CHAPTER IV
NUMERICAL SOLUTIONS

This chapter is concerned with the numerical results obtained from the
solution scheme described in Chapter III. A computer program has been developed to
investigate the interaction between a rigid circular cylinder and a homogeneous

poroelastic half space. First, the convergence and stability of numerical solutions are

investigated. The accuracy of the presant solution is verified by comparing with the
existing solution. Numerical r d,to demonstrate the applicability of
the present solution schem ice of governing parameters on
the interaction problem is also given in this chapter

The solution schg ibedin C ;‘1‘ rJIlis‘implemented into a computer

program. The tasks perfo 7 PUICT program ean be summarized as:
& Ll V; : ,! . s
1. Asetof orcgs are assmed 0 b applied at N node points on
an auxiliary s J 5 “Theb onditions at N node points on

S are spec1ﬁed £ .l_;“ﬂ #:‘-f

2.  The influence functions are determined d Jo/ establish the discrete

version “df,
E“- equations (3.51) and (3. 57 for an impermeable one
wit rﬁﬁ g , respectively.

h@ m h m’i}fi at N node points
on an aux111ary surface § by using equation (3.61).

2 ibe FGAoltE bbbl ) RN L: vet

points in Q can be computed directly from equations (3.51) to
(3.54).

2 ". a permeable contact

surface,

The major computation eﬁ‘ort performed by the computer program is the

evaluation of influence functions. The influence functions G; and H, appear in terms

of semi-infinite integrals with a complex-valued integrand involving Bessel functions.

These integrals can not be evaluated analytically. To carry out semi-infinite
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integration numerically, it is important to examine the dominant characteristics of the
integrand. The main singularities of the integrand are the branch points defined by Vi
(1=1,2,3) given by equations (3.32) and (3.33), and the pole denoted by R given by
equation (A.18). For a poroelastic half-space, the branch points are given by
L,L,and §, ie., the wave numbers corresponding to three kinds of body waves

defined in equations (3.36), (3.37) and (3.38), respectively, while poles are given by
the roots of (A.18) which is the Rayleigh equation for a poroelastic half-space

governing the propagation of the s e;. In reality, all poroelastic materials

have some internal friction (.e:b : of material damping results in
grands éd complex-valued quantities.

-

branch points and poles o
Therefore, the real £ -axissi

can be evaluated by diree inte n along the Teal & -axis.

large value of &, in o@r to ge onvergencg of the solution. The first

situation can be avoided ifftiiegenerating sodtée is restricted to a depth greater than
zero at all times.alpu&e i ﬂ il!ﬁﬂﬂ gzzglﬁ i convergence of the
solution for the m?)llst critical point, i.¢! observatio int at surfacéitan be checked.
Sinﬁlarlyalﬁsqﬁﬁaﬁm cllzmﬂs . Om El :ll“asrij between the
depth of th?: observation point and the source is greater than d,, the convergence of

the particular solution can also be assured.

For the numerical evaluation of influence function, the globally adaptive
numerical quadrature scheme is used. The scheme subdivides the interval of integral
and uses a 21-point Gauss-Kronrod rule (Piessens et al., 1983) to estimate the integral

over each subinterval. The error for each subinterval is estimated by comparison of
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the result obtained by 21-point Gauss-Kronrod rule with that by 10-point Gauss
quadrature rule. The subinterval with the largest estimated error is then bisected and

this procedure is applied to both halves. This bisection procedure is continued until

the error criterion is reached.
4.2 Convergence and Numerical Stability

The convergence and stability of the numerical solution scheme described in
spect to the following parameters:

1. The upper limit of integratior L,/&ge numerical integration of the

semi-infinite integrals.efmfluence fneiion

the previous section are investigated

2. The distance betw€eafutfacel S r'.»_.“ﬁ"."-*-.r ed by Aa (see figure 3.1)
3. The number ofa6des” N fahd-N' used to discretize the generating suface
S and §’', respgCtiye \

Figures 4.1 to 4.3 p ¢ ofnon-dimensional influence

functions of a homogeneous respect to &, . The vertical

ring load, radial ring load ang _ radius 0.9a and intensity i per
unit length are applied at a :g‘: slow e surface of a half-space at a
frequency &=1.0. i‘:';“—__—_\ I*=10, M*=122,
p*=0.53, m*=1.1, &=0 of influence functions are

computed at radius a and depth 1.54,1.05a2 and 1.005a , réspectively. It is found that

the influence ﬁuﬁoﬂﬁoﬁvﬁeﬁ% %”w% Q[T)ﬂﬁiz —2|=0.54,0.05a

and 0.005a, respeéfively.

ANIBIAIANIIINENAYL . ..,

varying N,N' and Aa for various slenderness ratios (4/a =0.5, 2, 10 and 20) at a
frequency &=5. The properties of the half-space are : A*=1.0, M*=12.2,
p*=0.53, m*=1.1, =097 and b=30. It is found that solutions converge for

N =30 and N'=60 with Aa=0.i for a short cylinder (h/a<2)and N =40 and
N'"=80 with Aa =0.1-0.25 for a long cylinder (#/a > 10).
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4.3 Comparison with Existing solutions

The accuracy of the present solution scheme is verified by comparing the
solution obtained from the present scheme with the existing solutions. Figure 4.4
presents a comparison of vertical impedance of a rigid cylinder embedded in an
elastic half-space with different length/radius ratio (h/a = 0.25, 0.5, 1, 2) between
the solutions given by Apsel and Luco (1987) and the presént solutions. The results

are obtained by the degeneration of a poroelastic medium to an elastic medium (the
values of M*, p* m*,b* and o aré set ) 7).Jn addition, the material attenuation
of 1% is added to the elastic modulus t the numerical integration along
the real £-axis is free fr i de'akSI%QI

€ real ¢ -axis 1s free fromranysimsy y and Rajapakse, . It can
be observed that the present.s k :

/.« afel in excellent.agreement with those given by
Apsel and Luco and the maximut // erehce \\\\d\ f—..,;; The accuracy of the
present solutions is con -- thfodgh: is tompar \

In order to invesiiga e efficien ,\

present scheme, a modified
solution scheme based on a g
space is presented (Rajapa 7
space containing an embedded c¥i : ' _“-‘ orposed into an extended half-space

and a fictitious bar as shownvifi figure 4

oreeifield acting on the extended half-

In this method, a poroelastic half-

account for the case of a short

bar, it is assumed that : -.--'-;: cted 1o body g ' ncentrated load transfer

represented by tractions eting ct@ at z =0 and 4. To ensure

that volume V* deforms 25 a rigid body, it % assumed that the magnitude of body
=9

forces varies in mﬁ adnl W?ﬂﬁﬂﬂ ﬁry in the r-direction.

The magnitude oﬁpo y forces an ctions are determined by discretizing V* and
. . . ¢, .. [P .

v S LA e Aoh ity

4.6.This requ sin llowing m quiliori at

Ml s -
[z 2)By + T (rinzis,,2,)B, ]
j=1 }

M, '
+Z|:f,,(7;-,z,.;rj,zj)T,j+f,,(r;.,z,.;rj,zj)1;j:|=0 (41)
=
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Ml — -
zl[f,<n,zi;4,z;)34+fz,(r.-,z,-;r,-,z,-)B,,-]

+Z[fz,(r;,z,, 1z T+ (5257, 2)T, |- A, =0 4.2)
M M .
2342%&;1\%27;2”0&;+(p—pb)fm2w2hA, =5 (4.3)
Jj=1 Jj=1

In equations (4.1)-(4.3), %hollow cylindrical elements, M,

is the number of base eleme ents in i-direction due to unit

body forces and unit tractiofi ac; tively. B, and B, represent

magnitude of body forces aciifig ontils 1 .‘ al element, 7, and T, are

magnitude of tractions actingon ./  ‘base

N
Figure 4.7 show cgfparison oﬁ

\ e of a rigid cylinder in an
elastic half-space between piése b t boundary integral equation

method and non-uniform bogd _ isting solutions presented by
Apsel and Luco (1987). It can be of hat the results from both schemes are in

good agreement with the, g 987) and the maximum
Simethod and only 3% for

ssedaarher In order to ensure

error is about 6% ma XTI

indirect boundary mteg:ﬂ equa
that volume V'* deforms as & s rigid body, the sa}txons based on the non-uniform body

force method reﬁ%ﬁlae%tﬁ W@Q fe}«%l hollow cylindrical

elements. Obviougly, the non-umform body force method demands much more

°°“’p“m':rm‘awmwﬁ TETEY

4.4 Numerlcal Results and Discussion

The numerical solutions shown in sections 4.2 and 4.3 confirm the
convergence, numerical stability and accuracy of the present formulation. In this
section, various numerical results are presented to demonstrate the influence of
various parameters on the dynamic response of the cylinder. The rigid cylinder

considered in the numerical study is subjected to axisymmetric time-harmonic



27

loading as shown in Figure 1.1. A non-dimensional frequency & in the range
0<6<6.0 is considered in the numerical study. In addition, the non-dimensional
parameters A*=1.0, M*=12.2, p*=0.53, m*=1.1 and a = 0.97 are used for all

numerical results presented in this section.

Figures 4.8 and 4.9 show the non-dimensional vertical impedance of
impermeable and fully permeable rigid cylinders with different length/radius ratio

(h/a=0.5 2, 10 and 20). In addition, two values of b*, i.e., b*= 2.3 and 30 are

real part of the impedance shOWs steep i;‘ream at very low frequency. It is

also clearly seen from m’

significantly on %/a.

rertical impedance depends
casing the ratio of A/a. This

is due to the fact that inder and the medium is

increased for a longer ticylinder will have more
solutlons in Figure 4.8 and
4.9 are the increasing difl inpedance of impermeable and fully

permeable cylinder at high fr (5= - However, the difference seems to be

Flgures 4.10 ‘ani 4.1 :".'=-:;:-._;:;;a-::;aa:;;a:;;....x vertical impedance of
impermeable and ful :'[ serm mbedded in four different

Ierlals are b*=0.001, 2.3,
10 and 30. The m ws slightly higher
stiffness at the uET mmg“ ﬂnm ince of impermeable
and fully permeable cylinders are n iidenhcalﬁor 0<J5 <1.0 &nd become more

dlfferenta ﬂﬂ aﬁeﬁm mqlﬂaﬂlﬁﬂv) between

1mpermeable and fully permeable cylinders decreases with increasing b*. Since b* is
inversely proportional to permeability, it implies that material with 5* =0.001 is the

most permeable and the material with 5* = 30 is the least permeable among the four

poroelastic materials. propertles of the poroelastic

poroelastic materials.

Figures 4.12 and 4.13 show the non-dimensional vertical impedance of

impermeable rigid cylinder embedded in an elastic half-space (A*=1.0) and four
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different poroelastic materials defined previously. The variation of the imaginary
parts with ¢ is nearly linear. Highest damping is found to occur in the material with
highest value of b* (b* = 30). The difference in the impedances between a rigid
cylinder in poroelastic materials and an elastic material becomes substantial at high
frequency (J>1.0) indicating the importance of poroelastic effect in dynamic soil-
structural interaction analysis. The material parameter b quantifying the fluid viscous
dissipation is found to have the most significant influence on the non-dimensional
impedances when compared to other material parameters. Let consider the case where

108 Nim?, p2 = 1.0 10® Nim?, M =

93 kgim®>, m = 2.2 10 kg/m’, b
0°N,L=8.0mand a=0.25

the poroelastic material properti:

122 10* Nim?, p =20 1

=4.11 10°Ns/m* and o =

m. In this case, if the displacement is less than 4

mm, the required non-di ) must be more than 10.0.

From Figure 4.12, it is ions will be less than 6=1.0

The present soluti 'tan alge be employed in the analysis of other

axisymmetric foundations. ions, i.e., hemisphere, taper and step

e _4.15 and 4.16 show the non-

dimensional vertice -"s-,-":':’t'::"%:-:;:;;;‘-:;:;;;::;:::‘-;;‘-;:::;:;';l-'0 (i.e. cylinder,
g — ‘k

hemisphere, taper and ~i‘- 3 Dy=sctting h=1, i =0.5,a=1

as shown in figure 4.14 g

and @ = 0.5 in ﬁgur' 4}.14. The solutions are presented for both permeable and
impermeable f io ﬁ{ ﬂ lgj}xﬂlltt?:aterial are A*=1.0,
M*=122, p* ﬁﬁ ﬁnﬁa= 0.97 *=72.3 and 10. Comparison of
imped indi . i QEj\lly permeable
and i;m ﬁﬁﬁjmmﬂrﬂ?jﬁ thereafter the

impedances of impermeable foundations decrease gradually with increasing &. The
imaginary parts of impedances, on the other hand, increase with increasing frequency
for 0<d<6. It is also found that the imaginary parts for both permeable and

impermeable foundations are almost identical when 0 <& <2. When 6> 2, Im(K,)

for impermeable foundations are higher than those of permeable ones.
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Table 4.1 Convergence of vertical impedance of rigid cylinder in a poroelastic

medium with N, N’ and Aa (h/a=0.5,5 =5,b* = 30)

K, (permeable)
(N,N") Aa =0.05 Aa=0.1 Aa=0.15 Aa=0.2
Re Im Re Im Re Im Re Im
(20,10) | 5.37 | 47.93 | 549 | 4821 | 536 | 4639 | 485 | 43.76
(40,20) | 8.04 | 56.04 | 7.33 | 53.56 | 7.04 | 51.75 | 6.45 | 50.10
(60,30) | 8.48 | 57.16 | 7.92 | 5530 | 7.62 | 53.93 | 15.14 | 58.39
(80,40) | 8.71 | 57.75 | 8.6, 8.94 | 56.04 | 159.33 | -130.69
(iz le)
(N,N) Aa=0.05 =0.1 =0.15 Aa=02
Re Im o Im Re Im
(20,10) | -10.91 4 342 61.89 | -11.80 | 61.67
(40,20) | -11.96 ; Nz 64.30 | -11.90 | 64.06
(60,30) | -12.05 | 6 19716534, 65.00 | -12.20 | 65.62
(80,40) | -12.06 99 |- 65.51 | 32.99 | 68.84
Sl
oNAD
Table 4.2 Convergence of vertica Stipedance id cylinder in a poroelastic
medium with N, N’ and 4 (/4 = = 30)
% r - )
(N,N') Aa=0 : 0.2 Aa=025
Re i3 ' & Re ];IBL Re Im Re Im
(20,10) | 3 47 % . 5887|717 6.06 | 77.36
(40,20) | 10! 83 ’s : 94 "["89.74 | 8.45 | 87.70
(60,30) | 11. 97.98 | 10.80° | 95.69 | 40.19 | 93.73 §29.72 | 92.08
B04Q] [[iET A8 [3750 [10.89] [F93.90] Fol3s [ 9410
: AMAdiF e 1.,
K, (impermeable)
(N,N") Aa=0.1 Aa=0.15 Aa=0.2 Aa =025
Re Im Re Im Re Im Re Im
(20,10) | -3.02 | 104.56 | -1.33 | 102.03 | -1.05 | 101.20 | -0.99 | 100.77
(40,20) | -3.42 | 107.20 | -3.19 | 106.56 | -3.04 | 106.04 | -2.91 | 105.65
(60,30) | -3.76 | 108.47 | -3.62 | 108.01 | -3.52 | 107.64 | -3.44 | 107.32
(80,40) | -3.89 | 109.03 | -3.76 | 108.64 | -3.70 | 108.34 | -3.59 | 108.11
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Table 4.3 Convergence of vertical impedance of rigid cylinder in a poroelastic

medium with N, N and Aa (h/a=10,5 =5,b* = 30)

Table 4.4 Convergence of ve

s
medium with N, N' and A

L

e I_:.l—;

K, (permeable)

(N,N) Aa=0.1 Aa=0.15 Aa=02 Aa=025

Re Im Re Im Re | Im Re Im .
(20,10) | 28.87 | 122.39 | 24.86 | 117.47 | 29.93 | 150.19 | 36.78 | 197.08
(40,20) | 46.82 | 279.32 | 41.93 | 268.18 | 38.84 | 282.74 | 36.27 | 295.71
(60,30) | 38.95 | 312.96 | 36.35 2 | 3493 | 316.39 | 35.08 | 316.96
(80,40) | 39.94 | 328.69 ) 36.70 | 327.39 | 35.94 | 318.58
(100,50) | 40.64 | 338.76. .85 | 327.87 | 36.52 | 327.10
(N, N) Aa=0.1 Aa=025

Re Re Im
(20,10) | 54.31 ; 42.58 | 324.52
(40,20) | 29.02 | 345 32.56 | 346.00
(60,30) | 32.19 | Y 30.86 | 35024
(80,40) | 32.26 | 35 A8 29.95 | 351.71
(100,50) | 29.25 | 3 s 29.05 | 354.41

AN

ylinder in a poroelastic

b*=30)

£)

(N,N) Aa . =0.2 Aa=0.25
Re Re Re ¥ Im Re Im
(20,10) | 8.63 | 36.45.] 571 | 4565 | 6.71 | 55.15 | 11.74 | 69.61
(40,20) | 6 Z!%mm ﬁﬂi)? 29668 | 50.60 | 380.41
(60,30) 7;%? 394 65.71"|"5301237| 6755 1 '535'85 | 71.61 | 560.06
(80,40) | 83.45 | 597.50 | 75.33¢| 590.93 | Z2.95 | 596.34¢/72.83 | 605.68
(1oo,§q W.ﬂ 7547 : 1526+] 198 | 618.01
| HAIT OO UNTI [ = =
) K, (impermeable)
(N,N") Aa=0.1 Aa=0.15 Aa=02 Aa =025
Re Im Re Im Re Im Re Im
(20,10) | 56.99 | 435.51 | 45.29 | 488.89 | 57.01 | 537.35 | 63.94 | 593.55
(40,20) | 119.32 | 597.87 | 107.15 | 613.34 | 100.53 | 620.31 | 94.93 | 625.56
(60,30) | 85.07 | 642.18 | 87.84 | 648.80 | 86.73 | 654.06 | 79.33 | 657.40
(80,40) | 71.21 | 657.67 | 75.53 | 657.57 | 73.28 | 659.99 | 70.48 | 660.57
(100,50) | 70.25 | 663.53 | 72.93 | 663.48 | 69.53 | 662.67 | 68.99 | 660.86
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Figure 4.1 Convergence of influence functions subjected to vertical ring load, radial

ring load and ring fluid source with respect to &, (|z—z/|=0.5)
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Figure 4.7 Comparison of vertical impedance of a rigid cylinder in elastic half-space

for different computation method



Re(K,)

Im(K.,)

37

120
100— BoormniS Bicioe s = v B : 5§ e A v ke e A
..... At
..... A-'_;_"‘_A_”_._—-A--—-—A——A———A——A——A
80 - T S
y‘/..ﬁr
-
60 - red
/ ’ A A 7 R Y CRERYe & viensies b7 PR A
..... PV RREEE
/‘/-—— TA—— |
/
20- .................. O e O1s555s5 (o SO Ousseraiar s O 555w 4O siisios s 4
"ot ey wirret s - |- I WS .. ey P . PO
- -0 —
0 ....... — M\N-o\
—- —0—
— — impe / i
-20 ° e —d \"*~n
()
-40 - a
a
-60 .
0 5 6

700

o (5 \\

— — impermeables =~ 5 ~
e h/a=05 @ /A
500 - ° MWa=2 _ZEORAH i
A 0 . jx Le
a N ,:{.:..'. y,
400 - wdl
1 , o
Vv Pra ~a

300 A

. AUEIRENINIIATT

¢

WIaNTA I INYIAE, -

7 ,o-.—-—-O'--ﬂﬂ'g'f—" e .——- . _—_
S Sk SRR ETR REERALE A
= —_——. — — %
L= . , . | |
0 1 2 3 4 e .

Figure 4.8 Vertical impedance of rigid cylinders for different length/radius ratio
b*=2.3)



38

80

e
3__2___...&——"“’
——
_F‘Q_,.-A————A——__A,.______é______é__
1 L7
40-‘/ TR PO PO &
a—....&.-._.-t_'“ ....... A s 0 os AT Aiissnes
-
- +——L.__‘~ R |

20 A

Re(K,)

800 -

. '_,Z' ,Iﬂj g \
- , S
....... permeabls
700 { ~— — impermgablc % /

o] h/a=05
il "
wa=2 W EEELT

h/a=10 grl— :‘.5’ g
e b

600 -

> » O

;s _'! e /“
< 400 - | o I gl
g ‘ e A /:/

300 - ﬂ”gi%ﬁ{ﬂ/ﬂQﬂf/‘

RASP SO N4, -

—
T T T T . |

0 1 2 3 4 5 6

Figure 4.9 Vertical impedance of rigid cylinders for different length/radius ratio
(b*=30)



39

20 B
A
ar
15- . It o IERRERE] OQ. ...... 8 ...... o RERREE O-crevnn
'o”..:..‘ ....... Aissrri® A »
...... B .“".‘_... R
10 JE\ s e tti ...... 0 - s Aiaayyss 8:::::::8;;::::,5 ...... ‘.’ ...... P FURIPSg 'y
e
S~ X
5 A . e,
N NS~
% e \Q\\
P . \\a\\
‘2 ™~ ~ >~
i R
— — impermeab b \o\
-10 - ° =
o
A \
-15 R
-20
0
140 -
120 i _— "I" MEa
b*=0.001
100 - b*=23

> » O @

sV
i wl'

80 - u vl'

¥

Im(K)

60 - ¢a

of AUEITIEHS
AN agﬁm AN

Figure 4.10 Vertical impedance of cylinders for different poroelastic material
(h/la=2)



40

120

100 -

“y)oyg ()

Figure 4.11 Vertical impedance of cylinders for different poroelastic material

=20)

(h/a



41

Re(X,)
4
4/

SN
(&)}
(=2}

140

' \ v
- __“‘ag \\ ﬁ/;

* b*=0.( fr‘f—{ o

b*=23 A s

b* =10 _ado b o /
4

v

100

> » O

Im(X,,)

Figure 4.12 Vertical impedance of cylinders for different material (hla=2)



42

120

_A
100 -

Re(X,)

400 - |

Im(K,)

" AuLips Fonens

AU NN INYINY

0 r T I
0 1 2 3 4 5 6

Figure 4.13 Vertical impedance of cylinders for different material (h/a=20)



43

<

(®)

2a

B DR 2

Figure 4 4} The shape of the ax1symmetrlc foundations

ﬂ“l.ft‘l"‘i | WW BT
'QW]Mﬂ‘iﬂJ!JW]’JﬂEI']ﬁEI



44

15
st s 3 R —— POTIE T L M
10 1 S et aeeeer S IR LGP SRR SRR IR
= :§é_%~8\\2 .......
%\ 8- Ao, LTI A
| \ﬁ\ \ ~~~~~ ooz, 4
5 \~°‘ \\ AL B
\ N 74y
LN
s N
S ~Na
> \ ) ~
b, h 3
(] \ \O\ ~
(%7 -5 - Qz =
- ~ ~4i
....... \:\ \O\\?
- — e
. . unpe \ \\‘\
o \A\\‘\\0
15 - :
: U
20 |
0 5 |
100
80 — — imperm ’
A ° inde
: //u
: P
A e / ;
60 " ) . /l
—~ 9 S o
> ﬁ |
N " m S
\é l! ¥ }////“/ A
— pd O//A/z e
40 - ‘a s o AT T e
. > -
AUEINENINHIRT-
20 PR -

11&'1@%’%1'371815 i

=F

0

1 2 3 4 5 6

Figure 4.15 Vertical impedance of different shape of the foundation (b* = 2.3)
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Figure 4.16 Vertical impedance of different shape of the foundation b*=10)
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