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CHAPTER I

INTRODUCTION

In 1994, Luk ([6]) gave the Stein’s equation,

wf ′′(w) +
1

2
(1− w)f ′(w) = h(w)− χ2

1h for w ≥ 0 (1.1)

where χ2
1h =

1√
2π

∫ ∞
0

t−
1
2 e−

t
2h(t)dt and h is absolutely bounded and the first 3

derivatives of h are bounded. The solution of (1.1) for h is

fh(w) =−
∫ ∞

0

[
e
−( e

−t
2

1−e
−t
2

)w

we
−t
2

√
2(1− e−t2 )

∞∑
i=1

(1
2
)i

i!Γ(i+ 1)

∫ w

1−e
−t
2

0

e(i+ 1
2

)uui−
1
2du

− 1√
2π

∫ ∞
0

s−
1
2 e−

s
2h(s)ds]dt,

([6], pp. 13). Later, Reinert([9]) gave a technique to simplify equation (1.1), by

letting

g(w) =
wf ′(w2)

2

and (1.1) become,

g′(w)− wg(w) = h(w2)− χ2
1h, w ≥ 0. (1.2)

If we choose the test function h in (1.2) to be Iz : [0,∞)→ R defined by

Iz(w) =


1 if w ≤ z,

0 if w > z,

for a fixed z ≥ 0, then (1.2) becomes

g′(w)− wg(w) = Iz(w
2)− χ2

1(z), w ≥ 0 (1.3)

where χ2
1(z) =

1√
2π

∫ z

0

t−
1
2 e−

t
2dt.
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In Chapter III, we find a solution of a Stein’s equation (1.3) and its properties

by using the idea of Chen and Shao ([2]).

In the final chapter, we will give bounds on chi-square approximation. Let

X1, X2, ..., Xn be independent random variables with zero mean and finite variance

and Wn =
n∑
i=1

Xi. Assume that V arWn = 1. It is well-known that the distribution

of Wn can be approximated by the standard normal distribution Φ, where

Φ(z) =
1√
2π

∫ z

−∞
e−

t2

2 dt (see [4], pp.261-268 for example).

Note that Φ2 d
= χ2

1 where χ2
1 is the chi-square distribution with degree of freedom

1.

Reinert ([9]) used the Stein’s method and Taylor expansion to find a uniform

bound in chi-square approximation. Her result is Theorem 1.1.

Theorem 1.1. Let Y1, Y2, ..., Yn be independent random variables with zero mean,

variance one and E |Yi|8 <∞ for i = 1, 2, ..., n. Define Sn =
1√
n

n∑
i=1

Yi.

Let h : R → R be absolutely bounded and the first 3 derivatives of h are bounded

and fh : R→ R a solution of (1.2). Then a uniform bound in Chi-square approx-

imation is of the form ∣∣Eh(S2
n)− χ2

1h
∣∣ ≤ c(fh)

n

where c(fh) is a constant depending on fh and on the distribution of the Yi but it

does not depend on n.

In Theorem 1.1, Reinert derived an error estimation for the approximation of

the distribution of S2
n by a chi-square distribution with degree of freedom 1, which

is of the form

|Eh(S2
n)− χ2

1h|.

In order to bound

|P (W 2
n ≤ z)− χ2

1(z)|,
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we have to choose the function h = Iz. But Iz is not continuous. Hence we can

not apply Theorem 1.1 to bound |P (W 2
n ≤ z)− χ2

1(z)|.

In this part, we give uniform and non-uniform bounds on chi-square approxi-

mation to the distribution of W 2
n under the existence of the second and the third

moments. To do this, we use a relation between the chi-square random variable

with degree of freedom 1 and the standard normal random variable. This is our

results.

Theorem 1.2. (uniform bound) Let X1, X2, ..., Xn be independent random vari-

ables such that EXi = 0 and E|Xi|3 < ∞ for i = 1, 2, ..., n. Assume that
n∑
i=1

EXi
2 = 1. Then

sup
z≥0
|P (W 2

n ≤ z)− χ2
1(z)| ≤ 1.583

n∑
i=1

E|Xi|3.

Theorem 1.3. (non-uniform bound) Under the assumption of Theorem 1.2 and

z ≥ 0, we have

|P (W 2
n ≤ z)− χ2

1(z)| ≤ 63.87

1 + z
3
2

n∑
i=1

E|Xi|3.

Theorem 1.4. (uniform bound) Let X1, X2, ..., Xn be independent random vari-

ables such that EXi = 0 and E|Xi|2 < ∞ for i = 1, 2, ..., n. Assume that
n∑
i=1

EXi
2 = 1. Then

sup
z≥0
|P (W 2

n ≤ z)− χ2
1(z)| ≤ 8.2

{
n∑
i=1

EX2
i I(|Xi| ≥ 1) +

n∑
i=1

E|Xi|3I(|Xi| < 1)

}
.
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Theorem 1.5. (non-uniform bound) Under the assumption of Theorem 1.4. For

z ≥ 0, there exists an absolute constant C

|P (W 2
n ≤ z)− χ2

1(z)| ≤ C

n∑
i=1

{
EX2

i I(|Xi| ≥ 1 +
√
z)

1 + z
+
E|Xi|3I(|Xi| < 1 +

√
z)

1 + z
3
2

}
,

where

C =



26.22 if 0 ≤ z < 1.69,

57.08 if 1.69 ≤ z < 4,

92.64 if 4 ≤ z < 9,

122.8 if 9 ≤ z < 63.6804,

80.24 if 63.6804 ≤ z < 196,

78.78 if z ≥ 196.

We organize our thesis as follows. In Chapter II we give some basic concepts

in probability theory. A solution and its properties of the Stein’s equation for

chi-square distribution with degree of freedom 1 is in Chapter III. Finally, we give

uniform and non-uniform bounds on chi-square approximation in Chapter IV.



CHAPTER II

PRELIMINARIES

In this chapter, we give basic concepts in probability which will be used

in our work.

2.1 Probability Space and Random Variables

Let Ω be a nonempty set and F be a σ-algebra of subsets of Ω .

Let P : F → [0, 1] be a measure such that P (Ω) = 1. Then (Ω,F , P ) is called a

probability space and P, a probability measure. The set Ω is the sample

space and the elements of F are called events. For any event A, the value P (A)

is called the probability of A.

Let (Ω,F , P ) be a probability space. A function X : Ω → R is said to be a

random variable if for every Borel set B in R,

X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ F .

We shall usually use the notation P (X ∈ B) in stead of P ({ω ∈ Ω|X(ω) ∈ B}).

In the case where B = (−∞, a] or [a, b], P (X ∈ B) is denoted by P (X ≤ a) or

P (a ≤ X ≤ b), respectively.

Let X be a random variable. A function F : R→ [0, 1] which is defined by

F (x) = P (X ≤ x)

is called the distribution function of X.
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Let X be a random variable with the distribution function F . X is said to be

a discrete random variable if the image of X is countable and X is called a

continuous random variable if F can be written in the form

F (x) =

∫ x

−∞
f(t)dt

for some nonnegative integrable function f on R. In this case, we say that f is

the probability density function of X.

A sequence of events (En)n≥1 is said to be an increasing sequence if

E1 ⊆ E2 ⊆ ... ⊆ En ⊆ En+1 ⊆ ...

where as it is said to be an decreasing sequence if

E1 ⊇ E2 ⊇ ... ⊇ En ⊇ En+1 ⊇ ...

Theorem 2.1. Let (En)n≥1 be a sequence of events. Then

1. If (En) is increasing, then lim
n→∞

P (En) = P (
∞⋃
n=1

En).

2. If (En) is decreasing, then lim
n→∞

P (En) = P (
∞⋂
n=1

En).

Now we will give some examples of random variables. We say that X is a

normal random variable with parameter µ and σ2, written as X ∼ N (µ, σ2), if

its probability density function is defined by

f(x) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)
.

Moreover, if X ∼ N (0, 1) then X is said to be the standard normal random

variable.
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A random variable X is said to have a gamma distribution with param-

eters α and β (denoted by X ∼ Gam(α, β)),α > 0 and β > 0, if its density

function is given by

f(x) =


0 if x ≤ 0,

1

βαΓ(α)
xα−1e−

x
β if x > 0,

where

Γ(α) =

∫ ∞
0

xα−1e−xdx.

In special case, if X ∼ Gam(n
2
, 2) for some n ∈ N, then a random variable

X is said to be a chi-square random variable with degree of freedom n,

denoted by X ∼ χ2
n.

Let X1, X2, ..., Xn be independent random variables and Xi ∼ N (0, 1) for

i = 1, 2, ..., n. It is well-know that X2
1 + · · ·+X2

n ∼ χ2
n.

2.2 Independence

Let (Ω,F , P ) be a probability space and Fα be sub σ-algebras of F for all

α ∈ Λ. We say that {Fα|α ∈ Λ} is independent if and only if for any subset

J = {j1, j2, ..., jk} of Λ and Am ∈ Fjm for m = 1, ..., k,

P (
k⋂

m=1

Am) =
k∏

m=1

P (Am).

A set of random variables {Xα| α ∈ Λ} is independent if {σ(Xα)| α ∈ Λ} is

independent, where σ(X) = σ({X−1(B) | B is a Borel subset of R}).
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We say that X1, X2, ..., Xn are independent if {X1, X2, ..., Xn} is indepen-

dent.

Theorem 2.2. Random variables X1, X2, ..., Xn are independent if and only if

for any Borel sets B1, B2, ..., Bn we have

P (
n⋂
i=1

{Xi ∈ Bi}) =
n∏
i=1

P (Xi ∈ Bi).

2.3 Expectation and Variance

Let X be a random variable on a probability space (Ω,F , P ).

If

∫
Ω

|X|dP <∞, then we define its expected value to be

E(X) =

∫
Ω

XdP.

Proposition 2.3. Let X be a random variable and E|X| <∞.

1. If X is a discrete random variable, then E(X) =
∑

x∈ImX

xP (X = x).

2. If X is a continuous random variable with density function f , then

E(X) =

∫
R
xf(x)dx.

Let X be a random variable with E(|X|k) <∞. Then E(|X|k) is called the k-

th moment of X about the origin and E[X−E(X)]k is called the k-th moment

of X about the mean.

We call the second moment of X about the mean, the variance of X and

denoted by V ar(X). Then

V ar(X) = E[X − E(X)]2.
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Note that

1. V ar(X) = E(X2)− E2(X).

2. If X ∼ N (µ, σ2), then E(X) = µ and V ar(X) = σ2.

3. If X ∼ χ2
n, then E(X) = n and V ar(X) = 2n.

Proposition 2.4. If X1, X2, ..., Xn are independent and E|Xi| <∞ for i = 1, 2, ..., n,

then

1. E(X1X2 · · ·Xn) = E(X1)E(X2) · · ·E(Xn),

2. V ar(a1X1+a2X2+· · ·+anXn) = a2
1V ar(X1)+a2

2V ar(X2)+· · ·+a2
nV ar(Xn)

for any real numbers a1, a2 . . . , an.



CHAPTER III

STEIN’S EQUATION FOR CHI-SQUARE

DISTRIBUTION WITH DEGREE OF FREEDOM 1

In this chapter, we give a solution of a Stein’s equation for chi-square distri-

bution with degree of freedom 1 and its properties.

In 1972, Stein ([10]) gave a new method in order to approximate the distribu-

tion of the sum of dependent random variables to the standard normal distribution

Φ, where

Φ(z) =
1√
2π

∫ z

−∞
e−

t2

2 dt.

His method, which is called “Stein’s method”, was free from Fourier transform and

relied instead on the elementary differential equation. Stein’s method has been

widely applied in the area of normal approximation. The method is as follows:

Let Z be the standard normal distributed random variable and let Cbd be the set

of continuous and piecewise continuously differentiable functions on R to itself

with E|f ′(Z)| < ∞ for all f ∈ Cbd. For f ∈ Cbd and any real valued function h

with E|h(Z)| <∞, the Stein’s equation for normal distribution is

f ′(w)− wf(w) = h(w)− Eh(Z).

If h = Iz, where z ∈ R and Iz is an indicator defined by

Iz(w) =


1 if w ≤ z,

0 if w > z,
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then the Stein’s equation becomes

f ′(w)− wf(w) = Iz(w)− Φ(z). (3.1)

Hence for any random variable W,

E(f ′(W )−Wf(W )) = P (W ≤ z)− Φ(z).

However, Stein’s method can be applied to other distributions. For example,

Chen ([1]), gave a Stein’s equation for Poisson distribution with parameter λ,

λf(w + 1)− wf(w) = Iz(w)− Poiλ(z), w ∈ Z+ ∪ {0}

where Poiλ is a Poisson distribution with parameter λ, i.e.,

Poiλ(z) =
z∑

k=0

e−λλk

k!
, z ∈ Z+ ∪ {0}.

Other examples are binomial distribution ([11]), gamma distribution ([6]) and ge-

ometric distribution ([7]).

An important question is that whether the Stein’s equation is unique or not.

Chatterjee ([3]) et al. gave two versions of Stein’s equation for exponential distri-

bution, Exp(z) = 1− e−z, as follows:

f ′(w)− f(w) = Iz(w)− Exp(z), w ≥ 0

and

wf ′′(w)− (1− w)f ′(w) = Iz(w)− Exp(z), w ≥ 0.

We see that the Stein’s equation may be not unique. Normally, a useful equation

is the one that its solution and the derivative of its solution are bounded. For

the chi-square distribution with degree of freedom 1, Luk ([6]) gave the Stein’s

equation,

wf ′′(w) +
1

2
(1− w)f ′(w) = h(w)− χ2

1h, w ≥ 0, (3.2)

where χ2
1h =

1√
2π

∫ ∞
0

t−
1
2 e−

t
2h(t)dt and h is absolutely bounded and the first 3

derivatives of h are bounded.
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The solution of (3.2) for h is

fh(w) =−
∫ ∞

0

[
e
−( e

−t
2

1−e
−t
2

)w

we
−t
2

√
2(1− e−t2 )

∞∑
i=1

(1
2
)i

i!Γ(i+ 1)

∫ w

1−e
−t
2

0

e(i+ 1
2

)uui−
1
2du

− 1√
2π

∫ ∞
0

s−
1
2 e−

s
2h(s)ds]dt,

([6], pp. 13). Later, Reinert([9]) gave a technique to simplify equation (3.2), by

letting

g(w) =
wf ′(w2)

2

and showed that (3.2) become

g′(w)− wg(w) = h(w2)− χ2
1h, w ≥ 0. (3.3)

In this work, we use the idea of (3.3) by choosing the test function h = Iz where

z ≥ 0. Then we have

g′(w)− wg(w) = Iz(w
2)− χ2

1(z), w, z ≥ 0. (3.4)

Next, we will find a solution of (3.4) and give its properties by using the ideas of

Chen and Shao ([2]).

Proposition 3.1. A solution gz : [0,∞) → R of Stein’s equation (3.4) is of the

form

gz(w) =


√

2π

2
(1− χ2

1(z))e
w2

2 χ2
1(w2) if w ≤

√
z,

√
2π

2
χ2

1(z)e
w2

2 (1− χ2
1(w2)) if w >

√
z.

(3.5)
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Proof. Observe that (3.4) is a linear first order differential equation of the form

g′(t) + p(t)g(t) = q(t), t ≥ 0, (3.6)

where p(t) = −t and q(t) = Iz(t
2)− χ2

1(z). We use integrating factor

µ = e
∫
−tdt = e−

t2

2

to find a solution. Multiply equation (3.6) by µ. Then we get

d

dt
[e−

t2

2 g(t)] = e−
t2

2 [g′(t)− tg(t)] = e−
t2

2 [Iz(t
2)− χ2

1(z)].

So ∫ w

0

d(e−
t2

2 g(t)) =

∫ w

0

e−
t2

2 [Iz(t
2)− χ2

1(z)]dt,

and then

e−
w2

2 g(w) =

∫ w

0

e−
t2

2 [Iz(t
2)− χ2

1(z)]dt,

and we have

g(w) = e
w2

2

∫ w

0

e−
t2

2 [Iz(t
2)− χ2

1(z)]dt.

We claim that gz : [0,∞)→ R which is defined by

gz(w) = e
w2

2

∫ w

0

e−
t2

2 [Iz(t
2)− χ2

1(z)]dt, for w ≥ 0,

is a solution of the Stein’s equation (3.4).

Note that

χ2
1(w2) =

1√
2π

∫ w2

0

t−
1
2 e−

t
2dt =

2√
2π

∫ w

0

e−
u2

2 du. (3.7)
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If w ≤
√
z, then (3.7) implies

gz(w) = e
w2

2

∫ w

0

e−
t2

2 [Iz(t
2)− χ2

1(z)]dt

= e
w2

2

∫ w

0

e−
t2

2 (1− χ2
1(z))dt

= (1− χ2
1(z))e

w2

2

∫ w

0

e−
t2

2 dt

=

√
2π

2
(1− χ2

1(z))e
w2

2 χ2
1(w2).

In the case that w >
√
z, we use (3.7) to get that

gz(w) = e
w2

2

∫ w

0

e−
t2

2 [Iz(t
2)− χ2

1(z)]dt

= e
w2

2

∫ √z
0

e−
t2

2 [Iz(t
2)− χ2

1(z)]dt+ e
w2

2

∫ w

√
z

e−
t2

2 [Iz(t
2)− χ2

1(z)]dt

= (1− χ2
1(z))e

w2

2

∫ √z
0

e−
t2

2 dt− χ2
1(z)e

w2

2

∫ w

√
z

e−
t2

2 dt

= e
w2

2

∫ √z
0

e−
t2

2 dt− χ2
1(z)e

w2

2

∫ w

0

e−
t2

2 dt

=

√
2π

2
e
w2

2 χ2
1(z)−

√
2π

2
e
w2

2 χ2
1(z)χ2

1(w2)

=

√
2π

2
χ2

1(z)e
w2

2 (1− χ2
1(w2)).

Then

gz(w) =


√

2π

2
(1− χ2

1(z))e
w2

2 χ2
1(w2) if w ≤

√
z,

√
2π

2
χ2

1(z)e
w2

2 (1− χ2
1(w2)) if w >

√
z.
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Note that

g′z(w) =


√

2π

2
(1− χ2

1(z))[we
w2

2 χ2
1(w2) +

2√
2π

] if w <
√
z,

√
2π

2
χ2

1(z)[we
w2

2 (1− χ2
1(w2))− 2√

2π
] if w >

√
z,

and g′z is not differentiable at w =
√
z. To satisfy (3.4), we define

g′z(
√
z) =

√
zgz(
√
z) + Iz(w

2)− χ2
1(z)

=
√
z

√
2π

2
(1− χ2

1(z))e
z
2χ2

1(z) + 1− χ2
1(z)

=

√
2π

2
(1− χ2

1(z))[
√
ze

z
2χ2

1(z) +
2√
2π

].

This imply

g′z(w) =


√

2π

2
(1− χ2

1(z))[we
w2

2 χ2
1(w2) +

2√
2π

] if w ≤
√
z,

√
2π

2
χ2

1(z)[we
w2

2 (1− χ2
1(w2))− 2√

2π
] if w >

√
z.

(3.8)

Hence, for w ≤
√
z,

g′z(w)− wgz(w) =

√
2π

2
(1− χ2

1(z))[we
w2

2 χ2
1(w2) +

2√
2π

]

− w{
√

2π

2
(1− χ2

1(z))e
w2

2 χ2
1(w2)}

=

√
2π

2
(1− χ2

1(z))we
w2

2 χ2
1(w2) + (1− χ2

1(z))

−
√

2π

2
(1− χ2

1(z))we
w2

2 χ2
1(w2)

=1− χ2
1(z)

=Iz(w
2)− χ2

1(z),
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and for w >
√
z,

g′z(w)− wgz(w) =

√
2π

2
χ2

1(z)[we
w2

2 (1− χ2
1(w2))− 2√

2π
]

− w[

√
2π

2
χ2

1(z)e
w2

2 (1− χ2
1(w2))]

=

√
2π

2
χ2

1(z)we
w2

2 (1− χ2
1(w2))− χ2

1(z)

−
√

2π

2
χ2

1(z)we
w2

2 (1− χ2
1(w2))

=− χ2
1(z)

=Iz(w
2)− χ2

1(z).

Therefore, gz is a solution of Stein’s equation (3.4).

For the rest of this chapter, gz is defined as in Proposition 3.1.

Proposition 3.2. For each z ≥ 0, let hz : [0,∞)→ R be defined by

hz(w) = wgz(w) for w ≥ 0.

Then hz is increasing.

Proof. By the definition of gz and hz, we have

hz(w) =


√

2π

2
(1− χ2

1(z))we
w2

2 χ2
1(w2) if w ≤

√
z,

√
2π

2
χ2

1(z)we
w2

2 (1− χ2
1(w2)) if w >

√
z

and

h′z(w) =


√

2π

2
(1− χ2

1(z))[(e
w2

2 + w2e
w2

2 )χ2
1(z) +

2w√
2π

] if w <
√
z,

√
2π

2
χ2

1(z)[(e
w2

2 + w2e
w2

2 )(1− χ2
1(w2))− 2w√

2π
] if w >

√
z.

Since hz is continuous at w =
√
z, to prove hz is increasing, it suffice to show that

h′z ≥ 0 on (0,
√
z) and (

√
z,∞). It is obvious that h′z ≥ 0 on (0,

√
z). Hence, to

show h′z ≥ 0 on (
√
z,∞) we have to prove that

(e
w2

2 + w2e
w2

2 )(1− χ2
1(w2))− 2w√

2π
≥ 0 for w >

√
z,
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i.e.,

1− χ2
1(w2)− 2w

√
2π(e

w2

2 + w2e
w2

2 )
≥ 0 for w >

√
z. (3.9)

Let k : [0,∞)→ R be defined by

k(w) = 1− χ2
1(w2)− 2w

√
2π(e

w2

2 + w2e
w2

2 )
, for w ≥ 0.

By the fact that

k′(w) = −2e
−w2

2

√
2π
− 2√

2π
[
(e

w2

2 + w2e
w2

2 )− w(we
w2

2 + 2we
w2

2 + w3e
w2

2 )

(e
w2

2 + w2e
w2

2 )2
]

= −2e
−w2

2

√
2π
− 2√

2π
[
(e

w2

2 + w2e
w2

2 )− w2e
w2

2 − 2w2e
w2

2 − w4e
w2

2 )

(e
w2

2 + w2e
w2

2 )2
]

= − 2√
2π
{e−

w2

2 +
1

(e
w2

2 + w2e
w2

2 )2
(e

w2

2 − 2w2e
w2

2 − w4e
w2

2 )}

= − 2
√

2π(e
w2

2 + w2e
w2

2 )2
{e−

w2

2 (e
w2

2 + w2e
w2

2 )2 + e
w2

2 − 2w2e
w2

2 − w4e
w2

2 }

= − 2
√

2π(e
w2

2 + w2e
w2

2 )2
{e−

w2

2 (ew
2

+ 2w2ew
2

+ w4ew
2

) + e
w2

2 − 2w2e
w2

2 − w4e
w2

2 }

= − 2
√

2π(e
w2

2 + w2e
w2

2 )2
{e

w2

2 + 2w2e
w2

2 + w4e
w2

2 + e
w2

2 − 2w2e
w2

2 − w4e
w2

2 }

= − 4e
w2

2

√
2π(e

w2

2 + w2e
w2

2 )2

≤ 0,

we have that k is a decreasing function. This implies that

k(w) ≥ lim
w′→∞

k(w′) = 0

for all w ∈ [0,∞). Hence we have (3.9).
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Proposition 3.3. The function gz has the following properties:

1. 0 ≤ gz(w) ≤ 1√
z

for w ≥ 0 and z > 0,

2. 0 ≤ gz(w) ≤ 1 for w, z ≥ 0,

3. |g′z(w)| ≤ 1 for w, z ≥ 0.

Proof. 1. By the definition of gz, it is easy to see that gz(w) ≥ 0. To prove

gz(w) ≤ 1√
z

, we note that

1− χ2
1(z) =

1√
2π

∫ ∞
z

t−
1
2 e−

t
2dt

≤ 1√
2π

∫ ∞
z

z−
1
2 e−

t
2dt

=
1√
2πz

∫ ∞
z

e−
t
2dt

=
2√
2πz

e−
z
2 , for z > 0. (3.10)

If w ≤
√
z, then (3.10) implies

gz(w) =

√
2π

2
(1− χ2

1(z))e
w2

2 χ2
1(w2)

≤
√

2π

2

2√
2π
√
z
e−

z
2 e

w2

2 χ2
1(w2)

=
1√
z
e−

z
2 e

w2

2 χ2
1(w2)

≤ 1√
z
e−

z
2 e

z
2χ2

1(w2)

=
1√
z
χ2

1(w2)

≤ 1√
z
.
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Suppose that w >
√
z. By (3.10), we have

gz(w) =

√
2π

2
χ2

1(z)e
w2

2 (1− χ2
1(w2))

≤
√

2π

2
χ2

1(z)e
w2

2
2√
2πw

e−
w2

2

=
1

w
χ2

1(z)

≤ 1√
z
.

Hence, 0 ≤ gz(w) ≤ 1√
z

for z > 0.

2. By (3.8), it is obvious that g′z(w) ≥ 0 for w <
√
z. For w >

√
z, we use (3.10)

to show that

g′z(w) =

√
2π

2
χ2

1(z)we
w2

2 (1− χ2
1(w2))− χ2

1(z)

≤
√

2π

2
χ2

1(z)we
w2

2
2√
2πw

e−
w2

2 − χ2
1(z)

= χ2
1(z)− χ2

1(z)

= 0.

Note that gz is continuous. Hence, gz has maximum value at w =
√
z.

If 0 < z ≤ 1, then, by definition of gz,

gz(
√
z) =

√
2π

2
(1− χ2

1(z))e
z
2χ2

1(z)

≤ (

√
2π

2
)(

1

4
)e

z
2

≤ (

√
2π

2
)(

1

4
)e

1
2

≤ 0.53.

For z > 1, by Proposition 3.3 (1), we have

gz(
√
z) ≤ 1√

z
≤ 1.

If z = 0, by the definition of gz,

0 ≤ g0(w) ≤ g0(0) = 0.
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Hence, 0 ≤ gz(w) ≤ 1 for z ≥ 0.

3. Case 1. w ≤
√
z.

We will show that 0 ≤ g′z(w) ≤ 1 by using (3.8) and (3.10).

If z > 0, then

0 ≤ g′z(w) =

√
2π

2
(1− χ2

1(z))[we
w2

2 χ2
1(w2) +

2√
2π

]

=

√
2π

2
(1− χ2

1(z))we
w2

2 χ2
1(w2) + (1− χ2

1(z))

≤
√

2π

2

2√
2πz

e−
z
2
√
ze

z
2χ2

1(w2) + 1− χ2
1(z)

≤ χ2
1(z) + 1− χ2

1(z)

= 1.

For z = 0,

0 ≤ g′0(w) = g′0(0) = 1.

We conclude that for w ≤
√
z and z ≥ 0, we have

0 ≤ g′z(w) ≤ 1. (3.11)

Case 2. w >
√
z.

In this case we will use (3.8) and (3.10) to show that −1 ≤ g′z(w) ≤ 0.

We see that

g′z(w) =

√
2π

2
χ2

1(z)we
w2

2 (1− χ2
1(w2))− χ2

1(z)

≥ −χ2
1(z)

≥ −1
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and

g′z(w) =

√
2π

2
χ2

1(z)we
w2

2 (1− χ2
1(w2))− χ2

1(z)

≤
√

2π

2
we

w2

2
2√
2πw

e−
w2

2 χ2
1(z)− χ2

1(z)

= χ2
1(z)− χ2

1(z)

= 0.

Hence, −1 ≤ g′z(w) ≤ 0 for z > 0. In the case that z = 0, we see that

g′0(w) =

√
2π

2
χ2

1(0)we
w2

2 (1− χ2
1(w2))− χ2

1(0) = 0.

Thus for w >
√
z and z ≥ 0, we have

−1 ≤ g′z(w) ≤ 0. (3.12)

Therefore, |g′z(w)| ≤ 1 for all w, z ≥ 0.

Proposition 3.4. Let z, v, w, s, t ≥ 0. Then

1. |g′z(w)− g′z(v)| ≤ 1,

2. g′z(w+s)−g′z(w+t) ≤



1 if w + s ≤
√
z and w + t >

√
z,

(|w|+ 1)(|s|+ |t|) if s > t,

0 otherwise,

3. g′z(w+s)−g′z(w+t) ≥



−1 if w + s >
√
z and w + t ≤

√
z,

−(|w|+ 1)(|s|+ |t|) if s < t,

0 otherwise.
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Proof.

1. Let z ≥ 0. From (3.11) and (3.12), we have |g′z(w)− g′z(v)| ≤ 1 for w, v ≤
√
z

or w, v >
√
z. Suppose that w ≤

√
z and v >

√
z. By (3.4), we have

g′z(w) =


wgz(w) + 1− χ2

1(z) if w ≤
√
z,

wgz(w)− χ2
1(z) if w >

√
z.

(3.13)

From Proposition 3.2, (3.11), (3.12) and (3.13), we have

0 ≤ g′z(w) ≤
√
zgz(
√
z) + 1− χ2

1(z) for w ≤
√
z (3.14)

and

√
zgz(
√
z)− χ2

1(z) ≤ g′z(v) ≤ 0 for v >
√
z. (3.15)

By (3.11), (3.12), (3.14) and (3.15), we get that

|g′z(w)− g′z(v)| ≤ max{1,
√
zgz(
√
z) + 1− χ2

1(z)− (
√
zgz(
√
z)− χ2

1(z))} = 1.

2. From (3.4), we have

g′z(w + s)− (w + s)gz(w + s) = Iz((w + s)2)− χ2
1(z)

and

g′z(w + t)− (w + t)gz(w + t) = Iz((w + t)2)− χ2
1(z).

Since hz(w) = wgz(w) is increasing,

g′z(w+s)−g′z(w+t) = (w+s)gz(w+s)−(w+t)gz(w+t)+Iz((w+s)2)−Iz((w+t)2)

=



(w + s)gz(w + s)− (w + t)gz(w + t) + 1 if w + s ≤
√
z and w + t >

√
z,

(w + s)gz(w + s)− (w + t)gz(w + t)− 1 if w + s >
√
z and w + t ≤

√
z,

(w + s)gz(w + s)− (w + t)gz(w + t) if w + s ≤
√
z and w + t ≤

√
z

or w + s >
√
z and w + t >

√
z
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≤



1 if w + s ≤
√
z and w + t >

√
z,

w[gz(w + s)− gz(w + t)] + sgz(w + s)− tgz(w + t) if s > t,

0 otherwise.

From Proposition 3.3
(

(i) and (ii)
)

and by mean-valued theorem, there exists

r ∈ R such that

w[gz(w + s)− gz(w + t)] + sgz(w + s)− tgz(w + t)

≤ |w[gz(w + s)− gz(w + t)]|+ |sgz(w + s)− tgz(w + t)|

≤ |w| |gz(w + s)− gz(w + t)|+ |s| |gz(w + s)|+ |t| |gz(w + t)|

= |w|
∣∣∣∣gz(w + s)− gz(w + t)

(w + s)− (w + t)
(s− t)

∣∣∣∣+ |s| |gz(w + s)|+ |t| |gz(w + t)|

= |w| |g′z(r)| |s− t|+ |s| |gz(w + s)|+ |t| |gz(w + t)|

≤ |w| (|s|+ |t|) + (|s|+ |t|)

= (|w|+ 1)(|s|+ |t|).

Hence,

g′z(w + s)− g′z(w + t) =



1 if w + s ≤
√
z and w + t >

√
z,

(|w|+ 1)(|s|+ |t|) if s > t,

0 otherwise.

The proof of 3 is similar to 2.



CHAPTER IV

BOUNDS ON CHI-SQUARE APPROXIMATION

For each n ∈ N, let X1, X2, ..., Xn be independent and not necessarily identi-

cally distributed random variables with zero mean, finite variance and
n∑
i=1

EXi
2 = 1.

Define

Wn =
n∑
i=1

Xi.

Let Fn be the distribution function of Wn and Φ the standard normal distri-

bution function. The central limit theorem in probability theory and statistics

guarantee that for each z ∈ R,

Fn(z)→ Φ(z) as n→∞,

where Φ(z) =
1√
2π

∫ z

−∞
e−

t2

2 dt.

Many researchers try to find the rate of this convergence having two types of

bound; uniform bound and non-uniform bound. Consider a bound for the distance

between two distribution functions F and G,

|F (x)−G(x)| ≤ K.

If K depends on x, then K is considered to be a non-uniform bound. On the other

hand, if K does not depend on x, then K is considered to be a uniform bound.
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In 1986, Siganov ([12]) gave a uniform bound under the assumption that the

third moment is finite. His result is as follows.

Theorem 4.1. (Siganov,1986). Let X1, X2, ..., Xn be independent random vari-

ables such that EXi = 0 and E|Xi|3 < ∞ for i = 1, 2, ..., n. Assume that
n∑
i=1

EXi
2 = 1. Then

sup
z∈R
|P (Wn ≤ z)− Φ(z)| ≤ 0.7915

n∑
i=1

E|Xi|3.

In 1977, Paditz ([8]) gave a non-uniform bound under the assumptions as in

Theorem 4.1. His result is as follows.

Theorem 4.2. (Paditz,1977). Under the assumption of Theorem 4.1, we have

|P (Wn ≤ z)− Φ(z)| ≤ 31.935

1 + |z|3
n∑
i=1

E|Xi|3

for z ∈ R.

In 2001, Chen and Shao ([2]) gave the versions of a uniform bound and a

non-uniform bound without assuming the existence of the third moments. Their

results are as follow.

Theorem 4.3. (uniform bound) Let X1, X2, ..., Xn be independent random vari-

ables such that EXi = 0 and E|Xi|2 < ∞ for i = 1, 2, ..., n. Assume that
n∑
i=1

EXi
2 = 1. Then

sup
z∈R
|P (Wn ≤ z)− Φ(z)| ≤ 4.1

{
n∑
i=1

EX2
i I(|Xi| ≥ 1) +

n∑
i=1

E|Xi|3I(|Xi| < 1)

}
.

Theorem 4.4. (non-uniform bound) Under the assumptions of Theorem 4.3,

there exists a constant C such that

|P (Wn ≤ z)− Φ(z)| ≤ C
n∑
i=1

{
EX2

i I(|Xi| ≥ 1 + |z|)
(1 + |z|)2

+
E|Xi|3I(|Xi| < 1 + |z|)

(1 + |z|)3

}
for z ∈ R.



26

In 2007, Neammanee and Thongtha ([5]) calculated the constant by using

Paditz-Siganov theorem. Their result is as follow.

Theorem 4.5. Under the assumption of Theorem 4.3, for z ∈ R, we have

|P (Wn ≤ z)− Φ(z)| ≤ C
n∑
i=1

{
EX2

i I(|Xi| ≥ 1 + |z|)
1 + |z|2

+
E|Xi|3I(|Xi| < 1 + |z|)

1 + |z|3

}
where

C =



13.11 if 0 ≤ |z| < 1.3,

28.54 if 1.3 ≤ |z| < 2,

46.32 if 2 ≤ |z| < 3,

61.40 if 3 ≤ |z| < 7.98,

40.12 if 7.98 ≤ |z| < 14,

39.39 if |z| ≥ 14.

In this chapter, we give uniform and non-uniform bounds on chi-square ap-

proximation to the distribution of W 2
n under the existence of the second or the

third moments. To do this, we use a relation between the chi-square random

variable with degree of freedom 1 and the standard normal random variable. The

relation is as follows: Let Z1, Z2, ..., Zn be independent standard normal random

variables. It is well-known that

Z2
1 + · · ·+ Z2

n ∼ χ2
n.

For the first part, we assume E|Xi|3 < ∞ for i = 1, 2, ..., n. We apply Theo-

rem 4.1 and Theorem 4.2 to give uniform and non-uniform bounds on chi-square

approximation to the distribution of W 2
n under the existence of the third moment,

respectively. The followings are our results.
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Theorem 4.6. (uniform bound) Let X1, X2, ..., Xn be independent random vari-

ables such that EXi = 0 and E|Xi|3 < ∞ for i = 1, 2, ..., n. Assume that
n∑
i=1

EXi
2 = 1. Then

sup
z≥0
|P (W 2

n ≤ z)− χ2
1(z)| ≤ 1.583

n∑
i=1

E|Xi|3.

Theorem 4.7. (non-uniform bound) Under the assumption of Theorem 4.6 and

z ≥ 0, we have

|P (W 2
n ≤ z)− χ2

1(z)| ≤ 63.87

1 + z
3
2

n∑
i=1

E|Xi|3.

For the second part, we assume that E|Xi|2 < ∞ for i = 1, 2, ..., n. We apply

Theorem 4.3 and Theorem 4.5 to give uniform and non-uniform bounds on chi-

square approximation to the distribution of W 2
n under the existence of the second

moments respectively. Our results are stated as follows.

Theorem 4.8. (uniform bound)Let X1, X2, ..., Xn be independent random vari-

ables such that EXi = 0 and E|Xi|2 < ∞ for i = 1, 2, ..., n. Assume that
n∑
i=1

EXi
2 = 1. Then

sup
z≥0
|P (W 2

n ≤ z)− χ2
1(z)| ≤ 8.2{

n∑
i=1

EX2
i I(|Xi| ≥ 1) +

n∑
i=1

E|Xi|3I(|Xi| < 1)}.

Theorem 4.9. (non-uniform bound) Under the assumption of Theorem 4.8, for

z ≥ 0, there exists an absolute constant C such that

|P (W 2
n ≤ z)− χ2

1(z)| ≤ C

n∑
i=1

{
EX2

i I(|Xi| ≥ 1 +
√
z)

1 + z
+
E|Xi|3I(|Xi| < 1 +

√
z)

1 + z
3
2

}
,



28

where

C =



26.22 if 0 ≤ z < 1.69,

57.08 if 1.69 ≤ z < 4,

92.64 if 4 ≤ z < 9,

122.8 if 9 ≤ z < 63.6804,

80.24 if 63.6804 ≤ z < 196,

78.78 if z ≥ 196.

In this proof, we give the proof of Theorem 4.6-Theorem 4.9. To prove the

theorems, we need following Lemma.

Lemma 4.10. For z ≥ 0,

{w | Wn(w) < −
√
z} =

∞⋃
m=1

{w | Wn(w) ≤ −
√
z − 1

m
}. (4.1)

Proof. For the exclusion, it is obvious.

For the inclusion, let w ∈ {w | Wn(w) < −
√
z}.

Then −
√
z −Wn(w) > 0. By Archimedian principle there exists m0 ∈ N

such that

−
√
z −Wn(w) >

1

m0

.

Hence, Wn(w) ≤ −
√
z − 1

m0

.

Proof of Theorem 4.6.

Proof. Let Z be a standard normal random variable. From (4.1) and Theorem

2.1(1),

P (Wn < −
√
z) = P (

∞⋃
m=1

{Wn ≤ −
√
z − 1

m
}) = lim

m→∞
P (Wn ≤ −

√
z − 1

m
)
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and the fact that Φ(−
√
z) = lim

m→∞
Φ(−
√
z − 1

m
),

|P (W 2
n ≤ z)− χ2

1(z)|

= |P (−
√
z ≤ Wn ≤

√
z)− χ2

1(z)|

= |P (−
√
z ≤ Wn ≤

√
z)− P (Z2 ≤ z)|

= |P (−
√
z ≤ Wn ≤

√
z)− P (−

√
z ≤ Z ≤

√
z)|

= |P (Wn ≤
√
z)− P (Wn < −

√
z)− [P (Z ≤

√
z)− P (Z < −

√
z)]|

≤ |P (Wn ≤
√
z)− P (Z ≤

√
z)|+ |P (Wn < −

√
z)− P (Z < −

√
z)|

= |P (Wn ≤
√
z)− Φ(

√
z)|+ |P (Wn < −

√
z)− Φ(−

√
z)|

= |P (Wn ≤
√
z)− Φ(

√
z)|+ |P (

∞⋃
m=1

{Wn ≤ −
√
z − 1

m
} − Φ(−

√
z − 1

m
)|

= |P (Wn ≤
√
z)− Φ(

√
z)|+ | lim

m→∞
P (Wn ≤ −

√
z − 1

m
)− Φ(−

√
z − 1

m
)|

= |P (Wn ≤
√
z)− Φ(

√
z)|+ lim

m→∞
|P (Wn ≤ −

√
z − 1

m
)− Φ(−

√
z − 1

m
)|. (4.2)

From (4.2) and Theorem 4.1, we have

sup
z≥0
|P (W 2

n ≤ z)− χ2
1(z)|

≤ sup
z≥0

{
|P (Wn ≤

√
z)− Φ(

√
z)|+ lim

m→∞
|P (Wn ≤ −

√
z − 1

m
)− Φ(−

√
z − 1

m
)|
}

≤ sup
z≥0
|P (Wn ≤

√
z)− Φ(

√
z)|+ sup

z≥0
lim
m→∞

|P (Wn ≤ −
√
z − 1

m
)− Φ(−

√
z − 1

m
)|

≤ 0.7915
n∑
i=1

E|Xi|3 + 0.7915
n∑
i=1

E|Xi|3

= 1.583
n∑
i=1

E|Xi|3.

Hence,

sup
z≥0
|P (W 2

n ≤ z)− χ2
1(z)| ≤ 1.583

n∑
i=1

E|Xi|3.
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Proof of Theorem 4.7.

Proof. From (4.2) and Theorem 4.2, we have for each z ≥ 0

|P (W 2
n ≤ z)− χ2

1(z)|

≤ |P (Wn ≤
√
z)− Φ(

√
z)|+ lim

m→∞
|P (Wn ≤ −

√
z − 1

m
)− Φ(−

√
z − 1

m
)|

≤ 31.935

1 + |
√
z|3

n∑
i=1

E|Xi|3 + lim
m→∞

31.935

1 + | −
√
z − 1

m
|3

n∑
i=1

E|Xi|3

≤ 31.935

1 + |
√
z|3

n∑
i=1

E|Xi|3 +
31.935

1 + | −
√
z|3

n∑
i=1

E|Xi|3

=
31.935

1 + z
3
2

n∑
i=1

E|Xi|3 +
31.935

1 + z
3
2

n∑
i=1

E|Xi|3

=
63.87

1 + z
3
2

n∑
i=1

E|Xi|3.

Hence, |P (W 2
n ≤ z)− χ2

1(z)| ≤ 63.87

1 + z
3
2

n∑
i=1

E|Xi|3.

Proof of Theorem 4.8.

Proof. From (4.2) and Theorem 4.3, we have for each z ≥ 0

sup
z≥0
|P (W 2

n ≤ z)− χ2
1(z)|

≤ sup
z≥0

{
|P (Wn ≤

√
z)− Φ(

√
z)|+ lim

m→∞
|P (Wn ≤ −

√
z − 1

m
)− Φ(−

√
z − 1

m
)|
}

≤ sup
z≥0
|P (Wn ≤

√
z)− Φ(

√
z)|+ sup

z≥0
lim
m→∞

|P (Wn ≤ −
√
z − 1

m
)− Φ(−

√
z − 1

m
)|

= sup
z≥0
|P (Wn ≤

√
z)− Φ(

√
z)|+ lim

m→∞
sup
z≥0
|P (Wn ≤ −

√
z − 1

m
)− Φ(−

√
z − 1

m
)|

≤ 4.1

{
n∑
i=1

EX2
i I(|Xi| ≥ 1) +

n∑
i=1

E|Xi|3I(|Xi| < 1)

}

+ 4.1

{
n∑
i=1

EX2
i I(|Xi| ≥ 1) +

n∑
i=1

E|Xi|3I(|Xi| < 1)

}

= 8.2

{
n∑
i=1

EX2
i I(|Xi| ≥ 1) +

n∑
i=1

E|Xi|3I(|Xi| < 1)

}
.
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Hence,

sup
z≥0
|P (W 2

n ≤ z)− χ2
1(z)| ≤ 8.2

{
n∑
i=1

EX2
i I(|Xi| ≥ 1) +

n∑
i=1

E|Xi|3I(|Xi| < 1)

}
.

Proof of Theorem 4.9.

Proof. We can prove the theorem by using (4.2), Theorem 4.5 and the same

technique of Theorem 4.8.
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