CHAPTER III
THEORETICAL CONSIDERATION
3.1 Basic Equations and General Solutions of Poroelastic Materials

Consider a poroelastic medium with a conventional cylindrical polar

coordinate system (r,6,z) defined such that the z-axis is perpendicular to the free

surface as shown in Figure 1.1. Let ;yand w, denote the displacement of the solid

(3.1)
(3.2)
(3.3)
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In the above equations, o,,, 0,, 0, and o, denote the total stress components

of the bulk material; e the dilatation of the solid matrix; x the shear modulus



and A a constant of the bulk material, respectively; p the excess pore fluid
pressure (suction is considered negative) and ¢ the variation of fluid content per
unit reference volume. In addition, @ and M are Biot's parameters accounting
for compressibility of the two-phased material (Biot, 1941). It is noted that
0<a<1 and 0<M <o for all poroelastic materials. For a completely dry
materiala =0 and M =0, whereas for a material with incompressible

constituents, a =1 and M — «.

The equations of motion 'f oroelastic medium undergoing

axisymmetric deformations}ia the a forces (solid and fluid) and a

iViu +(2 o nteair= - pii +p i (3.8)
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where
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In equat%uﬂ’] ﬁq ﬂ ‘; wa%'ldenote ’ée derﬁa’e@ltﬂespect to the

time parameter ¢; p and p, are the mass densities of the bulk material and the
pore fluid, respectively, and m= ps! B (B=porosity), is a density-like

parameter. In addition, b is a parameter accounting for the internal friction due to
the relative motion between the solid matrix and the pore fluid. The parameter b
is defined as the ratio between the fluid viscosity and the intrinsic permeability

of the porous medium.



The motion under consideration is assumed to be time-harmonic with the
factor of e as the time function, where @ is the frequency of the motion and i

is the imaginary number. The term e is henceforth suppressed from all
expressions for brevity. The radius of the circular plate denoted by a is selected
to non-dimensionalize all space dimensions including the co-ordinate frame.
Stresses and pore pressure are non-dimensionalized with respect to the shear

modulus x of the bulk material. All variables are replaced by the non-

tations are used for convenience. In

/ m, b, and frequency @ are

dimensional ones, but the previ u

addition, the material prop

nondimensionalized as fo

The governin il el TR RN M tions (3.8) to (3.11), can
be solved by introduci 1 CETie ccomposition based on Helmholtz
representation for an a 7
1989):

i given by (Philippacopoulos,

(3.14)
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w,(r,z) = 3.17)

where ®,(i=1, 2) and W,(i=l, 2) are functions of scalar and vector fields,

respectively. Substitution of equation (3.14) to (3.17) into the equations of
motion, equation (3.8) to (3.11), yields two sets of partial differential equations

for ®,,®, and ¥,,V¥, as



(A" +a’M" +2)V* +8%]®, =—(aM'V? + p'§*)D, (3.18)
@MV + p'5°)D, = (ib'§ —m'§* =M 'V*)D, (3.19)
(V2 +8%)Y, =-p'6°Y, (3.20)

PO, =(ib's-m's*)Y, (321

(3.22)
and the inverse relationsj

(3:23)
where J, is the Bessel funcliesn _ kind of the n"-order (Watson,

1944)and £ is the Tanke .
(% ~
Application of i e to equations (3.18) to

W iF |
(3.21) yield the followmg ordinary differential equations

A‘+§Mu+%t——§ 8’ qrdﬁ)—ﬁ‘az]éz $3.24)

dz? )
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(éz—jzz —52}1’ =p'827, (3.26)

P&, =(ib'6-m'5*)¥, (3.27)
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It can be shown that the general solutions for @, and ¥, (i=1,2) can be

expressed as

®©, = Ae’* + Be " + Ce’* + De (3.28)
D, =y, (Ae’lz + Be"")+ Z (Ce’ * +De’” ”) (3.29)
F, = B + Fe (3.30)

(3.31)

Fbitrary Tunctions to be determined

[ I‘ \\\\
PN

where A(&,8), B(&,0), ...

by imposing appropria uity conditions and the

superposed bar deno juantities with respect to the -

'-..‘ \

X

coordinate. In additién, ppearing in the above

equations are defined 2

2

(3.32)
ﬂuaqﬁ%ﬁ%wswnﬁ
(3.35)
amaﬂnimﬁﬂ"hﬂmaﬂ
Pt +yfwf =, (3.36)

=4 ¥ i, (3.37)
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(M8 =i S) A+’ M +2)+ M 5 —2aM’ p’S?
A +2)M°

(3.39)

1

_(m'8*-ib'85)5 -(p')’ 5
? A +2)M°

(3.40)

In view of equation (3.3) to (3.5), (3.14) to (3.17) and (3.28) to (3.31), it

can be shown that the general solution: roth-order Hankel transforms of

u,, w,, o, and p, and.the _ ansform of ., w and o
respectively, can be eV )

7 = - Fe™) (3.41)

i = yl( A Mo (Ce ;\\ Ee’” +Fe"”) (3.42)

#, =—£ (1, (4" #B; D&% Y)-r.1,(Ee™ —Fe™) (3.43)

W, =72, (4" - Be: ) - &y, (Ee™ + Fe*)  (3.44)

5, =-2£(7,(4e" =Be it 73 )(Ee™ + Fe ) (3.45)

& ﬂﬁﬂ”ﬂmfﬁ‘mmﬂ? -Fe) 649
amawﬂ‘s’mb‘r’ﬁ%‘maﬂ a4

where the variables 7, and S, are given by
=@+ )M}, i=12 (3.48)

Bi=2-AL-any, i=1,2 (3.49)
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The fluid discharge is defined as the time derivative of the fluid

displacement relative to the solid matrix. The fluid discharge, non-

dimensionalized by ,/ 4/ p , can be expressed as

q, =iow, JN=T,2 (3.50)

3.2 Indirect Boundary Integral Equation Method

problem by using the indi integia ation method (Ohsaki, 1973,
" ——
Luco and Wong, 19 990 and Rajapakse and

Senjuntichai, 1995)

Consider a poroel 1gral . b inclnde a volume ¥ bounded by a

surface S with a ‘«\ ,0,z) defined as shown in

Figure 3.1. It is assued" dmiss boundary conditions are

specified on the surface § additio _;.ore"' cssure p or the fluid discharge

g, normal to the surface he surface § is called a fully

permeable surface when p i hereas an impermeable surface

corresponds to the sase where g —0 on S

Jam

The indirect bEndary integral equation methﬂ presented herein follows
the concepts presented byuco_a n t e of an ideal elastic
half-space mﬁ/ﬁﬁﬁ%ﬂi‘i m Hﬁﬁi of a transversely
isotropic half-sqfl)ace, respectivelyl The present scheme iss based on the
consideingaaaeﬁiﬂlgﬁ m%wé}aww g;}:& %J undisturbed
poroelast’c medium such as the poroelastic domain Q with a volume ¥ bounded
by a surface S as'shown in Figure 3.1. It is assumed that a set of unknown forces

with magnitude f(r',®) with i=r,z and a fluid source I'(r’,w) are applied on

the auxiliary surface S’ defined interior to real surface S as shown in Figure

3.1. In the case of a time-harmonic problem where the motion is prescribed with

iot

a time factor of €, the analysis is performed directly in the frequency domain.
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The displacement u(r,w), traction T)(r,w), pore pressure p(r,o) and fluid
discharge in the direction of unit normal n to an arbitrary plane, denoted by

q,(r,), at any point with position vector r in ¥ can be expressed as
u,(r,w) = js G;(r, ;1) f, (v, 0)dS’ + L G,(ro;r)[(r,o)dS'  (3.51)
I(r,»)= L H,(r,o;r) f,(r',0)dS’ + L H,(r,o;r)[(r,w)dS"  (3.52)

U& H, (r,o;r')[(r',0)dS’ (3.53)

q,r,0)=|. (r'jo)dS+ ] G, ;X ) (r', w)dS’ (3.54)

In the above equatio ' , " . note the displacement in

force in the j-direction
(j=r,z) and an impulsj id qﬁ' . fluid) applied at point r’,

respectively; G, (r,o;r’) 3 d d1scharge in the direction
of a vector n at a point r rce in the J -direction (j=r,z)

and an impulsive ﬂuld sourcg ap .ué:e r’ respectively. For example, if

n=[0 1] then G fwu-'----------------m--v---u------\‘ -direction at a point r

i
pp&d at r'.Hg.(r,a);r') and

due to an impulsiveﬂor
H, (r,o;r’) denote tracl;p in the i-dirggtion (i=r,z) at a point r due to an

impusive frf I CTTRELE M

applied at pomt r', respectively ﬁﬁ ;(r,0;1) and H  (r,w;r") denote excess pore

pressuratma R IUIAALNLAAL <) s

an 1mpuls1ve fluid source applied at point r’,respectively. It is important to note

here that the kernel functions G. G JH.

/A4 /4

etc. in equations (3.51) to (3.54) are

non-singular since r #r' in the present scheme. Note that for an direct boundary

integral equation method when the source and observation points are at the same
location, i.e. r =r’, the singularity of the order 1/ |r —r'| exist in the displacement

Green’s function (Cheng and Detournay, 1998). In addition, in the case of an
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elastic material, only equations (3.51) and (3.52) exist with the second integrals

in those equations being equal to zero.

The unknown quantities, f;(r',w) and I'(r,@) in equations (3.51) to
(3.54) are determined by taking r e S. Equations (3.51) to (3.54) represent a set
of Fredholm integral equations of the first kind for unknown fields f; and I". In

view of the complexity of the kernel functions G G;, H;, G, etc., equations

(3.51) to (3.54) can be solved

numerical solution is obtain

applying numerical techniques. A

and N’ node point on S and
S’, respectively. Let F ‘elements correspond to the

unknown quantities (i.e e I') at node points on §’

and defined in the fol

(3.55)

where
i=12,...,N' (3.56)

Then, a discrete ve g_w J_g respect to N and N’

node points on § andZ§’ S s

EJ 0

QF R (3.57)
where the eleﬁ uﬂfg mtﬂ m jrﬂ:ﬂlfljspemﬁed boundary
conditions at no?e points on S and'the elementssof the matri are expressed

in termt {eed Sk dohed Toldetbdrine the dbotih G, th sum of

squared e?'rors at N node points on S are minimized where N > N’.Then, the

errors in equation (3.57) are

E=R-QF (3.58)

and the square of E is given by
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&' =(R" -F'Q")(R-QF)
=R'R-F'Q'R-R'QF +F'Q"QF (3.59)
The extreme value of &” can be obtained by

68 T .
E:z(-QTmQ QF)=0 (3.60)

resulting in

(3.61)
which is a normal equatig W " \k : ﬁid source. The condition
for unique estimator of t atrix F'requires tha atnx Q'Q be nonsingular
or lQTQI;tO (Beck and A 414 ‘ hat any one column in Q
cannot be proportional to ihér.colunin.o hnear combination of other

columns. The condition | Q@ # Qialso 1
T

points, be equal to or greater thant }

o ! et

V, the number of observation

of source points N’. Once F is

known, the comple e'po iy fS) as well as at points in

Q can be computed ifectly | (3.54).

l"
Let, consider g case where dlsplacement u(r,o), i=r,z, and fluid

e o YO AR TIEAR- sc ro

and ¢, (r,), resgectlvely Then,

QWWMT]‘J'QJ&JW]’JVJEJWGEJ

(3.62)

Q=[G(r,a; ], =1,2,...,N, j=12,...,N' (3.63)

3INx3N'

where

u =(4,@,0) &,0,0) §,0,0), i=12,..,N (3.64)
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Grr Grz Grq
G(r,w;r)=AS)|G, G, G, (3.65)
G‘l’ qu G‘l‘l

and AS’; denotes the tributary area corresponding to the j™ node point on §'.

Another example is the case where displacemént u(r,w), i=r,z, and

pore pressure p(r,w) on the surface S are specified as equal to #,(r,w), i=r,z,

(3.66)
Q=[G of L2 B MN=1,2,...,N' (3.67)

where
u, = (i Ay Poe)), Ni=12,...N (3.68)
(3.69)

3.3 Green’s Functiony

e e B DGR MBI Te et o

method outlinedqn the last sectiongare obtaine&by solving thelboundary-value
problenﬂr%&d]tﬂha ﬂ%mogde%&})%% H%E”he solutions
correspond to the three basic loading configurations, i.e., a vertical ring load, a
radial ring load, and a ring fluid source. All types of loading are applied over a
circular ring of radius 7' at a depth z=z' as shown in Figure 3.3. The solutions
can be derived by defining a fictitious plane at z=z' and treating the half-space
as a two-domain boundary-value problem. The general solutions for each domain

are given by equations (3.41) to (3.47) together with arbitrary functions 4, (£,5)

to F,(£,0), where k (k=1,2) is used to identify the domain number. The domain



17

"1" is bounded by 0<z <z’ and the domain "2" by z'<z <o as shown in Figure

3.3. Note that for the domain "2", arbitrary functions 4,(£,8) = G,(£,6) =
E,(£,6) = 0 in order to satisfy the condition that the solutions vanish asz —> .

The boundary conditions corresponding to a fully permeable top surface

(z=0, 0<r <) can be expressed as

c(r,0)=0 i=r,z (3.70)

f

Ay
~~

3.71)

where a superscript (1) i Ptordenote t

The continuit

/ t §
corresponding to a 10gengous/ poroelas

vertical/radial loads and"a fiu

plane (z=2z', 0<r<w)

pace subjected to a buried

’i =r,z (3.72)
(3.73)
; - _;_,—M;_=;;-—_ﬁ.——_—“-“-“&;" J=r,z (3.74)

]

AUdIREiSwians
RIS

F(r)=8(r—r) and F,(r)=0Q(r)=0 (3.76)
for a vertical ring load,
F(r)= 5(r‘— r') and F,(r)=0(r)=0 3.77)

for a radial ring load,
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Q(r)=6(r—r') and F (r)=F,(r)=0 (3.78)
for a ring fluid source. In addition, &{ ) represents Dirac’s delta function.

Substitution of general solutions for displacements, stresses and pore
pressure given by equations (3.41) to (3.47) in the boundary conditions,
equations (3.70) and (3.71), and the appropriate continuity conditions, equations

(3.72) to (3.75), results in a set of linear simultaneous equations to determine

arbitrary functions corresponding 0 domains. The explicit solutions for
non-zero =rbitrary functions COITESPO! pplied vertical/radial loading and
fluid source were presentéd'h Ze japakse (1999a). These solutions are
given in Appendix. 7 '

3.4 Vertical Impedanc 7 linder in | stic Half-Space

Consider the ¢ d cytififirica vedded in a homogeneous
poroelastic half space igur€l.1. Theyrigid cylinder is subjected to a
time-harmonic vertical fi [ ing’ 2'its eentroidal axis. The cylinder

is assumed to be perfectly, opded: alf=8pace and the contact surfaces

can be either fully permeable O F"% hus boundary-value problem can

be expressed as

77777777777777 ]

{ﬂ (3.79)
ﬂUEﬂ’J“’f’I PNINENNT .
ARSIy ©

LT(r 2)dS=V,, (r,z)eS (3.82)

where T,(r,®) denotes the contact traction in the z -direction along the contact

surface § . In addition, the hydraulic boundary condition for a fully permeable contact
surface is given by

p(r,z2)=0, (r,z)esS (3.83)
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whereas,
q,(r,z)=0, (r,z)eS (3.84)
for an impermeable contact surface

The relationship between the magnitude of vertical load ¥, and the

magnitude of vertical displacement A of an embedded cylinder can be obtained

from the numerical solution of equatiox

W 1 l 7 ) be expressed as

—
Q'Q'e? ] A (3.85)

61), and computation of (3.52) and

(3.82). The non-dimensiona vert

where

N (3.86)
(3.87)

(3.88)

and AS, denote the fributary

nding to the i” node pointon S .

i¥

AULINENINYINS
ARIANTAUUNIING 1A Y
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Figure 3.2. Discretization of real surface and auxiliary surface



AULINENINYINS
ARIANTAUNINGIAY

21



	Chapter III Theoretical Consideration
	3.1 Basic Equations and General Solutions of Poroelastic Material
	3.2 Indirect Boundary Integral Equation Method
	3.3 Green's Functions
	3.4 Vertical Impedances of Rigid Cylinder in Poroelastic Half-Space


