การศึกษาถึงฤทธิ์ เชิงพิษของแคด เมี่ยมคลอไรด์ ที่มีต่อ เอ็มบริโอของหนูถีบจักรซึ่งอยู่ในระยะหลังจากฝังตัวกับผนังมดลูก

นายวิโรจน์ สุ่มใหญ่

วิทยารูฟิพนธ์นี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญา เภสัชศาสตรมหาบัณฑิต

ภาควิชา เภสัชวิทยา

บัณฑิตวิทยาลัย จุฬาลงกรณมหาวิทยาลัย

W.A. Indian

ISBN 974-563-371-2

013143

17377718

STUDY ON THE TOXICITY OF CADMIUM CHLORIDE

IN THE POSTIMPLANTED MOUSE EMBRYO

Mr. VIROJ SUMYAI

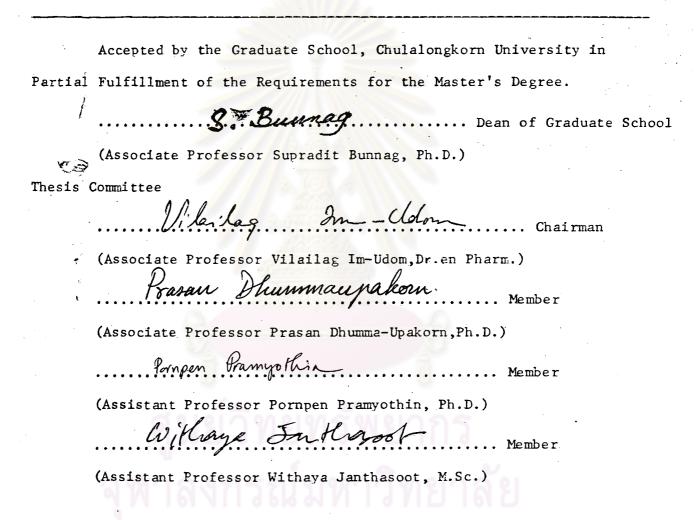
A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Pharmacy

Department of Pharmacology

Graduate School

Chulalongkorn University

1984


Thesis Title. Study on the Toxicity of Cadmium Chloride in the Postimplanted Mouse Embryo.

By Mr. Viroj Sumyai

Department of Pharmacology

Thesis Advisors. Assistant Professor Withaya Janthasoot

' Assistant Professor Pornpen Pramyothin Ph.D.

Copyright of Graduate School, Chulalongkorn University.

หัวข้อวิทยานิพนธ์ การศึกษาถึงฤทธิ์เชิงพิษของแคคเมี่ยมคลอไรด์ที่มีต่อ เอ็มบริโอของหนูถีบจักร

ซึ่งอยู่ในระยะหลังจากผังตัวกับผนังมดลูก

ชื่อนิสิต

นายวิโรจน์ สู่มใหญ่

อาจารย์ที่ปรึกษา

ผู้ช่วยศาสตราจารย์วิทยา จันทสูตร

ผู้ช่วยศาสตราจารย์ คร.พรเพ็ญ เปรมโยธิน

ภาควิชา,

เภุสัชวิทยา

ปีการศึกษา

டிவுற வ

บทศัดย์อ

การศึกษาถึงความ เป็นพิษต**่อ เอ็มบริโอของแคด เมี่ยมค**ลอไรด์ได้กระทำกับหนุถีบจักรสีขาว พันธุ์สวิส ซึ่งการทดลองในหล<mark>อดแก้ว เพื่อตรวจสอบผลที่ เกิดกับ เอ็มบ</mark>ริโออัน เนื่องมาจากความ เป็นพิษ โดยตรงของแคด เมี่ยมคลอไรค์ เอ็มบริโอของหนูถีบจักรพร้อมถุงไข่แดงได้รับการผ่าแยกออกมาจาก มคลูกในวันที่ ๘ ของการตั้งคร<mark>ร</mark>ภ์แล้วนำไปเลี้ยงให้เจริญต่อ เป็น เวลา๔๘ ชั่วโมงในอาหาร เลี้ยง ์ ชัวอ่อนที่มีแคด เมี่ยมคลอไรด์ (o.๕-๓.๐ ไมโครโมลาร์) ผสมอยู่ พบว่ามีการลดลงอย่างมีนัยสำคัญ ของการ เจริญ เติบโตควบคู่ไปกับความผิด<mark>ปกติทางโครงสร้างข</mark>องร่างกาย เกิดขึ้นกับ เอ็มบริโอ ลักษณะ ผิดปกติของ เอ็มบริโอที่ เค่นชัดที่สุดคือ เกิดการไม่ เชื่อมปิดของนูรัลทิวบ์บริ เวณกระโหลกศีรษะและการ เจริญบริ เวณสมองส่วนปลายมีน้อยกว่าปกติ ความผิดปกติอัน เนื่องมาจากแคต เมี่ยมคลอไรค์ที่ เกิดขึ้นนี้ จะ เกิดขึ้นที่ระดับความ เข้มข้นของแคด เมี่ยมคลอไรค์ซึ่งไม่ทำให้ เกิดความผิดปกติกับระบบหมน เวียน โลหิตของถุงไข่แดงที่สัง เกตได้ ศักย เกี่ยวกับพิษต์อ เอ็มบริโอของแคค เมี่ยมคลอไรค์ในตัวสัตว์ทคลอง ที่มีชีวิตได้รับการทดสอบในหนูถีบจักรสีขาวพันธุ์สวิสภายหลังจากได้รับแคด เมี่ยมคลอไรด์ฉีด เข้าภายใน ช่องท้องหนึ่งครั้งในขนาด ๔ ม.ก.ก.ก. ี ในวันที่ ๗, ๗.๕ หรือ ๘.๕ ของการตั้งครรภ์ แคดเมี่ยม คลอไรค์ไม่ทำให้ เกิดความผิดปกติกับสัตว์ทคลองตัวแม่ที่ตั้งครรภ์ การสูญ เสีย เอ็มบริโอที่ผังตัวแล้วใน สัตว์กลุ่มทคลองจะสูงกว่าในสัตว์กลุ่มควบคุม เมื่อสัตว์ทคลองตัวแม่ที่ตั้งครรภ์ได้รับการฉีดแคด เมี่ยม-คลอไรค์ให้ในวันที่ ๙ ของการตั้งครรภ์ ลูกที่เกิดจากแม่ที่ฉีดแคด เมี่ยมคลอไรค์จะมีขนาด เล็กกว่าลูกที่ เกิด จากแม่ในกลุ่มควบคุมอย่างมีนัยสำคัญ ลูกซึ่ง เกิดจากแม่ที่ได้รับแคด เมี่ยมคลอไรด์จะมีความวิรูปหรือผิดส่วน เกี่ยวกับโครงกระดูกและรูปร่างภายนอกปรากฏให้เห็น การเกิดวิรูปทางรูปร่างของลูกสัตว์จากกลุ่ม ทคลองจะมีมากกว่าจากกลุ่มควบคุม เมื่อสัตว์ทคลองตัวแม่ที่ตั้งครรภ์ได้รับการฉีดแคต เมี่ยมคลอไรด์ให้

ผลการทคลองต่าง ๆ ในหลอดแก้วที่ได้นั้นสอดคล้องกับผลการศึกษาในร่างกายที่มีชีวิต ซึ่งแสดงถึงฤทธิ์โดยตรงของแคด เมี่ยมคลอไรด์ที่ทำให้ เกิดบกพร่องของพัฒนาการ เจริญ เติบโตทาง กายของ เอ็มบริโอในครรภ์ของหนูถีบจักร.

> ศูนยวิทยทรพยากร หาลงกรณ์มหาวิทยาลัย

Thesis Title Study on the Toxicity of Cadmium Chloride in the Postimplanted Mouse Embryo.

Name Mr. Viroj Súmyai

Thesis Advisor Assistant Professor Withaya Janthasoot

Assistant Professor Pornpen Pramyothin Ph.D.

Department Pharmacology

Academic Year 1983

ABSTRACT

An embryotoxicity study on cadmium chloride was carried out in Swiss Albino mice. The *in vitro* experiments were performed to investigate the direct toxic effects of cadmium chloride on the developing embryo. Mouse's embryo within their yolk-sacs were explanted from the uterus on gestation day 8 and cultured in the presence of cadmium chloride (0.5-3.0 µM) for 48 hours. There was significant reduction in growth accompanied by a variety of dysmorphogenic effects. Non-closure of the cranial neural tube region and stunted telencephalic hemispheres were most evident. These were observed at concentrations of cadmium chloride with no apparent adverse effects on the yolk sac circulatory system. The *in vivo* embryotoxic potential of cadmium chloride was evaluated in Swiss Albino mice after intraperitoneal administration of a single dose of 4 mgkg⁻¹ on gestation day 7, 7.5 or 8.5. Significant effects of cadmium chloride were not observed on the dams. Resorption of implants was higher in the treated animals than controls when dams were treated

on day 7 of gestation. Fetuses from dams given cadmium chloride were significantly smaller than those from controls. Skeletal and gross malformations were found in fetuses born to mothers which received cadmium chloride. The incidence of gross malformations were higher in treated animals than controls when dams were treated on day 7 or 7.5 of gestation. Major gross malformation were exencephaly and open eyes. The incidence of skeletal malformations were higher in treated animals than controls when dams were treated on day 7.5 or 8.5 of gestation. Skeletal malformation were fused ribs, short rib, missing rib, bifurcated rib, rudimentary and flying rib, fused vertebral arches, hemivertebral arch and poorly ossified skull. Postnatal study revealed no functional impairment in fetuses born to mothers which were treated with cadmium chloride on day 8.5 of gestation.

Those in vitro effects appear to be comparable to the in vivo observations and suggest a direct teratogenic action of cadmium chloride on the developing mouse embryo.

ศูนยวิทยทรพยากร พาลงกรณ์มหาวิทยาลัย

ACKNOWLEDGEMENT

At this time I wish to express my thanks to my respected teachers, Ass. Prof. Withaya Janthasoot and Ass. Prof. Dr. Pornpen Pramyothin, for their able guidance, constant interest, encouragement, and advice during the course of this work.

Further, I am extremely grateful to Assoc.Prof.Dr. Vilailak
Im-Udom, Head of department of Pharmacology, for her valuable
suggestions and helpful discussions throughout the course of this study.

I am very much obliged to Assoc. Prof. Dr. Prasan

Dhumma-upakorn for stimulating me to publish the results of this study,

and for his valuable criticism of the manuscript.

My thanks are also extended to Dr. Beat P. Schmid and Dr. Sigrid Brüggemann for their valuable guidance and friendly collaboration at the section of Reproductive Toxicology, Preclinical Research Laboratory, Basel. I will remember our period of collaboration as a pleasant and fruitful one.

Finally, I gratefully acknowledge my indebtedness to Chulalongkorn University Graduate School for granting me partial financial support, to conduct this study.

Page

CONTENT

THAT ABSTRACTiv
ENGLISH ABSTRACTvi
ACKNOWLEDGEMENTviii
CONTENTix
LIST OF TABLExiii
LIST OF FIGURExiv
ABBREVIATION AND SYMBOLSxvii
CHAPTER
I GENERAL REVIEW OF THE LITERATURE
Introductionl
Natural Occurrence of Cadmium2
Industrial Use of Cadmium2
Source of Environmental Pollution3
Cadmium in Plants4
Pathological Effects of Acute
Intoxication5
Pathological Effects of Chronic
Intoxication6
Cadmium and Testicular Changes8
Cadmium and Ovarian Changes9

Page

Placental Transfer of Cadium 9
Pathological Effects of Cadmium
on the Placenta11
Teratogenic Effects of Cadmium13
Problem and Outline of Plan14
II MATERIALS AND METHODS
Materials15
Methods16
1. Feeding and Housing of Animals16
2. Mating Procedure16
3. Preparation of Culture Medium16
4. Explantation of Mouse's Embryo17
5. Experimental Part I: In Vitro Studies
5.1 Assessment of Mouse's
Embryonic Development in Utero.17
5.2 Assessment of Mouse's
Embryonic Development in
Vitro18
5.3 Determination of the
Embryonic Lethality Doses of
Cadmium Chloride20
5.4 Assessment of Embryotoxic
Potential of Cadmium Chloride
in Vitro21

	Page	e
	6. Experimental Part II: In Vivo	
	Studies22	
	6.1 Determination of Adult	
	Lethality Doses of Cadmium	
	Chloride22	
	6.2 Assessment of the Embryotoxic	
	Potential of Cadmium Chloride	
	in Vivo23	
	7. Experimental Part III:Postnatal	
	Studies26	
פאק זוז	SULTS29	
CII NEC	Comparison of Swiss Albino Mouse Embryonic	
,		-
	Development in Vivo and in Vitro29	
	The Dose Response Curve for Embryolethality	
	of Cadmium Chloride in Mouse Embryos Cultured	
	in Vitro32	
	Effects of Cadmium Chloride on the Development	
	of 8 Days Mouse Embryos in Vitro32	
	The Adult Lethality Curve of Cadmium Chloride40	
	The Embryotoxic Potential of Cadmium Chloride	
	in Vivo42	
,	Postnatal Growth and Development of Fetuses	
	Exposed to Cadmium Chloride in Utero51	-
	•	

xii

LIST OF TABLES

able	Fag
1.	Comparison of Swiss Albino Mouse Embryonic
	Development in Vivo and in Vitro
2.	Pregnancy Outcome Following Intraperitoneal
	Administration of Cadmium Chloride to Pregnant Mice44
3.	Effects of Marternal Exposure to Cadmium Chloride
	(4 mg/kg body weight), Intraperitoneal Injection,
	on Gross External and Skeletal Morphology of Fetuses48
4.	First Appearance of Physical Features67
5.	The Results of Functional and Behavioral Test69

ศูนย์วิทยทรัพยากร งุฬาลงกรณ์มหาวิทยาลัย

LIST OF FIGURES

igure	Page
1.	(A) Photomicrograph of Unfixed in Utero Embryo of
	33 Somites, Developmental Age 10 Days; (B)
_	Photomicrograph of Unfixed Embryo Cultured for
	48 hours in Vitro, Developmental Age 10 Days31
2.	The Embryonic Lethality Curve of Cadmium
•	Chloride in 8 Days Mouse Embryos Maintained in
	Whole-Embryo Culture for 48 Hours33
3.	The Relationship Between Doses of Cadmium
-	Chloride and Total DNA Contents of Embryos
	Maintained in Whole-Embryo Culture for 48 Hours35
4.	The Relationship Between Doses of Cadmium Chloride
	and Yolk Sac Diameters, Crown-Rump Lengths and
	Head Lengths of Embryos Maintained in Whole-Embryo Culture for 48 Hours
5.	The Relationship Between Doses of Cadmium Chloride
	and Number of Somites and Morphological Score Points
	of Embryos Maintained in Whole-Embryo Culture for
	48 Hours38
6.	Photomicrograph of (A) Controlled Embryo and (B)
	Embryo Treated for 48 Hours with 3.0 µM Cadumium
	Chloride39

7.	The Adult Lethality Curve of Cadmium Chloride
	in Pregnant Mice Following Single Intraperitoneal
	Administration of Cadmium Chloride on Day 8.5 of
	Pregnancy41
8.	The Relationship Between Day of First Exposure
_	to Cadmium Chloride and Absolute weight Gain of
	Dams During the Entire Period of Pregnancy43
9.	The Relationship Between the Day of First
	Exposure to Cadmium Chloride and Crown-Rump Lengths
	of Viable Fetuses46
10.	The Relationship Between Day of First Exposure to
	Cadmium Chloride and Weight of Fetuses and
٠.	Placentae47
11.	Lateral View of 18.5 Day Mouse Fetuses from
	Groups of Pregnant Mice Treated with 4 mg
	$CdCl_2 kg^{-1}$ on days 7.0 or 7.5 of Gestation49
12.	Lateral View of 18.5 Day Mouse Fetuses from a Group of Pregnant Mice Treated with 4 mg. $CdCl_2$ kg ⁻¹ on Day
	8.5 of Gestation
13 (A)). Distal Fused Ribs52
13(B)	Proximal Fused Ribs53
13(C)	. Central Fused Ribs54

Ε.	igure		Page
	13 (D).	Central & Distal Fused Ribs	•• 55
	14 (A).	Short Rib	•• 56
	14 (B).	Short Rib	••57
	15.	Missing Rib	••58
	16 (A).	Skull: Normal Ossification	••59
	16 (B).	Skull: Retarded Ossification	••60
	17.	Bifurcated Ribs	61
	18.	Rudimentary and Flying Rib	• •62
	19.	Fused Vertebral Arches	••63
	20.	Hemivertebral Arch	• 64
	21.	Postnatal Weight Development of the	
		Offsprings of Mice Exposed to Cadmium Chloride in Utero on Day 8.5 of Gestation	 66
	વ	หาลงกรณ์มหาวิทยาลัย	

ABBREVIATION AND SYMBOLS

a.c.	alternating current	mA	milliampere
p.m.	after noon	mm.	millimeter
a.m.	before noon	дg.	microgram
cm,	centimeter	%	percent
·c	degrees celsius	day-1	per day
e.g.	for example	m ⁻³	per cubicmeter
g.	gram	g ⁻¹	per gram
Hz	hertz	m1 ⁻¹	per milliliter
hrs.	hours	kg ⁻¹	per kilogram
i.p.	intraperitoneal	p.c.	post coitus
i.v.	intravenous	rpm.	revolutions per minute
km.	kilometer	<	less than
m1.	milliliter		9
min,	minute		
mg.	milligram		
μM.	micromolar		