CHAPTER 1lI
DESIGN AND DEVELOPMENT

Noise is a major contribution to energy resolution degradation in nuclear
radiation spectroscopy. It can be improved through signal processing using wave-
shaping network in spectroscopy amplifier with optimum processing time adjustment.

Generally, the signal performance index is identified by the signal to noise ratio. Such a
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retical point of view and the reView of previous literatures,

a computer and generate the signal pulse like virtual amplifier output. The histogram of
amplitude distribution will be reconstructed and the deviation of signal amplitude output
becomes the figure of merit for optimization. The shaping time which gives the minimum
deviation of pulse amplitude under noise and count rate condition could be the best

operating point for the nuclear spectroscopy at each operating environment. The
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diagram below shows the concept for searching the best shaping time to operate the

nuclear spectroscopy system at each environment by simulation method.
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follows: Flrst,qsample of noise sequence is acquired from the preamplifier output and
used as the input for noise simulation by Monte Carlo’s inverse method. Second, the
counting rate at the peak of interest is measured and used as the mean count rate to
calculate the time interval between pulses. Third, frequency response of amplifier is
transformed into a digital filter by custom filter design method. Finally, the noises are
added to preamplifier signal and convoluted with digital filter. The amplitude distribution

of filtered signals is represented as a histogram and the corresponding FWHM is
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determined. The process continues and the FWHM at each shaping time value are

plotted for optimum operating point estimation.
3.2 Front-end signal pulse simulation.

The front-end signal pulse is a complex signal composing of electronic
noise from preamplifier, variation of charge collection and signal pulse pile up due to the

random nature of radiation emission. Therefore, the simulation of this signal pulse will be

integrated with specific signal function 'a rating condition under MATLAB
program, as a calculation tool. The emp i &distribution function (ecdf) of

MATLAB program referred toia DORE iSj »Gieate the signal simulation source.
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can be found from Eq. (3.1)
% =F ) (3.1)

’d in Monte Carlo is employed

probability distribu

Generally, most noise has a Gaussian or normal distribution of instantaneous amplitude
with time [33], including the situation of noise from preamplifier output. The amplitude
distribution of a sequence of noise in theoretical model can not fit to a realistic

distribution due to unpredictable interference at each environment. Therefore, the most
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straightforward and popular method for generating truly random number is to amplify a
noise signal and then sampling it at a constant sampling rate [34]. The probability
distribution function of noise amplitude, F (x), that is a fraction of the total time for which
noise amplitude is less than or equal to x [35,36] is measured based on the fact that
noise signal is ergodic process that sample’s ensemble average equal to time average.
Ergodicity implies that all the statistical properties of process are invariant in time and

that these properties are deducible fron ‘easurements made in time [35]. The

unknown distribution function of se is estimated via the empirical
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cumulative distribution function, Fr(x Gt i imate of F(x) according to the

Glivenko-Contelli theorem [3 XIS juene oise samples drawn from

preamplifier output where i =42 ‘ is Show® y.Eq.(3.2) .

Fn(x) —Ll(Xi < x) (3.2)
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Where At is time interval anéj A is the true countlng rate. alme intervals are chosen

randomly by usmﬂdﬂrﬂa«? qﬁ"ﬂ"ﬂ ﬂ?w mﬁ 451 by integrating the

probability distributi@h function from 0 to At the cdf is
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This functlon is set equal to the cdf of uniform random number to obtain At from the
uniform random number C, which can be written

Flar)=c (3.5)
The time interval between the two consecutive pulses can be obtained by sampling the
random number from uniform distribution as the input to Eq. 3.4 and the photon

generation time is shown in Fig. 3.2

At=—%m0—c) (3.6)
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3.2.3 Preampli ghal ‘e eration. The new generation of radiation
applications needs system simulation

in time domain to study the behaw stthe design of the system. The classical

s(1) = Z At =¥, )% W ) (3.7)
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Where s(t) represents theﬂdlatlon signal and A, stands m the amplitude of pulse

proportional to the W amplifier impulse
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The charge sensitive impulse response, p(t), with the time constant pulse
decay time,t, can be written in Eq. 3.8

pt) = Ae™"" (3.8)

Where A is arbitrary value corresponding to signal voltage due to amount of charge.
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Fig. 3.4 The preamplifier signal output and noise.
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3.2.4 Front-end noise sampling technique. Actually, front-end noise
arises from detector voltage bias and preamplifier. To conduct the calculation of front-
end noise, power spectral density and limits of sampling frequency as well as the
system for data acquisition are designed as shown in Fig. 3.5. The digital storage
oscilloscope at a sampling rate of 5 MS/s is employed for system testing. The data are
taken from a preampilifier output with the detector under bias, at low background level

and sent to a microcomputer via RS-232 serial port for data manipulation using the scrip

command of the program.
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3.3 Spectroscopy amplifier modeling.

As mentioned previously, a spectroscopy amplifier is supposed to be a
complex system and can be defined as a linear time-invariant model. The
characteristics for noise reduction is determined by its power transfer function or the
frequency response obtained from the Fourier transform of time domain output and input

signal of the spectroscopy ampilifier with reference to equation 2.9

3.3.1 Frequency resp abling technique. The step impulse

response is applied to investigatésth #CsPOnse of spectroscopy amplifier. A

system arranged for data sampling hov n in*kig.3.7, a step output of a function

generator is applied to the ‘\ r L'I”y. dy and both of input and
output signals are sampled 48y afhid} ling igital © Ci oscope. Those sampled

data are sent to a microcomp#itegVia’ RS"232 ot for\powe ‘spectral density calculation

using the scrip command of thd'p
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spectroscopy amplifier.

3.3.2 Power transfer function of band pass filter estimation. Canberra
2020 spectroscopy amplifier is the test pieces for frequency response estimation. A
frequency response of step input at 0.25 microsecond shaping time is set for creation of
both input and output power spectral density (PSD) as shown in Fig. 3.8a. The power

transfer function of the spectroscopy amplifier is calculated by dividing a PSD output
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with PSD of step input and the frequency response is obtained as shown in Fig. 3.8b.
The results show a narrow band pass characteristics of the spectroscopy amplifier.
A linear scale plot of the above mentioned frequency response gives a sharp peak of
frequency position, which is convenient to determine a corner frequency or a reciprocal

term of shaping time.
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different corner frequency shows the bandwidth limit at each shaping time setting, as

shown in Fig. 3.9a. All of frequency responses are then normalized by their
corresponding corner frequencies and plotted. The results show the same response
profile and it may conclude that a filter is characterized by a specific filter order and

bandwidth independent from the shaping time settings as shown in Fig. 3.9b.
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3.3.3 Designing of digital filter from frequency response. Any linear
system can be analyzed in frequency domain by using Fourier transform method. This
means that system is absolutely described by a changing amplitude and phase of
output signal, at constant input signal, passing through it at any frequency, called the
frequency response of system. A similar analysis can be done in time domain by using
convolution of the input signal with impulse response. Because the impulse response

and frequency response represent the information about the system, thus, they have a

direct relation between both of them between the impulse response
and the frequency response i ' gnal processing. Generally, it
can be state that a system'’s fr. ier transform of its impulse
response '

In this secti SUE 72 RN R 2lled digital filter which
represent the characteristic v v ’- D€ designed. This method, in
other words called custom i \\\\ \u al filter with an arbitrary
frequency response fit to ‘ \‘ he designing steps can be

written in flow chart in Fig. 3.1 ' sldavalo] program in appendix A.

The filter kernel reside in array [0] to array [M]

v

Is it fit

No

Yes

Final digital filter

Fig. 3.11 The flow chart of designing the digital filter from arbitrary frequency response.



38

The desired frequency response of a system, H[k], is inserted to the
inverse Discrete Fourier transform, DFT, in order to transform a frequency response from
frequency domain into impulse response in time domain. The equation used to calculate

the inverse DFT or synthesis equation can be written as:[38]

hfn] = fneﬁ[k] cos (2mkn/N) + flm H[k] sin ( 2zkn/N) (3.9)
k=0 k=0

Where;

Re H/k] = Helly

N/2
Im H[k] =%
ReEr0)= el
N

ReH/N/2] = ReHIN/2]

N
In equation (3.9), h[n] is impul€e fhse [ ynthesizéd and the index, n, running
from O to N-1 represent the n 3 f : . / , onse coefficients in time domain.
ReH[k] and ImH[k] stand vor AR 3 rté of frequency response,
respectively while k runs from 0 to ‘:.-- His-equation needs ReH[k] and ImH[k] rather
than ReH[k] and ImH][ “heo they are'si -_5 those in frequency

domain and need for sca i7ig bef ..‘fi. response.
The impulﬂ respo Zlamicic ponds (rj the desired frequency
response, h[n], is not suitablefor use as a fifter kernel because an ideal impulse

esponse is 2 cofpd) S IIEIIET WL Tover regaive anc

positive area Wlthom dropping to zergr amphtude shown in Fig,3.12a and is
mpractucalﬂr Ww’itﬂ@@cﬂtj m M)%qo’a«% lEi ’])ﬂn‘EJhe impulse
response ne8ds to be modified by truncating and shifting as shown in Fig. 3.12b.
Accordingly, the impulse response is truncated into M points of desired filter kernel and
replacing the impulse response outside M point with zero and the remaining portion is
shifted to the right. This allows the filter kernel to be moved and only positive indices are

used.
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After the im | e S " ‘.\~ Ne rigple in the pass band and
poor attenuation resulted fro '7 ;.- ' S, prablem can not be solved by
increasing the length of filter k e )8 1ethod for iImprovement is to smooth its
curve or a fluctuation between t € defined fre »—;': response by multiply the modified
impulse response with the smoothi g {5 such as Blackman windows and

Hamming window. The siipotfilg curve functio vq (3.10) and Eq (3.11),

respectively [38] \ 4 )
w[n]=0.42 - 0.5cos(2m /M) + 0.8 cos(4m | M m (3.10)
win] =0.54 — 0.46 cos(zm/mn. (3.11)

The frequency reSﬂ ufﬂefaﬂm Miﬂﬂ’]ﬂitgua. filter can be

tested before use. The test method is dosie by paddingsthe digital filterawith zero as for

making theQlet’e] l&\a IQ tﬁ mu%a Qimﬂiatas& to obtain

its frequency ’esponse.

The digital filter or filter kernel which is derived from frequency response
of spectroscopy amplifier can be used for time domain wave shaping simulation. This
filter function is convoluted with simulated signal from radiation detector, noise and
signal pulse noise and output signal like the output from spectroscopy amplifier is

obtained as shown in Fig 3.13. These pulse height distributions of simulated output
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signals are analyzed for FWHM's as the data for performing the optimum shaping time

searching.
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