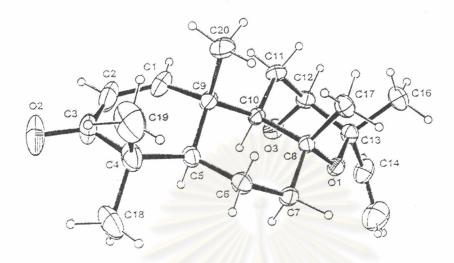


Figure 9: ORTEP structure of compound C-2

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Table 10. ¹H-NMR, ¹³C-NMR and HMBC spectral data of compound C-2

Position	δ_{C} (ppm)	$\delta_{\rm H}({ m ppm}) \ J({ m Hz})$	НМВС	
1	157.3	7.13 d ($J = 10.0$) C-5, C-6, C-9, C-10		
2	125.9	5.88 d ($J = 10.0$) C-4, C-10		
3	205.0	-		
4	44.6	-	-	
5	53.2	1.85 dd ($J = 10.0, 5.0$)	C-4, C-6, C-7, C-9, C-10, C-11, C-18,	
			C-19, C-20	
6	20.1	1.52 m	C-5, C-17, C-18	
		1.72 dd ($J = 13.0, 3.0$)	C-7, C-10	
7	41.5	1.58 m	C-5, C-6, C-10, C-13 ,C-17	
		1.92 m	C-8, C-9	
8	76.7	- 9 4740		
9	43.5	2.09 dd (J = 10.0, 6.0)	C-5, C-10, C-11, C-12, C-13, C-17, C-20	
10	38.7	-	-	
11	22.9	1.98 m,	A STATE OF THE STA	
		1.94 m	-	
12	70.0	3.80 q (<i>J</i> = 2.5)	C-9	
13	75.3	-	-	
14	142.5	5.81 dd (<i>J</i> = 18.0, 12.0)	C-8, C-16	
15	115.8	5.26 dd (<i>J</i> = 12.0, 2.5)	C-8, C-16	
	201112	5.44 dd (<i>J</i> = 18.0, 2.5)	C-14	
16	27.4	1.39 s	C-12, C-13, C-14	
17	25.3	1.38 s	C-16	
18	27.6	1.16 s	C-4, C-5, C-19	
19	21.2	1.09 s	C-18	
20	18.9	1.04 s	C-1, C-5, C-9, C-10	

Table 11. The ¹H and ¹³C NMR spectra of compound C-1 and compound C-2.

Position	$\delta_{\rm c}$	$\delta_{_{\rm C}}({\sf ppm})$		$\delta_{_{\rm H}}$ (ppm)		
	Compound C-1	Compound C-2	Compound C-1	Compound C-2		
1	157.6	157.3	7.10	7.13		
2	125.8	125.9	5.86	5.88		
3	205.1	205.0	-	-		
4	42.3	44.6	-	-		
5	53.2	53.2	1.78	1.85		
6	20.2	20.1	1.52	1.52		
		///// 19 Tage	1.70	1.72		
7	44.6	41.5	1.53	1.58		
			1.92	1.92		
8	75.0	76.7	-	-		
9	49.9	43.5	1.62	2.09		
10	39.4	38.7	-	-		
11	15.5	22.9	1.70	1.98		
			1.84	1.94		
12	35.4	70.0	1.72	3.80		
			1.90			
13	73.7	75.3	พยาก	-		
14	147.4	142.5	5.89	5.81		
15	110.7	115.8	4.94	5.26		
	4 W 18 M 1	9 9 99 91 N	5.15	5.44		
16	28.6	27.4	1.32	1.39		
17	25.6	25.3	1.38	1.38		
18	27.6	27.6	1.16	1.16		
19	21.3	21.2	1.08	1.09		
20	18.6	18.9	1.05	1.04		

3. Results of Biological activity

The *in vitro* activity of some compounds $(10\mu\text{g/ml})$ from *Croton roxburghii*. against 5 cell lines, for example, KATO-3 (gastric cancer), SW 620 (colon cancer), BT 474 (breast cancer), HEP-G2 (hepatoma) and CHAGO (lung cancer) are reported in Table 12.

Table 12. Cytotoxicity data of the diterpenes from Croton roxburghii

Compounds			% Survival		
$(10\mu \text{g/ml})$	KATO-3	SW620	BT474	HEP-G2	CHAGO
[1]	35	45	67	38	73
[2]	54	74	103	59	76
Hexane extract	19	6	38	13	29
EtOAc extract	17	8	31	13	8
Acetone extract	16	8	31	13	19

The results from table 12 showed that, compound C-1 and compound C-2 exhibited weak cytotoxic activity against all cancer cell lines. Therefore, hydroxyl group at 12 position of compound C-2 was not significantly to increase cytotoxic activity. Crude extracts (hexane extract, EtOAc extract and acetone extract) of this plant, showed more cytotoxic activity than isolated compounds (compound C-1 and compound C-2). Therefore, crude extracts should be have other isolated compounds that show higher cytotoxic activity than compound C-1 and compound C-2.