

Department of Mathematics
Faculty of Science
Chulalongkorn University
Academic Year 2010
By Mr. Vitidpong Pavongsa

Field of Study Mathematics
Thesis Advisor Professor Kritsanà Neammanee, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Recumpernents for the Master's Degree

(Professor Supt Hannorghua, PhD.)

THESIS COMMITTEE

(Associate Professor Imchit Termwuttipong, Ph.D.) Undsana Neanmance. Thesis Advisor 6 a
 ฯ
 Po External Examiner
(Petcharat Rattanawong, Ph.D.)

วิทิตพงค์ พะวงษา :การประมาณค่ากำสังสองของผลรวมของตัวแปรสุ่มอิสระ ต่อกัน ด้วยการแจกแจงไคสแควร์. (CHI-SQUARE APPROXIMATION OF SQUARED SUMS OF INDEPENDENT RANDOM VARIABLES) อ.ที่ปรีกษาวิทยานิพนธ์หลัก : ศ. ดร. กฤษณะ เนียมมณี, 33 หน้า.

ในงานนี้เรามีวัตถุประสงค์สองประการ คค่ ปประการแรก เราหาคำตอบของสมการสไตน์ สำหรับฟังก์ชันการแจกแจงไคสสแควร์ที่มีองศาเสรวคนเมนิง และสมบัติของคำตอบดังกล่าว
 ผลรวมของตัวแปรสุ่มที่อิสระค่อกับ คตทดดด่งื่อนไขว่าโมมมมต์อันดับสามหรือโมเมนต์อันดับสอง
 ตัวแปรสุ่มที่มีการแจกแจงปาตัมาตรจา

จุหาลงกรณ์มหาวิทยาลัย

กาควิชา.......คณิตศาสตร์..... สาขาวิชา.....คณิตศาสตร์..... ปีการศึกบา 2553. \qquad

\# \# 5172449523 : MAJOR MATHEMATICS
KEYWORDS : STEIN'S EQUATION CHI-SQUARE APPROXIMATION
VITIDPONG PAVONGSA : CHI-SQUARE APPROXIMATION OF SQUARED SUMS OF INDEPENDENT RANDOM VARIABLES. THESIS ADVISOR : PROF. KRITSANA NEAMMANEE, Ph.D., 33 pp.

In this work, we have 2 objectives. Eirst, we find a solution of the Stein's equation for chi-square distribufeng with degree of freedom 1 and its properties.

Second, we give bounds on chi-square approximation of the squared sums of independent random variables thider the existence of the second or the third moments by using the relation bétween the chi-square random variable with degree of freedom 1 and the standardinominal candom variable.

จุหาลงกรณ์มหาวิทยาลัย

Academic Year : \qquad 2010. \qquad

ACKNOWLEDGEMENTS

I would like to thank Professor Dr. Kritsana Neammanee, my thesis advisor, for his suggestions and helpful advice in preparing and writing this thesis. I am also thankful to Associate Professor Dr. Imchit Termwuttipong, Assistant Professor Dr. Nattakarn Chaidee and Dr. Petcharat Rattanawong, my thesis committee, for their comments and assistance. Moreover, I would like to thank all teachers who have taught me all along, I would like to express my deep gratitude to my beloved family for their loye.

Finally, I would like to thank my dear friends for giving me good experiences at Chulalongkorn university.

CONTENTS

page

ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH V
ACKNOWLEDGEMENTS vi
CONTENTS vii
CHAPTER
I INTRODUCTION 1
II PRELIMINARIES 5
III STEIN'S EQUATION FOR CHI-SQUARE DISTRIBUTION WITH DEGREE OF FREEDONE 1 10
IV BOUNDS ON CHI-SQUARE APPROXIMATION 24
REFERENCES 32
VITA
33

จุหาลงกรณ์มหาวิทยาลัย

CHAPTER I

INTRODUCTION

In 1994, Luk ([6]) gave the Stein's equation,

$$
\begin{equation*}
w f^{\prime \prime}(w)+\frac{1}{2}(1-w) f^{\prime}(w)=h(w)-\chi_{1}^{2} h \text { for } w \geq 0 \tag{1.1}
\end{equation*}
$$

where $\chi_{1}^{2} h=\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} t^{-\frac{1}{2}} e^{-\frac{t}{2}} h(t) d t$ and h is absolutely bounded and the first 3 derivatives of h are bounded. The solution of (1.1) for h is

$$
\begin{aligned}
& f_{h}(w)=-\int_{0}^{\infty} \frac{e^{-\frac{-t t}{2}} e^{w e^{\frac{-t}{2}}}}{\sqrt{2}\left(1-e^{\frac{-t}{2} 2}\right)} \sum_{i=1}^{\infty} \frac{\left(\frac{1}{2}\right)^{i}}{i!\Gamma(i+1)} \int_{0}^{\frac{w}{1-e^{\frac{-t}{2}}}} e^{\left(i+\frac{1}{2}\right) u} u^{i-\frac{1}{2}} d u \\
& -\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} s^{-\frac{1}{2} e^{4}+\frac{2}{2} h(s) d s j d t}
\end{aligned}
$$

([6], pp. 13). Later, Reinert([9]) gave a technique to simplify equation (1.1), by letting

and (1.1) become,

If we choose the test function h ind $(9,2)$ to be $9 \%:(0, \infty) \stackrel{R}{6}$ defined by

$$
I_{z}(w)=\left\{\begin{array}{lll}
1 & \text { if } & w \leq z \\
0 & \text { if } & w>z
\end{array}\right.
$$

for a fixed $z \geq 0$, then (1.2) becomes

$$
\begin{equation*}
g^{\prime}(w)-w g(w)=I_{z}\left(w^{2}\right)-\chi_{1}^{2}(z), \quad w \geq 0 \tag{1.3}
\end{equation*}
$$

where $\chi_{1}^{2}(z)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{z} t^{-\frac{1}{2}} e^{-\frac{t}{2}} d t$.

In Chapter III, we find a solution of a Stein's equation (1.3) and its properties by using the idea of Chen and Shao ([2]).

In the final chapter, we will give bounds on chi-square approximation. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables with zero mean and finite variance and $W_{n}=\sum_{i=1}^{n} X_{i}$. Assume that $\operatorname{Var} W_{n}=1$. It is well-known that the distribution of W_{n} can be approximated by the standard normal distribution Φ, where $\Phi(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-\frac{t^{2}}{2}} d t$ (see [4], pp.261-268 for example).
Note that $\Phi^{2} \stackrel{d}{=} \chi_{1}^{2}$ where χ_{1}^{2} is the chi-square distribution with degree of freedom 1.

Reinert ([9]) used the Stein's method and Taylor expansion to find a uniform bound in chi-square approximation.(Her result is Theorem 1.1.

Theorem 1.1. Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be independent random variables with zero mean, variance one and $E\left|Y_{i}\right|^{8}<\infty$ fori $i=1,2, \ldots n$. Define $S_{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} Y_{i}$.
Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be absolutely bounded and the first 3 derivatives of h are bounded and $f_{h}: \mathbb{R} \rightarrow \mathbb{R}$ a solution of (1.2). Then a uniform bound in Chi-square approximation is of the form

$$
\text { a }\left|E h\left(S_{n}^{2}\right)-\chi_{d}^{2} h\right| \leq \frac{c\left(f_{h}\right)}{n}
$$

where $c\left(f_{h}\right)$ is a constant depending on f_{n} and on the distrebution of the Y_{i} but it does not depend on n. 9 ?

In Theorem 1.1, Reinert derived an error estimation for the approximation of the distribution of S_{n}^{2} by a chi-square distribution with degree of freedom 1, which is of the form

$$
\left|E h\left(S_{n}^{2}\right)-\chi_{1}^{2} h\right| .
$$

In order to bound

$$
\left|P\left(W_{n}^{2} \leq z\right)-\chi_{1}^{2}(z)\right|
$$

we have to choose the function $h=I_{z}$. But I_{z} is not continuous. Hence we can not apply Theorem 1.1 to bound $\left|P\left(W_{n}^{2} \leq z\right)-\chi_{1}^{2}(z)\right|$.

In this part, we give uniform and non-uniform bounds on chi-square approximation to the distribution of W_{n}^{2} under the existence of the second and the third moments. To do this, we use a relation between the chi-square random variable with degree of freedom 1 and the standard normal random variable. This is our results.

Theorem 1.2. (uniform bound) Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables such that $E X_{i}=0$ and $E\left|X_{i}\right|^{3}<\infty$ for $i=1,2, \ldots, n$. Assume that $\sum_{i=1}^{n} E X_{i}{ }^{2}=1$. Then

$$
\sup _{z \geq 0} \left\lvert\, P\left(W_{n}^{2} \leqslant z\right) \frac{\left.\chi_{1}^{2}(z)\left|\leqslant 1.583 \sum_{i=1}^{n} E\right| X_{i}\right|^{3} . ~ . ~ . ~}{x} .\right.
$$

Theorem 1.3. (non-uniform bound) Under the assumption of Theorem 1.2 and $z \geq 0$, we have

Theorem 1.4. (uniform bound) Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random vari-
 $\sum_{i=1}^{n} E X_{i}{ }^{2}=1$. Then

Theorem 1.5. (non-uniform bound) Under the assumption of Theorem 1.4. For $z \geq 0$, there exists an absolute constant C
$\left|P\left(W_{n}^{2} \leq z\right)-\chi_{1}^{2}(z)\right| \leq C \sum_{i=1}^{n}\left\{\frac{E X_{i}^{2} I\left(\left|X_{i}\right| \geq 1+\sqrt{z}\right)}{1+z}+\frac{E\left|X_{i}\right|^{3} I\left(\left|X_{i}\right|<1+\sqrt{z}\right)}{1+z^{\frac{3}{2}}}\right\}$,
where

We organize our thesis as follows. In Chapter II we give some basic concepts in probability theory. A solution and its properties of the Stein's equation for chi-square distribution with degree of freedom 1 is in Chapter III. Finally, we give uniform and non-uniform bounds on chi-square approximation in Chapter IV.

ศูนย์วิทยทรัพยากร

 จุหาลงกรณ์มหาวิทยาลัย
CHAPTER II

PRELIMINARIES

In this chapter, we give basic concepts in probability which will be used in our work.

2.1 Probability Space and Random Variables

Let Ω be a nonempty set and \mathcal{F} be a σ-algebra of subsets of Ω.
Let $P: \mathcal{F} \rightarrow[0,1]$ be a measure such that $P(\Omega)=1$. Then (Ω, \mathcal{F}, P) is called a probability space and P, a probability measure. The set Ω is the sample space and the elements of \mathcal{F} afe ealled events. For any event A, the value $P(A)$ is called the probability of A.

Let (Ω, \mathcal{F}, P) be a probability space. A function $\mathcal{X}: \Omega \rightarrow \mathbb{R}$ is said to be a random variable if for every Borel set B in \mathbb{R},

We shallusually use the notation $P\left(X_{G} \in B\right)$ in stead of $P\left(\left\{\mathcal{S}_{G} \Omega \mid X(\omega) \in B\right\}\right)$. In the case where $B=(-\infty, a]$ or $[a, b], P(X \in B)$ is denoted by $P(X \leq a)$ or $P(a \leq X \leq b)$, respectively.

Let X be a random variable. A function $F: \mathbb{R} \rightarrow[0,1]$ which is defined by

$$
F(x)=P(X \leq x)
$$

is called the distribution function of X.

Let X be a random variable with the distribution function $F . X$ is said to be a discrete random variable if the image of X is countable and X is called a continuous random variable if F can be written in the form

$$
F(x)=\int_{-\infty}^{x} f(t) d t
$$

for some nonnegative integrable function f on \mathbb{R}. In this case, we say that f is the probability density function

A sequence of events $\left(E_{n}\right)_{n \geqslant 1}$ is said to be an increasing sequence if
$E_{1} \subseteq E_{2} \subseteq \ldots \subseteq E_{n} \subseteq E_{n+1} \subseteq \ldots$
where as it is said to be an decreasing sequence if

Theorem 2.1. Let $\left(E_{n}\right)_{n \geq 1}$ be a sequence of events. Then

1. If $\left(E_{n}\right)$ is increasing, then $\lim _{n \rightarrow \infty} P\left(E_{n}\right)=P\left(\bigcup_{n=1}^{\infty} E_{n}\right)$
2. If $\left(E_{n}\right)$ is decreasing, then $\lim _{n \rightarrow \infty} P\left(E_{n}\right)=P\left(\bigcap_{n=1}^{\infty} E_{n}\right)$.

Now we wil give some examples frandom variables. We say that X is a normal random variable with parameter μ and σ^{2}, written as $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, if its probability density functionsisdefined by 9 g ? ?

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right) .
$$

Moreover, if $X \sim \mathcal{N}(0,1)$ then X is said to be the standard normal random variable.

A random variable X is said to have a gamma distribution with parameters α and β (denoted by $X \sim \operatorname{Gam}(\alpha, \beta)), \alpha>0$ and $\beta>0$, if its density function is given by
where

$$
f(x)=\left\{\begin{array}{lll}
0 & \text { if } & x \leq 0 \\
\frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha-1} e^{-\frac{x}{\beta}} & \text { if } & x>0
\end{array}\right.
$$

In special case, if $X \sim \operatorname{Gam}\left(\frac{n}{2}, 2\right)$ for some $n \in \mathbb{N}$, then a random variable X is said to be a chi-square random variable with degree of freedom n, denoted by $X \sim \chi_{n}^{2}$.

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables and $X_{i} \sim \mathcal{N}(0,1)$ for $i=1,2, \ldots, n$. It is well-know that $X_{1}^{2}+\cdots+X_{n}^{2} \sim \chi_{n}^{2}$.

2.2 Independence

Let (Ω, \mathcal{F}, P) be a probability space and \mathcal{F}_{α} be sub σ-algebras of \mathcal{F} for all $\alpha \in \Lambda$. We say that $\left\{\mathcal{F}_{\alpha \neq \alpha} \in \Lambda\right\}$ is independent if and only if for any subset $J=\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}$ of Λ and $A_{m} \in \mathcal{F}_{j_{m}}$ for $m=\boldsymbol{1}, ., k, \bigcap \tilde{\delta}$

A set of random variables $\left\{X_{\alpha} \mid \alpha \in \Lambda\right\}$ is independent if $\left\{\sigma\left(X_{\alpha}\right) \mid \alpha \in \Lambda\right\}$ is independent, where $\sigma(X)=\sigma\left(\left\{X^{-1}(B) \mid B\right.\right.$ is a Borel subset of $\left.\left.\mathbb{R}\right\}\right)$.

We say that $X_{1}, X_{2}, \ldots, X_{n}$ are independent if $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is independent.

Theorem 2.2. Random variables $X_{1}, X_{2}, \ldots, X_{n}$ are independent if and only if for any Borel sets $B_{1}, B_{2}, \ldots, B_{n}$ we have

2.3 Expectation and Variance

Let X be a random variable on a probability space (Ω, \mathcal{F}, P).
If $\int_{\Omega}|X| d P<\infty$, then we define its expected value to be

Proposition 2.3. Let X be a random variable and $E|X|<\infty$.

1. If X is a discrete random varable, then $E(X)=\sum_{x \in \operatorname{Im} X} x P(X=x)$.
2. If X is a continuous random variable with density function f, then

Let X be a random variable with $E\left(|X|^{k}\right)<\infty$. Then $E\left(|X|^{k}\right)$ is called the k th moment of X about the origin and $E[X-E(X)]^{k}$ is called the k-th moment of X about the mean.

We call the second moment of X about the mean, the variance of X and denoted by $\operatorname{Var}(X)$. Then

$$
\operatorname{Var}(X)=E[X-E(X)]^{2} .
$$

Note that

1. $\operatorname{Var}(X)=E\left(X^{2}\right)-E^{2}(X)$.
2. If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $E(X)=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$.
3. If $X \sim \chi_{n}^{2}$, then $E(X)=n$ and $\operatorname{Var}(X)=2 n$.

Proposition 2.4. If $X_{1}, X_{2}, \ldots, X_{n}$ are independent and $E\left|X_{i}\right|<\infty$ for $i=1,2, \ldots, n$, then

1. $E\left(X_{1} X_{2} \cdots X_{n}\right)=E\left(X_{1}\right) E\left(X_{2}\right) \cdots E\left(X_{n}\right)$,
2. $\operatorname{Var}\left(a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}\right)=a_{1}^{2} \operatorname{Var}\left(X_{1}\right)+a_{2}^{2} \operatorname{Var}\left(X_{2}\right)+\cdots+a_{n}^{2} \operatorname{Var}\left(X_{n}\right)$ for any real numbers $a_{1}, a_{2} \ldots a_{n}$.

ศูนย์วิทยทรัพยากร
จุหาลงกรณ์มหาวิทยาลัย

CHAPTER III

STEIN'S EQUATION FOR CHI-SQUARE

DISTRIBUTION WITH DEGREE OF FREEDOM 1

In this chapter, we give a solution of a Stein's equation for chi-square distribution with degree of freedom 1 and its properties.

In 1972, Stein ([10]) gave a new method in order to approximate the distribution of the sum of dependent random variables to the standard normal distribution Φ, where

His method, which is called "Stein's method", was free from Fourier transform and relied instead on the elementary differential equation. Stein's method has been widely applied in the area of normal approximation. The method is as follows: Let Z be the standaed normal distributed random variable and let $C_{b d}$ be the set of continuous and pieceyise continuously differentiable functions on \mathbb{R} to itself with $E \mid f^{\prime}(Z) \& \infty$ for all $f \in C_{b d}$. For $f \in C_{b d}$ and any real valued function h with $E \|^{2}(Z) \mid<\infty$ the stein's equation formormal distribution is

$$
f^{\prime}(w)-w f(w)=h(w)-E h(Z)
$$

If $h=I_{z}$, where $z \in \mathbb{R}$ and I_{z} is an indicator defined by

$$
I_{z}(w)= \begin{cases}1 & \text { if } \quad w \leq z \\ 0 & \text { if } \quad w>z\end{cases}
$$

then the Stein's equation becomes

$$
\begin{equation*}
f^{\prime}(w)-w f(w)=I_{z}(w)-\Phi(z) \tag{3.1}
\end{equation*}
$$

Hence for any random variable W,

$$
E\left(f^{\prime}(W)-W f(W)\right)=P(W \leq z)-\Phi(z)
$$

However, Stein's method can be applied to other distributions. For example, Chen ([1]), gave a Stein's equation for Poisson distribution with parameter λ,

$$
\lambda f(w+1)-w f(w)=I_{2}(w)-\operatorname{Poi_{\lambda }}(z), w \in \mathbb{Z}^{+} \cup\{0\}
$$

where $P o i_{\lambda}$ is a Poisson distribution with parameter λ, i.e.,

$$
P o i_{\lambda}(z)=\sum_{k * 0}^{k \geqslant} \frac{e^{-\lambda} \lambda^{k}}{(k!}, \quad z \in \mathbb{Z}^{+} \cup\{0\}
$$

Other examples are binomial distribution ([11]), gamma distribution ([6]) and geometric distribution ([7]).

An important question is that whether the Stein's equation is unique or not. Chatterjee ([3]) et al. gave two versions of Stein's equation for exponential distribution, $\operatorname{Exp}(z)=17 e^{-z}$, as follows:
and

$$
\begin{aligned}
& f^{\prime}(w)-f(w)=I_{z}(w)-\operatorname{Exp}(z), \quad w \geq 0
\end{aligned}
$$

We see that the Stein's equation may be not undque. Normaly, aluseful equation is the one that its solution and the derivative of its solution are bounded. For the chi-square distribution with degree of freedom 1, Luk ([6]) gave the Stein's equation,

$$
\begin{equation*}
w f^{\prime \prime}(w)+\frac{1}{2}(1-w) f^{\prime}(w)=h(w)-\chi_{1}^{2} h, \quad w \geq 0 \tag{3.2}
\end{equation*}
$$

where $\chi_{1}^{2} h=\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} t^{-\frac{1}{2}} e^{-\frac{t}{2}} h(t) d t$ and h is absolutely bounded and the first 3 derivatives of h are bounded.

The solution of (3.2) for h is

$$
\begin{aligned}
f_{h}(w)= & -\int_{0}^{\infty}\left[\frac{e^{-\left(\frac{e^{\frac{-t}{2}}}{\left.1-e^{-\frac{t}{2}}\right) w}\right.} w e^{\frac{-t}{2}}}{\sqrt{2}\left(1-e^{\frac{-t}{2}}\right)} \sum_{i=1}^{\infty} \frac{\left(\frac{1}{2}\right)^{i}}{i!\Gamma(i+1)} \int_{0}^{\frac{w}{1-e^{\frac{-t}{2}}} e^{\left(i+\frac{1}{2}\right) u} u^{i-\frac{1}{2}} d u}\right. \\
& \left.-\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} s^{-\frac{1}{2}} e^{-\frac{s}{2}} h(s) d s\right] d t
\end{aligned}
$$

([6], pp. 13). Later, Reinert([9]) gave a technique to simplify equation (3.2), by letting

$$
g(w)=\frac{w f^{\prime}\left(w^{2}\right)}{2}
$$

and showed that (3.2) become

$$
\begin{equation*}
g^{\prime}(w)-w g(w)=h\left(w^{2}\right)-\chi_{1}^{2} h, \quad w \geq 0 \tag{3.3}
\end{equation*}
$$

In this work, we use the idea of $(3,3)$ by choosing the test function $h=I_{z}$ where $z \geq 0$. Then we have

$$
\begin{equation*}
g^{\prime}(w)-w g(u)=I z\left(w^{2}\right)-\chi_{1}^{2}(z), \quad w, z \geq 0 . \tag{3.4}
\end{equation*}
$$

Next, we will find a solution of (3.4) and give its properties by using the ideas of Chen and Shao ([2]):-
 form

$$
\begin{align*}
& g_{z}(w)=\left\{\begin{array}{lll}
\frac{\sqrt{2 \pi}}{2}\left(1-\chi_{1}^{2}(z)\right) e^{\frac{w^{2}}{2}} \chi_{1}^{2}\left(w^{2}\right) & \text { if } w \leq \sqrt{z}, \\
\frac{\sqrt{2 \pi}}{2} \chi_{1}^{2}(z) e^{\frac{w^{2}}{2}}\left(1-\chi_{1}^{2}\left(w^{2}\right)\right) & \text { if } w>\sqrt{z} .
\end{array}\right. \tag{3.5}
\end{align*}
$$

Proof. Observe that (3.4) is a linear first order differential equation of the form

$$
\begin{equation*}
g^{\prime}(t)+p(t) g(t)=q(t), t \geq 0 \tag{3.6}
\end{equation*}
$$

where $p(t)=-t$ and $q(t)=I_{z}\left(t^{2}\right)-\chi_{1}^{2}(z)$. We use integrating factor

$$
\mu=e^{f} \|^{t d t}=e^{-\frac{t^{2}}{2}}
$$

to find a solution. Multiply equation (3.6) by μ. Then we get

So

$$
\left.\frac{d}{d t}\left[e^{-\frac{t^{2}}{2}} g(t)\right]=e^{-\frac{t^{2}}{2}} g^{\prime}(t)-t g(t)\right]=e^{-\frac{t^{2}}{2}}\left[I_{z}\left(t^{2}\right)-\chi_{1}^{2}(z)\right] .
$$

and then

$$
\left.\begin{array}{rl}
\int_{0}^{w} d\left(e^{-\frac{t^{2}}{2}} g(t)\right) & =\int_{0}^{w} e^{-\frac{t^{2}}{2}}\left[I_{z}\left(t^{2}\right)-\chi_{1}^{2}(z)\right] d t \\
e^{-\frac{w^{2}}{2}} g(w) & =\int_{0}^{w} e^{\frac{t^{2}}{2}}
\end{array} I_{z}\left(t^{2}\right)-\chi_{1}^{2}(z)\right] d t,
$$

and we have

We claim that $g_{z}:[0, \infty) \rightarrow \mathbb{R}$ which is defined by
is a solution of the Stein's equation (3.4).

$$
\begin{equation*}
\chi_{1}^{2}\left(w^{2}\right)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{w^{2}} t^{-\frac{1}{2}} e^{-\frac{t}{2}} d t=\frac{2}{\sqrt{2 \pi}} \int_{0}^{w} e^{-\frac{u^{2}}{2}} d u \tag{3.7}
\end{equation*}
$$

If $w \leq \sqrt{z}$, then (3.7) implies

$$
\begin{aligned}
g_{z}(w) & =e^{\frac{w^{2}}{2}} \int_{0}^{w} e^{-\frac{t^{2}}{2}}\left[I_{z}\left(t^{2}\right)-\chi_{1}^{2}(z)\right] d t \\
& =e^{\frac{w^{2}}{2}} \int_{0}^{w} e^{-\frac{t^{2}}{2}}\left(1-\chi_{1}^{2}(z)\right) d t \\
& =\left(1-\chi_{1}^{2}(z)\right) e^{\frac{w^{2}}{2}} \int_{0}^{w} e^{-\frac{t^{2}}{2}} d t \\
& =\frac{\sqrt{2 \pi}}{2}\left(1-\left(\chi_{1}^{2}(z)\right) e^{\frac{w^{2}}{2}} \chi_{1}^{2}\left(w^{2}\right) .\right.
\end{aligned}
$$

In the case that $w>\sqrt{z}$, we usc (3.7) to get that

$$
\begin{aligned}
& g_{z}(w)=e^{\frac{w^{2}}{2}} \int_{0}^{w} e^{-\frac{t^{2}}{2}}\left[I_{z}\left(t^{2}\right)-\chi_{1}^{2}(z)\right] d t
\end{aligned}
$$

$$
\begin{aligned}
& =\left(1-\chi_{1}^{2}(z)\right) e^{\frac{w^{2}}{2}} \int_{0}^{\sqrt{z}} \operatorname{iec}^{e^{2} \frac{t^{2}}{2}} d t+\chi_{1}^{2}(z) e^{\frac{w^{2}}{2}} \int_{\sqrt{z}}^{w} e^{-\frac{t^{2}}{2}} d t \\
& =e^{\frac{w^{2}}{2}} \int_{0}^{\sqrt{z}} e^{-\frac{t^{2}}{2}} d t \frac{x_{1}^{2}(z) e^{\frac{w^{2}}{2}}}{\int_{0}^{w}} e^{-\frac{t^{2}}{2}} d t \\
& =\frac{\sqrt{2 \pi}}{2} e^{\frac{w^{2}}{2}} \chi_{1}^{2}(z)-\frac{\sqrt{2 \pi}}{2} e^{\frac{w^{2}}{2}} \chi_{1}^{2}(z) \chi_{1}^{2}\left(w^{2}\right) \\
& =\frac{\sqrt{2 \pi}}{2} \chi_{1}^{2}(z) e^{\frac{w^{2}}{2}}\left(1-\chi_{1}^{2}\left(w^{2}\right)\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Then }
\end{aligned}
$$

Note that

$$
g_{z}^{\prime}(w)= \begin{cases}\frac{\sqrt{2 \pi}}{2}\left(1-\chi_{1}^{2}(z)\right)\left[w e^{\frac{w^{2}}{2}} \chi_{1}^{2}\left(w^{2}\right)+\frac{2}{\sqrt{2 \pi}}\right] \text { if } & w<\sqrt{z} \\ \frac{\sqrt{2 \pi}}{2} \chi_{1}^{2}(z)\left[w e^{\frac{w^{2}}{2}}\left(1-\chi_{1}^{2}\left(w^{2}\right)\right)-\frac{2}{\sqrt{2 \pi}}\right] \text { if } & w>\sqrt{z}\end{cases}
$$

and g_{z}^{\prime} is not differentiable at $w=\sqrt{z}$. To satisfy (3.4), we define

$$
\begin{aligned}
g_{z}^{\prime}(\sqrt{z}) & =\sqrt{z} g_{z}(\sqrt{z})+I_{z}\left(w^{2}\right)-\chi_{1}^{2}(z) \\
& =\sqrt{z} \frac{\sqrt{2 \pi}}{2}\left(1-\chi_{1}^{2}(z)\right) e^{\frac{z}{2}} \chi_{1}^{2}(z)+1-\chi_{1}^{2}(z) \\
& =\frac{\sqrt{2 \pi}}{2}\left(1-\chi_{1}^{2}(z)\right)\left[\sqrt{z} e^{\frac{z}{2}} \chi_{1}^{2}(z)+\frac{2}{\sqrt{2 \pi}}\right] .
\end{aligned}
$$

This imply

$$
g_{z}^{\prime}(w)=\left\{\begin{array}{l}
\left.\frac{\sqrt{2 \pi}}{2}\left(1-\chi_{1}^{2}(z)\right) w e^{w^{2}} \chi_{1}^{2}\left(w^{2}\right)+\frac{2}{\sqrt{2 \pi}}\right] \text { if } w \leq \sqrt{z}, \tag{3.8}\\
\frac{\sqrt{2 \pi}}{2} \chi_{1}^{2}(z)\left[w e^{\frac{w^{2}}{2}}\left(1-\chi_{1}^{2}\left(w^{2}\right)\right)-\frac{2}{\sqrt{2 \pi}}\right] \text { if } w>\sqrt{z} .
\end{array}\right.
$$

Hence, for $w \leq \sqrt{z}$,

$$
\begin{aligned}
& \begin{aligned}
g_{z}^{\prime}(w)-\underset{w_{z}}{ }(w)= & \frac{\sqrt{2 \pi}}{2}\left(1-\chi_{1}^{2}(z)\right)\left[w e^{\frac{w^{2}}{2}} \chi_{1}^{2}\left(w^{2}\right)\right. \\
& -w\left\{\frac{\sqrt{2 \pi}}{2}\left(1-\chi_{1}^{2}(z)\right) e^{\frac{w^{2}}{2}} \chi_{1}^{2}\left(w^{2}\right)\right\}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& =I_{z}\left(w^{2}\right)-\chi_{1}^{2}(z),
\end{aligned}
$$

and for $w>\sqrt{z}$,

$$
\begin{aligned}
g_{z}^{\prime}(w)-w g_{z}(w)= & \frac{\sqrt{2 \pi}}{2} \chi_{1}^{2}(z)\left[w e^{\frac{w^{2}}{2}}\left(1-\chi_{1}^{2}\left(w^{2}\right)\right)-\frac{2}{\sqrt{2 \pi}}\right] \\
& -w\left[\frac{\sqrt{2 \pi}}{2} \chi_{1}^{2}(z) e^{\frac{w^{2}}{2}}\left(1-\chi_{1}^{2}\left(w^{2}\right)\right)\right] \\
= & \frac{\sqrt{2 \pi}}{2} \chi_{1}^{2}(z) w e^{\frac{w^{2}}{2}}\left(1-\chi_{1}^{2}\left(w^{2}\right)\right)-\chi_{1}^{2}(z) \\
& -\frac{\sqrt{2 \pi}}{2} \chi_{1}^{2}(z) w e^{\frac{w^{2}}{2}}\left(1-\chi_{1}^{2}\left(w^{2}\right)\right) \\
= & \chi_{1}^{2}(z)
\end{aligned}
$$

Therefore, g_{z} is a solution of Stein's equation (3.4).
For the rest of this chapter, g_{z} is defined as in Proposition 3.1.
Proposition 3.2. For each $z \geq 0$ alet $h_{z}:(0, \infty) \rightarrow \mathbb{R}$ be defined by
$h_{z}(x)=\log _{z}(w)$ for $w \geq 0$.

Then h_{z} is increasing.

Proof. By the definition of g_{z} and h_{z}, we have
and

$$
h_{z}^{\prime}(w)=\left\{\begin{array}{l}
\frac{\sqrt{2 \pi}}{2}\left(1-\chi_{1}^{2}(z) 9\left[\left(e^{\frac{w^{2}}{2}}+w^{2} e^{\frac{w^{2}}{2}}\right) \chi_{1}^{2}(z)+\frac{2 w}{\sqrt{2 \pi}}\right]_{i f} 6<\sqrt{z}\right. \\
\frac{\sqrt{2 \pi}}{2} \chi_{1}^{2}(z)\left[\left(e^{\frac{w^{2}}{2}}+w^{2} e^{\frac{w^{2}}{2}}\right)\left(1-\chi_{1}^{2}\left(w^{2}\right)\right)-\frac{2 w}{\sqrt{2 \pi}}\right] \text { if } w>\sqrt{z}
\end{array}\right.
$$

Since h_{z} is continuous at $w=\sqrt{z}$, to prove h_{z} is increasing, it suffice to show that $h_{z}^{\prime} \geq 0$ on $(0, \sqrt{z})$ and (\sqrt{z}, ∞). It is obvious that $h_{z}^{\prime} \geq 0$ on $(0, \sqrt{z})$. Hence, to show $h_{z}^{\prime} \geq 0$ on (\sqrt{z}, ∞) we have to prove that

$$
\left(e^{\frac{w^{2}}{2}}+w^{2} e^{\frac{w^{2}}{2}}\right)\left(1-\chi_{1}^{2}\left(w^{2}\right)\right)-\frac{2 w}{\sqrt{2 \pi}} \geq 0 \text { for } w>\sqrt{z}
$$

i.e.,

$$
\begin{equation*}
1-\chi_{1}^{2}\left(w^{2}\right)-\frac{2 w}{\sqrt{2 \pi}\left(e^{\frac{w^{2}}{2}}+w^{2} e^{\frac{w^{2}}{2}}\right)} \geq 0 \text { for } w>\sqrt{z} \tag{3.9}
\end{equation*}
$$

Let $k:[0, \infty) \rightarrow \mathbb{R}$ be defined by

$$
k(w)=1-\chi_{1}^{2}\left(w^{2}\right)-\frac{2 w}{\sqrt{2 \pi\left(e^{\frac{w^{2}}{2}}+w^{2} e^{\frac{w^{2}}{2}}\right)}} \text {, for } w \geq 0
$$

By the fact that

$$
\begin{aligned}
& k^{\prime}(w)=-\frac{2 e^{\frac{-w^{2}}{2}}}{\sqrt{2 \pi}}-\frac{2}{\sqrt{2 \pi}}\left[\frac{\left(e^{\frac{w^{2}}{2}}+w^{2}\right.}{\left.e^{\frac{w^{2}}{2}}\right)-w\left(w e^{\frac{w^{2}}{2}}+2 w e^{\frac{w^{2}}{2}}+w^{3} e^{\frac{w^{2}}{2}}\right)}\left(e^{\frac{w^{2}}{2}}+w^{2} e^{\frac{w^{2}}{2}}\right)^{2}\right] \\
& =-\frac{2 e^{\frac{-w^{2}}{2}}}{\sqrt{2 \pi}}-\frac{2}{\sqrt{2 \pi}}\left[\frac{\left(e^{\frac{w^{2}}{2}}\right.}{\left.\left.\frac{w^{2}}{2} e^{\frac{w^{2}}{2}}\right)-w^{2} e^{\frac{w^{2}}{2}}-2 w^{2} e^{\frac{w^{2}}{2}}-w^{4} e^{\frac{w^{2}}{2}}\right)}=\left(e^{\frac{w^{2}}{2}}+w^{2} e^{\frac{w^{2}}{2}}\right)^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{2}{\sqrt{2 \pi}\left(e^{\frac{w^{2}}{2}}+w^{2} e^{\frac{w^{2}}{2}}\right)^{2}} \frac{\left.e^{-\frac{w^{2}}{2}} \cdot\left(e^{w^{2}}+2 w^{2} e^{w^{2}}+w^{4} e^{w^{2}}\right)+e^{\frac{w^{2}}{2}}-2 w^{2} e^{\frac{w^{2}}{2}}-w^{4} e^{\frac{w^{2}}{2}}\right\} .}{} \\
& \begin{array}{l}
=-\frac{2}{\sqrt{2 \pi}\left(e^{\frac{w^{2}}{2}}+w^{2} e^{\frac{w^{2}}{2}}\right)^{2}}\left\{e^{\frac{w^{2}}{2}}+2 w^{2} e^{\frac{w^{2}}{2}}+w^{4} e^{\frac{w^{2}}{2}}++e^{\frac{w^{2}}{2}}-2 w^{2} e^{\frac{w^{2}}{2}}-w^{4} e^{\frac{w^{2}}{2}}\right\} \\
=-\frac{4 e^{\frac{w^{2}}{2}}}{}
\end{array}
\end{aligned}
$$

we have that k is a decreasing function. This implies that 6 bl

$$
k(w) \geq \lim _{w^{\prime} \rightarrow \infty} k\left(w^{\prime}\right)=0
$$

for all $w \in[0, \infty)$. Hence we have (3.9).

Proposition 3.3. The function g_{z} has the following properties:

1. $0 \leq g_{z}(w) \leq \frac{1}{\sqrt{z}} \quad$ for $w \geq 0$ and $z>0$,
2. $0 \leq g_{z}(w) \leq 1 \quad$ for $w, z \geq 0$,
3. $\left|g_{z}^{\prime}(w)\right| \leq 1$
for $w, z \geq 0$.

Proof. 1. By the definition of g_{z}, it is easy to see that $g_{z}(w) \geq 0$. To prove $g_{z}(w) \leq \frac{1}{\sqrt{z}}$, we note that

If $w \leq \sqrt{z}$, then (3.10) implies

$$
\begin{aligned}
& \begin{array}{l}
g_{z}(w)=\frac{\sqrt{2 \pi}}{2}\left(1-\chi_{1}^{2}(z)\right) e^{\frac{w^{2}}{2}} \chi_{1}^{2}\left(w^{2}\right) \\
\quad \leq \frac{\sqrt{2 \pi}}{2} \frac{2}{\sqrt{2 \pi} \sqrt{z}} e^{-\frac{z}{2}} e^{\frac{w^{2}}{2}} \chi_{1}^{2}\left(w^{2}\right)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\sqrt{z}} \chi_{1}^{2}\left(w^{2}\right) \\
& \leq \frac{1}{\sqrt{z}} \text {. }
\end{aligned}
$$

Suppose that $w>\sqrt{z}$. By (3.10), we have

$$
\begin{aligned}
g_{z}(w) & =\frac{\sqrt{2 \pi}}{2} \chi_{1}^{2}(z) e^{\frac{w^{2}}{2}}\left(1-\chi_{1}^{2}\left(w^{2}\right)\right) \\
& \leq \frac{\sqrt{2 \pi}}{2} \chi_{1}^{2}(z) e^{\frac{w^{2}}{2}} \frac{2}{\sqrt{2 \pi} w} e^{-\frac{w^{2}}{2}} \\
& =\frac{1}{w} \chi_{1}^{2}(z)
\end{aligned}
$$

Hence, $0 \leq g_{z}(w) \leq \frac{1}{\sqrt{z}}$ for $z>0$.
2. By (3.8), it is obvious that $g_{z}^{\prime}(w) \geq 0$ for $w<\sqrt{z}$. For $w>\sqrt{z}$, we use (3.10) to show that

Note that g_{z} is continuous. Hence, g_{z} has maximum-value at $w=\sqrt{z}$.
If $0<z \leq 1$, then, by definition of g_{z},

$$
\begin{aligned}
& g_{z}(\sqrt{z})=\frac{\sqrt{2 \pi}}{2}\left(1_{\bullet} \chi_{1}^{2}(z)\right) e^{\frac{z}{2}} \chi_{1}^{2}(z)
\end{aligned}
$$

$$
\begin{aligned}
& \leq 0.53 \text {. }
\end{aligned}
$$

For $z>1$, by Proposition 3.3 (1), we have

$$
g_{z}(\sqrt{z}) \leq \frac{1}{\sqrt{z}} \leq 1
$$

If $z=0$, by the definition of g_{z},

$$
0 \leq g_{0}(w) \leq g_{0}(0)=0
$$

Hence, $0 \leq g_{z}(w) \leq 1$ for $z \geq 0$.
3. Case 1. $w \leq \sqrt{z}$.

We will show that $0 \leq g_{z}^{\prime}(w) \leq 1$ by using (3.8) and (3.10).
If $z>0$, then

$$
0 \leq g_{z}^{\prime}(w)=\frac{\sqrt{2 \pi}}{2}\left(1-\chi_{1}^{2}(z)\right)\left[w e^{\frac{w^{2}}{2}} \chi_{1}^{2}\left(w^{2}\right)+\frac{2}{\sqrt{2 \pi}}\right]
$$

For $z=0$,

We conclude that for $w \leq \sqrt{z}$ and $z \geq 0$, we have

Case $2 . w>\sqrt{z}$.
In this case we willuse (3.8) and (3.10) to show that $\uparrow \overbrace{g_{z}^{\prime}(w) \leq 0 .}$.

$$
\begin{aligned}
g_{z}^{\prime}(w) & =\frac{\sqrt{2 \pi}}{2} \chi_{1}^{2}(z) w e^{\frac{w^{2}}{2}}\left(1-\chi_{1}^{2}\left(w^{2}\right)\right)-\chi_{1}^{2}(z) \\
& \geq-\chi_{1}^{2}(z) \\
& \geq-1
\end{aligned}
$$

and

$$
\begin{aligned}
g_{z}^{\prime}(w) & =\frac{\sqrt{2 \pi}}{2} \chi_{1}^{2}(z) w e^{\frac{w^{2}}{2}}\left(1-\chi_{1}^{2}\left(w^{2}\right)\right)-\chi_{1}^{2}(z) \\
& \leq \frac{\sqrt{2 \pi}}{2} w e^{\frac{w^{2}}{2}} \frac{2}{\sqrt{2 \pi} w} e^{-\frac{w^{2}}{2}} \chi_{1}^{2}(z)-\chi_{1}^{2}(z) \\
& =\chi_{1}^{2}(z)-\chi_{1}^{2}(z) \\
& =0
\end{aligned}
$$

Hence, $-1 \leq g_{z}^{\prime}(w) \leq 0$ for $z>0$. In the case that $z=0$, we see that

$$
g_{0}^{\prime}(w)=\frac{\sqrt{2 \pi}}{2} \chi_{1}^{2}(0) w e^{\frac{w^{2}}{2}}\left(1-\chi_{1}^{2}\left(w^{2}\right)\right)-\chi_{1}^{2}(0)=0
$$

Thus for $w>\sqrt{z}$ and $z \geq 0$, we have

$$
\begin{equation*}
-1 \leqslant g_{z}^{\prime}(w) \leq 0 \tag{3.12}
\end{equation*}
$$

Therefore, $\left|g_{z}^{\prime}(w)\right| \leq 1$ for all $w \geq 0$

Proposition 3.4. Let $z, v, w, s, t \geq 0$. Then

1. $\left|g_{z}^{\prime}(w)-g_{z}^{\prime}(v)\right| \leq 1$,

2. $g_{z}^{\prime}(w+s)-g_{z}^{\prime}(w+t) \geq \begin{cases}-1 & \text { if } w+s>\sqrt{z} \text { and } w+t \leq \sqrt{z}, \\ -(|w|+1)(|s|+|t|) & \text { if } s<t, \\ 0 & \text { otherwise. }\end{cases}$

Proof.

1. Let $z \geq 0$. From (3.11) and (3.12), we have $\left|g_{z}^{\prime}(w)-g_{z}^{\prime}(v)\right| \leq 1$ for $w, v \leq \sqrt{z}$ or $w, v>\sqrt{z}$. Suppose that $w \leq \sqrt{z}$ and $v>\sqrt{z}$. By (3.4), we have

$$
g_{z}^{\prime}(w)=\left\{\begin{array}{lll}
w g_{z}(w)+1-\chi_{1}^{2}(z) & \text { if } & w \leq \sqrt{z} \tag{3.13}\\
w g_{z}(w)+\chi_{1}^{2}(z) & \text { if } & w>\sqrt{z}
\end{array}\right.
$$

From Proposition 3.2, (3.11), (3.12) and (3.13), we have

$$
\begin{equation*}
0 \leq g_{z}^{\prime}(w) \leq \sqrt{z} g_{z}(\sqrt{z})+1-\chi_{1}^{2}(z) \text { for } w \leq \sqrt{z} \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\sqrt{z} g_{z}(\sqrt{z})-\chi_{1}^{2}(z) \leq g_{z}^{\prime}(v) \leq 0 \quad \text { for } v>\sqrt{z} \tag{3.15}
\end{equation*}
$$

By (3.11), (3.12), (3.14) and (3.15) we get that

$$
\left|g_{z}^{\prime}(w)-g_{z}^{\prime}(v)\right| \leq \max \left\{1, \sqrt{z} g_{z}(\sqrt{z})+1-\chi_{1}^{2}(z)-\left(\sqrt{z} g_{z}(\sqrt{z})-\chi_{1}^{2}(z)\right)\right\}=1 .
$$

2. From (3.4), we have

$$
g_{z}^{\prime}(w+s)-(w+s) g_{z}(w+s)=I_{z}\left((w+s)^{2}\right)-\chi_{1}^{2}(z)
$$

and

$$
\rho_{g_{z}^{\prime}}^{\prime}(w+t)-(w+t) g_{z}^{6}(w+t)=\sum_{z}^{(}\left((w+t)^{2}\right) d \chi_{1}^{2}(z)
$$

$g_{z}^{\prime}(w+s)-g_{z}^{\prime}(w+t)=(w+s) g_{z}(w+s)-(w+t) g_{z}(w+t)+I_{z}\left((w+s)^{2}\right)-I_{z}\left((w+t)^{2}\right)$
$= \begin{cases}(w+s) g_{z}(w+s)-(w+t) g_{z}(w+t)+1 \text { if } & w+s \leq \sqrt{z} \text { and } w+t>\sqrt{z}, \\ (w+s) g_{z}(w+s)-(w+t) g_{z}(w+t)-1 \text { if } & w+s>\sqrt{z} \text { and } w+t \leq \sqrt{z}, \\ (w+s) g_{z}(w+s)-(w+t) g_{z}(w+t) & \text { if } \quad w+s \leq \sqrt{z} \text { and } w+t \leq \sqrt{z} \\ & \text { or } w+s>\sqrt{z} \text { and } w+t>\sqrt{z}\end{cases}$
$\leq \begin{cases}1 & \text { if } w+s \leq \sqrt{z} \text { and } w+t>\sqrt{z}, \\ w\left[g_{z}(w+s)-g_{z}(w+t)\right]+s g_{z}(w+s)-t g_{z}(w+t) \text { if } s>t, \\ 0 & \text { otherwise. }\end{cases}$
From Proposition 3.3((i) and (ii)) and by mean-valued theorem, there exists $r \in \mathbb{R}$ such that

$$
\begin{aligned}
w & {\left[g_{z}(w+s)-g_{z}(w+t)\right]+s g_{z}(w+s)-t g_{z}(w+t) } \\
& \leq \mid w\left[g_{z}(w+s)-g_{z}(w+t)\left|+\left|s g_{z}(w+s)-t g_{z}(w+t)\right|\right.\right. \\
& \leq|w|\left|g_{z}(w+s)-g_{z}(w+t)\right|+|s| \overrightarrow{g_{z}}(w+s)|+|t|| g_{z}(w+t) \mid \\
& =|w|\left|\frac{g_{z}(w+s)-g_{z}(w+t)}{(w+s)-(w+t)}(s-\bar{t})\right||s|\left|g_{z}(w+s)\right|+|t|\left|g_{z}(w+t)\right| \\
& =|w|\left|g_{z}^{\prime}(r)\right||s-t|+|s|\left|g_{z}(w+s)\right|| | t| | g_{z}(w+t) \mid \\
& \leq|w|(|s|+|t|)+(|s|+|t|) \\
& =(|w|+1)(|s|+|t|) .
\end{aligned}
$$

Hence,

The proof of 3 is similar to 2 .

CHAPTER IV

BOUNDS ON CHI-SQUARE APPROXIMATION

For each $n \in \mathbb{N}$, let $X_{1}, \bar{X}_{2}, \ldots, X_{n}$ be independent and not necessarily identically distributed random variables with zero mean, finite variance and $\sum_{i=1}^{n} E X_{i}{ }^{2}=1$. Define

Let F_{n} be the distribution function of W_{n} and Φ the standard normal distribution function. The central limitifheorem in probability theory and statistics guarantee that for each $z \in \mathbb{R}$,
where $\Phi(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-\frac{t^{2}}{2}} d t$.

Many researchers try to find the rate of this convergence having two types of bound; uniformbound andentuniform bound. Consider abound for the distance between two distribution functions F and G, $ค$

$$
\begin{aligned}
& |F(x)-G(x)| \leq K .
\end{aligned}
$$

If K depends on x, then K is considered to be a non-uniform bound. On the other hand, if K does not depend on x, then K is considered to be a uniform bound.

In 1986, Siganov ([12]) gave a uniform bound under the assumption that the third moment is finite. His result is as follows.

Theorem 4.1. (Siganov,1986). Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables such that $E X_{i}=0$ and $E\left|X_{i}\right|^{3}<\infty$ for $i=1,2, \ldots, n$. Assume that $\sum_{i=1}^{n} E X_{i}{ }^{2}=1$. Then

$$
\sup _{z \in \mathbb{R}}\left|P\left(W_{n} \leq z\right)-\Phi(z)\right| \leq 0.7915 \sum_{i=1}^{n} E\left|X_{i}\right|^{3}
$$

In 1977, Paditz ([8]) gave a non-uniform bound under the assumptions as in Theorem 4.1. His result is as follows.

Theorem 4.2. (Paditz,1977). Under the assumption of Theorem 4.1, we have

In 2001, Chen and Shao (2) gave the versions of a uniform bound and a non-uniform bound yyithout assuming the existence of the third moments. Their results are as follow.

Theorem 4.3. (uniformbound) Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random vari-

 $\sup _{z \in \mathbb{R}}\left|P\left(W_{n} \leq z\right)-\Phi(z)\right| \leq 4.1\left\{\sum_{i=1}^{n} E X_{i}^{2} I\left(\left|X_{i}\right| \geq 1\right)+\sum_{i=1}^{n} E\left|X_{i}\right|^{3} I\left(\left|X_{i}\right|<1\right)\right\}$.
Theorem 4.4. (non-uniform bound) Under the assumptions of Theorem 4.3, there exists a constant C such that
$\left|P\left(W_{n} \leq z\right)-\Phi(z)\right| \leq C \sum_{i=1}^{n}\left\{\frac{E X_{i}^{2} I\left(\left|X_{i}\right| \geq 1+|z|\right)}{(1+|z|)^{2}}+\frac{E\left|X_{i}\right|^{3} I\left(\left|X_{i}\right|<1+|z|\right)}{(1+|z|)^{3}}\right\}$ for $z \in \mathbb{R}$.

In 2007, Neammanee and Thongtha ([5]) calculated the constant by using Paditz-Siganov theorem. Their result is as follow.

Theorem 4.5. Under the assumption of Theorem 4.3, for $z \in \mathbb{R}$, we have

$$
\left|P\left(W_{n} \leq z\right)-\Phi(z)\right| \leq C \sum_{i=1}^{n}\left\{\frac{E X_{i}^{2} I\left(\left|X_{i}\right| \geq 1+|z|\right)}{1+|z|^{2}}+\frac{E\left|X_{i}\right|^{3} I\left(\left|X_{i}\right|<1+|z|\right)}{1+|z|^{3}}\right\}
$$

where

In this chapter, we give uniform and non-uniform bounds on chi-square approximation to the distribution of W_{n}^{2} under the existence of the second or the third moments. To do this, we use a relation between the chi-square random variable with degree of freedom 1 and the standard normal random variable. The relation is as follows: $\mathrm{Lef} z_{1}, Z_{2}, \frac{C}{}, Z_{n}$ be independent standard normal random

variables. It is well-known that

For the first part, we assume $E\left|X_{i}\right|^{3}<\infty$ for $i=1,2, \ldots, n$. We apply Theorem 4.1 and Theorem 4.2 to give uniform and non-uniform bounds on chi-square approximation to the distribution of W_{n}^{2} under the existence of the third moment, respectively. The followings are our results.

Theorem 4.6. (uniform bound) Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables such that $E X_{i}=0$ and $E\left|X_{i}\right|^{3}<\infty$ for $i=1,2, \ldots, n$. Assume that $\sum_{i=1}^{n} E X_{i}{ }^{2}=1$. Then

$$
\sup _{z \geq 0}\left|P\left(W_{n}^{2} \leq z\right)-\chi_{1}^{2}(z)\right| \leq 1.583 \sum_{i=1}^{n} E\left|X_{i}\right|^{3} .
$$

Theorem 4.7. (non-uniform bound) Under the assumption of Theorem 4.6 and $z \geq 0$, we have

$$
\left.\left|P\left(W_{n}^{2} \leq z\right)\right| \chi_{1}^{2}(z)\left|\leq \frac{63.87}{1+z^{\frac{3}{2}}} \sum_{i=1}^{n} E\right| X_{i}\right|^{3} .
$$

For the second part, we assume that $E\left|X_{i}\right|^{2}<\infty$ for $i=1,2, \ldots, n$. We apply Theorem 4.3 and Theorem 4.5 to give uniform and non-uniform bounds on chisquare approximation to the distribution of W_{n}^{2} under the existence of the second moments respectively. Our resultstare stated as follows.

Theorem 4.8. (uniform bound Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables such that $E X_{i}=0$ and $E\left|X_{i}\right|^{2}<\infty$ for $i \triangleq 1,2, \ldots, n$. Assume that $\sum_{i=1}^{n} E X_{i}{ }^{2}=1$. Then

Theorem 4.9. (non-uniform bound) Under the assumption of Theorem 4.8, for $z \geq 0$, there exists an absolute constant C such chat ही? $\left|P\left(W_{n}^{2} \leq z\right)-\chi_{1}^{2}(z)\right| \leq C \sum_{i=1}^{n}\left\{\frac{E X_{i}^{2} I\left(\left|X_{i}\right| \geq 1+\sqrt{z}\right)}{1+z}+\frac{E\left|X_{i}\right|^{3} I\left(\left|X_{i}\right|<1+\sqrt{z}\right)}{1+z^{\frac{3}{2}}}\right\}$,
where

In this proof, we give the proof of Theorem 4.6-Theorem 4.9. To prove the theorems, we need following Lemma.

Lemma 4.10. For $z \geq 0$,

$$
\begin{equation*}
\left\{w\left|W_{n}(w)<-\frac{\sqrt{z}\} \bigcup_{m=1}\{w}{}\right| W_{n}(w) \leq-\sqrt{z}-\frac{1}{m}\right\} . \tag{4.1}
\end{equation*}
$$

Proof. For the exclusion, it is obvious.
For the inclusion, $\operatorname{let} w \in\left\{w \mid W_{n}(w)<-\sqrt{z}\right\}$.
Then $-\sqrt{z}-W_{n}(w) \rightarrow 0$. By Archimedian principle there exists $m_{0} \in \mathbb{N}$
such that

Proof of Theorem 4.6.

Proof. Let Z be a standard normal random variable. From (4.1) and Theorem 2.1(1),

$$
P\left(W_{n}<-\sqrt{z}\right)=P\left(\bigcup_{m=1}^{\infty}\left\{W_{n} \leq-\sqrt{z}-\frac{1}{m}\right\}\right)=\lim _{m \rightarrow \infty} P\left(W_{n} \leq-\sqrt{z}-\frac{1}{m}\right)
$$

and the fact that $\Phi(-\sqrt{z})=\lim _{m \rightarrow \infty} \Phi\left(-\sqrt{z}-\frac{1}{m}\right)$,

$$
\begin{align*}
& \left|P\left(W_{n}^{2} \leq z\right)-\chi_{1}^{2}(z)\right| \\
& =\left|P\left(-\sqrt{z} \leq W_{n} \leq \sqrt{z}\right)-\chi_{1}^{2}(z)\right| \\
& =\left|P\left(-\sqrt{z} \leq W_{n} \leq \sqrt{z}\right)-P\left(Z^{2} \leq z\right)\right| \\
& =\left|P\left(-\sqrt{z} \leq W_{n} \leq \sqrt{z}\right)-P(-\sqrt{z} \mid-Z \leq \sqrt{z})\right| \\
& =\left|P\left(W_{n} \leq \sqrt{z}\right)-P\left(W_{n}<-\sqrt{z}\right)-[P(Z \leq \sqrt{z})-P(Z<-\sqrt{z})]\right| \\
& \leq\left|P\left(W_{n} \leq \sqrt{z}\right)-P(Z \leq \sqrt{z} \mid)\right| P\left(W_{n}<-\sqrt{z}\right)-P(Z<-\sqrt{z}) \mid \\
& =\left|P\left(W_{n} \leq \sqrt{z}\right)-\Phi(\sqrt{z})\right|+\left|P\left(W_{n}<-\sqrt{z}\right)-\Phi(-\sqrt{z})\right| \\
& =\left|P\left(W_{n} \leq \sqrt{z}\right)-\Phi(\sqrt{z})\right|+\left\lvert\, P\left(\bigcup_{m=1}^{\infty}\left|\left\{W_{n} \leq-\sqrt{z}-\frac{1}{m}\right\}-\Phi\left(-\sqrt{z}-\frac{1}{m}\right)\right|\right.\right. \\
& \left.=\left|P\left(W_{n} \leq \sqrt{z}\right)-\Phi(\sqrt{z})\right|+\lim _{m=\infty} P\left(W_{n} \leq-\sqrt{z}-\frac{1}{m}\right)-\Phi\left(-\sqrt{z}-\frac{1}{m}\right) \right\rvert\, \\
& \left.=\left|P\left(W_{n} \leq \sqrt{z}\right)-\Phi(\sqrt{z})\right|+\lim _{12} P\left(W_{n} \leq-\sqrt{z}-\frac{1}{m}\right)-\Phi\left(-\sqrt{z}-\frac{1}{m}\right) \right\rvert\, . \tag{4.2}
\end{align*}
$$

From (4.2) and Theorem 4.1, we have

$$
\begin{aligned}
& \sup _{z \geq 0}\left|P\left(W_{n}^{2} \leq z\right)-\chi^{2}(z)\right| \\
& \leq \sup _{z \geq 0}\left\{\left|P\left(W_{n} \leq \sqrt{z}\right) \sigma \Phi(\sqrt{z})\right|+\lim _{m_{m} \rightarrow \infty}\left|P\left(W_{n} \leq-\sqrt{z}-\frac{1}{m}\right)-\Phi\left(-\sqrt{z}-\frac{1}{m}\right)\right|\right\} \\
& \leq \sup _{z \geq 0}\left|P\left(W_{n} \frac{9}{z} \sqrt{z}\right)=\Phi(\sqrt{z})\right|+\sup _{z \geq 0} \lim _{m \rightarrow \infty}\left|P\left(W_{n} \leq-\sqrt{z} \frac{d}{m}\right)-\Phi\left(-\sqrt{z}-\frac{1}{m}\right)\right|
\end{aligned}
$$

$$
\begin{aligned}
& =1.583 \sum_{i=1}^{n} E\left|X_{i}\right|^{3} \text {. }
\end{aligned}
$$

Hence,

$$
\sup _{z \geq 0}\left|P\left(W_{n}^{2} \leq z\right)-\chi_{1}^{2}(z)\right| \leq 1.583 \sum_{i=1}^{n} E\left|X_{i}\right|^{3} .
$$

Proof of Theorem 4.7.

Proof. From (4.2) and Theorem 4.2, we have for each $z \geq 0$

$$
\begin{aligned}
& \left|P\left(W_{n}^{2} \leq z\right)-\chi_{1}^{2}(z)\right| \\
& \leq\left|P\left(W_{n} \leq \sqrt{z}\right)-\Phi(\sqrt{z})\right|+\lim _{m \rightarrow \infty}\left|P\left(W_{n} \leq-\sqrt{z}-\frac{1}{m}\right)-\Phi\left(-\sqrt{z}-\frac{1}{m}\right)\right| \\
& \leq \frac{31.935}{1+|\sqrt{z}|^{3}} \sum_{i=1}^{n} E\left|X_{i}\right|^{3}+\lim _{m \rightarrow \infty}{ }^{31.935} \sqrt{z}-\left.\frac{1}{m}\right|^{3} \sum_{i=1}^{n} E\left|X_{i}\right|^{3} \\
& \leq \frac{31.935}{1+|\sqrt{z}|^{3}} \sum_{i=1}^{n} E\left|X_{i}\right|^{3}+\frac{1.935}{1+|-\sqrt{z}|^{3}} \sum_{i=1}^{n} E\left|X_{i}\right|^{3} \\
& =\frac{31.935}{1+z^{\frac{3}{2}}} \sum_{i=1}^{n} E\left|X_{i}\right|^{3}+\frac{31.935}{14+z^{\frac{3}{2}}} \sum_{i=1}^{n} E\left|X_{i}\right|^{3} \\
& =\frac{63.87}{1+z^{\frac{3}{2}}} \sum_{i=1}^{n} E\left|X_{i}\right|^{3}
\end{aligned}
$$

Hence, $\left|P\left(W_{n}^{2} \leq z\right)-\chi_{1}^{2}(z)\right| \leq \frac{63.87}{1+\frac{1}{3} z^{\frac{3}{2}}} \sum_{i=1}^{n} E\left|X_{i}\right|^{3}$.

Proof of Theorem 4.8.

Proof. From (4.2) and Theorem 4.3, we have for each $2 \geq 0$

$$
\begin{aligned}
& \sup _{z \geq 0}\left|P\left(W_{n}^{2} \leq z\right)-\chi_{i}^{2}(z)\right| \\
& \leq \sup _{z \geq 0}\left\{\left|P\left(W^{3} \mid \leq \sqrt{z}\right)-\Phi(\sqrt{z})\right|+\operatorname{qim}_{m \rightarrow \infty} \not P P\left(\left.W_{n}\left(\leq \sqrt{z}-\frac{1}{m}\right)-\Phi\left(-\sqrt{z}-\frac{1}{m}\right) \right\rvert\,\right\}\right. \\
& \leq \sup _{z \geq 0}\left|P\left(W_{n} \leq \sqrt{z}\right)-\Phi(\sqrt{z})\right|+\sup _{n} \lim _{n}\left|P\left(W_{n} \leq-\sqrt{z}-\frac{1}{m}\right)-\Phi\left(-\sqrt{z}-\frac{1}{m}\right)\right| \\
& =\sup _{z \geq 0}\left|P\left(W_{n} \leq \sqrt{z}\right)-\Phi(\sqrt{z})\right|+\lim _{m \rightarrow \infty} \sup _{z \geq 0}\left|P\left(W_{n} \leq-\sqrt{z}-\frac{a}{m}\right)-\Phi\left(-\sqrt{z}-\frac{1}{m}\right)\right| \\
& \leq 4.1\left\{\sum_{i=1}^{n} E X_{i}^{2} I\left(\left|X_{i}\right| \geq 1\right)+\sum_{i=1}^{n} E\left|X_{i}\right|^{3} I\left(\left|X_{i}\right|<1\right)\right\} \\
& \quad+4.1\left\{\sum_{i=1}^{n} E X_{i}^{2} I\left(\left|X_{i}\right| \geq 1\right)+\sum_{i=1}^{n} E\left|X_{i}\right|^{3} I\left(\left|X_{i}\right|<1\right)\right\} \\
& = \\
& 8.2\left\{\sum_{i=1}^{n} E X_{i}^{2} I\left(\left|X_{i}\right| \geq 1\right)+\sum_{i=1}^{n} E\left|X_{i}\right|^{3} I\left(\left|X_{i}\right|<1\right)\right\} .
\end{aligned}
$$

Hence,

$$
\sup _{z \geq 0}\left|P\left(W_{n}^{2} \leq z\right)-\chi_{1}^{2}(z)\right| \leq 8.2\left\{\sum_{i=1}^{n} E X_{i}^{2} I\left(\left|X_{i}\right| \geq 1\right)+\sum_{i=1}^{n} E\left|X_{i}\right|^{3} I\left(\left|X_{i}\right|<1\right)\right\} .
$$

Proof of Theorem 4.9.

Proof. We can prove the theorem by using (4.2), Theorem 4.5 and the same technique of Theorem 4.8.

REFERENCES

[1] Chen, L.H.Y. 1975. Poisson approximation for dependent trials. Probab. Theory Related Fields. 3:534-545.
[2] Chen, L.H.Y., and Shao, Q.M. 2001. A non-uniform Berry-Esseen bound via Steins method. Probab. Theory Related Fields. 120:236-254.
[3] Chatterjee, S., and Fulman, J. Exponential Approximation by exchangeable pairs and spectral graph theory. Submitted. Available at http:// arxiv. org/ abs/math/0605552.
[4] Feller, W. 1968. An Introduction to Probability theorem and Its Applica tions. 3rd ed. Wiley, New York.
[5] Neammanee, K. and Thongtha, P. 2007. Improvement of the non-uniform version of the Berry-Esseen inequality via Paditz-Siganov Theorem. J. Inequal. Appl. Math. 2007:1-10.
[6] Luk, H.M. 1994. Stein's method for the gamma distribution and related statistical applications. Ph.D.thesis. University of Southern California, Los Angeles, USA
[7] Peköz, E. 1996. Stein's method for geometric approximation. J. Appl. Probab. 33:707-713.
[8] Paditz, L.,Ber die Annherung der Verteilungsfunktionen von Summenunab hngiger Zufallsgrben gegen unberrenzt teilbaxe Verteilungsfunktio nenunter besonderer berchtung der Verteilungsfunktion de standard disiertenNormalver- teilung. Dissertation, A. TU Dresden,1977.
[9] Reinert, G. 2005. Three general approaches to Stein's method. In: A Program in Honourrof Charles Steim: TutorialcLecture Notes. Barbour, A.D., and Chen,亡.HoY. eds. World Scientific, Singapore :183-221.
[10] Stein, C.M. 1972. A bound for the error infthe normal approximation to the Q distribution of a sum of dependent random variabtes, Proc. Sixth Berkeley Symp. Math. Statist. Probab. 2:583-602.
[11] Stein, C.M. 1986. Approximation Computation of Expectations. IMS Lecture Notes-Monograph Series 7. IMS, Hayward, CA.
[12] Siganov,I.S. 1986. Refinement of the upper bound of the constant in the central limit theorem. Journal of Soviat Mathematics: 2545-2550.

VITA

