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CHAPTER 1
INTRODUCTION

In [9], [10], [7] and [8] the authors used the word a “local subsemigroup ”of
a semigroup S to mean a subsemigroup of S of the form eSe where e is an
idempotent of S. It is easily seen that if S is a regular semigroup, then so is the
local subsemigroup eSe of S. We are motivated by this definition to define “ local
subsets "and “ local subsemigroups "of S in a more general sense as follows : By
a local subset of a semigroup S we mean a subset of S of the form eAe where A is
a subsemigroup of S and e is an idempotent of S. A local subset of a semigroup
S need not be a subsemigroup of S. Then it is interesting to find a necessary and
sufficient condition for an idempotent e of S which guarantees that eAe becomes
a subsemigroup of S for a given subsemigroup A of S. We call a local subset
eAe of S a local subsemigroup of S if eAe is a subsemigroup of S. It is also
interesting to investigate the regularity of certain local subsemigroups of some
regular semigroups.

Transformation semigroups are considered very important in the area of semi-
groups as symmetric groups are crucial in the area of groups. It is well-known
that every group can be embedded in a symmetric group. In Semigroup Theory,
it is known that every semigroup can be embedded in some full transformation
semigroup while every inverse semigroup can be embedded in a symmetric inverse
semigroup (1-1 partial transformation semigroup).

In Linear Algebra, linear transformations and matrices play very important
roles. Also, semigroups of linear transformations under composition and matrix
semigroups are certainly important in Semigroup Theory.

Let X be a nonempty set and let P(X), T(X), I(X) and G(X) be the par-

tial transformation semigroup, the full transformation semigroup, the symmetric



inverse semigroup (the 1-1 partial transformation semigroup) and the symmetric
group on X, respectively. It is well-known that P(X) and 7'(X) are regular and
I(X) is an inverse semigroup.

If V' is a vector space over a field F'| let L(V') be the semigroup, under com-
position, of all linear transformations on V. It is known that L(V) is a regular
semigroup. Let GL(V') be the group of all isomorphisms on V. The full n x n
matrix semigroup over F'is denoted by M, (F') and denote by G,,(F) for the group
of all nonsingular n X n matrices over F.

The preliminaries and notation used for this work are given in Chapter II.

In Chapter III, we prove that for every idempotent o of P(X), aT(X)a is a
local subsemigroup of P(X). We provide necessary and sufficient conditions for
an idempotent « in P(X) when X is finite for which a/(X)a and aG(X)a are
local subsemigroups of P(X). These characterizations automatically imply that
these local subsemigroups of P(X) are regular semigroups.

We study local subsemigroups of L(V') when V' is finite-dimensional and M,,(F')
in Chapter IV. Note that if dim V' = n, then there is an isomorphism 6 : L(V') —
M,,(F) which preserves ranks. We characterize an idempotent « in L(V') for which
aGL(V)a is a local subsemigroup of L(V'). By making use of this characterization,
we give a necessary and sufficient condition for an idempotent A of M, (F') so
that AG,(F)A is alocal subsemigroup of M, (F). An explicit form of the local
subsemigroup AG, (F)A is also-determined. Moreover, we have that these local

sunsemigroups of L(V') and M, (F) are regular.



CHAPTER 11
PRELIMINARIES

The cardinality of a set A will be denoted by |A|.
For any mapping «, the image of = in the domain of o will be written as za.
For semigroups S and S’, we write S = §"if S and S’ are isomorphic, that is,
there is a bijection ¢ : S — 5" such that (zy)e = (z¢)(yp) for all z,y € S.
The element e of a semigroup S is called an idempotent if e = e. The set of

all idempotents of S is denoted by E(S), that is,
ES) ={a€'S|2* =2}

If S has an identity and U(S) is the unit group (or the group of units of S), then

it is clear that
a 'ea € B(S)  foralle € E(S)and a € U(S).

An element a of a semigroup S is called regular if a = aza for some x € S and
S is called a reqular semigroup if every element of S is regular. A semigroup S is

said to be an inverse semigroup-if for every a €.5, there is a unique element a~!

such that @ = aa 'a and a7' = a 'aa™!. It is well-known that a semigroup S is
inverse if and only if S is regular and any two-idempotents of S commute with
each'other ([1], p. 28).

If e € E(S), then (eSe)(eSe) = e(SeeS)e C eSe, so eSe is a subsemigroup of
S. In [9], [10], [7] and [8] the authors used the word a “ local subsemigroup ” of
a semigroup S to mean a subsemigroup of S of the form eSe for some e € E(5).
Notice that e is the identity of the semigroup eSe. Moreover, if S is regular, then so
is the local subsemigroup eSe of S. To see this, let @ € S. Then eae = (eae)z(eae)

for some z € S, so eae = (eae)(exe)(eae) and exe € eSe. This definition motivates



us to define local subsemigroups of .S in a more general sense as follows : By a local
subset of a semigroup S we mean a subset of S of the form eAe where e € E(S5)
and A is a subsemigroup of S. A local subset of S need not be a subsemigroup
of S. By a local subsemigroup of S we mean a local subset of S which is also a
subsemigroup of S. Observe that the local subsemigroup eAe of S has e as its
identity if e € A or S has an identity and A contains the identity of S.

Let X be a nonempty set. A mapping from a subset of X into X is called a
partial transformation of X. Let 0 be the partial transformation of X with empty
domain. The domain and the range (image) of a partial transformation o of X
are denoted by dom ac and ran a, respectively. The identity mapping on a set A
is denoted by 14. Here 154 =0. For @ # A C X, and v € X, let A, denote the
partial transformation of X whose domain and range are A and {z}, respectively.
For a partial transformation a of X and @ # A C dom «, let o, be the restriction
of a to A. The partial transformation semigroup on X, denoted by P(X), consists
of all partial transformations of X and the semigroup operation is composition,

that is,

0 if ranaNdomfg = @,
aff =

(a‘(ranaﬁdomﬁ)a—l)(/B‘ranaﬁdomﬁ) lf ran « m domﬁ ?é @

Then 0 and 1x are the zero and identity of P(X), respectively. Notice that for
a,f € P(X),
dom(a3) = (ran a N dom B)a ' C dom q,
ran(af) = (rana N dom )3 C ran 3

for v € X, z'e dom(af) & x € doma and e € dom 3,

dom o = U ra
reran o

where U means a disjoint union. For o € P(X), @ may be written by a bracket

notation as follows :

reran o



The following subsets of P(X) are cleary subsemigroups of P(X) :

T(X)={ae P(X)|doma =X},
I(X) ={a € P(X)| «is injective},

G(X) ={a: X — X| «ais bijective}.

Notice that G(X) is a subgroup of P(X). The semigroup 7'(X), I(X) and G(X)
are called the full transformation semigroup, the 1-1 partial transformation semi-
group or the symmetric inverse semigroup on X and the symmetric group on X,

respectively. It can be seen that
G(X) ST(X) € P(X) , G(X) € I(X) € P(X),

G(X) is the unit group or the group of units of all P(X), T(X) and I(X), that is,
G(X) is the greatest subgroup of P(X), T'(X) and I(X) having 1y as its identity.
It is well-known that P(X) and 7'(X') are regular semigroups ([3], p.4 or [5], p. 63)
and I(X) is an inverse semigroup ([1], p.29, [3], p.4 or [5], p. 149). It can be seen
that for o € P(X),

a € E(P(X))< rana C doma and zawe =1 for all x € rana,
that is,

E(P(X)) = {o € P(X)| rana C doma and o, = lrana}-
Hence

E(T(X)) = {a € T(X) |, = Tanat (3], p-12),
E(I(X)) ={1a[AC X} (3], p.4),

E(T(X)) U E(I(X)) € E(P(X)).

Consequently, if « € F(P(X)), then for every z € rana, z € za~!. Also, for
a€ X, X, € E(T(X)) and for @ # A C X and z € X, A, € E(P(X)) if and
only if x € A.



Let « € E(P(X)). Then aP(X)a« is a local subsemigroup of P(X). It will be
shown in Section 3.1 that the local subset aT'(X )« is always a local subsemigroup
of P(X). However, the local subsets al(X)a and aG(X)a of P(X) need not be

local subsemigroups of P(X), as shown by the following examples.

Example 2.1. Let X = {1,2,3,4} and let o« € E(P(X)) be defined by

17423}
1 -
Then
1 12,3
al(X) = 12,3}
1 2
1 2,3
= {0y lae {1,234} o 23] |a€ {1,234}
a a
1 {2.3}
U | a,be {1,2,3,4} and a # b
a b
and hence
1 {2,3}
al(X)a = (al(X))
1 2
S M\ s A esh a1 23
AT AR YRR T A A B SR I
{23} ) [{1,2,3}
2 1 )\ 2
1,2,3}\ (1 {2,3 1,2,3
But { J 2.3} = { J ¢ ol (X)a, so al(X)a is not a local
2 2 1 1

subsemigroup of P(X).



Example 2.2. Let X = {1,2,3} and let a € E(T(X)) be defined by

(123
S\ o2 )

aG(X) = (1 {2’3}) G(X)
12

- { (1 {2’3}) | a,be{1,2,3} and a # b }
a b

aG(X)a = (aG(X)) (1 {273}>

Then

Thus

1 2

(s (1 23 ({123
Pl 227508k Y '\ 2 '
But ({172’3}) (1 {2’3}) = ({1’273}) ¢ aG(X)a, so aG(X)a is not a
2 2 1 1

local subsemigroup of P(X).

Example 2.3. Let X = {1,2,3,4} and define '« € E(P(X)) by

192 3
o= (: 1{1’273}).
[y 203

1 2 3
aG(X) = G(X)
1 23
1 2 3
- | a,b,c € {1,2,3,4} are distinct p ,
a b c

Then



SO

1 2 3
1 2 3

aG(X)a = (aG(X))

1 2 3 1 2 3
= | a,b,c € {1,2,3,4} are distinct
a b c 1 2 3

It follows that for every 8 € aG(X)c, | dom 3| > 2. We have that
1 === 1 2 3 ¢
= € aG(X)a,
Je_g £ 213  —~
12 3 1f 28 1 3
= € aG(X)a.
2 4 1 I “2—8 2 1
1 2 1 3 1
But = ¢ aG(X)a, thus aG(X)a is not a local subsemi-
3 2 2 1 1

group of P(X).

Observe that 0/(X)0 = {0} = 0G(X)0, 1xI(X)lx = I(X), 1xG(X)lx =
G(X) and for every a € X, X, I[(X)X, = {0, X,} and X,G(X)X, = {X.}.
These are trivial local subsemigroups of P(X). The following examples show
nontrivial local subsets of the form ol (X)a and aG(X)a of P(X) which are local

subsemigroups of P(X).

Example 2.4. Let X = {1,2,3,4} and define o € E(T'(X)) by

{1,2} {3,4}
1 3

Then

ol (X) = {12} 3.4 I(X)

1 3



9

{o}U{({l’Q}) lac {1,2,3,4}}U{({3’4}) la€ {1,2,3,4}}

U{ ({172} {3’4}) | a,be {1,2,3,4} and a # b }
b

a

It follows that

ol (X)a = (al(X)) ({1’2} {3’4})

1 3

o (rn) ) (ea) (Ga) (12 64
R D R U A W T B - A R 3 |
(1,2} 3,41\ [(1,2.3,4}\ [{1,2,34)
3 i S 1 \ 3

which is clearly a subsemigroup of P(X). Hence o (X )« is a local subsemigroup

of P(X).

Example 2.5. Let X = {1,2,3.4} and let a € E(T(X)) be defined by

11,2} {3,4}
o= !
1 3
We have that

AG(X )= <{1’2} {3’4}) G(X)
1 3

— { ({1’2} {3’4}) | a,b e {1,2,3,4} anda#b}.
a b

{1,2} {3,4}
1 3

Then

aG(X)a = (aG(X)) (
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{1,2} {3,4} {1,2} {3,4} {1,2,3,4} {1,2,3,4}
1 3 3 1 1 3

which is clearly a subsemigroup of P(X). Hence aG(X)a is a local subsemigroup

of P(X).

Example 2.6. Let X = {1,2,3,4} and let @ € F(P(X)) be defined by

1.2
o= (=Ta).
1 2
Then
iF P
aG(X) = G(X)
w2
1
& | a,b € {1,2,3,4} are distinct
a
and hence
1 2
aG(X)a = (aG(X))
1 2

=1({1,2}).

Therefore aG(X)a is a local subsemigroup of P(X).

Next, let V' be a vector space over a field F' and L(V') the semigroup, under
composition, of all linear transformations o : V' — V. Recall that for o € L(V),
the kernel of « is

kera = {v € V' |va = 0}.
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Then for € L(V), a is a monomorphism if and only if keraw = {0}. We also
have that

dim V' = dim(ker o) 4+ dim(ran «)

([6], p-187). Thus if V is finite-dimensional, then for o € L(V'), a is a monomor-
phism if and only if v is an epimorphism. Let GL(V') be the set of all isomorphisms
of V.. Then

GL(V)={a € L(V)| keraw= {0} and rana = V}.
Then GL(V) is the unit group (or the group of units) of L(V'). Therefore we have

dimV <o = GL(V)={a € L(V)| kera = {0}}

={aec L(V)| rana =V}.

For X C V, let (X) be the subspace of V' spanned by X. If X C V| then for

v € (X), v may be written as

v:Zazx where a, € F for all z € X
zeX

which means a finite sum in the sense that a, = 0 for all but a finite number of x.
If B is a basis of V and {w,|v € B} € V, then there is a unique o € L(V)

such that va = w, for all v € B, in this case, o can be written as

v

w.
1 veB

Hence if o € L(V) and B is a basisof V', then we may write o'as

(ye
veEB

If « € L(V) and X is a nonempty subset of V, then

(Xa) = {Z a,(za)la, € F and a, = 0 for all but a finite number of z}

zeX

= {(Z a;z)a|a, € F and a, = 0 for all but a finite number of x}
zeX
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= {Z a,x |a, € F and a, = 0 for all but a finite number of z} «
zeX

=(X)a.

The following facts of linear transformations will be used.

Proposition 2.7. Let o € L(V) and B a basis of V. If oy, is injective and Ba
is a basis of V', then a € GL(V).

Proof. Since Ba spans V, it follows that
V= (Ba) =(B)a=Va=rana.

Let v € kera. Then v = Z a,u, a finite sum, for some a, € F. Thus
ueB

0 =wa = Zau(ua).

ueB
Since o, is 1-1, ua # wa if u# w in B. But Ba is linearly independent over F,
it follows from the above equality that a, = 0 for all u € B. This implies that
v = 0. Thus ker a = {0}. Hence a € GL(V), as desired. O

Proposition 2.8. Let « € L(V), By a basis of keraw and By a basis of ranav. If

for every v € By, let v € va™!, then BiU{v' |v-€ By} is a basis of V.
Proof. To show that BiU{v"|v € By} is linearly independent over F, let

Zauu—i-vav/:O where a, € F for u € B,

B B
ues vese and b, € F for v € Bs.

Then

0= (Z a,u + Z b,v' )

u€ By vE By

=0+ Z b, (V') since By C ker «

vEBy
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= Z b,v since v € va! for all v € Bs.

Since Bs is linearly independent over F', b, = 0 for all v € By. Thus
Z a,u = 0.
ueBy

But since Bj is linearly independent over F', we have a, = 0 for all u € B;.

Next, to show that (BjU{v'|v € By}) =V, let w € V. Then wa € (Bs), so
wo.= Z Cy¥ for some ¢, € F.
VE B
But v'a = v for all v € Bs, so

W= Z c(Vlar) = (Z cw’) .

vE B>y vE By

Thus w — Z c,v" € kerav = (B;) which implies that

VE Bay

w — Z Col = Z d,u  for some d, € F.

vEBa ucBy

Hence w = Z dyu + Z c,v' € (BiU{v' |v € By}).

ueBy vEBy

Therefore the proposition is proved. O

Proposition 2.9. ([4];p.211). If o € E(L(V)), then'V. =ker o @ ran av.

Proposition 2.9 yields the following result.

Corollary 2.10. If o € E(L(V)), By is a basis of keraw and By is a basis of
ran o, then BiU By is a basis of V.
Hence for every w € kera ~ {0}, {w} U By is a linearly independent subset

of V (since w ¢ (Bs) = rana).
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Notice that for a € E(L(V)), va = v for all v € rana. Then Corollary 2.10
can be considered as a consequence of Proposition 2.8. If B is a basis of ker «

and B, is a basis of ran «, then o can be defined on the basis B;UB, of V' by

u 0

u€ By
veEB,

Proposition 2.11. Assume that U and W are vector spaces over F and U and W
are vector space isomorphic by an isomorphism ¢ : U — W. Define ¢ : L(U) — L(W)
by

ap =ptayp  forallac L(U).

Then @ is a semigroup isomorphism.

Proof. It is evident that ¢ 'ap € L(W) for all « € L(U). Let o, 8 € L(U).
Then

o NaB)p= (o ap) (v By),

e rap = o B a=plpap)p " = p(p  Be)p = B.

If A\ € L(W), then pAp~t € L(U) and ¢ (pAp~ o = X. This proves that

¢ : L(U) — L(W) is a semigroup isomorphism, as desired. O

Next, let n be a positive integer and F' a field. We let M, (F) be the mul-
tiplicative semigroup of all n xn matrices over £ which may be called the full
n X n matriz semigroup over F. Let G, (F') be the set of all nonsingular n x n
matrices over F. Then G,,(F) is the unit group of M,,(F). Let V be a vector space
over F' of dimension n. Then there is an isomorphism 6 : L(V') — M, (F) which
preserves ranks, that is, dim(ran «) (= rank ) = rank(af) for all « € L(V') (]6],
p. 330, 336, 339). This implies that GL(V)0 = G,(F) and 1y6 = I,,, the identity
n X n matrix over F'.

For A € M,(F) and i,j € {1,...,n}, let A;; be the entry of A in the i row

and j% column.
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For k € {0,1,...,n}, let D) € M, (F) be defined by

D© =0, the zero matrix in M, (F),
1 ifi=je{l,... Kk},
0 otherwise.

For example,

10000
100 0100 0
D"=14o 0 0| ., D=100 10 0
00 0 00010
000 0 0

Notice that for all &k € {1,...,n}, DP\e E(M,(F)), rank(Dq(f)) = k and for every
C e G,(F),
rank(CT'DW @) = rank D = &

(6], p.338). Moreover, C-'DYIC € B(M,(F)) for all k € {1,...,n} and C €

G, (F). In fact, the following result is known.
Proposition 2.12. ([2], p. 226).

E(M,(F)) = {C'D®C|k € {0,1,...,n} and C € G,(F)}.

Recall that for A € M, (F), A is row-equivalent to I,, if and only if A € G,,(F')
([4], p- 23).



CHAPTER III
LOCAL SUBSEMIGROUPS OF PARTIAL
TRANSFORMATION SEMIGROUPS

Throughout this chapter, X will be represented a nonempty set. In this chapter,
we are concerned with the local subsets o7'(X)a, ol (X)a and aG(X)a of P(X)
where o € F(P(X)). We consider when they become local subsemigroups of P(X)
in terms of a. The local subsets al(X)a and aG(X)a of P(X) are considered
when X is finite. In addition, we show that these local subsemigroups are regular
semigroups. If o = 0, they are all {0}, a trivial local subsemigroup. Then we

consider only o € E(P (X))~ {0}.

3.1 The Local Subsemigroups a7'(X)a of P(X)

The aim of this section is to show that for every a € £ (P(X)), the local subset
aT'(X)a of P(X) is a local subsemigroup of P(X).

First, we provide the following series of lemmas.

Lemma 3.1.1. If a€ E(P(X))~A{0}, then for-every 3 € P(rana), fa = [3.

Proof. Recall that ran @ C dom cv.and zav = x for all x € rana. If § € P(ran«),

then s = Lrang; SO
/604 = ﬁ(alranﬁ) = ﬁlranﬁ = /6
O

Lemma 3.1.2. If a € E(P(X)) \ {0}, then oT (ran«) and aP(rana) are sub-

semigroups of P(X) and

aT(rana) = T(rana), aP(rana) = P(rana).
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Proof. By Lemma 3.1.1, we have T'(ran o)a = T'(ran «v) and P(ran o)a = P(ran ).

It follows that
(o' (rana)) (ol (ran ) = o(T (ran «)ar)T'(ran o)
= a7 (ran )T (rana) = o1 (ran «v),
(aP(rana))(aP(ran «)) = a(P(ran o)) P(ran «)
= oP(ran o) P(rana) = aP(rana).

Hence aT'(ran ) and avP(ran «) are subsemigroups of P(X).

Define ¢ : P(rana) — aP(ran «) by
Bp =af forall § € P(ran«).
Then ¢ is onto. Let §,v € P(rana). We have that

(B1)e = a(5)
= ofa)y from Lemma 3.1.1

= (af)(ay)
= (Bp)(10)-

Next, assume that fp = vp. Then aff = avy. Let € dom 3. Then = € ran«, so

zo = x. Thus

24 = ()8 =u(aB) = 2(ary= (za)y = o7,

so x € dom~y. This shows that dom # C dom~ and x5 = xv for all x € dom .
It can be shown similary that domy C dom 8 and xy = xf for all z € dom~.
Hence 3 = v. Therefore we deduce that ¢ is an isomorphism from P(ran «) onto
aP(ranca). But (T'(rana))p = oT (rana), thus ¢y, ., is an isomorphism from

T'(ran «) onto a1 '(ran ). This proves that a7’ (ran ) = T'(ran o) and P(ran «) =

O

P(ran ), as desired.

Lemma 3.1.3. Ifa € E(T(X)), then oT(X)a = oI (ran o).
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Proof. Since doma = X, it follows that for every § € T(ran«a), dom(af) = X.
Thus ol (ran ) C T'(X). By Lemma 3.1.1, T'(ran a)ae = T'(ran ). Hence

aT (rana) = a7 (ran )«
= a(aT (ran o))«
CaT(X)a.
If € T(X), then dom(fa) = X and ran(fa) C rana, so
afa = o((fa)...) € al(ran o).

Thus oT'(X)a C oT (ran o), so the result follows. O

Lemma 3.1.4. If « € B(P(X)) ~ {0}, then aP(X)a = aP(ran ).

Proof. By Lemma 3.1.1, P(rana)a = P(ran«). It follows that
aP(rana) = aP(rana)a € aP(X)a.

If B € P(X), then ran(fa) € ran «, so

afa = af(Ba) |dom(ﬁa)mrana)

€ aP(rana).

Hence aP(X)a C aP(rana). Therefore aP(X)a = aP(ran ), as desired. O

Lemma 3.1.5. Ifa € E(P(X))»{0} and dom o C X, thenaT'(X)a = aP(rana).

Proof. Since T'(X) C P(X), aT(X)a C aP(X)a. But aP(X)a = aP(rana) by
Lemma 3.1.4, so aT'(X)a C aP(rana).
For the reverse inclusion, let v € P(rana). Let a € X \ doma. Define

¥ € T(X) by

redom 7y,
yeX ~domy
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Since rany C rana C dom « and a ¢ dom «, we have
domaNran®y = doma N (rany U {a}) = ran~.
Thus

70[ = W(quom aﬁranﬁ)

B 7(a|rau'y)
— ")/Oé
— from Lemma 3.1.1

This implies that ay = aya € aT'(X)a.
Hence aT(X)a = aP(ran ). O

Theorem 3.1.6. For a € E(P(X)) {0}, the local subset oT(X)a of P(X) is a

local subsemigroup of P(X) and

T(rana) if doma =X,
aT(X)a

1

P(rana) if doma C X.
Proof. By Lemma 3.1.3 and Lemma 3.1.5, we have

aT(ranca) if doma = X,
aT(X)a =

aP(ran )  if-doma G X.

This fact and Lemma 3.1.2 yield the result that o7 (X )« is a local subsemigroup
of P(X) and

T(rana) if doma =X,
aT(X)a

1

P(rana) if doma C X.

O

Theorem 3.1.7. For every a € E(P(X))~ {0}, then aT(X)« is a reqular semi-

group.
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Proof. By Theorem 3.1.6, o7 (X )« is a local subsemigroup of P(X). But since
T(rana) and P(ran«) are regular semigroups, so by Theorem 3.1.6, a7'(X)« is

a regular semigroup, as desired.

3.2 The Local Subsemigroups a/(X)a of P(X)

In this section, we give a necessary and sufficient condition for a € E(P(X))~{0}
when X is finite for which the local subset aef (X )av of P(X) is a local subsemigroup
of P(X). It is also shown that this local subsemigroup of P(X) is always regular.

Observe that in Example 2.1,
lla Y =[{1}|=1<2=|rana| = [2a7 !
and o (X))« is not a local subsemigroup of P(X) but in Example 2.4,
lac™!|=2>|ranal . forall a € rana

and ol (X)a is a local subsemigroup of P(X). This fact is generally true for a
local subset al(X)a of P(X) to be a local subsemigroup of P(X) when X is
finite.

We shall show that if X is finite, af(X )« is a local subsemigroup of P(X) if
and only if either
(i) a = 14 for some nonempty subset A of X or
(ii) |ac™t| > | ran | for every a € ran a,
and this local subsemigroup of P(X) is a regular semigroup.

To obtain the main results, the following series of lemmas is needed.

Lemma 3.2.1. For a nonempty subset A of X, 1,1(X)14 =I(A).

Proof. Let € I(X). Since 14514 € I(X), dom(14514) C A and ran(14014) C
A, it follows that 14814 € I(A). This shows that 147(X)14 C I(A). Since 14
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is the identity of I(A), we have 141(A)14 = I(A). But since I(A) C I(X), it
follows that
I(A) = 141(A)1a C141(X)14.

Hence 141(X)14 = I(A), as desired. O

Lemma 3.2.2. Let o € E(P(X)) ~ {0}. If laa™'| > |rana| for every a € rana,
then ol (X)a = aP(ran ).

Proof. Since I(X) € P(X), it follows that al(X)a C aP(X)a. Therefore by
Lemma 3.1.4, we have a(X)a C aP(X)a = aP(ran«).
For the reverse inclusion, let A € P(rana). Then domaA C doma and

ranaA C ran A C ran «v. It follows that

for every ¢ € rana), ¢(a))™! = (eAHa ™t

dom o\ = U clad) ! = U (A Ha™t

cEran a cEran a

Therefore
(eA Ha™?

a\ =

C
cEran a\

We also have that
for every ¢ € rana, |cA7!| < |ranal < |ca™!|.

Then for each ¢ € ran a)\, there is an injective mapping o, : cA™t — ca~!. This

implies that

T
e l(X)
TPc cE€ran a\
r€AT!
and
for every ¢ € rana), ((cA™Yp.)a = {c}.
T
Thus « a € al(X)a and

TPe c€ran a
€A™
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x x
« a =«
TPc cEran a\ ¢ cEran a
z€cA™! x€cA™!
et
=«
c
cEran a
(A Da™t
c
cEran a
=al.
Then aP(rana) C ol (X)a.
Hence the proof is complete. O

Lemma 3.2.3. Let a € E(P(X)) ~ {0} and assume that ol(X)a is a local
subsemigroup of P(X). If lac— | =1 for some a € ran o, then « is injective, that

18, & = ldoma-

Proof. Note that aa = a since @ € rana and a € E(P(X)) \ {0}. Let b € rana
and suppose that [ba~'| > 1. Let &' € ba ' and b # b/. Define 3,7 € I(X) by

a b b
oL and 4=
b b a
Then
rxa ! a b zo !
afa =
T v b T
reran o TEran o
xa ! a b
T b b
reran o

aa” U bat

b
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ra~t b ra~!
ayo =
X a x
reran o reran o
ra b
xz a
reran o
b1
= € ad (X)o.
a

ac™t U ba?
Thus (afa)(aya) = . Since al(X)a is a local subsemigroup of

a
P(X), we have (afa)(ava) = ala for some A € [(X). Therefore a(ala) =

ada = a and b(ada) = bAa = a. Hence {a,b}\ C aa™' = {a} which is a
contradiction since |{a, b} \| = 2.

!'= {b}. Thus for every z € doma,

This proves that for every b € rana, ba™
r € (za)a™t = {xa}. Therefore ra = x for all # € dom a, that is, @ = lgoma, as

desired. O

Lemma 3.2.4. Let X be finite and o« € E(P(X)) ~ {0}. If al(X)a is a local
subsemigroup of P(X) and a is nmot injective, then |aa™'| > |ranal for all a €

ran .

Proof. By Lemma 3.2:3, for every a € rana, |aa ' > 1.-For every a € rana, let
a' € aat and d’ # a.
To show that Jaa™'| > |rana| for every a € ran o, we are done if [rana| = 1.

Assume that |[rana| =k > 1 and let b € ran . Let
rana = {b=ay,aq,...,a;}.
For each i € {2,...,k}, let §; € I(X) be defined by

a, a; T
6=

a; ay T
zeran a~{a1,a;}
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Then for each i € {2,...,k},

xa~! a, a; x xa~!
afjo =
x a; ay x
T€ran o z€ran a~{a1,a;} T€ran o
-1
ro a1 a; T
T a, a1 T
r€ran o z€ran a~{ai,a;}

ao'Uga ! zat

ay Xz
xz€ran a~{a1,a;}

If k =2, then afha = (dom a),,. If k> 2, then
(afa)(afsa)

1 =1

st Uasa™! za 1 -1

gt Uasa™! za

ax T
aj x (
zerana~{ai,as} z€rana~{ai,a3}

alofl U agofl U agoz‘l xat

aq Ay
z€ran a~{ai,a2,a3}

The following result is easily obtained by induction :

k

(afsa)(afsza) - - (afpa) = | =) = (dom ), .

ay

Since-af (X )a is~a subsemigroup of. P(X), we -have-that (doma),; = aya for

some 7 € I(X). Consequently,
(doma)aya = ((rana)y)a = {ar} = {b}.
It follows that rana € dom~ and (rana)y C ba~!. But v € I(X), so we have
ran o] = |(rana)y| < |ba”".

Hence the desired result follows. O
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Theorem 3.2.5. Let X be finite and o € E(P(X)) ~\ {0}. Then the local subset
al(X)a of P(X) is a local subsemigroup of P(X) if and only if either

(i) a =14 for some nonempty subset A of X or

(i) |aa™!| > |rana| for every a € rana.

Moreover,

oI(X)a =\AY) if a satisfies (i),

= P(ranca) if a satisfies (ii).

Proof. Assume that al(X)a is a local subsemigroup of P(X) and suppose that
a does not satisfies (1), that is, ar is not injective. By Lemma 3.2.4, « satisfies (ii).

Conversely, assume that « satisfies (i) or (ii). If « satisfies (i), then by
Lemma 3.2.1, al(X)a = 140(X)14 = I(A) which is a subsemigroup of P(X).
Assume that « satisfies (ii). Then Lemma 3.2.2 yields al(X)a = aP(rana). It
follows from Lemma 3.1.2 that a/(X)a is a subsemigroup of P(X) and ad (X))o =
P(rana).

O

Therefore the theorem is proved.

Theorem 3.2.6. Let X be finite and aw € E(P(X)) ~{0}. If al(X)«a is a local
subsemigroup of P(X), then al(X)«a 1s a reqular semigroup. Moreover, al(X )«

is an inverse semigroup if « is angjective, that is; & = lgoma € 1(X).

Proof. Since for any nonempty set Y, I(Y') is an inverse semigroup and P(Y') is

a regular semigroup, the result follows directly from Theorem 3.2.5. O

3.3 The Local Subsemigroups aG(X)a of P(X)

In this section, we are concerned with the local subset aG(X)a of P(X). We shall
give a characterization in terms of o determining when the local subset aG(X )«
of P(X) becomes a local subsemigroup of P(X) when X is finite. Also, the local

subsemigroup of P(X) is always regular.
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We can see from Example 2.2 that doma = X,
1o = [{1}| =1 < |rana| = [2a7*|
and oG (X)a is not a local subsemigroup of P(X) while in Example 2.5, doma = X,
laa™!| > |rana|  for all a € rana

and aG(X)a is a local subsemigroup of P(X). Also, in Example 2.3, a = 1123},
{1,2,3} > |X ~ {1,2,3}] and aG(X)a is not a local subsemigroup of P(X)
but in Example 2.6, o = 119y, [{1,2} < [X ~ {1,2}] and aG(X)a is a local
subsemigroup of P(X). It will be shown that these are generally true when X is
finite.

We shall prove that if X is finite, then for o € F(P(X)) \ {0}, aG(X)« is a

local subsemigroup of P(X) if and only if one of the following statements holds :

(i) a=
(ii) a = 14 for some nonempty proper subset A of X with |[A] < |X \ A|.

(iii) doma = X and |aa™t| > |ranal for all a € ran a.
(iv) |rana| < |X \ doma| and |aa~'| > |ranaf for all a € ran a.

This local subsemigroup of P(X) is also regular.

First, we give the following series of lemmas.

Lemma 3.3:1. Assume that X is finite and A is a nonempty proper subset of X.
Then 1,G(X)14 is a local subsemigroup of P(X) if and only if |A| < |X N Al.
If this is the case,; 14G(X) 14 = L[(A):

Proof. We prove by contrapositive that if 14G(X)14 is a local subsemigroup of

P(X), then |A| < |X \ A|. Assume that |A| > |X ~\ A|. First, we claim that
|dom(14514)] > |A| N |X N A| for every § € G(X). (1)
To prove (1), let 5 € G(X). Then

| dom(lAﬁlA)| = | dOHl 1A(51A)|
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= (AN dom(B14))1;|

= (AN (X NA)B)1L

= (AN (AB7))14']

=|An (457

=[AN (AN (X N A7)

= Al = AN (XA A57Y)

> 4| =X ~ A5~

= A = [ X\ A since [A571] = |A],

so (1) is proved. Let
k=]Al = |X~A4] and [ =|X A
Then k > 1 since |A] > |X N A|, |A] = k + [ and so
|X| =]A| + | X \ A| =k + 21

Since AC X, l=|X N A| > 1,80 |Al =k + 1> k. Next, we claim that

for all distinct aq,as,...,ar € A and distinct by, bo, ..., by € A,

al a2 PR a’k]

by by -+ by

S 1AG(X)1A. (2)

To prove (2), let aq,...,ar € A be distinct and let by,...,br € A be distinct.
Then
AN {ar, ... ap ] =]AN{b1, ... beH = 1= |X A,

so there are bijections p: AN{ay,...,ar} — X~NAand : X N A — ANA{by, ..., b}

Then
al P ak_ T y

B = € G(X).

bl e bk Ty yw zeA~{a1,...,ar}
yeXNA

Consequently,

14814 = 145,14
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=0,1a
a PN ag T
be - b. 1
! K v zeA~{a1,...,ar}
al DY ak .
= since ranp C X ~\ A,
by - b
al ... ak ,
SO € 1,G(X)14. Hence (2) is proved.
by - by
Since |A| > k, there are distinct elements a, . .., ax, ax+1 € A. Then by (2),
a, @ - Qg ay ag v Qg
v = and \ =
Az a3z - Okl G ap -+ Ag-1

are elements in 1,G(X)14. But since

QLIZARS- N g1
A=
ayp Qg - OGp—1

and |dom(yA)| = k—1 < k = |A] — | X ~ A|. It follows from (1) that YA ¢

14G(X)14. This shows that 1,G(X)14 is not a local subsemigroup of P(X).
For the converse, assume that [A| < | X \ A|. We will show that 1,G(X)14 =

I(A). By Lemma 3.2.1, 141(X)14 = I(A). But since G(X) C I(X), we have

LAG(X)14 C 14I(X) 4= I(A).

For the reverse inclusion, let 5 € I(A). Then domf C A, ranf C A and
| dom | = |ran 3. Since |4 ~ dom 5| < |A| < | X ~A[, there is an injective

mapping ¢ : A~ dom 3 — X \ A. Now, we have

G:domBCA—ranf C A is bijective,

p:Axdomf — (A~ domf(B)p C X A is bijective.
Since X is finite, it follows that

IX NAl=|(Axran ) U ((X N A) \ (A~ dom B)y)|.
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Then there is a bijection ) : X N\ A — (A~ ran ) U ((X N A) N (A~ dom f3)p).
Define A : X — X by

x z
A= Y .
Wy ) sedoms,
zEXNA
Then X € G(X) and
1AG(X)1A S 1 A1, = 114/\\,4114
=X\,1a
x
B Yo ) pedomp
yEA~dom 3
x
= since ranp C X A
z€dom
—B.
This shows that 1,G(X)14 = I(A).
The lemma is thereby established. O

Lemma 3.3.2. Assume that X is finite. Ifa € E(T(X)) is such that |ac™t| > | ran o

for every a € rana, then aG(X)a = oT (ran a).

Proof. If § € G(X), then ran(fa) C rane, so we have afa = o((fa),,,.) €

|ran «

aT (ran ) Hence aG(X)a.C oT (ran a).

For the reverse inclusion, let A € T'(ran«). Then

rano = dom \ = U et

cEran A

We also have that

for every ¢ € ran A, [eA7!| < |rana| < |ca™!.
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Then for each ¢ € ran ), there is an injective mapping ¢, : cA™! — ca™!. It follows
that
for every ¢ € ran \, ((cA™H)p.)a = {c}.

Define (3 : U et — U ca™! by

cEran A c€ran A

T

LPe ceran \
zech™?!

Then dom 3 = dom A = ran a.. Since each @, is injective, ( is injective, and thus
|dom 3| = |ranf|. Since X is finite, we have | X ~\ dom | = |X ~\ ranf|. Let
¥ : X ~dom B — X ~ ran 3 be a bijection. Define 3: X — X by

==

‘I;ﬁ y¢ zEdom 3
yeX ~dom

It follows that 3 € G(X). Also, we have

afa = (B, a)a

= afa

LPc cEran \
€A™

cEran \
xeeh1

et

cEran \

Hence the lemma is proved. O

Lemma 3.3.3. Assume that X is finite. If o € E(P(X)) is such that |rana| <

| X ~doma| and |aa™!| > |rana| for all a € ran«, then aG(X)a = aP(ran ).
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Proof. By Lemma 3.1.4, aP(X)a = aP(ran«). Since G(X) C P(X), it follows
that aG(X)a C aP(ran «)

For the reverse inclusion, let A € P(ran «).
Case 1 : A = 0. Since |rana| < |X \ doma/l, there exists an injective mapping
B :rana — X ~doma. Since X is finite, | X \rana| = |X N dom | = | X \ran ],

so there is a bijection ¢ : X ~\ dom 3 — X \ ran 3. Define

p={" 7

.Tﬂ ye r€dom 8
yeX ~dom (3

Then 3 € G(X) and

aG(X)ad afa = a(B..)
— afa
=al since ran  C X \ dom «
=0

= 2%

Case 2 : A # 0. Then

ranco O dom \ = U cxT

c€ran A
and

for every c€ran ), |cA7! ] < [ranal < |ca™!|.

Then for each c € ran A, thereis an injective. mapping .+ cA=! = ca~!. This

implies that

for every ¢ € rana, ((cA M. )a = {c}.

Define 3 : U et — U ca~! by

cEran A cEran A
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Then [ is injective, dom = dom A C ran« and ran 5 C dom «. Since |rana ~
dom 3| < |rana| < |X ~ doma/|, so there is an injective mapping ¢ : rana ~\

dom  — X ~ doma. Since X is finite, we have
| X Nrana| = | X \ (ran U ran ¢)|.
Let ¢ : X N\ rana — X ~ (ran 3U ran ¢) be bijective and define

Wi Y z

TP, Yp 2% ) cerani zecr?
y€Eran a~dom 3
z€X ~\ran o

Then 3 € G(X) and

aG(X)a > afa = a(ﬁ_\ram)a

Y
=y «

IPec YP c€ran \, zEcA ™!
yEran a~dom 3

"
= a since ran  C X \ dom «
=T cEran A
o s
el : )
=« since ((cA™)pe)a = {c}
s cEran A
= a\.
Therefore the lemma is proved. 0

Lemma 3.3.4. Assume that o€ E(P(X))~ {0} and aG(X)a is a local subsemi-
group of P(X). If laa™Y = 1 for some a € rana, then « is injective, that is,

o = 1d0ma-

Proof. Note that aa = a since a € rana and o € EF(P(X)) \ {0}. Let b € ran «
and suppose that [ba™!| > 1. Let ' € ba~! and b # ¥'. Since |X \ {a,b}| =
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| X~ {b,V'}], there is a bijection ¢ : X \{a,b} — X ~{b,0'}. Define 5,7 € G(X)
by

a b x a b x
8= and v =
b b xp b a x

zeX~{a,b} zeX~{a,b}

Then {a} Uba~" C dom(afBa), ({a} Uba™")(aBa) = {b} and

a b x
aye =« o

b a x
z€X~{a,b}

a ba7! zal
= «o
b a i
z€ran a~{a,b}

a ba~ ' za!

b a x
x€ran o~{a,b}

Thus {a} U ba™! C dom((afa)(aya)) and ({a} U ba™!)((aBa)(aya)) = {a}.
Since aG(X)a is a local subsemigroup of P(X), we have (afa)(aya) = ada for
some A € G(X). This implies that

{a} = ({a} Uba Hara = ({a,b}))a.

Hence {a,b}\ C aa~! ={a} which is a contradiction since |{a,b}\| = 2.

This proves that for every b € ran a, ba,*

= {b}. Thus for every z € doma,
r € (za)a=! = {za}. Therefore zaw = z for all'x € dom a, that is, & = lgoma, as

desired. O

Lemma 3.3.5. Let X be finite and assume that o € E(P(X))~{0} and « is not
injective. If aG(X)a is a local subsemigroup of P(X), then |aa~!| > |ranal| for

every a € ran .
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Proof. By Lemma 3.3.4, for every a € rana, |aa~!| > 1. For every a € rana, let
a' € aa~ ! and ' # a.
To show that |aa™!| > |ranal for every a € ran «, we are done if |[rana| = 1.

Assume that |[rana| =k > 1 and let b € ran . Let

rana = {a; = b,aq, ..., ax}.
Since for each i € {2,...,k}, H{ay,...,a; 1,0}, ai41,...,ax}] = k = rana, there
is a bijection ¢; : X ~rana — X ~ {aq,...,0;_1,a},a;41...,a;}. For each

i€{2,...,k}, let B; € G(X) be defined by

5 Ay . S 40 ;8 Qi - Op T
Z':

/
a ... G- a4 Q41 ... A TP;
reX \ran o

Then for each ¢ € {2,...,k},

af;a
-1 -1
ro a ... @1 a; Qjy1 ... G T Tro
/
T ap ... Q-1 Ay Q1 ... A TP; T
xreran o reX~\rana reran o
st gt zat xa !
/
aq ayq X
zeran a~{a1,a;} r€ran o

oty aicf1 To

a1
z€ran a~fai,a;}

If £ =2, then affher = (domav)g, . If k> 2, then

(afBaar)(aff3cr)

-1 -1 -1
ao U asx To alofl U agofl za!

aq 451
z€ran a~{ai,a2} z€ran a~{ai,a3}
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aa P Uasa ' Uasa™ za™t

aq x
z€ran a~{a1,a2,a3}

By induction, we have

(afra)(afsa) - - (afra) = | =) = (dom &), .

Since aG(X)a is a subsemigroup of P(X), we have that (dom«),, = aya for

some v € G(X). Consequently,

(dom @)aya = ((ran a)y)a = {a, } = {b}.

It follows that rana € dom~ and (rana)y € ba~'. But v € G(X), so we have

|ran o| = |(ran a)y| < |ba=t|. Hence the desired result follows. O

Lemma 3.3.6. Assume that X is finite and o € E(P(X)) ~ {0} is such that
doma € X and o is not injective. If aG(X)a is a local subsemigroup of P(X),

then |rana| < | X\ dom a/.

Proof. If [rana| = 1, then we are done. Assume that |[rana| > 1. Let a,b be
distinct elements of rana and let ¢ € X < doma. By Lemma 3.3.5, |rana| <

lac™!| and | ran o] < [ba™!|. Thus

|ran o'\ {a}|'< [ba™] and ‘|ran &~ {b} < |aaT.

Then there are injective mappings ¢ : rana \ {a} — ba~! C doma and ¥ :

rana N\ {b} — aa™! C doma. Define

T a r b
g = and vy =

Tp x

z€ran a~{a} x€ran a~{b}
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Then (3 and v are injective and dom 3 = dom v = ran «. Since X is finite, there are
bijective mappings ¢’ : X ~dom  — X ~ran and ¢’ : X ~dom~y — X \ran~.
Then

_ T a r b
B = Y and = Y

/ /
TP € Y¥ | zedom B~{a} l’i/} ¢ yw z€dom y~{b}
yeX ~dom (3 yeX ~domy

are elements of G(X). Also, we have

afa = a(f..)a

="0al

x .
= a  since ¢ ¢ dom «

x

¥ zcran a~{a}

x \ .
= since ran ¢ C ba

b

z€ran a~{a}

zerana~{a} b

0[3106 - Oé(,7|ran fe' )O{

= aya
x .
= a'  since ¢ ¢ dom «
x
z€ran a~{b}
# i \)
=« since ran vy C ax

z€ran a~{b}

[ U e

x€ran a~{b}

Consequently, (aBa)(aya) = U ra~! U za~t| = 0 since
z€ran a~{a} b x€ran a~{b}

b€ ba~!. Thus 0 € aG(X)a.
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To show that |ran«a| < |X ~\ dom «|, suppose on the contrary that |rana| >

|X ~ domal|. Let A € G(X). Then
|ran(a))| = |rana| > | X \ dom «|
which implies that ran(aA) Ndom a # @. It follows that

dom(ala) = (ran(a)) N dom a)(a))™! # @

)

thus ada # 0. Since A is arbitrary in G(X), it follows that 0 ¢ aG(X )« which is

a contradiction. Hence we have |rana| < |X ~\ dom «l, as desired. O

Theorem 3.3.7. Let X be finite and a € E(P(X)) ~ {0}. Then the local subset
aG(X)a of P(X) s a local subsemigroup of P(X) if and only if one of the fol-
lowing statements holds.

(i) «

(ii) a =14 for some nonempty proper subset A of X with |A| < |X \ Al.

(iii) doma = X and |aa™'| > |ran a| for all a € ran «.
(iv)

iv) |[rana| < | X s domal and laa—'| > |ranal for all a € ran a.

Moreover,
(
=G(X) if «e satisfies (i),
=1I(A if avsatisfies (ii),
oG(Xa (4) (i)
> T(rana) © if o satisfies [ (iii),
>~ P(rana) if « satisfies (iv).
(

Proof. Assume that aG(X)a is a local subsemigroup of P(X).
Case 1 : « is injective and doma = X. Then a = 1.

Case 2 : « is injective and doma € X. Then a = 1,4 for some nonempty proper

subset A of X. By Lemma 3.3.1, |A| < |X \ A, so (ii) holds.
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Case 3 : «is not injective and dom aw = X. Then by Lemma 3.3.5, « satisfies (iii).

Case 4 : « is not injective and doma C X. By Lemma 3.3.5, [aa™!| > |ran |
for all a € ran . From Lemma 3.3.6, |ran a| < |X ~\ dom «|. Hence (iv) holds.

Conversely, assume that « satisfies one of (i)—(iv). If « satisfies (i), then
aG(X)a =1xG(X)1lx = G(X). If asatisfies (ii), then by Lemma 3.3.1, aG(X)a =
14G(X)14 = I(A).

Assume that (iii) holds. From Lemma 3.3.2, we have aG(X)a

= oT(ran ).
By Lemma 3.1.2, a7 (rana) is a subsemigroup of P(X) which is isomorphic to
T(ran«). Hence aG(X)a = T'(ran «).

Finally, assume that (iv) holds. Then by Lemma 3.3.3, aG(X)a = aP(ran «).

By Lemma 3.1.2, aP(ran«) is a subsemigroup of P(X) which is isomorphic to
P(ran «). It follows that aG(X)a = P(ran ).

This proves the theorem.
As a consequence of Theorem 3.3.7, we have

Corollary 3.3.8. Let X be finite and a € E(T(X))

Then the local subset
aG(X)a of T(X) 18 a local subsemigroup of T(X) if and only if either

(i) a=1x or

(ii) lJaa™| > |ran | for-every a € ran .

Moreover,

if & satisfies (1),

if « satisfies (ii).

Theorem 3.3.9. Let X be finite and o € E(P(X)) \ {0}. If aG(X)a« is a local
subsemigroup of P(X), then aG(X)a is a regular semigroup. In addition, if « is

injective, that is, & = lgoma, then aG(X)a is an inverse semigroup.
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Proof. Since for any nonempty set Y, G(Y') is a group, /(Y') is an inverse semi-
group and both T(Y) and P(Y) are regular semigroups, the theorem is directly
obtained from Theorem 3.3.7. O

AOUUINYUINNS )
ANRINITNIVENAY



CHAPTER IV
LOCAL SUBSEMIGROUPS OF SEMIGROUPS OF
LINEAR TRANSFORMATIONS

Throughout this chapter, let F' be a field, V' a vector space over F' and n a positive
integer. This chapter deals with the local subset aG'L(V')a of the semigroup L(V)
and the local subset AG, (F)A of the semigroup M, (F). We determine when
aGL(V)a becomes a local subsemigroup of L(V/) in terms of an idempotent «
of L(V) when V is finite-dimensional. Also, we characterize an idempotent A
of M, (F) for which AG, (F)A is a local subsemigroup of M, (F). From these
characterizations, we have that these local subsemigroups of L(V') and M, (F) are

regular semigroups.

4.1 The Local Subsemigroups aGL(V)a of L(V)

The aim of this section is to show that if V' is finite-dimensional and oo € E(L(V)),

then aGL(V)a is a local subsemigroup of L(V') if and only if either

(i) a=1y or
(i) 2dim(rane) < dim V.

This local subsemigroup of L(V) is regular.

First, we provide the following series of lemmas.

Lemma 4.1.1. If a € E(L(V)), then for every § € L(ran«), fa = (3.

Proof. See the proof of Lemma 3.1.1. (|
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Lemma 4.1.2. Ifa € E(L(V)), then aL(ran«) is a subsemigroup of L(V') and
aL(rana) = L(ran ).

Proof. See the proof of Lemma 3.1.2. Note that for 5 € L(ran«), dom = ran «,
so dom(af) = doma = V. Hence aL(rana) C L(V). O

Lemma 4.1.3. If a € E(L(V)), then aL(V)a = aL(ran ).

Proof. See the proof of Lemma 3.1.3. O

Lemma 4.1.4. Assume that V' is finite-dimensional and o € E(L(V')). If dim(ker o) >
dim(ran o), then aGL(V)a = aL(rana).

Proof. Since GL(V) C L(V), by Lemma 4.1.3, we have
aGL(V)a C aL(V)a = aL(ran «).
To show that aL(rana) C aGL(V )a, let A € L(ran«). Then al € L(V) and
ran(aA) C ran A C ran« = dom \.
But dim(ker o) > dim(ran «), so we have
dim(ker \) < dim(ran ) < dim(ker «v). (1)

Let B; be a basis of ker A and B, be a basis of ranA. For each v € B, let
v € wA7'. By Proposition 2.8, BiU{v"|v € By} is a basis of rana (= dom \).

Let Bj3 be a basis of ran « containing By. Then
dim(rana) = |BlU{v'|v S B2}| = ‘B3| = ‘(Bg AN BQ) UBQ|

Since dim V' < oo and [{v'|v € By}| = | Ba, it follows that |Bi| = |Bs \ Bs|. Let
B, be a basis of ker a. By Corollary 2.10,

BiU{v'|v € By} UB, is a basis of V and (2)
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B3 U By is a basis of V. (3)

From (1), we have |B;| < |By|. Let ¢ : By — By be injective. Then we have
| B3~ Ba| = [Bi] = [Big|
which implies that
|Bal = [(Ba~ Bip) U Bip| = |(Ba ~ Bigp) U (B3 N\ By

since B3N By = & (see (3)). Let ¢ : By — (By~ Bip) U (B3 \ By) be a bijection.
Define 3 € L(V) on the basis B; U{v' |v € By} UBy of V (see (2)) by

v v w

B = : (4)
up v ’U)¢ u€B1,vEDB>,
wEBy

Since ¢, v' — v (v € By), ¥ are injective, By C By, Bo C B3, BsN By = @
and Bytp = (By \ Bip)U (B3 ~ By), it follows that / restricted to the basis
By U{v'|v € By} UBy of V is injective. Also,

(BiU{v'|v € Bo}UBy)B = BipUByU(By \ Bip)U(Bs \ By)

= B;UB,

which is a basis of V' by (3). By Proposition 2.7, we deduce that 8 € GL(V'). We
claim that afa = a). By (2), it suffices to show that

vafa =wvaX . forall ve ByU{v'|v € B3} U By.
Recall that va = for all v € ran .- We have that

for u € By, uafa = ufa since By C ran «
= (up)ar  from (4)

=0 since Byyp C By C ker a,

=0 since By C ker A,
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for u € Bs, v afa = u'fa since v’ € uA"! Crana
= uQ from (4)
=u, since Bs Cran A C ran«
wak =u'\
: 1 -1
=u since u' € U\,

for u € By, uvafa =0 = ua since By C ker a.

This implies that afa = aA.
This proves that aGL(V)a = aL(ran &), as desired. O

Lemma 4.1.5. Assume that V is finite-demensional, o« € E(L(V)) and o # 1y.
If aGL(V )« is a local subsemigroup of L(V'), then dim(ker o) > dim(ran «).

Proof. Since o # 1y, uae = v for some distinct u,v € V. Then ua = ua? = va,
so « is not a monomorphism. Thus ker v # {0}. Let w € ker a \. {0}.

To show that dim(ker o) > dim(rana), we are done if dim(rana) = 0. As-
sume that dim(rana) = k> 0. Let {uy,...,ux} be a basis of ran . By Corollary
2.10, we have that for each 2 € {1,..., k}, ui,...,ui—y, W, ui11, ..., uy are linearly
independent. Let By be a basis of kera. By Corollary 2.10, By U{uy,...,uz}
is a basis of V. For each i € {1,...,k}, let B; be a basis of V' containing

{uy, ... uwi—g, w, Uiy, - .., ug . Since dim'V < oo,
‘Bo| =dimV —k = ]Bi\{ul, ey Ui, Wy Uiy 1y - - - ,uk}]

For each i € {1,... k}, let ¢; " By — B;~{uy,... w1, w, U1y ., u;} be a
bijection. For each i € {1,...,k}, define 3; € L(V') on the basis By U {uy, ..., ux}
of V by

Uy =0 Ui—1 Uy Uipr -0 Uy U

u PR u_ w u .. u /l} .
1 i—1 i+1 k Wi veBy
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By Proposition 2.7, §; € GL(V) for all i € {1,...,k}. Note that u;a = w; for

all i € {1,...,k} and va = 0 for all v € By. Since w € ker o, we have that for

ied{l,....k},
af;a
Uy
Uy
Then
(aBia)(afBs

U v> <u1
ur O veBy uq

Ui—1 U; Uit
ui—1 0 Uigq
1 U2
a) =
0 U2
Uy Uz U3
0 0 us

The following result holds by induction :

(afBra)(afaa) . .. (afra) =

Ui—1 Ui  Uitl
Ui—1 W Ujgl
U U
u 0
k vE By
U U (751
et N () Uq
& vE By
U U
up 0
; vE By
Uy
0

U v uq
Uk VP; veBo ul

u2 u3 o .. uk

O u3 DY uk

U U

0 0

vE By

Uk U)
u 0
k vE By

vE By

Since aGL(V')a is a subsemigroup of L(V), it follows that the zero map 0 on V'

belongs to aGL(V)a. Thus arya = 0 for some v € GL(V'). Consequently,

(rana)y =(Va)y C ker a.

Since v € GL(V), dim(ker o) > dim(ran o)y = dim(ran ).

The proof is thereby completed.

Theorem 4.1.6. Let V' be finite-dimensional and o € E(L(V')).

Then the local

subset aGL(V)a of L(V) is a local subsemigroup of L(V') if and only if either
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(i) a=1y or
(ii) dim(ker a) > dim(ran ).

Moreover,

oGL(V)a = GL(V) if « satisfies (i),

> L(ran«) if « satisfies (it).

Proof. Assume that aGL(V)a is a local subsemigroup of L(V). If a # 1y, then
by Lemma 4.1.5, dim(ker &) > dim(ran o).

Conversely, assume that « satisfies (i) or (ii). If asatisfies (i), then aGL(V)a =
1yGL(V)ly = GL(V). If a satisfies (ii), then by Lemma 4.1.4, aGL(V)a =
aL(ran «) and by Lemma 4.1.2, it is a subsemigroup of L(V") which is isomorphic
to L(ran ).

Therefore the theorem is proved. O

Since for o € L(V), dimV = dim(ker @) 4+ dim(ranc«), it follows that if

dim V < oo, then

dim(rana) < dim(ker o) < dim(ran ) < dim V' — dim(ran «)

< 2dim(rana) < dim V.

Hence Theorem 4.1.6 can be restated as follows:

Theorem 4.1.7. Let V' be finite-dimensional and o € E(L(V')). Then the local
subset G L(V)a-of L(V). is-a local subsemigroup of L(V) if-and only if either

(i) a=1y or
(i) 2dim(rana) < dim V.

Moreover,

oGL(V)a = GL(V) if « satisfies (i),

~ L(rana) if « satisfies (ii).



46

As a consequence of Theorem 4.1.7, we have

Corollary 4.1.8. If dim V' < 2, then for every a € E(L(V)), aGL(V)a is a local

subsemigroup of L(V).

Proof. We have o, . = liane and dim(rana) = 0,1 or 2. If dim(ran o) = 2, then
rana =V, so a = 1y. If dim(rana) = 0 or 1, then 2dim(rana) < 2 = dim V.

By Theorem 4.1.7, aGL(V')a is a local subsemigroup of L(V). O

Theorem 4.1.9. Let V be finite-dimensional and o € E(L(V)). If aGL(V)a is

a local subsemigroup of L(V'), then aGL(V)a is a reqular semigroup.

Proof. Since for a subspace U of V., GL(U) is a group and L(U) is a regular

semigroup, the result follows from Theorem 4.1.7. O

Example 4.1.10. Let F be a field. Consider the vector space F° over I with

the usual addition and scalar multiplication. Define o, 8 : F® — F° by

(z,y,z,w,t)a=(z,0,z2,0,%)

<x7 y? Z? w? t)/B = (I" y? 07 O? 0)

for all z,y, z,w,t € F.

Then «, 8 € E(L(F?)), dim(ran o) = 3 and dim(ran 3) = 2. Since 2 dim(ran ) =
6 > 5 = dimF® and 2dim(ranf3) = 4 < 5.= dim F®, by Theorem 4.1.7,
aGL(EF®)a is not a local subsemigroup of L(F®) but SGL(F?)3 is a local sub-
semigroup of GL(F?) and

BGL(F?) = L({(2,y,0,0,0) |2,y € F'})
>~ [(F?)

since {(r,,0,0,0) | z,y € F} and F? are vector space isomorphic ( see Proposition

2.11).
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4.2 The Local Subsemigroups AG,(F)A of M, (F)

By making use of Theorem 4.1.7 and a relationship between L(V') and M, (F) if

dim V' = n, we shall show that for A € E(M,(F)), AG,(F)A is a local subsemi-

group of M, (F) if and only if either

(i) A = I,, the identity n X n matrix over F' or

(i) 2rank A < n.

In addition, we show that if A 7 0, then the local subsemigroup AG, (F)A is iso-

morphic to My (F') where k = rank A which implies that it is a regular semigroup.
Recall that if dim V' = n, then there is a semigroup isomorphism 6 : L(V) —

M,,(F) such that for alle € L(V), rank(a#) = dim(ran o). Note that (E(L(V)))8 =
E(My(F)).

Theorem 4.2.1. For A € E(M,(F)), the local subset AG,(F)A of M,(F) is a

local subsemigroup of My(F) if and only if either
(i) A=1, or

(i) 2rank A <m.

In addition,

= Gu(F) _if A satisfies (i),

AGL(E)A S = {0} - if A=0,

|3 My(F) if A#0, A satisfies (ii) and rank A = k.

Proof. Let V' be a vector space over F' of dimension n and 6 : L(V) — M, (F) a

semigroup isomorphism such that
rank(af) = dim(rana)  for all a € L(V).
First, assume that AG,(F)A is a local subsemigroup of M, (F'). Then

(AG,(F)A)0™" = (AP~HYGL(V)(A97Y)
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is a local subsemigroup of L(V'). By Theorem 4.1.7, either
(1) A~ = 1y or
(ii) 2dim(ran(4671)) < dimV = n.
But since 1y/0 = I,, and
dim(ran(A6~ ")) = rank((A4071)0) = rank A,
it follows that either
(i) A=1,or
(ii) 2rank A < n.

Conversely, assume that A satisfies (i) or (ii). If A satisfies (i), then AG,(F)A =
Gn(F). Assume that A satisfies (ii). If A = 0, then AG,,A = {0}. Assume that
A # 0. Let rank A = k. We have A§~' € L(V) and dimV = n > 2rank A =
2rank((A071)0) = 2dim(ran(A07")). By Theorem 4.1.7, (A0~")GL(V)(A0™1) is

a local subsemigroup of L(V') and
(A HGL(V)(AGY) = L(ran(A071)).
But ((A0~HGL(V)(A6=1)0 = AG, (F)A, so
AG,(F)A = L(ran(A071)).
Since dim(ran(A#~1)) = rank((407')0) = rank A = k, it follows that
L(ran(A0™Y)) = M(F).

This proves the theorem. O

Corollary 4.2.2. For every A € E(M(F)), AGy(F)A is a local subsemigroup of
My(F).

Proof. If rank A < 1, then 2rank A < 2, so by Theorem 4.2.1, AGy(F)A is a

local subsemigroup of My(F).
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Assume that rank A = 2. Then A € E(G2(F)) which implies that A = Is.
Thus AGQ(F)A = [QGQ(F)[Q = GQ(F) ]

Theorem 4.2.3. Let A € E(M,(F)). If AG,(F)A is a local subsemigroup of
M, (F), then AG,(F)A is a reqular semigroup.

Proof. Since for every positive integer m, G,,(F') is a group and M,,(F) is a

regular semigroup, the result follows from Theorem 4.2.1. 0

Example 4.2.4. Let F be a field and x,y, z € F. Define

(1 0.0 0 10 0 0]
2 000 010 0
A= and B =
0010 000 =
0 0y 0 000 1]

Then A? = A, B?> = B, rank A = 2 and rank B = 3. Then 2rank A = 4 and
2rank B = 6 > 4. By Theorem 4.2.1, AG4(F')A is a local subsemigroup of M, (F')
but BG4(F')B is not. Moreover, AG4(F)A = My(F).

Finally, by making use of Proposition 2.12, we provide some explicit form of

the local subsemigroup AG, (F)A of M, (F').

Lemma 4.2.5. If k is a positive integer such that 2k < n, then Dﬁlk)Gn(F)fo)

15 the set of all n X n matrices over F' of the form

Ty o T 0 -0 0
Tpi v T 0 -+ 0
(1)
0 0 0 0
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Proof. We can see that for any matrix A € M, (F),

All Alk 0 0
0 0 O 0
0 0 O 0

L i

It follows that Dﬁlk)Gn(F )D;k) is a subset of the set of all n x n matrices over I
of the form (1).
Conversely, let B € M, (F) be of the form (1), that is,

By By, 0 0
A B B 0 0
0 0 0 0
0 0 0 0
Since 2k < n, it implies that
Bin = B2,n~1 CJ VO Bk,n—(k—l) T Bk+1,nfk == B, =0.
Define B € M, (F) by
p
B,; ifije{l,... k},

By =11 if i+7=n+1,

\ 0 otherwise,

that is,



o1

By By Big -+ By, 0 --- 0 0 1

By By Byg -++ By, 0 --- 0 1 0

B3 B3y Bsg -+ By, 0 - 1 0 0

B Bri Bia Bis B, * 0 0 0
0 0 0 * @ 0O 0 O

0 0 1 () ) 0O 0 O

0 " 0 (), - 0O 0 O

1 0 0 O TOR 0O 0 O

where
x:=1and e:=0 if 2k =n,

x:=0and e:=1 if 2k=n—1,

s:=0and e: =0 if 2k <n—1.

It is clearly seen that B is row-equivalent to I,. It follows that B € G, (F).
Moreover, DY) BDY) = B, so B € fo)Gn(F)D,(f).

Hence the proof is complete. O

Theorem 4.2.6. Let A=C~'DC € E(M,(F)) where C € G,(F) (see Propo-
sition 2.12). Then the local subset AG,(F)A of M,(F) is a local subsemigroup of
M, (F) if and only if either k = n-or 2k < n. Moreover,

k=n= AG,(F)A =G, (F),

k=0= AG,(F)A ={0},

ri1 -+ x1x 0 -+ 0

0<2k<n= AG,(F)A=C""! o |z, € F forije{l,... k}




02

Proof. Since A= C~'D¥C, rank(A) = k.

Assume that AG,,(F)A is a local subsemigroup of M, (F'). By Theorem 4.2.1,
either A =1, or 2k <n. If A= 1I,, then k =n, so AG,(F)A = G,(F). If k=0,
then AG,A = {0}.

Assume that £ > 0 and 2k < n. By Lemma 4.2.5,

T~ ] )

il T1k 0 0
xkl 7 7 xkk 0 - O
Dﬁf)Gn(F)fo) = |z, € F forije{l,....k}
Q7774 b0 N ’
L | o 0 0 0] J

Hence

AG,(F)A = (' DG, (F)(C=D®C)
= Cc'DW(CG(F)C DWW
= C 1DV GLEYD®C since C € G,(F)

= C~YDWG, (F)DW)C

et Ty O 0] )
¥, Tgr 0 Tk O -0 0
=C ! |z, € Fiorije{t,....ky p C.
0 0 0 0 ’
LLo 0 0 -+ 0] )

For the converse, assume that either k = n or 2k < n. If kK =n, then A = I,
and if 2k < n, then 2rank(A) < n. It follows from Theorem 4.2.1 that AG,,(F)A
is a local subsemigroup of M, (F).

The proof is thereby completed. O

Remark 4.2.7. Let A be as in the assumption of Theorem 4.2.6 and 0 < 2k < n.
By Theorem 4.2.1, we have that AG,(F)A = My(F). This can be seen from
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Theorem 4.2.6 since

0: My(F)—Ctq ™

defined by

AOUUINYUINNS )
ANRINITNIVENAY
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