CHAPTER IV

RESULTS

Effects of sodium carbonate supplementation on milk productions, feed intake, and water intake in crossbred Friesian cows.

The calculated nutrient compositions of experimental diets are shown in Table 7. All diets were similar in each composition. The least square mean values of , body weight, dry matter intake, dry matter intake per %body weight, milk yield, milk yield per dry matter intake, 4% fat corrected milk, water intake and water intake per dry matter intake in control group and two treatment groups are shown in Table 8. Cows fed with control diets had lower DMI and DMI/%BW (P<0.05) when compared with cows fed Na₂CO₃ supplementation in diet. Milk yield was increased (P<0.05) in animals with the high level of Na₂CO₃. MY/DMI ratio of the control group was higher (P<0.05) than those of two treatment groups. MY/DMI ratio was decreased by 14% and 4% in animals fed with 1% and 2% Na₂CO₃ supplementation, respectively. The values for 4%FCM, BW, WI, and WI/DMI were not affected by the Na₂CO₃ supplementation in the diets.

Table 7 The chemical analysis of nutrient compositions of experimental diets (dry matter basis)

Nutrient (%)	Dietary				
	control	1% Na ₂ CO ₃	2% Na ₂ CO ₃		
СР	16.1	16.1	16.2		
ADF	22.0	22.0	21.9		
NDF	35.9	37.4	39.6		
Na	0.17	0.58	0.96		
K	0.75	0.73	0.74		
CI	0.48	0.48	0.48		

During experimental periods, the average temperature and relative humidity were 25.52-35.47°C and 54.57-73.57%, respectively. The concentration of Na, K, and Cl in water were 0.0015%, 0.0001%, and 0.0027%, respectively.

Table 8 Least square means of body weight, feed intake, milk productions and water intake

		Dietary	
	control	1% Na ₂ CO ₃	2% Na ₂ CO ₃
BW (kg)	492 <u>+</u> 27.7	497 ± 31.3	498 <u>+</u> 26.5
DMI (kg DM/d)	13.8 ^b ± 0.17	15.6°± 0.20	15.9 ^a ± 0.16
DMI / %BW	2.81 ^b ± 0.08	3.17 ^a ± 0.08	$3.19^{a} \pm 0.08$
MY (kg/d)	13.6 ^b ± 0.16	13.7 ^b ± 0.18	14.9 ^a ± 0.15
MY / DMI	1.00° ± 0.01	$0.86^{\circ} \pm 0.02$	$0.96^{b} \pm 0.01$
4% FCM (kg/d)	12.4 <u>+</u> 0.74	12.6 ± 0.74	13.2 <u>+</u> 0.63
WI (I/d)	45.9 <u>+</u> 3.48	45.9 ± 2.66	49.1 <u>+</u> 2.80
WI / DMI (I/kg)	3.26 ± 0.27	2.97 ± 0.20	3.26 ± 0.22

abc Least square means with different superscripts in a row differ significantly (P<0.05)

ศูนย์วิทยทรัพยากร สาลงกรณ์มหาวิทยาลัย

Effects of sodium carbonate supplementation on milk compositions

The least square mean values of total yield of milk composition, percentages of milk compositions and milk electrolytes were shown in Table 9. Animals fed with high Na₂CO₃ supplementation in the diets tended to increase total yield of milk compositions and milk electrolytes, these change shown no significant differences. There were no differences in milk compositions and electrolytes, but total solid and fat percentage tended to decrease when animals were fed with Na₂CO₃ supplementation in diet. The concentration of Na in milk increased (*P*<0.05) during feeding with 2% Na₂CO₃ in diet in comparison to the control.

Table 9 Least square means of milk compositions

		Dietary		
	control	1% Na ₂ CO ₃	2% Na ₂ CO ₃	
Milk yield composi	ition (kg/d)			A Control of the
TS	1.63 ± 0.10	1.67 <u>+</u> 0.10	1.82 <u>+</u> 0.09	
Fat	0.45 ± 0.04	0.46 <u>+</u> 0.04	0.48 <u>+</u> 0.03	
SNF	1.16 <u>+</u> 0.08	1.22 <u>+</u> 0.08	1.34 ± 0.07	
Protein	0.47 ± 0.03	0.50 <u>+</u> 0.03	0.53 ± 0.03	
Lactose	0.60 ± 0.05	0.63 <u>+</u> 0.05	0.71 <u>+</u> 0.04	
Milk composition (%)		j .	
TS	12.65 ± 0.24	12.57 <u>+</u> 0.24	12.49 ± 0.21	
Fat	3.52 <u>+</u> 0.31	3.46 <u>+</u> 0.31	3.46 ± 0.27	
SNF	8.97 ± 0.11	9.16 <u>+</u> 0.11	9.04 ± 0.09	
Protein	3.74 ± 0.07	3.81 <u>+</u> 0.07	3.72 ± 0.06	
Lactose	4.55 ± 0.09	4.65 <u>+</u> 0.09	4.62 <u>+</u> 0.08	
Na (mg%)	72.39 <u>+</u> 6.04	77.50 <u>+</u> 6.04	87.28 <u>+</u> 6.89	
K (mg%)	181.29 <u>+</u> 15.00	181.22 ± 5.00	166.96 <u>+</u> 17.10	
CI (mg%)	109.55 <u>+</u> 6.56	115.20 <u>+</u> 6.56	117.44 ± 7.48	

 $^{^{}m abc}$ Least squares means with different superscripts in a row differ significantly (P<0.05)

Effects of sodium carbonate supplementation on plasma Na, K and Cl concentrations

Effects of Na₂CO₃ supplementation on plasma electrolytes are shown in Table 10. No significant differences were observed in plasma concentrations of Na, K and Cl among treatments.

Table 10 The effects of sodium carbonate supplementation on plasma Na, K and Cl concentrations

			Dieta	ary	
	Cont	trol	1% Na ₂	CO ₃	2 % Na ₂ CO ₃
Plasma el	ectrolytes conc	entration	(mmol/l)		
Na	137.0 ±	1.12	137.1 <u>+</u>	1.12	137.2 <u>+</u> 1.28
K	4.4 <u>+</u>	0.14	4.3 ±	0.14	4.2 <u>+</u> 0.16
CI	96.5 ±	0.75	95.0 <u>+</u>	0.75	95.2 <u>+</u> 0.86

Effects of sodium carbonate supplementation on urinary and fecal Na, K and Cl concentrations

Urinary electrolyte:creatinine ratio and fecal electrolyte concentration are shown in Table 11. There were no differences in Na:creatinine ratio, Cl:creatinine ratio and fecal Cl concentration. Sodium carbonate supplementation increased significantly K:creatinine ratio and fecal Na concentration (P<0.05), while the fecal K concentration decreased significantly (P<0.05) in animals given 1% and 2% Na₂CO₃ as compared with the control.

Table 11 The effects of sodium carbonate supplementation on urinary and fecal Na, K and Cl concentrations

		Dietary	
	control	1% Na ₂ CO ₃	2 % Na ₂ CO ₃
Urinary electrolyte:ci	reatinine		
Na:creatinine	5.34 ± 2.51	7.92 <u>+</u> 3.44	8.63 <u>+</u> 3.73
K:creatinine	24.77 ^b + 2.68	34.25 ^a ± 2.16	33.78°± 2.25
Cl:creatinine	10.52 <u>+</u> 1.57	11.01 <u>+</u> 1.97	10.61 ± 1.99
Fecal electrolyte (%)			
Na	0.27 ^b ± 0.06	0.54 ^a ± 0.10	$0.59^{a} \pm 0.08$
K	0.95 ^b ± 0.14	0.45°± 0.06	$0.40^{a} \pm 0.03$
CI	0.29 <u>+</u> 0.03	0.38 <u>+</u> 0.06	0.39 <u>+</u> 0.04

^{abc} Means with different superscripts in a row differ significantly (*P*<0.05)

Effects of sodium carbonate supplementation on digestibility of nutrients

Table 12 shows the means value of the digestibility of DM, ADF, NDF, Na, K and CI. The digestibility of Na and K were lower (P<0.05) in animals fed control diets than those of animals fed Na₂CO₃ supplemented diet. The digestibility of DM, ADF, NDF, and CI were not affected by Na₂CO₃ supplementation.

Table 12 The effects of sodium carbonate supplementation on digestibility of nutrients

		Dietary		
	control	1% Na ₂ CO ₃	2 % Na ₂ CO ₃	
Nutrients dige	stibility (%)			
DM	65.13 <u>+</u> 1.56	66.87 <u>+</u> 1.91	67.00 <u>+</u> 2.87	
ADF	59.40 <u>+</u> 2.43	60.13 <u>+</u> 3.80	61.45 <u>+</u> 3.04	
NDF	60.31 ± 1.79	61.72 <u>+</u> 1.76	64.62 <u>+</u> 2.31	
Na	53.04 ^b ±10.93	69.76°± 6.72	81.40 ^a ± 1.72	
K	55.85 ^b ± 7.24	80.30°± 1.68	82.46°± 1.44	
CI	78.79 ± 3.06	73.78 <u>+</u> 4.03	73.80 <u>+</u> 2.92	

^{abc} Means with different superscripts in a row differ significantly (*P*<0.05)

Effects of sodium carbonate supplementation on pH and volatile fatty acid of rumen fluid

There were no affected on pH, concentrations for acetic acid, propionic acid, butyric acid, valeric acid, and total volatile fatty acid, among animals fed different diets (Table 13). Acetic acid per propionic acid ratio slightly increased by increasing Na₂CO₃ in the diets. However, C₂, C₃, C₅, total VFA, and C₂:C₃ ratio tended to increase, while C₄ tended to decrease when Na₂CO₃ dietary was increased.

Table 13 The effects of sodium carbonate supplementation on pH and volatile fatty acid of rumen fluid

	//////////////////////////////////////	Dietary		
	control	1% Na ₂ CO ₃	2% Na ₂ CO ₃	,
рН	6.97 <u>+</u> 0.12	6.91 ± 0.20	6.78 <u>+</u> 0.19	
VFA concentration (mmo	ol/I)			
Acetic acid (C ₂)	88.63 <u>+</u> 10.12	101.51 <u>+</u> 9.31	103.11 ± 6.08	
Propionic acid (C ₃)	27.39 ± 2.53	28.20± 3.58	31.37 ± 3.98	
Butyric acid (C ₄)	17.02 <u>+</u> 1.92	16.50 ± 1.65	16.32 ± 0.91	
Valeric acid (C ₅)	1.00 ± 0.04	0.90 <u>+</u> 0.12	0.95 ± 0.10	
Total VFA	133.99 <u>+</u> 11.71	149.01 <u>+</u> 12.23	151.67 ±10.08	
C ₂ :C ₃	3.35 ± 0.47	3.44 <u>+</u> 0.28	3.48 ± 0.36	