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CHAPTER I
INTRODUCTION

Id problems can be described by im-
] died quite extensively [5, 8, 10,

tlonal initial value problems.

The mathematical models of many
pulsive differential equations. Tl
16, 17, 18] because they ha
They can be used to model. atrcan not be modeled by the tra-
ditional initial value, su ' - ic arterial pressure [2], the
\, rvesting, diseases, etc.).

ome time they can not be

\ \\ s of integer order but they

4 \
is con NCErne h integro-differential equa-
06, Chonwerayuth [3] proved the

existence and uniqueness of a classical soluf
=i & o *3

of an integro-differential equation;
2 \

2 (1) + (D) = St G + Bult), ¢ € [0,

z(t) = p(t), t € [—TE], m
(1.1)
where (0 ﬂ 1 ﬂ NN i%&lﬂﬁ bk done a portion of

work on the nonhnear impulsive integro-differential equation;

ABIRIABITIE I

A z = z z 7 = za 2_1 2
x(0) = xo,
(1.2)



where GG and S are nonlinear integral operators given by

Gw(t):/o k(t,7)g(T, z(T))dr, Sx(t):/o h(t, 7)s(r, x(7))dr. (1.3)

In 2008, Gastad S.F.Frederico [4] has studied on the fractional optimal control
in the sense of Caputo and the fractional Neether’s theorem. In 2009, Gisele
M.Mophou [5] proved existence and uniqueness of mild solution to impulsive frac-

tional differential equations;

D¢x(t) = Ax(t) + f(t,x

Az(t;) = Ji(z(t:)), (1.4)
z(0) = xo,
where 0 < a < 1 and D Capt _‘ ivative. These researches
motivate our work. i8,” wet ide ain objective, a class of
nonlinear impulsive fractio
Dyx(t) = Ax(t) + f(t, u(t), t#ty, [0,T]
Ax(ty) = Ju(z(te)),
z(t) = @(t), te|
(1.5)

— X is defined by

7
AL s)g(s, Has ))Q (L6)

and or 0 < o w'gow&] A BB Fyone dervarie. 4

is a densely closéd operator on a Bé;nach space X, f 0,7 >< X xX — Xis

given co {1 tﬁ“l d’I Ejunded map,
Ax(ty) = — z(tg presents e jump in the state x at t = t;,

with Jk, determlmng the size of the jump at ¢ = ¢;,. Traditional

initial value problems are replaced by the impulsive conditions. Then, we study a
optimal control problem of system (1.5) via the Bolza problem (P). Find uy € Uuq
such that

J(ug) < J(u), forall wu € Uy, (1.7)



where J(u fo 1),z u(t))dt + ®(x*(T)), Usq denote the set of all admis-
sible Controls, x" denote the PC'—mild solution of system (1.5) corresponding to

the control v € U,y. We can see that our system different is from the previous

works.

1.1 Scope

In this section, we talk about %&* ﬁ research. Certainly, the main
objective of this study is p ex1st system (1.5) (the nonlinear
impulsive fractional mtegro— mwever this system is very

complex, it is difficult to X tion. So, we first consider

the system that is less ¢ \ "1";‘ : the nonlinear fractional

(t), te€][0,T] (18)

under the same assumptions e. The objective of this part is getting

“to the control v € U,y;. Then we

b o i

a solution called a mild solutloai )ﬁ'ﬂ}l :

-

v

apply this result to qg}btruct a solutlon or_t_h‘(‘?gfn (1.5);
Dex(t) = Ax(t) + fj

ﬂ%ﬂ]’l%ﬂﬂﬂ’jwmﬂ‘i

This solution is called a piecewise continuous mild.gelution or (for short) a PC'—mild

clution @it {Rbsph Yot ot bl &Y Mbrob] Vbbb daher scheme

to prove tfle existence of a PC'—mild solution. This scheme use the compactness

ﬂ), t#ty, te€l0,7T]

property of semigroup and the Leray-Shauder fixed point theorem to imply that
the system (1.5) has at least one PC'—mild solution. Then the control problem of
system (1.5) via the Bolza problem will be considered. We exemplify some con-

struction examples which satisfy our results and try to link our results to the real



world problems. Furthermore, we consider a fractional integro-differential equa-

tions of mixed type with the solution operator;

Dex(t) = Ax(t) + f(t,x(t), Ge(t), Sz(t)), t€0,T]

z(t) = p(t) t€[-r0].

(1.9)

We prove the existence of the Lagrange problem for (1.9). The last, we conclude

all results in this thesis and ope interesting problems that close to

our problems.

1.2 Research Ob

The following statemen

1) To obtain existen lution to the fractional integro-
differential equatio i impu e o Cy—semigroup on a Banach
space. ~ \

BB

2) To obtain existence a HQUENess « ewlse continuous mild solution to

the impulsive fractional i -mﬂ d ‘ equations with Cy—semigroup on

P TR
a Banach space. 4 '

‘V:' r‘
3) To obtain the eXEe 6 dﬁolution to the fractional

integro-differential equations of mixed type with

U ANYNITNYNT

4) To obtain dtl existence result oj optimal controls for the Bolza problem and

TARITRIN I UAIINYAY

lution operator on a Ba-



CHAPTER 11
MATHEMATIC BACKGROUND

Functional analysis plays a central role in modern control theory. For conve-
nience, we summarize, in this chapter, some of definitions and theorems which
are required in subsequent chapters, W_i}h appropriate references given wherever
necessary. Moreover, we willsintroduce Vthe idea of control via the basic problem
in the last section of thig.ehapger. :

)

2.1 Elements of Function'él éﬁalysis

|
r

Let X be a Banach spacg'wigh norm || - Ili.

Definition 2.1.1. A sequenge x,, i X iig,{.gaid to be strongly convergent to an

element x in X if ||, — || = Qasn— oo We denote by x, 5.

Let Y be another Banach space with nor*mﬂ‘ﬂY A lipear transformation from
X into Y is bounded onmmmeTB(T)ﬂfﬂme—exibts a constant ¢ such that
|| Tx||y < c||z]|| for all 7 € D(T). The linear space of alfbounded linear operators
from X into Y , is denoted by L(X,Y) and denote L(X, X) by L(X).

Theorem 2.1.2." (Uniform Boundedness Prineiple). Let!{T, .| o € A} be a family
of operators from"L(X,Y). If for each x € X there is a constant ¢, such that

sup||To |2 &5 thénlihe aperator $T.,} “are uniformiy boundéd:
acl

Let X be a Banach space and X* be its dual space. Element of X* can be
used to generate a new topology for X called the weak topology. Note that the
norm topology on X was called the strong topology. So the new topology is weaker
than the strong (norm) topology. Particularly, the linear functionals on X that are

continuous in the weak topology are precisely the functionals in X*. The concept



of open (closed) sets, compactness, convergence, etc., are topological, hence they
must be qualified by referring to the topology involved. In the case of normed linear
spaces, when one speaks of open (closed) sets, compactness, convergence, etc., one
refer to strong (norm) topology, while, with reference to its weak topology, they
are called weakly open (weakly closed) sets, weak compactness, weak convergence,
etc. Thus a sequence {z,} in X is said to converge weakly to an element z in X if,
for every o* € X*, x*(x,) — 2*(z), written by v, — 2. Every weakly convergent
sequence is bounded. Every strongly convergcat sequence is weakly convergent,

but the converse is not true: 2

2.2 Bochner Integral ‘“1

A Banach space setting of gvolition équations requires taking the derivative in the
Banach space. Hence, integiation of Eana?h space valued function is an important
tool of this setting. We deéfing the BoChnefii_ntegral of such functions and derive its
basic properties. In the follow*ing; éSllbse%ﬁ)f’:%” is said to be measurable if and
only if it is Lebesgue measurabl)el._ The func{cff)rﬁ will be defined on the nonempty

measurable set S C R”, with raﬁgeﬁn a Bajﬁ_‘gc'hi space X.

g )y g
T LS

The map z : S —>’X is called weakly measurable if 5 v ((x(s)) is a Lebesgue

-

measurable function for each £ € X*. e

Themapzx: S — X is called almost separably—vahi_éd if there exists {y1, y2, ...},
C X such ghaf) infp||2(3) &4 =0)fet alihost bllyse) S-

The map x S — X is called strongly measurable if it is weakly measurable

and,almost separably valued.

The map = : S — X is said to be Bochner integrable if x is strongly measur-

able and the functions s — ||x(s)|| is Lebesgue integrable.

The set of all such functions z is a vector space and will be denoted by Ly (S, X), is

a Banach space. Similarly, the equivalence class of strongly measurable X —valued



functions on S such that
/ l|z(s)|[Pds < oo, for 1<p< oo
s

and

esssup{||z(s)|| | s €S} <oo for p=oc

form a Banach space with respect to the norms

and

They are denoted by L |
The following Theorent' 2.2 15 to define the Bochner integral Jsx of

x € Li(S,X)tobey e

(2.1)

2.3 Fixed poi !ri;-
Fixed point theorem omn Banach spaces or contraction mapping is an advantage
tool that is for ﬁﬂ ?Tﬂﬂ %ﬁmwn lution. Consider a
function ¢ : R %& j req SO equatlon o(x) = 0.
This is ehlvalent to solv1 the

RSN SEln Inenae

where ¢(x) = ¢(z) + z for all z € R. Thus z is a zero of ¢ if and only if z is

(2.2)

a fixed point of v, i.e., a point which is left unaltered after the application of .

More generally, many problems are equivalent to solving

Af=f (2.3)



where A : D(A) — R(A) is an operator (not necessarily linear), acting in some
normed vector spaces, D(A) and R(A) are domain and range of A in X respectively,
i.e., we seek a fixed point f € D(A) of the operator A (for simplicity, we write Af
rather than A(f)). There are many fixed point theorems which guarantee existence

and /or uniqueness of fixed points. We state here what is used in this thesis.

Definition 2.3.1. Let X be a normed vector space and let A : D(A) — R(A) be

an operator (not necessarily linear). Then

(1) A is a contraction if there exists a constent c.awith 0 < ¢ <1 such that
-

||Afr=A L e<el| f — foll Jor @y, f> € D(A) (2.4)

(2) A is strictly contragtionf there exists a constant ¢ with 0 < ¢ < 1 such that

(2.4) holds. 2,40

Theorem 2.3.2. (The contmctioh‘"mappi%uga'iheorem; Banach fized point theorem,)
Let X be a Banach space apd let A i X —Iv—k'an;be a strictly contraction. Then the

equation Af = f has a unique solution in .'}(Xf-',d.!.z'.e., A has a unique fized point f.
{5 2 2hy
genieralized as follows:

The result of this theorem can be easil

4 Ja ey g
g

Corollary 2.3.3. Lef Xo be a closed subset of the Ban_&qh space X and assume

that the operator A majps Xo wnto itself and is a strictly_zontmction on Xo. Then

the equation Af = f has'a unique solution [ € X,.

Corollary 2.3.4.; (Leray-Sthuuder.theoreni) Let. L. be.a continuous compact map-

ping of a Banach space X' into utself such that the.set
% X o= )Ty forpsome~Diy oS 14 (2.5)

1s bounded: Then T has a fixed point.

2.4 Semigroup of Bounded Linear Operators

Consider a dynamical system, the state of which is evolving with time according

to some law. For example, we may be interested in the temperature distribution



along a rod which is being heated at one end. Suppose the initial state of the
system is x; in this case z((z) would measure the initial temperature at the point
z of the rod. At a subsequent time ¢ > 0, the state of the system will be given by
x(z,t); this state would measure the temperature at the point = at time ¢. Since,
for each t > 0, the state z(z,t) is an element of a Banach space X. We shall use
the symbol z(t) to indicate such a state, i.e., z(t)(2) = z(z,1).
The state z(t) will be related to the original state xy by some transition operator
T(t) so that
= T(t)zo, =lwzzel: (2.6)

We shall thus obtain a family {7°(%)}, of such operators. It is natural to ask
what properties this family shoudd, l'uwe."ljl

Firstly, each operator T( )Jactsiua sel, of state xg, where the states can typically
represented by functions, "Honcc the doma.m of T'(#) will be a subspace of function.

Next, it is clear that #'(Q) must be %, the identity operator on X since at
t = 0 there is no transition. Furtlfer f(;;' ‘any s,t > 0 we should require that
T(s+t)xg=T(s)T(t)xo. Indeed thedeft haﬁ;d side describes the evolution over a
time interval of length s + . " it rlght hand sidle effectively say that the system
evolves from xy to T'(t)zo in & uunits of tlme-amd then continues to evolve from

T(t)zo to T(s)[T(t)zglan a subsequent time interval of iéngth s, from t to s + t.

The net effect should ’B‘é"the same as going nonstop from-,"ﬁjfo s+t, without taking

a snapshot at time ¢. Thus we are led to the two conditions
T(0) =01 FT ) 76 1) 0 fory §7= 0. (2.7)

Finally it is natural to expect that if g is closed to t, then T'(s)xy gshould be close to
T (t)xq inssome sensey This'is ‘coneept to define a family of transifion operator say
semigroup‘of operators. We are now ready to make the following formal definition.

Throughout this section X will be a Banach space.

Definition 2.4.1. A one-parameter family {T(t)}i>0 of bounded linear operators

from X into X is a semigroup of bounded linear operators on X if

1. T(0) = I, (I is the identity operator on X ),



10

2. T(t+s)=T()T(s) for every t,s > 0 (the semigroup property).
A semigroup of bounded linear operators {T'(t)}y, is uniformly continuous if
li Tt)—1 =0. 2.8
i [[T(6) Il 23)

The linear operator A defined by

T _
Az = lim M

t—0+ t

o forall z € D(A) (2.9)

with
s sin X} (2.10)
1s called the infinitesima _ \\\ N t>0, ) is the domain
of A » ' |
From Definition 2.4.14 01 " f1>0 with a unique infinites-

S 1nﬁn1te31mal generator is a

-1

imal generator. If T'(t) is
bounded operator. On the hénd, e b ed linear operator A is the

infinitesimal generator of a unife Ous semlgroup {T(t)}+>0 and this

-

semlgroup is umque. g

Definition 2.4.2. A, v\" operator on X 1S a

strongly continuous se@mup of a bounded linear opea@ors if

AugAnyySweans o

A strongly contz’n’iuous semigroup of bounded linegopemtors on ‘Ylwz'll be called a

e QAR RIRR U NN1INE T Y
Exampleq2.4.3. Let X = LP(R) with 1 < p < co. Define T'(0) = I and fort >0
define T(t) on X by

(T(6)f)(x) =

[%S) ()2
\/m/_we o fy)dy (2.12)
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for all f € X and x € R. Then {T(t)}1>0 is Co—semigroup called the Gauss-
Weierstrass semigroup. The right hand side of (2.12) represents the Fourier con-

volution of the function f € X with the function k defined by

k(x,t) = e, forall €N, t>0. (2.13)

1
VAt

This function k s the fundamental solution of the heat equation

V///a eR. (2.14)
Example 2.4.4. Another i partia ﬁwl equation is the wave equa-

orm

0. (2.15)

we now take for simplicity ' e Gauss-Weierstrass semi-

group is the Poisson semi ; [P . <p<oo. Fort >0 define
T(t) on X by

f(y)dy (2.16)
forall f € X and x € R and define QI__) =1 Then {T(t )}to is the Cy— semigroup

olution of the function

1 (2. he_Fourier edpy
f € X with the funct k ‘

1 t
k(xt)‘ roppet forall reR, t>0. (2.17)

Conditions ({Fanla) ’3> & «&W@M efihish o] @the basic properties

of the exponentlaﬁ]functlon More precisely, we h&e the followu@result

Theore 21&5']@}3;1 i m&lm ’] ’JZMLEJ hl(aoﬂ R be such

that
1. 6(0) =
2. ¢(s+1t) =o(s)p(t) forall s,t >0,

3. ¢ is continuous on [0, 00).
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Then ¢ has the form
o(t) = e™  for some constant a € R. (2.18)

From this theorem and the definition of semigroup so now we may conjecture

that the operators {7'(t)}+>o forming a Cy—semigroup have the form

T(t) = e fors (2.19)

This conjecture leads to mauy es of the Cp—semigroup such

d(T(t)x) d(eAtz) o A
i =g =AMy

Theorem 2.4.6. [15] L
{T(t)}tZO- Then

or of the Cy — semigroup

a) forallx € X

(2.20)
b) for allz € X, [, T(s)
\ " T(s) “ (2.21)
-'v .U
¢) for all x € D(A)
(2.22)

ﬂuﬂ?’w ﬁﬁ%’”ﬁmm

d) forallz €D

AManaa M INEaAD

Theorem 2.4.6 have some simple consequences which we now state.

~—~

2.23)

Corollary 2.4.7. If A is the infinitesimal generator of a Co—semigroup {T(t)}i>o

then D(A) is dense in X and A is a closed linear operator.
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2.5 Extremal Set and Extremal Points

A subset C' of a real or complex vector space X is said to be a convex if, for

a € [0,1], ary + (1 — a)zg € C for every 1,29 € X.

Definition 2.5.1. Let K be a subset of a real or complex vector space X. A

nonempty subset £ of K is said to be an extremal subset of K if a proper

1, of two point x1, x5 of K lies in
’ @bset of K consisting of just one

convex combination axy + (1 — «)

E only if both x1 and x5 lie in Q\Q‘ /
..J

point is called an extremal point-of /. 2 §

Definition 2.5.2. A reav/ iort £ 'mtopologz’cal vector space X

orall0<a<l1 (2.24)

Theorem 2.5.3. [1] Let bof a Banach space X and f a

f(zo) < lim f(x,) whenever
n—oo

T, — xg. Then f attains its_ruinim Furthermore, if C is also convex

weakly lower semi-continuo

=

and f strictly convex, then it has a uni

2.6 Basic Concgt of Con

o

In this section vﬂwﬂiﬁj‘ ncw Ej;nﬂg?ewﬁaﬁ]xﬂﬁ the basic problem.

Let X be a Banach space. We open our discussion by considering an X —value

¢

e RTAIN TN INAY

Ax(t) + f(t,z(t)), t>0
z(0) = x.

(2.25)

We are given here the initial point zy, the function f € L?([0,T], X) and A is an
infinitesimal generator of a Cy—semigroup {7'(t) }+>0. The unknown is z : [0, c0) —

X, which z interpret as the state of system (2.25).
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Let us denote by U the Hilbert space of controls. We are given an operator,
B € L(U, L*([0,T], X)). (2.26)
We denote by z* a solution with respect to a control u € U of

o' (t) = Ax(t) + f(t,z(t)) + Bu(t), >0,

(2.27)
z(0) = 2°.
More generally, we call a functi W a control.
We also introduce | é-
—
Uad ble}

to denote the collection 7 ‘ Is very carefully that our so-
lution z(+) of system (2 on: nt . nd the initial condition.
We write for short, .

(2.28)
For this we need to specify a mctional (or payoff) criterion. Let us define
the cost functional '

+ 9((T)), (2.29)

= Here r : X x U — R and
| i
g: X — R are given, and w a“é g the terminal cost. The

terminal time 7" > 0 is given as well. H
L pe i i rol for our system.
Thai is, we si@lﬁgrzﬁsﬁdﬂmgwtgﬁﬁ% : .
< 0 ¢ i A :
OMENIR e RGN

An example is given to illustrate the concept of control.

Example 2.6.1. We consider the following problem

z(t, 2x(t,
el — ZLCU 4 ity 2t y) + [ Ky, T)ulr,t)dr, yeQ, 0<t<T,

z(t,y) =0, yedQ, 0<t<T,
(2.31)
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where Q C RN is a bounded open domain with sufficiently smooth boundary, A
is the Laplacian operator, uw € L,(2 x [0,T]), (p > 1) and K : @ x Q — R is
continuous.

Suppose f1 : [0,T] x Q@ x R — RN is continuous and there exist constant C},
Cy > 0 such that

[f1(ty, )] < Ci(1 + [€]); (2.32)

|filt,y,61) — fu — sl +1& — &) (2.33)
Let X = L,(Q), define Az ﬁ‘é) where D(A) = W?P(Q) N
WOIP(Q). It is well known A 1 -e infinitesimal generator of a

Co—semigroup {T(t) }+>0-
and f(t,2(t))(y) = f(t,y

(2.34)
1t olf A f ) B Ce N K1 — ), (2:35)
for some constants C', (2.31) can be written as
' (t e dr, 0<t<T,
(1) = As(t) + Ty B utast a0

x(0) = zo.

Use Theorem 2.1 in thé pap [16] to guarantee that the

system (2.36) has a umquﬁ mild solution Wlth respect to u € L,(2 x [0,T]) when

delageis ;::"0_ { ﬂ yg_] ’a y)l ﬂ’ H:ﬁ w E.L ﬂd & closed and convex.
We cons;‘d,i ﬁj{?ﬁfj - m ﬂj‘m :]\ NI\ E]

|z (t, 7)|drdt + lu(t, 7)|%dt. (2.37)
Aplying Theorem 2.2 in paper of Wei W. and Xiang X.[16], we also guarantee that

Q o Jo
there exists a u® € U,q such that J(u®) = inf,cp,, J(u).
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2.7 Impulsive Differential Equations

We begin this section by describing a set of relations which characterize an evo-

lution process subject to impulsive effects. Let us consider an evolution process

described by

i) a system of differential equation

/()= Ault) + f(t, x) (2.38)

where f : R x 0 — X is an open Subset of a Banach space X, A is an

)
operator.

ii) the set M (t), N(t). &%) fof each't € R
)

iii) the operator B(t)* M) £ N(1) for each t. € R.
Let (t) = x(t,to, zo) BE agSolition of (738) starting at (to,z). The evolution
process behaves as follows: the pomt BO - (to, (ty)) begins its motion from the
initial point P, = (to,xo)sand move along acurye §(t,x) | t > to, = x(t)}
until the time ¢, > #o at which pomt Pt meets the set M(t). At t = t; the
operator B(t) transfers the pomt = (ﬁT&:(tl)) into Py = (t1,27) € N(t)

where z{ = B(t;)z (1‘1) Then the point P, continues tormove further along the

curve with z(t) = x(tl‘-:z:l ) as a solution of (2:38) startmg at P;" = (t,2]) until
it hit the set M (t) at the moment ty > ¢;. Then once agam the point P, = (t2, z2)
is transfered to the pomt P+ = (ta,2F) € N(ts) where 25 = B(ts)z(ts).

As before, the poiit B tomitifidesitotiiove fottvard Wwithy #(1) = z(¢,ts,24) as
the solution of (2.38) starting at (f3,z4). Thus the evolution process continues
forward as long .as the solution of (2.38).exists..~The, set, of relations i), ii) and
iii) is called the chatacterize the @bové mentioned’evolution process.an impulsive
differential system, the curve which described by the point P, the integral curve and
the function that defines the integral curve a solution of the impulsive differential

system. A solution of an impulsive differential system may be

a) a continuous function, if the integral curve does not intersect the set M(t)

or hit at the fixed point of operator B(t);
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b) a piecewise continuous function having finite number of discontinuous of the
first kind if the integral curve meets M (t) at a finite number of points which

are not the fixed point of the operator B(t);

¢) a piecewise continuous function having a countable number of discontinuous
of the first kind if the integral curve encounters the set M(¢) at a countable

number of points that are the fixed point of the operator B(t).

The moment ¢; at which the et M(t) are called moments of

impulsive effect. We will as of the impulsive differential

system is left continuous a

The meaning of the i rise to several types of

systems such as

Now, we will give deﬁlplzlon_for - C i pe 1 that we use in this

,". t =t; where {t;} is a
oo . Let Q define the operator B(t)
for t = t; only so that thefsgpence of operator B(i) is given by

AUEANIRINE DS
e 1Y wmmwmma g e

equation Wlth impulses at fixed times may be described by

sequence of time such that ¢; —

o' (t) + Ax(t) = f(t,x(t), t#t
Az(t;) = Ji(z(t;)), t=t,ieN (2.39)

x(to) = Xy.
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Example 2.7.1. Consider the impulsive differential equation

d(t) =1+ [z, t#t,

(2.40)

The solution x(t) with x(0) = 0 is continual for all t > 0. In fact, we have

x(t) = tan(t — ), t € (4, %] which is periodic with period 7. However, the

corresponding differential equation has: the fsolution x(t) = tant whose interval of

™

existence is [0, 5 cans that we can control blow-up

) since lim @(t) = +«
t—7

system to periodic boundec Isive control.

LTI

\Z
i

AULINENINYINT
PAIATUAMINYAE



CHAPTER III
FRACTIONAL CALCULUS BACKGROUND

| analysis that studies the possibility

Fractional calculus is a branch of math¢

ower of the differential operator

In this context the term s touit e application or composition, in
the same sense that f? one may ask the equation of

meaningfully interpreting

as a square root of the di tion operatc n operator half iterate), i.e., an

expression for some ape rat-whernapph 664 function will have the

C cﬁ look at the equation of

AUY FNTNE NS

for real number values of « in such a way that when o takes an integer value n,

the usu:ﬂooﬂj@;ﬁi ﬂﬁgheﬂilﬁ Wﬂvﬁfwgﬂﬁ’w — th power

some effect as differentiatio

defining

of integ

3.1 Fractional Derivative

In this section, we give the generalization definition to the derivative of the frac-

tional order (in fact real order and more generally complex order).
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3.1.1 Binomial formula Derivative

We will give some definitions of fractional derivative by the binomial formula.

Definition 3.1.1. Let f : ® — R be a continuous(but not necessarily differen-
tiable) function and let h > 0 denote a constant discretization span. The fractional

difference of order a (aw > 0) of f(z) is defined by the expression

(3.1)

where (z) = %, () Ak - "Vlim. its fractional derivative of

oder « is \
o \\~\ (3.2)

derivative and as a direct

This definition is si

result the n — th deriva

Example 3.1.2. Consider t ponentia, ction is specially simple and gives
some clues about the generaliza -i":i’:' “deria 2, following (3.2) in the definition

3.1.1,

vﬂ

#émlimiaza 1Y% (o) (@—F)

@]uﬁ’m‘ém%(ﬂ)(’lﬁ‘i
ﬂW']MﬂﬁﬂJllW]’mEﬂﬁﬂ 3

The above limit exists for any real number « (in fact any complex number).

However, in the expression (3.2) some functions allow the substitution of the bi-
nomial formula such as Example 3.1.2, but this is not for any given function. For

applying this substitution, we require the other definitions.
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3.1.2 Riemann-Liouville-Caputo Derivative

Riemann-Liouville derivative is the most used generalization of the derivative. It
is based on Cauchy ’s formula for calculation of iterated integrals. The idea is

started at the first integral of function, is as follows,

xT

(3.4)
It is not difficult generalized to n * # in what is the Riemann-Liouville
integral,
.#
T ——
(3.5)
where o > 0.

The problem with this egative or zero the integral
diverges. This problem by Caputo and Mainardi
in the frame work of the So the Caputo fractional
derivative of order a > 0 i

(3.6)
where 0 <n—a <1 3d D" denote fh ative of order integer n.
However that in 1‘,’—..——————* of 0 as the lower limit of

integration can be arbiﬁary, @ld be chosen. Generally,

the election of the 1ntegra‘510n limits in this and other generalizations of the deriva-

tive is lndlcateﬁ ﬁusﬁ&})w Wﬁ Wﬁu‘qﬂnrﬁgral with the lower

integration limit @ woul

AW &&ﬁ‘ﬁfﬁ”ﬂ?fﬂ@%ﬂﬂ 8E oo

and

oD f(z) =a D*7*(D" f(x)). (3.8)

In particularly, the Riemann-Liouville derivative with the lower integration limit

of —oo is known as the Weyl derivative.
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Example 3.1.3. consider the powers x™, by using (3.5), (3.6), and integrating by
part, forn € N such0 <n—a <1

m)!

Daxm — Da—n(Dnl,m) Da n[( n)'xm—n]
_ ml Da n( m— n) _ m' ]' /l' tm—n(l_ o t)n—a—ldt
~ (m—n)! (m NT'(n— «)
m! 1 —t"m= ”(:I:—t)"o‘_ N _
_ :z tm n _t n adt
(m—n)!T(n— «) 1, _0+a—n/0 (=) ]
|
_ m! 1 \ ) , n o gy

(m—n)lf‘(n—a m:‘j_:}‘ __‘

m n——

_ _‘ —n2 )n a—i—ldt
(m —n'I‘n— rf;ﬁ‘{\ -t
_ 4{‘; \\\1\\ EUEIES)
(m—n)'F(n— ol ‘ g+ (m—n+1)
/ * pm—n—(m—n) : |
OI‘(m—I—l) v
_F(m—a—i—l)x

Domain Transforms —_
f J"l‘ -_ 2y l
lency domain can be used to get

=

The Laplace and Fourier transforimns

a , allow such transforma-
\‘

mﬁ{f( )} = "‘”f(> m
whﬂensmverseﬂu&m'ﬂﬂmwmm

AR AR gY

where a is'¢hosen so that it is greater than the real part of any of the singularities

generalizations of the d

tions. The Laplace trais

(3.9)

of f(x). An important of the Laplace transform is related to the m — th derivative

of a function,

L{D™ f(a)} = " L{f(2)} — z_: t (D" f)(0). (3.11)
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In the cases that the terms in the summation are zero the relation is particularly

simple, and for which the generalized derivative can defined as

Df(x) = L7Ht"L{f(x)}}. (3.12)

On the other hand, the Fourier transform is defined by

(3.13)
while its inverse transform i

(3.14)
This transform also has N ' y : to the transform of the
n — th derivative of a

(3.15)
and the derivative can be/ge c " ) that this property holds true for non-
integer values of «

(3.16)
yielding the followin

(3.17)

In these two generahzatl(fl e im ghcﬂ: limits of differentiation should be deter-

mined. In the ¢ MIQ m @m%l"}iﬂéﬁative is a Riemann-

Liouville derlvatlag with the lower h]@lt of 0, Whe as in the case Fourier trans-

e ] RIRER I IRIINYNA El

Convolutlon

The generalize of the derivative as expressed in sense of Riemann-Liouville suggest
that they can be formulated in terms of the convolution which would be important

the convolution is a simple operation in the frequency space achieved by Laplace
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and Fourier transforms. The following development show how this is the case, and

how after all derivative of a fraction is its convolution with certain function;

xa—l
o(1) = 1
60(e) = 15 (3.15)
The Laplace transform of ¢, is
a—1
= (3.19)

D property,

(3.21)
So the Riemann-Liouville fractional detiva ve of order —, a > 0 (or the fractional

integration) can be defi 204
f(t)(z —t)*dt. (3.22)

P ' |

Moreover, we obtain the Laplac_

L{D™f(2)} = Lfonta)s flatt = Ll @R LGP o L{f(x)}.  (3.23)
V. X

And by using relation 1) and a
MWL

¢ o -
o AW TRNTTIRRATINGTRE ™™

erty,

0 e c@\rolution we obtain

DD Pf(x) = D P f(x). (3.25)

Example 3.1.4. (Half derivative of a simple function.) Let us assume that f(x)

is a monomial of the form f(x) = x*. By using Laplace transform

T(k + 1)
Sk+1—a :

L{D2*} = s L{2"} = (3.26)
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Hence

L [T(k+1) D(k+ 1)zk—
a k __ 1 _
D" =L { i }_F(]Hl_a). (3.27)

Such as, the half derivative of x,

Dig = - =2 (3.28)

Moreover,

D3(Diz) = D3 (22 - AR (3.29)

(3.30)

Proposition 3.1.5. efinition 3.1.1 has a Laplace

s transform. Then its fra o £ ord \a‘ is defined by the following

exTpression
D™ f(z) St fl)(x — t)*'dt (3.31)

where o > 0. ar —-
o )

For positive, one will

4
¢ D5(a) = DD (3:32)

where 0 < - ﬂ uﬁlDf.Jdm&LMQ umm order integer n.
e ) LRI /R ¥y (o

(3.31).
With this definition, the Laplace transform of the fractional derivative is

L{D*f(x)} = s“L{f(x)} forall 0 <a <. (3.33)
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Proposition 3.1.7. Let f : R — R be a continuous function and has fractional
deriwative of order ka, k € N and 0 < a < 1. Then the following fractional Taylor

series holds, which is
o hak ak
x+h=z / 0<a<l (3.34)

this is equivalent to

fla) = SO CAAGA 5 o < 1. (3.35)
We say, the fractiona point © = a, if a = 0, this

expansion is called the 0auTIn EXPansion.

Corollary 3.1.8. As tion 3.1.7 is the a — th

differentiable. Then the

féz) =1 0<a<l (3.36)
Moreover, the equation (3.36) pra
A%f(r) =T =~ T(1+ a)df. (3.37)

§aLii1 sce 7] );

We obtain some propert

Daé?
AHEAVERTHEORT oo

Note in the prev1ous part that for as= 0, D° denete the identity eperator that is

7~ AR 614 FHR LA EI VRS doe

fractional &tegration, in particularly if « is an integer value it should be equal to

()] = u(z)D ( )+ v(x )ﬂu(w), (3.38)

ordinary derivative and ordinary integration respectively.
As in the case of differentiation and integration of integer order, D" is a left
inverse of D™", but in general it is not a right inverse. More precisely, we have the

following theorem.
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Theorem 3.1.9. Let a > 0 and integer n, 0 < o —n < 1. Assume that the

function f has a Laplace’s transform. Then
DD f(z) = f(x) (3.40)

but in general not a right inverse;

FP0)rra (t)- (3.41)

Note from Theorem 3.1.9 t the iemann-Liouville derivative Df*
is again a left inverse of D ' ét inverse:

Definition 3.2.1. Forleach o, 8> 0 ¢ - Uittag-Leffler function

is defined as follows;

1

B ou
% Om—i-ﬁ U2m/ %d (3.42)
where € is a C%uuﬁch t%%bllmnj m ’lﬂ ﬁrdes the disc |u| <

||}/ counter-clo wise.

o ARANIDIN UBAR NG Yoo o o

exponentla:,! function: FE;(z) = e* and the cosine function: FEy(2%) = cosh(z),
FEy(—2?) = cos(z), and plays an important role in the theory of the fractional
differential equations. Similarly to the differential equation d/dt(e*") = we“" the

Mittag-Leffler function E,(.) satisfies a more general differential relation

D{ E,(wt®) = wEq(wt®). (3.43)
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The most interesting properties of the Mittag-Leffler functions are associated with

their Laplace integral

00 a—f
/ e MPTLE, g(wt™)dt = )\2 " Re) > w'/® w >0, (3.44)
0 —

and with their asymptotic expansion as z — 0co. If 0 < a < 2, § =1 then

(3.45)

- i | \ 3 :
€a(2) = Z T 7 - \ 1d for some N € N.
n=1 ‘ = \
Let us consider the ordi i ffcre ‘\Q. \\.\L- ion
b5 \\ > 0. (3.46)

According to the cases 0 can be referred to as the

fractional relaxation and llation equation, respectively. In

the former cases, it must be equippe

aitial, say u(0) = wup, and in the
later with two initial e ] Hh an 0) = uy. The solution of

\ 7 Y
(3.46) can be obtaine _ m-technique which implies;
)

i —
u(t) = uOFOA—wt“), a € %1),

ARETRERINE NG
RN IUNRINYIAY



CHAPTER IV
FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION
WITH Cy—SEMIGROUP

In this chapter, we introduce a mild solutiowfer the fractional integro-differential
equation with time delay by using semigroup approach. Some useful theorems
(say Gronwall lemma) aredlistcdansection 4.1, Theyean be used to estimate the
integral inequalities. Inss€ction 42 we ¢onfigure a mild solution to the nonlinear
integro-differential contzelled system(with :clime delay:;

Dgx(t) = Ax(t) +4f (¢, 2 (1), K;c(t)) %q?c(t) + B(Hu(t), te[0,T]

z(t) = (), t€[40] v J ,

(4.1)

where Gz (t) = ffr h(t, s)gls, Hx(s))ds. Then the optimal control will be discussed

in section 4.3 and an example ig/established to ¢larify our results in section 4.4.

te) =
8 J oy
ol Rt

4.1 Gronwall Lgmma with Singularity

Throughout this thesis, We denote [0, T] by I. TLet X and Y be two Banach spaces,
L(X,Y) denote the spage of bounded linear operators from X to Y. Particularly
L(X) = L(X, X)) whosé north 5 denoted by {4 |[2x).| Suppese that r > 0. Let
C([—r,a], X) be the Banach spaces of continuous functions from [—r, a] to X with
the usual-supremunm=norms If<a = 0, swesdenote-this-space-simply, by C and its
norm by ||-{|¢. Now we staté the"Gronwall lemma and~a generalized Gronwall

lemma with singularity.

Lemma 4.1.1. (Gronwall Lemma) For t > 0, let a function x € C([—r,T], X)
such that

|z (@)l §a+/0 b(s)[|x(s)llds, t el (4.2)
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where a > 0, b(s) is a nonnegative integrable function. Then
lz(@®)|| < aelo @ for qll ¢ e I. (4.3)

Proof. Let g(t) be the right hand side of equation (4.2), we obtain

g'(t) = b@®)[lz@®)]] < bt)g(t), 9(0) = a, (4.4)

(4.5)
This completes the proow ~ O
Let ¢ be a given co/ W ] .
B={zecC v 4 ' —r <t<0} (4.6)
whose moving norm is de
(4.7)

So a generalized Gronwall lemnra u e iy ay is established.

Lemma 4.1.2. Suppose

(4.8)

o0 G AT o
| < [a+ 6727 H|C Jebs, for all t € Tos (4.9)

w40 PAEUR P oL ITRETY

Proof. Let © € C([—r,T],X) which satisfies the inequality (4.8). Note that
|z (t)]| < sup ||x( )|| = ||x¢|| s for all ¢ € I. Then for any ¢ € I, we have

—1" S

t
2(6)]] < a+2b/ 7.]| 5ds
0
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where b = sup[b(s) + c(s)]. Setting
sel

t
mw:a+%/ﬁmkaﬂnteL (4.10)
0

Then g is monotonously increasing and ||z(t)|| < g(¢) for all ¢ € I. Moreover, we

obtain that

g'(t) = 2b|lz¢|[p = 2b sup || llo+2bg(t), 9(0) =a, (411
That is,
(4.12)
which yield after integrati
(4.13)
Therefore,
z(®)]] < all tel,
where b = sup[b(s) + c(s)].
The proof isseéomplet d O

We give a genera izéd i ) o0 ol ity.

Lemma 4.1.3. Supposgx € C([-r,T), X) satisfies the ollowing inequality

o)l < %%Eﬁﬂﬂﬂ%ﬁfﬂ(&ﬂ T elnds, ter,

s =gt Pelno, o
AWIANNIUNRTINYIQE @
where 0 <qﬁ <1 and a > 0, b(s) and c(s) are nonnegative continuous functions.

Then

btf
5

|zl < [llellc +ale ™, foralltel, (4.15)

where b = sup|b(s) + c(s)].

sel
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Proof. Note that ||z(t)]] < sup. ||£L‘( )| = ||z¢||g for all t € I. So

—7‘8

lz(@®)]] < 0t+/0 [b(s) + c(s)](t — 5)°7 ||| pds

t
< a—l—b/ (t — )7V |z|| pds (4.16)
0

where b = sup(b(s) + c(s)).

sel
Let g(t) = [o(t — 8)°"||z,|| pds.

raonotonously increasing. Indeed, use

the fact that ||z;||p is monotonously increasi "f or 0 <7<t

=M Zofmds — | I--ll s|lpds

. 0 S,

:/ ’U,ﬂ_ - o \ 5 h’\.."‘l
0 Vv 4 \

ﬂ Y|l pdu > 0. (4.17)

||zl

(4.18)
Applying the lemma 4711,
ool < llallg < llellc + e X4 <Tlglo + ales

T completesﬂ%c&l’& NYNINYINT .

Using lemma 4 1.3, we devise the following new generalizedeGronwall lemma

whi s oo it V1TV R0

Lemma 4 1.4. Suppose x € C([—r,T], X) satisfies the following inequality
2Ol < a+b fo(t = )" a(s)llds + e [y (¢ = 5)*|,]|nds
+e [t —s)PYa(s)||7ds, tel

o(t) = p(t), te[=r0],
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where 0 <7, B <1, a, b, ¢, e are nonnegative constants. Then

e]ﬂ (b+cte)th

=@l < [llglle +at+—le 7, tel (4.19)
Proof. Note that ||z(s)|| < sup ||z(7)|| = ||zs||B, for s € I and ||x||p is increas-
—r<7<s

ing function. We will prove this theorem by considering 4 cases;

Case 1)||z¢||p < 1 forall t € .
’%or all t € [0,%o] and ||z¢||p > 1
‘._-ﬂ--'

Case 2)||xy||p > 1 for all t € 1.
————
il (£ 1 t €[0,to) and ||z¢]|p < 1

Case 3) There is a tg € [0, T]
for all ¢ € [to, T'.

Case 4) There is a ty €
for all t € [to, T].

The proof in each cas W u ly Case 3). If there is a

to € [0,T] such that ||z, d ‘*u ||B > 1 for all t € [to, T].
For t € [0, T, ||z¢||lz > 1, \

|xs||Bd5—|—e/(t—s) || ds
0

t ( ‘ to
§a+b/ (15—5)6_1 £ s)” 1||acs||]3ds—i-e/ (to—s)ﬁ_1||:vs||7ds
0 e 0
t
+e/ (t — )’
to

§a+e—°+b ﬂ'— - (mt—s)ﬁ_lesHBds.

Applying the lem ﬂl 1.3, we obtain that @/

K A NSIENE NG, ,
QRININIUNNINGIRY

4.2 Existence of Solution to Controlled System with Delay

[|o(

In what follow, let X be a separable Banach space and Y be a reflexive Banach
space. For 1 < ¢ < oo, the Banach space L,(I,Y) consist of the usual strongly

measurable Y — value functions having ¢ — th power summable norms. Let A :
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D(A) — X be an infinitesimal generator of a Cy—semigroup {7'(t)}+>o satisfying
T(t)||nx) < Me* for some M > 1, w > 0, for all ¢ > 0.

Definition 4.2.1. Let (X, ||-||) be a Banach space and let F : D(F) — X, D(F)
s a subset of X denoting the domain of F.

(i) F satisfied a Lipschitz condition on D(F) if there exists a positive constant

Kk such that

() =

(i1) F satisfies a local conditi Two € D(F), a closed ball

B(ug,r) ={fe X

1F(f) =

Consider the controlled

DYx(t) = Ax(t) + ‘ tu(t), tel
Falt) = Aslt) ARG (0% Bt )
z(t) = o(t), tel-r
where ¢ € C([—r,0],%X)(or "€ PC([<r; 0], X)) is f The integral operator
G:X — X is defined | '
reX (4.23)

where h is kern ‘ﬂﬂ ﬁﬁrﬂmf ﬂup]tfr or 0 < a<1, Dy
denote the Rie ill TT X% X — X is a given
continuous function. Suppose:

o« A HAANA AUMIN NN Y

(HF1) f: 1 x X x X — X is uniformly continuous in ¢ and locally Lipschitz in z
and y that is, for some p > 0, there is constant ay = a¢(p, 7) such that

£t 1, 51) = S (8 w2, 92)] < agllln — ol + [[yr — oll] (4.24)

provided [|z1|], [|z2|], [lvall, lly2l] < p and for all t € [0, 7].
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(HF2) There exists ¢ > 0 such that || f(¢, z,v)|| < c(1+]|z||+||yl|), for all z, y € X,
forallte I .

(HB) Y is another separable reflexive Banach space from which the controls u take

the value B(s) € L(L,(I,Y), L,(I, X)), 1 < p,q < oo for all s € [0,T].

Before proving the existence of system (4.22), we will prove some properties of the

integral operator G : X — X in t stem such that it is defined by

(HG1) g : [-n,T] x X —X | 1 .m t on [—r,T] and locally
4-,

Lipschitz continuousdn &, ies, for p. , T3 € X satisfying ||z4]],

: uch that
llg(t, 1) & oft " \\

(HG2) There exist a constant'a, #-0uc Ttk
“.'.'W LA > ':

[, (14 (][} I ze€X. (4.26)
»w "
(HG3) h € C([-r,T)?, %En

for all tel. (4.25)

By using the moving norm Jh ||5, we obtain.the following lemmas;

v 224k LT LATVELMLE s e st
AR SNNINAN TN

1) G:
2) For each x1,x9 € C([—r,T], X) such that ||z1||, ||x2|| < p, we have

|G (t) — Gua(t)|| < Ly [R[[(T + r)|[(z1)e — (22)el|, for all te 1.
(4.27)
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3) For each x € C([-r,T], X), we have

|Gz(t)|| < ag(T + r)||||(1 + ||xe]|B), forall tel. (4.28)

Proof. (1) Let © € C([—r,T],X). Since h is continuous on the compact set
[—r, T)?, h is uniformly continuous. So, for each ¢ > 0 there exists d; > 0

such that if s € I and |t — a| < d;, then |h(t,s) — h(a,s)| < e for all a, t € I.

W} and 0 < 7 < §. Then for

— t

w )ds — 3 h(t,s)g(s, Hz(s))ds||

"\\ 9(s, Ha(s)l|ds

(s, Hx(s))||ds

AN
v\\\\
N\

Given € > 0. Choose § =
each t € I.

|Gz (t + 7) — Gx(t)

of[AI[(L + [[H[[l]I])

(4.29)
|H|l|z]]) + 1e. (4.30)
Since € is arbitrary, Gx € 'WE
(2) Let xq1,29 € C ':—__ 1at ; p. Then, for any ¢t € I,
we have E o
|Gz (t) — Gaa(t)|| ?u g(s, Hxl ))ds — t,8)g(s, Hza(s))ds||

Ay MTNETIT, o
ammwmﬂwﬁwﬁaa sy

(3) Let:cEC’([ r,T],X). Then, for any ¢t € I, we have

Gl < [ I, Hats)) s

<|ANT + ) (L + [[HI[ ||| 8)- (4.32)
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Now, we will prove the existence and uniqueness of a mild solution for the

system (4.22) which state as following definition. Recall the system (4.22);
Dea(t) = Ax(t) + f(t, x(t), Kz(t)) + Gz(t) + B(t)u(t), t el
z(t) = ¢(t), te[-r0].

Let A be an infinitesimal generator of a Cy—semigroup {7T'(¢)}+>0 and 0 < a < 1.
Define a function ¢ by ¢ (t) = =—— > 0, for short, we denote ¢, (t) by
¢(t). If z is a solution of (4.22) lued function w(s) = T'(¢(t) —
o(s))x(s) is a—differentiab se the properties (3.38) and

_7 s, 28] Rih(s)) )+ Bls)u(s).  (4.33)

If f is integrable, then t (4.33) 1s integrable in the sense of

Bochner and integrating (4.33) ::4’.' 0 to ¢ and apply the initial value

w(0) = T($(6))(0), yields A s

(1) =T (9(0)p(0) + e =S PO=GEN =(5). K +(5)) + G
+ B(s)u(s)]ds, mor all tel

0

v e b A LA TV 3
. — v B
o> LT A B A 1IN ATE™ -

() = T(6(0)9(0) + w53 Jo (t = ) T(B(t) — 6(s))[f (s, (s), Kz (s)) + G (s)
+ B(s)u(s)]ds, t € [0,to],

x(t) = (t), te[-r0]
(4.34)
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then the system (4.22) is called mildly solvable with respect to (w.r.t) u on [—r,to)

and this x is said to be a mild solution w.r.t. w on [—r,to).

Now, for each 7 > 0, C” denote the space C([—r, 7], X) with the usual supre-

mum norm and for A > 0, we set

SAT)={y € C7 | max||y(t)=p(0)[] <A y(t) = ¢(t) for —r <t <0} (4.35)

0<t<r

Then S(A, 7) is nonempty close | C7. Define P : S(A\,7) — C™ by

Py(t) = T(6(t))e(0) + (s), Ky(s)) + Gy(s)
+ B(s)u(s)]ds,
Py(t) = ¢(t), tel-r
(4.36)
for all y € S(A, 1)
To prove the existence i N t the map P as in (4.36)
and show that it contains oIt by \ these lemmas.
Lemma 4.2.4. Assume the hyp .(HF), (HK) and (HG). For T >
0, the map P defined.as.- 6) is bounde ere exists M > 0 such that

X'
) and lemma 4@2, there exist L1, Ly > 0

IPy(t)ll < M for alle SO

Proof. Let y € S(A\, ) my using (HF
such that for all s € [0, 7]¢

ot &Fﬂ’%ﬂﬂﬂsﬁl}ﬁ 1.3,
ammnﬁww%ﬁﬁ“’rﬁ%

for some N > 0 since lly|| and ||ys||s are continuous on [0,7]. Then apply the
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condition (HB) and for each ¢ € [0, 7], we obtain that

1Py < [T ()] |l (O)]]

1

T /0 (t = )" T (6(t) — ¢(s))llLeol1f (5, 5(s), Ky(s)) + Gy(s)|lds

1

T / (t = )" M IT(6(t) = &(s))|1oxe)|| B(s)u(s)|ds

N Mewe(T) rt Mews(T) [t
<Mew?™) —/t —/ t—s)* !B ds.
<Me*Dllglle + =p— | T ), =9 B Eu(s) s
NMewrﬁ(T) ”

<Me“*Dl|pllc +

Mew¢<T> / p(a_ "
/r \\
NV M A = IIB Jull,ax) _

Then the map P is bo — ' O

Lemma 4.2.5. For 7 >0, per oriB 1s well-de ed on S(\, 7). Moreover,
there exists 1o > 0 such that P aﬁ@/{; ) into v * i.e., P(S(\, 7)) € S(A\, o).
f-‘l
Proof. For 7 > 0, let {y,} be asequence Yand y € S(\, 7) such y, — .

Then by using (HK) (HF?2) ff" e &
for all s € [0, 7], il

ere exist Ny, No > 0 such that

1 (s, yn(s), i . _,‘ yllsonn (4.38)

1Gyn(s) — Gy(3 < Nallan): ]

Note that ||(y, ﬁu ﬁ @Wﬁ WW ﬂ Wﬁi s0, we have

1 RAIANAIDNAING VEY v

+—/(t—8)°‘ HIT(6(t) = (I Gya(s) — Gy(s)llds

['(a) Jo
Me“?T)N,

Me“? TN, [t
T U (= s)* s |y, — ,

Me<?T)(Ny + Ny)T ! I
= OdP( ) Yn — YIS\ r)-

y’7‘||B

/0 (t — )" dsl|(s)r — vrl5
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Since ||y, — ylls(r) — 0 as n = +o0, ||Py, — Py|| = 0 as n — +oo.

This implies that the map P is well-defined.

We next will show that there exists 75 such P map S(\, 79) into itself.

Given p > 0 and y € S(\, 7). By using assumptions (H F') and lemma 4.2.2, there

exists k > 0 such that

N
1/ (s, y(s), Ky(s) 'ua‘“ Gy (0)]
< |1f(s,y(s). Ky / \b\\\*\ Gy(s) — Gy(0)]

< alp,7)[lly(s) —
< afp, 7)(|[K][ +2)A

(
K| [ ’ + 11z — vol| 5]
Porcy | (4.41)

So, we obtain

1Py (t) = »(0)]]

<||T (¢(t))90(0)—90( _—__, y(0)) + Gy(0)||ds
Meol®) /t A

e
/ﬁﬁﬂ“%ﬂw§WB1ﬂi
QRIRINTAUNMINAE

o U (0), Ky(0)) — Cy(0)][ds

4
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ew?(1)9 c t .
< o [7(6(0)5(0) (o) + T2 [ oy

MWW)@ﬂWMHﬁ)/%_)aws

qub(T
¢ [/ (t— s) plds]p/”B s)||Pds]?

(p — 1) || B(- Jullz,0,7,%)

_|_

< max IT(6(0))(0) — ¢(O)]| + ~

0<t<r (pa - 1)F( )
Me"”“ 2k(1 + ||<P|| g\\' ) b 2)N T
<Ag(u,T)

) IBO)
pa — 1))

ul|z,(j0,71,%)

Since q(u,7) = 0as T — 07, be fo n such that 0 < g(u, 79) < 1.

We conclude that P maps ., P(S(\,70)) € S(A 7). O

Theorem 4.2.6. Suppose (HF), (i 7 JIG) hold. Then for each
w€ Ly(1,Y) and 1 «V: 1 that the system (4.22) is

mildly solvable on [—r, ty) w.r.l. w and th la soluti@is unique.

Proof. For 7 > v
ﬁﬂﬂ?ﬂﬂﬂiﬂﬂﬂﬂi
S(1,7)={yc @ | max||y( é@ |<1,y ) for all —7"<t<0}

Thensﬂr‘lﬂﬂaﬂnﬁ‘i&&mq’l ‘V]Eﬂ Y

Define the operator P : S(1,7) — C7 by

Py(t) = T(6(t))¢(0) + 15 Jot = 821 T(4(t) — ¢())[f (5,5(s), Ky(s)) + Gyls)
B(s)u(s)]ds, te€]0,7]

)
Py(t) = ¢(1),

€ [-r,0].
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By lemma 4.2.4, the operator P is well-defined on S(1,7) and there exist 7y such
P maps S(1,7) into itself . We now only show that P is strictly contraction on
S(1,7). Given p > 0, let y1, y2 € S(1,79) such that ||yi1]|, [|v2]|] < p. By lemma
4.2.4 and condition (HF) , there exists b(p) > 0 such that for all s € [0, 7]

1 (s,51(5), Kya(s)) — f(s,52(8), Kya(s))|] +|Gyr(s) — Gya(s)]|
< b(p)([|lya(s) — ()| + [[(w1)s = (Wa)slB) < 20(p)[|y1 — wallsary.  (4.42)

So, we obtain '7/

[Py () — Pyo(t)]] = o =

Mewd)(r) /t( )
< t— )"
(o) Jo

s Kya ()| + Gy (s) — Gya(s)||ds

Pzx(t) = z(t), i.e.,

z(t) = T(¢(t))p(0) ;ir.-‘—":r “““““““““ Psh 2 (s), Ka(s)) + Ga(s)

,'e [0, 7o
ﬁﬁ”ﬁwﬂﬂsWﬂWﬂﬁ .

In other word, We say that x(t) is the unique mildssolution of system (4.34) w.r.t.

won |- ama\mmumawmaﬂ "

The problem now is to investigate what happens if ¢t > ¢g, i.e., t = t; + 7 with

7 > 0 which is showed in the following corollary.

Corollary 4.2.7. Under the assumptions of theorem 4.2.6, the system (4.1) has
a unique mild solution on any given interval [—r, 7). (Such a solution is called

global in time.)
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Proof. We start by showing that for every 79 > 0, g € X, there exists a § =

d(7, ||mo||) such that the system (4.1) has a unique mild solution x on an interval
[70, 70 + ] whose length ¢ is defined by,

[|zollal (a)
p(70) L(p(70), 70 + 1) + N(70)
where L(c,t) is the local Lipschitz constant of f and G following from (HF'1) and

0(70, [|zo[[) = min{1, |

]/} (4.44)

s))f (s, 2(s), Ku(s))

+ G(s) (4.45)

As in the proof of theo ap P is well-defined and

maps the ball of radius ) into itself. This follows

from the estimate,

|| P()]] '

< Mwlleoll + gy | (LB AT 5. 29, Kx(5)) ~ 1(5,0,0)]
+ [1Ga(s) - Cot) | ATE OO CO@ R G, (05110

< M(ro)l ol + M(To)ﬂ”’; a — 7o) + (;(’F)(N )(TO) (t — 7o)

< 2M ’7'0 H{E()H
Aol W&l‘ﬂ\‘ﬁ"ﬂﬂ']ﬂ‘i

where the last inéquality follows from the definition of 7. In this ball, P satisfies
a unifor thus in the
e T S T A e
point is the desired solution of (4.1) on the interval [—r, 7], i.e.,

z(t) = T(6(t)))zo + [yt = 8)* 1 T(S(t) — 6(s))[f (s, 2(s), K (s))

+Gx(s) + B(s)u(s)]ds, for t e [0,t] (4.46)

x(t) = p(t), for t e [—r0].
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From what we have just proved, it follows that if x is a mild solution of (4.1) on the
interval [—r, 7], it can be extended to the interval [—r, 7+ d] with § > 0 by defining
on [1,7 + 0], x(t) = x1(t) where z4(t) is the solution of the integral equation, for

ter,T+4,

(4.1) has a unique mild s : he above procedure can be
iterated any finite num alway \'.ﬁsame d), we conclude that
(4.1) has a unique mild :

mild solution that is g O
4.3 Existence of

In this section we conside ractional controlled system
(4.34). Suppose Y is a separ ce and system (4.34) is mildly

solvable on [—r, T for every u &

s

" FMAMENENEDs,
ORCL R0 E1 i (181

pair. Since solution z is corresponding to the control u, so for short, we denote

J(z*, u) by J(u). We will minimize the fractional controlled system (4.34) under

the following assumptions:

(HU) Upg = Ly(I,Y), B(s) € L(Ly(I,Y), L,(I, X)) for all s € I, 1 < p,q < oo and

B(-) is strongly continuous.
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(HL) 1: I x X x X xY — [0, 0] is Borel measurable satisfying these conditions:
1) I(t,-,-,) is sequentially lower semicontinuous on X x X x Y for a.e.
tel.
2) I(t,&,v,-) is convex on Y for each £ € X, v € X and for a.e. t € I.

3) There exist constants a, b > 0, ¢ > 0 and n € Ly(I,R") such that

/I |+ bllwl |5 + cllull5-

, (HU) and (HL) the optimal

an admissible state-control

l(t> 57 Vt>‘

Theorem 4.3.1. Under the
control problem (P) has a

pair (2°,u®) such that

J(2° u’) = /OTl(t, :

Proof. If inf{J(u) | u €re i 0
inf{J(u) | u € Uy} = . By (HE3), t \ constants a, b > 0,¢ > 0
and n € Ly(I,R") such t \

q

w), for all u € Uyg.

prove. So we assume that

J(u) = /0 U(t, 2(t), 2 o
>/ Ddt+a | et (o)lde +b UHBdt—i-c/ [ut)|[Ldt + Dz (T))

. ﬁl BANYTTINYAS
- mﬁ\fﬁﬁfﬁxm ANy

J(un)z/ (dt—l—a/ 2 (¢ ||dt+b/ ||xgn||3dt+c/ un (8)][2dt + B (" (T)).
0

So there exist Ny > 0 such that for all n > N,

T
m > J(u) > c/ u(t)|[4dt
0
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m+m
c

for some m > 0 and hence ||un||qu ry) S
This show that u,, is contained in a bounded subset of the reflexive Banach space
L,(1,Y). So u, has a convergence subsequence relabeled as u, and u, — u? for
some u’ € Uyg = Ly(I1,Y). Let z, C C([—r,T], X) be the corresponding sequence

of solutions for the integral equation;

wn(t) = T($(1))p(0) + w5 Jo (t — 5 '. — @(s))[f (s, 2n(s), Kzn(s)) + Grn(s)
+ B(s)un(s)]ds, Nk
xn(t) = (1),

/ [ (4.47)
From the a priori estimate constan \i such that

‘ (4.48)

liere are cor@ants a(p), b(p) such that

||f(swnﬁ7ﬁ7ﬁyjﬂ Wﬂlﬁﬂ]ﬂ? - (@ ||B

ammmm UNIINYAY

By (HF), (HK), (HGEnd lemma 4.2.
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for each s € I and t € [—r,T].

Mewd(T) g

() [* — ) Y|z, (s) — 2°(s)||ds
2 [ =) el

Mew¢(T)b(p) ' a-1 — (2 S
+W/O(t_s) [1(n)s = (2°),]d

ewdlT) [t
M / (t — )| B(s)unls) — B(s)u(s)]|ds

[lza(t) — 2°(®)]] <

(o) Jo

B()u’l| L, 1,x)-
Note that z,,(s) — 2% a 4.1.2, then

|20

where M is a constant, indépe dént!
we have [|B(-)u, — B(-)u’|| g, g s implies that ||z, — 2% — 0 in
C([=r,T], X). Let us set 1,(t) = # w0 (t)s b s, un(t)) for all ¢ € [0,T]. Then by

Since B is strongly continuous,

(HL3), (1,0)} i » soquencer6f foicuegat bl fnctions. So. by wsing
Fatou ’s Lemma, | — 1;'_‘
m@ L,(t)dt = lim 1, (t ﬂ (4.49)

0 n—o00

o Y81 AN TNE NG
m = T () > lim | dt + ®(z(T))] "y
QW’W@{Q éug,;jm NeNaH

n—oo n—oo

_ /O lim (¢, 20 (£), (20)e, (1)) dt + B(O(T))

> / I(t,2°(8), 22, (8))dt + D((T)) = J(u).

This show that J(u®) = m, i.e., J(u®) < J(u) for all u € Uy,. O
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4.4 Application to Nonlinear Schrodinger Equation

In this section, we consider a simple application of the results of section 4.2 and
section 4.3 to the control problem for the following generalization nonlinear time
dependent Schrédinger Equation with delay in R,

1 0V (z,t)

PRV =AV(z,t) + f(t,z,V(x,t), V¥ (2,1))

U(z,t (4.51)
U(x, (4.52)
e A AN
where (2 is boundary do =€l 7‘_\ € L,(2x1),1<q< o0,

h € Ly([-r,T],R) an
problem will be conside .
(AAf) Suppose that f: I dgi[-rT] xQxCxRY - R
are satisfied the following condi ions, there [ 1, Lo > 0 such that

he space in which this

—r———

£ (t, 2, &, m| ALl o, S mFESBa (1 + <] + In]) (4.53)

|f(t7x>§777)—f(3a$7 FAGEZISL/ /A ACE 7 t—s|+|§—§~|—|—|n—ﬁ|)

m (4.54)
for all s,t € [—r,T1, xE% £, e C and 77,2/6 RN

Let Uy = ]@j]ﬁ(ﬂﬁtﬂﬁﬂkﬁ Wﬂ xﬁﬂﬁconsider the Bolza

problem :
() Find.u? ch that . . ¢ o o
YRIEHINMAINNaY
where
s = [ [weopasas [* [ [ e rasica
+/0T/Q|u(§,t)|qd$dt+z(\ll(x,T)),
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and here z € C'(C,R").

We known that the Schrodinger equation can apply extensively in quantum
mechanics. A complex value function ¥(z,t) is called wave function that de-
pend on both position variable (z) and time variable(t). We introduce the inte-
gral ffr h(t — s)g(z,s,V(x,s), V¥(z,s))ds denoting in sense of delay term that
is impacted from the initial delay function ¢(z,t) for t € [—r,0] in the condi-
tion (4.51). Moreover, the system isicontrolled by the control u via the mapping
Jo B(z,&)u(&, t)dE. In doing we will use the following notations; © = (1, x2, ..., zn)

is a variable point in the W —dimensignal Buelidean space RY. For any two

such point @ = (21, To,wm®N ), L = (Y1,Y2, - Yn)owve set © -y = Efil Tl
and ||z|]? = 2 - 2. AnN©— tuple of /nennegative integer § = (ﬁl,ﬁQ,...,ﬁN) is
called a multi-index andewe define [5 [ j'— val By andwa’® = 7o - - - 2P for
x = (21,22, ..., TN). Den,otmg Dy L) d/ﬁxk and D = (Dl,Dg,...,DN) we have
D? = DD ... DIV - 7 i 8‘9552 e fg’?jv Let Q be a fixed domain in RV

with boundary 92 and elosure §. VVe W 111 usually assume that 02 is smooth, i.e.,

00 € C* for some suitabled >1. By Yl )jwe denote the set of all m—times con-
tinuously differentiable real-valued or comp_Le-__}g?yalued functions in Q. C§*(£2) will
denote the subspace of Cm(Q)__.(_Ef)_I};Sting c?j:‘g_’l}"p_s_e functions which have compact

support in Q. For z E'Cm( ) and 1 < p < oo we define /|

5
||u||mp / > |Dtulrar)' (4.55)

|B|<m

If p=2 and u,v.€ C"(Q) We alse define

/ > DPuDPvda. (4.56)

|B<an,

Denoting by C,(€2) the subset of C™(2) consisting of those functions u which
||| mp < 00, we define W™P(€2) and W""(Q2) to be the completions in the norm
| - [|lmp of Co(€) and C™(Q) respectively. It is well known that W™?(Q) and
WP(€2) are Banach spaces and obviously Wy (Q2) € W™P(Q2). For p = 2 we
denote W™2(Q2) = H™(Q) and WP (Q) = HJ*(2). The spaces H™ () and H"(Q)
are Hilbert spaces with the scalar product (-, ),, given by (4.56).
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We will transform the system (4.50) to the abstract form. Let X = Lo(£2) and
for t € (—r,T] define ¥(t) : 2 — X by

U(t)(x) =W(x,t) forall x e,

and define

D (t)(z) =

Define f: I x X x X = X

| rall WeX, ze€Q.
2

| —
) £, WU(a \Il(zv,t)), (4.57)

Py, t))ds, (4.58)

B(t)u(t)( : ;, ": ) (4.59)
We define an operator A /¢ ' \- .
ad

oh lifferential operator iAW;
7 \\
LT I v "\ )(Ao)

where D(A4y) = H*(Q). :50) is transformed to the abstract

problem;

DW(t) = V
V(1) =e(0), ¢ {

—r,0].
‘o o
o 41 AL BT MBI AR
U . o | .
Corollary 4.4.2. [15] Ay is the infinitesimal gemerator of a group of unitary op-

ewors APFIANTI ITU ARTINE TR Y

From corollary 4.4.2, it follows that the operators Aq is the infinitesimal gen-
erator of a group of unitary operators {T'(t)}sex on L*(RY). A simple application

of the Fourier transform gives the following explicit formula for T'(¢);

(T(t)) @) = [ ittty (4.61)
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Lemma 4.4.3. [15] Let {T(t)}:>0 be the semigroup given by (4.61). If < p < oo
and 1/p+1/q =1 then T(t) can be extended in a unique way to a bounded operator
from L1(R?) into LP(R?) and

1T (#)ollop < () 72/ [v][o,. (4.62)

Lemma 4.4.3 guarantee that A = ¢A be the infinitesimal generator of the

Co—semigroup of bounded linear operz

Theorem 4.4.4. Suppose assumptic . Then the control problem (Pp)
for the generalization nonlinear tume dependen Lochrodinger equation with delay in
RN ( system(4.50)) has a_selition, 8, there ewisis an admissible state-control
pair (U0, u®) such that ‘

Proof. We solve the con
form (4.60). By using the

50) via the Cauchy abstract
initions of f, g and the cost
functional J, it satisfies all the as 0 en in theorem 4.2.6 and theorem

4.3.1. Then the control problem 1) {0
. T

exists an admissible s

vg-,‘_, |

1(4.50) has a solution, that is, there

i
ﬂUEHﬂEWIiWEI"]ﬂ‘E
ammmm UAIINYAY



CHAPTER V
IMPULSIVE FRACTIONAL INTEGRO-DIFFERENTIAL
EQUATIONS WITH C,—SEMIGROUP

The main objective of this r to impulsive fractional integro-

differential equations;

D¢x(t) = Ax(t) +

2(t) = (1), te
where I = [0,T], D = {t r G is defined by
A'is an infinitesimal generator of e foup {T'(t) }+>0 satistying | T(t)|| <
Me*t, M > 1, w > OX >0 for{"E'“" M AZ(tz) N x(ty) = x(th) — x(ty)
denote the jump of stateX-att;wi i j w k=1,2,...,n. We prove
the existence of solutidrl for sys umptions (HG), (HK),

(HF), (HB) as same as the assumptlons in chapter 4

() K- X%ﬂ%&l@%ﬁpﬂ@wmn‘i

(HF1) f:Ix X x X — X is unifortily continuows:in ¢ and locally Lipschitz in 2

anﬂ W BT 2 b ] bk O DT st

[f(t 21, 01) — f(t 22, 92)|] < ap(p, 7)[|71 — w2 + [ly1 — vell]
provided ||z, [|z2|], [[y1ll, [|ly2|] < p, for all £ € [0, 7].

(HEF2) There exists ¢ > 0 such that || f(t, z,y)|| < c(1+||z|| + ||y|]) for all x,y € X
and t € [0,77.
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(HB) Y is another separable reflexive Banach space from which the controls u take
the value B(s) € L(L,(1,Y), L,(I, X)) for all s € [—r,T].

and with the another assumption, say (HJ);
(HJ1) Jg: X — X is a map such that J,(X) is a bounded subset of X,

(HJ2) there exist e, >0, k= 1,2, ... ch that

[Tk (21

for all 1, o € X an

5.1 Useful Definita

In this section, we will _ ," and theorems that play important
for proving the main resuls. - 7T v [—r,T] — X| = continues
at t € [—r,T]\D and x is Y - ] \\ ight hand limit at t € D}
' ' extend the integral operator G to

PC([-r,T],X).

Lemma 5.1.1. Assure (1 ; ds. Then ) as the following prop-

Laes

orties ‘V?i 5
1) G : PO([~r,T] xm—wo rT]X) m
Y fr ﬂ%%ﬂﬁ’%wm A

1Gas(t) — Caa®)]] < Lyl lE+ )| (w1 ko)l foreall ¢ € 1. (5.3)

AR AN AATANIE Y

3) For &ach x € PC([-r,T], X), we have

|Gz (@)]] < agTI[A][(1+[|l2el[B),  forall tel. (5.4)

Proof. The proof is similar to the proof of lemmad4.2.2. O
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Since the proving existence of solutions for system (5.1) is complexity, we will
use some technique about constructing the fixed point operator, it meant that
we must show this operator is contraction and map any compact subsets of X to
compact subsets of X. The Ascoli-Arzela Theorem is an advantage choice that we
choose to solve this problem. But we cannot directly apply the Ascoli-Arzela to

our problem on PC([—r,T],X). This is a reason why we need the generalized of

the Ascoli-Arzela Theorem for PC/(] /’(/
%:X IIl) is (sequentially) com-

onvuv bsequence 1. €., a sequence

Definition 5.1.2. A set S o
pact if every sequence oﬁy
converging to an elemGW -

Definition 5.1.3. Let ors from L(X,Y). If for

each x € X, there exist ¢
(5.5)

then the operators {T, |«
that

1.e, there exist M > 0 such

|| Toz|| < MW&?# ~and for all z € X. (5.6)

L |
Theorem 5.1.4. (4 ,u..-—‘-—-—--——-.---———-———‘ --------- X C(la, b, X) is compact
if and only if it is bounﬁ ifﬁnd only if ;

1) there exists M > 0 that | f||c (s, x) 9 for all f € X ;

2 i are Sy MEL A 3’]&%@%&% s <3 i

all x y € a b such thatﬁ: —

Theorequ nem ized Ascoli- Arzela gveorev] uppose !V J {z €

PC([—r,T],X) | x(t) = (t) for t € [—r,0]}. If the following conditions are
satisfied;

1. W is a uniformly bounded subset of PC([—r,T], X)

2. W 1s equicontinuous in I ~ D



55

3. Its t—sections
W(t) ={z(t)| x € W, t € I \ D};
W(tt) ={x(t")| z € W};
Wit ={z({t")| z e W}

Proof. Let {x,,} be any sequ f W | y} € C([0,t1), X). Using the

as. 1m — OQ.

Tml||o, - 1/ ‘\\
Consider {1} € Cilt: b & ' Zm (7). Due to the Ascoli-
i isat e ompact subset of C([t1,t2), X).
Then there exists a subseq : @{} \ \\ , such that

as m — OoQ.

Repeat the procedures until int erva

{&m}, such that

now that there is a subsequence

xm|[tn,T V‘m — 00.

Define z(t) = 2°(t), t Egz 1, t;) fori=1,. n+1 Then z € PC([—r,T],X) and

ﬂt‘lﬂﬁf’) Wﬂ’”ﬁ@‘ﬂ B HIg

Therefore W is a relatlvely compactgset. This complete the proof., O

YRIANNIUNNR1INETAE

5.2 Impulsive Integral Inequalities

The following theorems are most useful integral inequalities which is of Gronwall
type. Let PC*(R*,R) denotes the set of all functions map from R+ to R such that
their derivatives of order a exist on ®* — {t;}, kK = 1,2, ... and left continuous at

ty, k=1,2,... for 0 <t < tht1-
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Theorem 5.2.1. Let m € PC*(R*,R) and fort >0,

m*(t) < m(t)p(t) +q(t), t # ti (5.7)
m(t) < apm(ty), m(0) = ag (5.8)

where 0 < a <1, p,q € C(RT,R) and a, > 0 are constants. Then

0<t, <t tg Stj <t

t+ \ b
e
where ¢q(t) = 1“(211)' / |

Proof. Let t € [0,1;]. Thef,

et (smrp(r)dr g o) (5.9)

sz[m & X rA,lf A Wy n _i (t—s)p(s)ds (510)

— qgedo Pa-1t=)p(s)ds | o [5da 5 : t — 5)q(s)e™ Jo amr(s=rIp(r)dr g

For ¢ € (tl, tg], by '@’1 : 1\‘,‘

J! |
Dem(t)e S Samr=Id) < gy

which yields aftﬁli%gfj otlbid %ﬁi‘:’wtﬂ M9

1
_fttl Al 1(t—s)p(s)ds (5.11)

t
m(t) < y/ t—%ﬁ a—1(t—s)p(s)ds X I ¢‘—'1(t—8)p(s)ds sqﬁlgﬁfﬁ‘ ftsl ¢a—1(8—r)p(r)drds

\ ’]a@ﬂijm lm']“ EJ (5.12)
and from (5.8), we get

m(tf) < aym(ty)
t
S aoalefotl da—1(t1—s)p(s)ds + alef(fl ¢a—1(t1—$)p(s)ds/ ! ¢a—1(t1 i S)q(s)e— fos ¢a_1(s—'r)p(7‘)d'rds.
0

(5.13)
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Hence, we obtain for ¢ € (t1, o],
m(t) <agaeh’ a-1(t1=sp(e)ds i, damit=)p(s)ds
+ agels’ bamrt=ap(ds iy damr(t=9p(s)ds /t1 Gai(ty — 5)q(s)e™ Jo darls=rIp()dr g
0
1 oty amr(t=s)p(s)ds /t bos(t — 8)q(s)e™ i dorrmptrldrg (5.14)
¢

Assume that (5.13) holds for t €
it follows from (5.7) that

integer k > 1. Then for t € (¢, txi1],

(5.16)
Using (5.8) we obtain for
m(t) < akm(tk)effk bo \ o1 (t—5)q(s) Ji dam1(s=r)p(r)dr 4
(5.17)

mt) < > (] — f Pamill | — 8)q(s)e” i PamrlemIPr g

0<t),<t t<t;<t wd

(5.18)
which on simplification givesthe estimate %ﬂ 8) E] t e [0 tr+1]. The proof is

omacs. A UE) V) ;

Theorem 5 2.2. Let m € PC*® §R+ 0 <« <&whzch satisfiés{
S)p 3

ﬁialﬁc—l— s+ ggkjrr’:lafort>0 (5.19)

0<t, <t 0<tp<t
where ¢, > 0 and a are constant and ¢, (t) = 1“(211)' Then,
t
m(t) < J[ (1 +cp)eln’ domrtaaantm@is =y 5 g (5.20)

0<tip <t

where co = a — 1.



Proof. Setting the right hand side equal to v(t) we have,

v (t) = p(t)m(t); ¢ # 1y

v(th) = v(t) + cem(ty), v(0) = a.

Since m(t) < v(t), we then have

. wﬂ%w%ﬁ%#“

nd b = sup[b(&) + c(s)

TR Ny

el <a+b S / bact(trss — )l|ads.

0<t, <t

Setting t
k+1
Z / Ga-1(tgs1 — 8)||lxs||pds, forall t e I.

0<t, <t

58

(5.21)

(5.22)

(5.23)

(5.25)

(5.26)

(5.27)
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Then ¢(t) is monotonous increasing. Indeed, for ¢, < 7 <t < t34q, k= 1,2, ...,

we have
t T
g@t) —g(1) = | Ga1(t — 9)||zs||ds — / Ga-1(T — 5)||2s||ds
t t
kt—tk ‘ritk
- / W0 | et — / U2y |
0 0
T—1k t—tg
_ / Wzl / w2l pdu. (5.28)
0 ! 0
(t) > g(7).

We know that

|zell5 < [lelle + sup
te[0,T

(5.29)

Therefore by using theore

b = tr

lz@®)| < llzells < (a + " \"\, , forall tel. (5.30)

O

5.3 Existence ;C-}T' __________ a3 isive-r'ractional Differen-

, L
tial systemﬂ

zlmtehz efl(j}lf(;)wingﬁ“rﬁjlgsidatﬁ igrvllix%fWiﬂa}]d?ﬂﬁtial equations with
Die(th e Av(py (o @) A6 4 610 5 ﬁ
SR TANTIM I 1N

x(t) = (t), te[-r0]

(5.31)

where I = [0,T], D = {t1,ts, ..., t, }, the integral operator G is defined by

Gm(t):/ h(t,s)g(s, Hz(s))ds,

-T
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A is a infinitesimal generator of a compact semigroup {7'(¢) };+>¢ satisfying | 7(¢)|] <
Me*t, M>1,w>0,t>0fort, €D,
Ax(ty) = (t]) — o(ty) = =(t)) — x(t)

denote the jump of state X at t;, with the size of jump Ji, k = 1,2,....,n. Assume
that the assumptions (HG), (HK), (HF'), (HB) and (HJ) hold. We will prove

the existence of a solution for syste ) by starting at this delay system,

{Df‘x(t) = Ax(t) + f(t,

), tel0,t]
(5.32)

a(t) = o(t), tel-

v

the Sy%m;
ﬂﬂéj "“‘n PRI

u@m@g AN INYIAY

(tl))[wl(tl) + Jl(l‘l(tl)) + ﬁ ‘/;tl (t — S)a_lT(d)(t) N ¢(S))
[f(57$2(5), Kuy(s)) + Gaa(s) + B(s)u(s)]ds, t € [t1, 1]

LL‘Q(t) = xl(t), te [—T', tl).

where ¢(t) = ‘ S

(5.36)



61

We can reform (5.36) to;

[ aa(t) = T(6()0(0) + i i (11 — )2 1 T(6(8) — () (5, 22(s), Kaa(s))
) +Gn)+ Bl <>]ds+ L (= 8)2 1T (6(t) — 0(8)[F (5. 2(5), Ka(s))
+Gaa(s) + B(s)u(s)lds + T(6(t) — ¢(t) i (11 (1)), t € [tr, 1]

\ xo(t) = xq(t), t€[—rt)

(5.37)
and
(1) = T(0(t2))p(0) + 225 D3 BT =0 o)) 5. (). Koo
+ ot + ) G0 R \ — (8 [ a(5). Kma(s)
+ Gaals) + Bls)ull (5.38)
Continues this process
[Da #(t) = Ax(t) + f(t, | L te (ttin)
o(te) = zp(te) + Jr(@ren (), (5.39)

l’(t) - xk(t)a t ';L_

Then, by corollary 4T Tl Ve

(5 700 ﬂ?%ﬁﬂ%ﬂ&'}ﬂ Ponstind]

xk—l—l(t Tk t) t E -, tk

ARNTUNAIINYINY oo

[xm(t) T(6(t) — Gt (t1) + Je(wnll)] + s fi (8 — ) T(@(t) — (5))
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Since xp11(t) = zx(t) for all t € [—r,t;] and for ¢ € (tg, tri1]

110 = T(6(0) = S DTS00 + 5 3 / (t1 — 5)°
T(O(t6) — SN 5. 74(s), Ka(s) + Caals) + Bls)uls)]ds + Jy(re(r2))]

3 T — olt) Ja(t) + ﬁ / (t— ) T(6(t) — (s))

+ G (s) + B( @(ti)) Jiwi1(t:) (5.41)
So for k =0,1 .
'xk+1(t) = T(4(t) | ‘1T(¢(t) = o(s))
< o, axab 4G 7 S SO o)
+ D T(ot) £ offiiidriailiily e (b tis]
2 (8) _0;:(;), t e Z 73

) . .
"‘ ss we obtain a solution

of system (5.31) is ll 'm

ﬁwﬁwﬁﬁwmﬂ?
+§;mmﬁ%f% wﬁﬁﬁwh"ﬂ

be a solution for systen w

(5.43)

The solution in this form is called a piecewise continuous mild solution of
system (5.31) with respect to a control u in admissible control set U,q on [—r, T]]

and for short, we call a PC'—mild solution.
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Definition 5.3.1. For any u € Uyy and x € PC([—r,T], X) such that

2(t) = T(6(1)(0) + 7oy Z / " (s — 92T — 6(5))[f (s, (), Ka(s)
9 + Ga(s) + s)ds+ Y T t)Jez(ty), tel
ksc(t) =p(t), tel-r0]

(5.44)

—rT

Theorem 5.3.2. SupM, i » ] ), (HK), (HU), (HJ)

1maL 7 Co— semigroup {T'(t) }+>0
with [T ()] < Me*", M 0,-4-="0, then (5.1) has a unique

0,1,...,n where t, =0, t, = 0

After this, we will show the - o prove the existence of a PC—
mild solution of the system (5.1) b " 1sing the Les atider fixed point theorem
and the compactness ofssemigroup {7T()}i>0. F » definition of a PC'— mild

(

Fa(t) = T(cb( % éﬁ(%iwsﬁ;ﬁﬁtf ¢(s))[f (5, 2(s), K(s))

9 +Gx() ds—i— — o(tr)) Jpx(ty), tEI

%mmmmmamnaﬂ

(5.45)

for all z € PC([—r,T],X). Then F is well-defined. Let x € PC([-r,T],X). B
(HF2), (HK), (HB), (HJ) and lemma 5.1.1, there are constants ay > 0 such that

1f (s, 2(s), Ka ()| + |Ga(s)l| < ap 2+ [le(s)]] + lloslls) < N (5.46)
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for some N > 0, for all s € [0,T] by continuity of ||z(t)|| and ||z¢||5. So, we obtain
that

|Fa(t)] < MOl +

ewd(t) tp+1
= [ = 1 ssa(s), Koo

F(Oé) 0<t,<t

+ 1 Ga(s)l| + 1 B(s)u(s)ll]ds + Me=*® Y ||y (ti)]

0<trp<t

tg

M Ne»9®
I'(e)

Mew¢(t) tet1
o 2

I'(a) 0<tp<t”tk

< Me“*D|lpllc +

0<tp<t
< MOl + - ":"/ I
Mewd®) /
+ — s)|[Pds
o) kz:;[ A Ju(s)|["ds]

+ MNe* ™ Ny~ ey
0<tp<t
a—1
DT | B(-ull,rx)
(po — DT (@)

MN e6(

< Me*lpllc +

n
+ M New?® Zek < 0.
k=1 '

Therefore the operat \y’_— Y]

Lemma 5.3.3. Assum@that assumptio?(HF), (HK)&HB), (HJ) holds. Then

ot Fm"ziﬁ“wﬁﬁ%’ NENT

Proof. Let x, be &sequence in PC(] ‘r ,T'], X) that converging tox in PC([—r,T], X).

Then th ﬁi@i § ﬁ ghen ]l <

1+ ||ac|| .i 5.1.1 oﬂa there exist
L > 0 such that

1F (s, n(s), Kn(s)) = f(s,2(s), K (s))|| < b(p)|[zn = ]| pe
1Ga(s) = Ga()|| < Lyll(@n)e — @l 5-
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So we have

te+1

Fault) = a0 < g5 32 [t =9 170600 = o)

tg

[l1£ (s, 2n(s), Kfvn( ) = f(s,2(s), Ka(s))|| + [|Gn(s) — Gu(s)|]ds

+ > T ED M Tezn(tr) — Jrz(te) |l
0<trp<t
MewT ~ tk+1 o
Sm[b(ﬂ)nf’?n —zllpc + Ly (thsr — )" 'ds
+ MeoT Z exl|zn(ty)

0<trp<t

Me*T

< Ty POl - 5K +Zekllwn e

Since [|(zn)r 2|5 = su 5= "sup || r(s)| < llwn—2llpc — 0,

as n — 400 , so ||Fz, — ’ unplies that the map F' is

continuous on PC([—r O

Corollary 5.3.4. The oper ‘-.;:,: sbolinded s ts into bounded sets.

Proof. Let us prove that for W ,z gists a v > 0 such that for each

x € B, ={x € PC([-1/T l|pc<’y The result is

followed from the c“’f J O

Lemma 5.3.5. Suppos conditions (HF), (HK), HBm HJ) holds and A is the

e AT S
f:zzﬁmﬁ SR ST

Q=F(B) and Q(t) ={Fx(t) | x € B}. (5.47)

Clearly, for t € [—r,0], Q(t) = {¢(t)} is compact.
We only necessary consider for ¢ > 0. Given € > 0. For 0 < e <t < T, for short
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we denote f(s,z(s), Kz(s) + Gz(s) + B(s)u(s)) by fu(s,z(s)). Define

Qc(t) = Fe(B)(t) = T(6(e))T(0(t) — ¢(€))po

TI(‘(S))) " (ter1 — 8)* T (G(ter1) — () — @(5)) ful(s, 2(s))ds
T( (¢)) a—1 — d(€) — d(8)) fus, 2(8))ds
+ T / (t =)' T(6(t) — dle) — ¢(s)) fuls, 2(5))d

T(¢(0)) > T(t) — dle) = Wk))- (5.48)

Since ¢(t) is continuous a. t >0 is@ X, theset {Q.(t) | x € B}
ficiently small, ¢ € (¢, T]. For t € (0,4]

is relatively compact in

the equation (5.48) re

Qc(t) = Fe(B)(t) =

+ 1) ) fuls, x(s))ds. (5.49)
Furthermore, since ||z(¢)] 1nu \- (0,t1], there exist N > 0
such that [|z(t)|], ||zl < 2), (HB) and lemma 5.1.1,

there exist L,, Ly > 0 such th :,J .'

||B( JullL,r.x)
<}bk+L 1+N)+||B( )u||Lp(IX)||_ (5.50)

s B UE ANYNTNYINT
sl W”TMWWMMQWM%W

(el / — ) T(G(t) — b(e) — 6(5)) Fuls, 2(s))ds])

= L supll [ (= 8 T0(E) - 6(5)) fuls, 2(s))ds]

P(Od) zeB t—e

< ML, /t (t —s5)*ds = MLue?
~ e Ji- - Tla+1)
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Therefore there are relatively compact sets arbitrary close to the set Q(t) for
t € (0,t1]. Hence Q(t) itself is relatively compact in X for (0, ¢1].
Consider for t € (t,t2), we define

Q) = Q(ty) + N1(Q(t)) = Q(tr) + Si(Q(t))-

By the condition (HJ), we get Ji(Q(t1)) is relatively compact and this implies

Q(t7) is also relatively compact. . Then for t € (t1,ts], the equation

5.48 reduce to » »
Fu(B) (] k) T (p(1) =) 60

Q1) =
T(6(0) A i

" Ty [(a) / ‘ . A ) fu(s,x(s))d

+ Tl(“?g))) | He , A8 fu(s,2(s))ds

+ TN T @ Syl ), (551

Therefore Q(t) is re a '
{to = 0,t1,ta, ...ty o —

, given any t, € D =

Qty) = Q(t*@wk(@( P)) = Q(%)HAQ(%) for t, €D

smayor S UDIUNE WHANT
Qeggjg}a R eV AT

+ (tger — ) O(ths1) — o(s ) w(s,x(s))ds
0<ty<t

Tlg(a) t t —8)* I T(p(t) — () — ¢(S))fu(8, z(s))ds
+T(p(e) Y T(p(tr) — ple) — d(s))Ju((tr)). (5.52)

0<tp<t
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Furthermore, for ¢ € (¢, tgy1]

ML, e
I'(a+1)
By repeating these process till the time interval which expanded, Q(t) is relatively

ilelg{HFrv(t) — Fx(t)|[} < (5.53)

compact for ¢t € I\D and Q(¢]) is relatively compact for ¢, € D. Next, we will
show that the map @ is equicontinuous on (¢, k1), K = 0,1,...,n. Since B is

bounded and follow from the inequali 5), there exists a L, > 0 such that

(5.54)

1 t+h ’
WEK@MM u(s,(s))||ds
1 t a—1 r
+ 7 | e — )" ||| fuls, 2(s)) 1 ds

M eW(T)L t R T (h a=11|1d
+ it [ = g £ T = (5 5 s

Since lim]|(t — sk | Mlﬂqﬁa) )Qﬂ(g % ﬁl Iwoﬁclf’anlﬂﬁand lim|[[7(¢(h)) —

I|| =0, so the right hand side of thissequation cap.be made as desired by choosing

oG, B AUV Er 0

k=0,1,20..n,fort, <t <t—+h<ty
|[Fax(t +h) = Fa@)|| < [|[T(@@)IT(o(h) — I]|[|l|

fa ] R ) = ool a(e)) s

1 t ot —(t—s)*? F (s, 2(s s
*Fﬁié”T@“”‘ﬂ$NW@—8+h> T(6(h)) — (t — )7 M1|[|| (5, 2(5)) |d
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Mewd(T)

al'(«)
Mew?T) ! a—1 —(t — ) ]|lds
WLu/o (= s+ h)*T(h) — (t — 5)°=1]|ds.

<Me* D [[IT(6(h) — 11| + L,h®

Using the same idea, one can show that @) is equicontinuous on (ty,tx.1), k =
0,1,2,...,n. So, the generalized Ascoli-Arzela theorem implies that F'B is a rela-

tively compact subset of PC([—r, T rther, F' is a compact operator. [

Lemma 5.3.6. The set Q = )| = oFx, o € [0,1]} is

r some M > 0.

there exist ag, ay > 0 such
that for ¢ € (0,7, we h

|z = lle Fe@)|] < ||[F2(t

1 tet ‘
+W2/ DI (s, 2(s), Ka(s)]] + [|Ga(s)l

tg

+[B(s)u(s )II]d8+ ________ . el =

< Me*D|gllc

Mew Z‘ﬂ/ 'ﬂ EW ﬁfﬁwﬁﬂﬁmwds

“ta% T AT T T
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we(T)

Me
< Me**D||g||c +

F(CM) (a’f + ag)Ta(n + 1)

Me“"d)(T) tet1 B

T 2 [ =9 el
@ o<tp<t“tk

Me“"d)(T) tet1 B

T X s
@ o<t <t”tk

* MI‘e(wj;T) zi:[/t:kﬂ(tk“ -5 3 Vl/[//tkﬂ ||B(S)u(s)||pds]%
Y

+ Me?D N gl (t)|
. (ag Wm +1)(p - DIBOul0x
< :]\/[e o [||90||C + m \\\\ (pa — 1)F(a) 1

Mewcb(T) Z /
H,_/

0<tp<t
b*

Mewe(T) tet1 ‘
T / (B > exllz(t)]]
$O<t <t 0<tp<t
tet1 o : Jf* s ] tht 1
< a/ + b* Z / tk-l—l - S)_?:i:,' ‘/17: ok | / (tk—l—l o S)a— ||xs||Bd8
0<tp <t ; = e t |
rd Y e[ =

O<tr<t m
\

By theorem 5.2.3, there exists M > 0 such that ||z(¢)|['< M for all ¢ € (0,7 for

e g )

Theorem 5.3.% the main result ‘m this sectlon guarantees the existence of

RN ﬁ%ﬁ‘ﬁ’ﬂﬁl”fﬁ Eftem o

Theorem'5.3.7. Suppose that assumptions (HF'), (HG), , (HJ), (HU)
holds and the operator A is the infinitesimal generator of a compact semigroup
{T'(t)}+>0, then the system (5.31) has at least PC'—mild solution with respect to a

control u € Uyq on [—r,T1.
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Proof. Define the operator F' by

Falt) = T(00)e0) + ety 3 [ (b = 5 T(010) = 6(s) 15 2(): Kn()

0<tr<t ik

< + Gz(s) + B(s)u(s)]ds + Z T(p(t) — d(tr)) Jrx(ty), tel

0<tp<t

Fz(t) = ¢(t), te]-r0]

\

Then by lemma 5.3.3 and lemma 5.3.5, w F is continuous on PC([—r,T], X)
C(]- oFz, o €0,1]}. The lemma
5.3.6 implies (2 is a bounded-subset - . Thus, by Leray-Schauder

fixed point theorem we obtaiu ([=r,T], X). This implies

that the system (5.16) has a d solut 1th respect to the control
u € Upq on PC([—r, T} | ; ‘

. £ G4
5.4 Existence of @pfimal Control
In the previous section wé algeady prove the

for the impulsive system. Fo E&"ﬁ; 2

erice of the PC'—mild solution
¢ the optimize control problem

to the impulsive system. Let Uy, issible control set, we consider the

|

Bolza problem say preble:

=

Find v € U,y correspond

J(%,O,uo) < J(z,u) forall u€ Uy (P)

e AUBINYNTNYING

ARTRAINET AR I N

: T3 d
x* denote %he mild solution of system (5.16) corresponding to the control u € U,y
and ® : X — R is nonnegative continuous function. For short, we denote J(x,u)
by J(u).
We solve the optimizing control problem under the following assumption (HL).

Let [: I x X XY — (—00,00] be Borel measurable satisfying these conditions:
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(HL1) I(t,-,-,-) is sequentially lower semicontinuous on X x X x Y for a.e. on I.
(HL2) I(t, &, v,-) is convex on Y for each £ € X, v € X and for a.e. t € I.

(HL3) There exist constants a, b > 0,¢ > 0 and n € L1(I,R) such that

1t & v u) 2 () + all€]] + bl |5 + cf[ul]-

lf%;

_ \"\Q&

Theorem 5.4.1. Under the ass (HB) and (HL) the optimal

ists an admissible state-control

control problem ) has a so

pair (2°,u®) such that

Proof. If inf{J(u) | u ‘*a\_*. thing to prove. So we assume
that inf{J(u) | u € U, ' 3), \  are constants a, b > 0,¢ > 0
and n € Li(I,R) such t 7 \

itz 5+ clfull§-

Z/Tn(t)ta " OO ||y t+0/ [Ju(t)]|§-dt
ﬁﬁﬂﬁﬁﬁﬂ%’ﬂﬂw@m

Hence m > ¥ . By deﬁnylon of mlmmum there ex1sts a minimizing

Seq“em@W'Y NANEEHBINI U8 Y
waz;A <ﬁ+g/|u% nﬁ+b/ mﬁﬂmﬁ+g/|mn|@m

So there exists Ny > 0 such that for all n > N,

T
iz ) 2 e [ )t
0
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for some m > 0 and hence ||un||%q( vy < mtm - This show that u, is contained in

a bounded subset of the reflexive Banach space L,(1,Y"). So u,, has a convergence
subsequence relabeled as u,, and u, — wg for some uy € Uyq = Ly(I,Y). Let
xn, € PC([—r,T],X) be the corresponding sequence of solutions for the integral

equation;

zn(t) = T(¢(1)9(0) + 175 , 1 $)* I T(¢(t) — G())[f (5, 2(5), Kwn(s))

Cot)) Jen(te), £ € [0,T]
=

() = (1) 1 € [—V ——
From the a priori esti e ' aut p> 0 such that

NN
0 =0,1,2,...
0 _._‘

T4\

L
S

S
where 2 denote the sol andifig to «
2°(6) = T(6(0))e(0) + [ ki )% "T(0(0) = 6(5)) 1 (5, 2°(5), Ka(5))
~ g
< + G2°(s) + B(s) ()]ds o, L o (ty (tr), tel

20(t) = p(t), te 5: ‘

By (HF), (HK), HGEnd lemma 5. ere are cor@nts a(p),b(p) such that

1. (s ﬁu@’jﬁﬂﬂﬂﬁ%ﬂ ﬂg;m

or e YR T] 1N TR URVINEAR B - o
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s € [-r,0] , so we have

n(s) — 2°(5)]) < = [WH@M4—sw*Tw@r—m@)

(@) o Znke
[I1f (s zals), Kaals)) — f(s,2°(s), Kﬂﬁo(S))ll +|Gaa(t) — G2°(1)]]
)

+|B(s)un(s) — B(s

ws)lllds + Y T(@() = d(t)) | Jwaty) — Tz’ ()]

0<trp<t

y/—fﬂ )|+ b(p)l[ () — (2°):]] Bl ds

0<tp<t | :

S /k+1(tk+1 iy @M+Me‘”¢ DS eullaat) — 20|
0<tp<t vtk —_— 0<tp<t

< lolo) ¥ )| Mo — a(s)]lds

[(a)
Mewd(T) k=n /tk+1
ING)! p
+ Me#dT) Z exl|xn

0<trp<t

< Me<?T(p —1)(n +1)

[a(p) + b(p)] M e2T) |
() -r————g———- -

Yocicam \J
+M€w¢(T) Z ek|| Etk " m

0<tp<t

wii ] VRN 110 (kL[ 1
W’.ﬁa ﬂﬁ“ﬁmﬁja EIIILQ (1y) — 0. This im-

Since B(- qs strongly contlnuous we hav

plies that ||z, —2°|| > 0 in O([—r, T], X). Let us set 1,(t) = [(t, 2, (t), (x,)¢, un(t))

+ 2°(s)||ds

for all ¢t € [0,T]. Then by (HL3), {l,,(t)} is a sequence of non-negative measurable

functions. So, by using Fatou ’s Lemma,

T T
lim [ I,(t)dt > / lim 1, (£)d. (5.55)
n—oo J0 0 n—oo
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By (HL1) and (5.55),

7n:lm1ﬂmazlmﬂ/mhﬁﬂﬁ+@@4T»

n—0o0 n—00

> | " lim 1,(t)dt + 0 lim (7))

n—oo n—oo

:A lim 1(t, 2 (£), (20), un (£))dt + B(2°(T))

ﬂdt + ®(2%(T)) = J(u).

T
> [
€ Ugq. O

This show that J(u®) = m. e

5.5 Applicatio

Consider the boundary va

0%y(z,
ote

e Qx I\D (5.56)
Ay(x _ (5.57)
YN =p(@. 1), (5,2 (5.58)

y(z, tﬂco (5.59)
Wheffé | 30 W&jﬂm “3“ o

f) Sup osethatf OxIxRARY - R MXIX%XW%%andthere

i @z AAINIUURTINGTAY

|f (8. € m)] + g, t, & m)| < Li(1+ [§] + [nl), (5.60)

and

|f(x7t>§7n)_f(xvs7éa 77)|+|9($>t75a77)—9(37> S>g7 ﬁ)' < L2(|t—5|+|§—§~|+|77—77|)
(5.61)
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(HHJ) Suppose that Ji, : ® = R, k = 1,2, ..., n satisfies the following conditions,

there are e > 0, k = 1,2, ...,n such that

[Tk (&) — Tu(©)] < exlé — €. (5.62)

If we interpret y(z,t) as temperature at the point x € Q at time ¢, then condition
(5.56) means that the temperature at the initial time ¢t = 0 is prescribed. Condition

(5.59) means that the temperature o1 oundary 0f) is equal to zero. The

function f describes an external he S this system f and u are given.
of delay term that is im tion p(z,t) for t € [—r, 0]
in the condition (5.58). by the control u via the
sensor mapping fﬂ B(x e the admissible control

set. We will solve the optim G (1Y Via\t st functional;

T = '
J(u) :/ +h (&, + s)|*dsdédt
0 : '

where ® € C'(R, RT).

That is, find ug define y(t) : Q@ — X by

AY J

ot 5

{
ﬂgumagﬁwmmm
AN IHANIAINAY

and define

(), Hy()(z) = [zt y(x,t), Vy(, 1)), (5.63)
Gy(t)(z) = : h(t — s)g(z, s, y(x, s), Vy(z,t))ds, (5.64)
Btju(t)(a) = | B, &)ule. e (5.65)

Te(y(®)(x) = Ji(y(z,t)). (5.66)
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Define an operator A : X — X as
Ay = Ay forall ye D(A)

where D(A) consists of all C?(Q) function vanishing on 9. Now we introduce the

eigenvalue problem for the negative Laplacian;

Ay =y

| py € D(A).
\ @t, we define that for any yy,

o yl,Ay2 > . (567)

Using the standard definiti
Yo € D (A), :

< Ay17 Y2 >=

So that A is symmetrit . Furthermore, for any

y € D(A), we have

< Ay,y > g | |grady|*dy > 0. (5.68)

SIS (Y
The right hand side vanishe (I is constant ut the only constant in D(A)
is the zero constant. Thus, we obiain
J”'.W'.u:'»

T

Miyl? =il >=< Ay >0 forall £ in D(4). (569
Z 3
This is precisely the de

ﬁ@tlo of a1 or, A is actually strongly positive.

On account of equation (5 ‘69 the elgenvalues of A must be positive and we obtain

s il 41 0] AN N TWY NG

Lemma 5.5.1. ﬁ"la'] The operator A‘deﬁned above is the znﬁmte@al generator of

- QRARATYI N INY 1A Y

Then the system (5.56) can transform to the abstract problem as followed;
Dpy(t) = Ay(t) + f (8, y(1), Ky(1)) + Gy(t) + Bt)u(t), teI\D
Ay(tr) = Je(y(tr)), tr €D (5.70)

y(t) = gp(t)7 te [—7”, 0]
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Theorem 5.5.2. Suppose the assumptions (HHf) and (HHJ) hold. Then the
control problem (Fy) for the generalization nonlinear heat equation with delay in
RN (system (5.56)) has a solution, that is, there exists an admissible state-control
pair (y°,u®) such

J(°,u®) < J(y,u) for all u € Uyy.

Proof. We solve the control problem (F) for system(5.56) via the Chauchy abstract
form (5.70). By using the assun s (A f), (HHJ) and definitions of f, g,

isfies all the assumptions given in

theorem 5.3.7 and theorem«5ud: hen'f irolproblem (Fy) for system(5.56)

has a solution, that is, there 1 adlmissible control pair (y°, u") such

i |
|
W

AULINENINYINT
PAIATUAMINYAE



CHAPTER VI
FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION
OF MIXED TYPE WITH SOLUTION OPERATOR

W,

ifferential equations of mixed

,.#

In this chapter, we consider a

type;

(6.1)

, 0 <a <1, Dy denote
fiIxXxXxX — X,

on infinite dimensiona
the fractional derivativ
and ¢ : [-r,0] — X are an infinitesimal generator
of a solution operator {Ta onlinear integral operators

given by

Gz(t) = / A S = h(t,s)q(s,z(s))ds. (6.2)

6.1 Background afﬁolutlon operator

e, Sy HELA T AIEI DD s s
r;i:;mmmﬁm WP TaY

We stu y solution operator by starting at the Cauchy problem for the fractional

evolution of order a, 0 < a < 1, ;

Dgx(t) — Ax(t) = f(t); t>0
z(0) = zo
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where a closed linear operator A densely defined in a Banach Space X. Certainly,

if « =1 ,then from system (6.3), we get;

Dix(t) — Az(t) = f(t); t>0

(6.4)
z(0) = .
We will seek a form of solution for (6.4). If f is integrable, then we have
D[ a(s)]
— Al S)x( )
' o (6.5)
Integrating (6.5) from /
(6.6)

It is well known that roup So the equality (6.6)
is equivalent to

(6.7)

This equation is called a mi d s stem 6.4) for a = 1.
We can extend this concept ‘ olution of order oy, 0 < <1

by using the generalized ex; ag Leffler-function). Similarly, we

seek the solution in the.inte

Y

¢ DL (u®) = Dyf (u)-(
nd ﬂUEﬂ?ﬂﬂWiWﬂnﬂ‘i
D¢fu = u(t) Dj'v(t) +u(t) D u(t),

soweonW%Nﬂ‘ifU URANYAY

DY (Eq (A(t—S) )z(s)) = Ea(A(t — 5)*)Dix(s) — A[Ea(A(t — 5)")]z(s). (6.8)
Applying the equality (6.3), yields

DY (Ea(A(t — s)")x(s)) = Ea(A(t — 5)")[Az(s) + f(s)] — AEa(A(t — s)*)z(s)
(6.9)
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So,
DS (Eo(A(t — 5)%)z(s)) = Ea(A(t — 5)%) f(s)- (6.10)
Integrating of order o from 0 to ¢ and applying an initial 2(0) = z,
1 t
$(t) = Ea(Ata).'Eo -+ m /0 (t — S)Q_IEQ(A(t - S)a)f(S)dS (611)

For short, we denote this family {E, (Ata)}t>0 by {T(t) }+>0. So the equality 6.11

can be written as

z(t) = T, (t)zo ‘ 'T.(t — s)f(s)ds. (6.12)

(6.13)

Eyjo(at"/?) iy (as'/2) = [Emu)]l/ — 2 erfe(=1)P

Using the soffl u@@ N5/ B G .

get the result that!er fe(—1) = 1. 842°7 and er fe(— ~ 1.9545, Whlch show that
ma&ﬁﬁﬂmmwmaﬁﬂm
fami ly {Ecq( }>0 1s not a Ch—semigrou

However, the family {E,(At*)}+>0 is interesting and now we will discuss about
its properties and study the equality (6.12) that is why we refer several times
to this monograph for basic results on evolutionary equations. For shortness, we
define the solution operator of (6.3) in terms of the corresponding the integral

equation (6.12).
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Definition 6.1.1. Let A be a linear operator on Banach space X. For each a €
(0,1), a family {T,(t)}i>0 of bounded linear operators on X is called a solution

operator generated by A if the following conditions are satisfied;

1. T,(t) is strongly continuous fort > 0 and T,(0) = I;

2. T,(t)x € D(A) for all x € D(A) and AT, (t)x = T,(t)Az;

3. Ta(t)m:a?—f—ﬁfg(t—’f . WdT for all x € D(A).
Definition 6.1.2. The solutio %

there is a constant M > 1

!

lled exponential bounded if

| \ (6.14)
\o and A € L(X) define the

(an +1). (6.15)

Example 6.1.3. Let

operator
Then the right hand side o \\ or every t > 0 and defines a

o ([[A[[E%). (6.16)

Ifa € (0,2), then thel reqatty (616 Fimplies 14.' exponentially bounded.
Indeed, the asymptotzc PANSIC e ont@w’ty of the Mittag-Leffler
function in t > 0 imply th‘gt ifw >0, there zs a constant C' such that

Al s ARHNIRBANT 617

Therefoa(é’ ﬁ)g_ilg é?ﬁmﬁym u M ’]:g YLE_H a ¢ (6.18)

Then T,(t ) satisfies conditions of definition 6.1.1, hence T, (t) define as (6.15) is
the solution operator.
Moreover, estimating the power series yields

A
Tt I||_Z el

|ntom

= t*|[Al| Ea .0t ([A[[E),
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therefore lirgiHTa(t) — I|| =0, i.e., the solution operator T,(t) is uniformly con-
t—
tinuous.
From this definition we get some facts.

Proposition 6.1.4. Let A a linear operator on X. If {T,(t)}>0 is a solution
operator generated by A, then T, (t)To(s) = To($)To(t) for all s, t >0

Proof. For x € D(A), for each ¢t >0

T,(t)r = T9= =4 | éTa(T)xdT (6.19)

(6.20)

and

Similarly, for x € D(A

DT (7)Tu(s)x =

-9 )T o (s)Axdr

R

U

o(T)Azdr]

= Tﬁ'(gT

ﬂuEI’J‘VIEJ'VliWEI’]ﬂi :
R T TR

Az = T(a+1) lim LeDz=2

t—0+ e

(6.22)

Y

for any x € X for which this limit exists.
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Proof. For any function f € C(R", X) we have
Af(t) ZT(1 4+ a)Af(L).
Hence, for any = € X,

AT, () = T(1 + a)AT,(t)x. (6.23)

li .24
10+ (6.24)
Using the condition (1)

AT, 4 S o (6.25)
We success and get the O

Proposition 6.1.6. If erator generated by a linear

s)x — To(s)Ta(t)r 0

59 o
TN |

Proof. From the definition 6.1.1% - cH= A) we have DT, (t)x = AT, (t)x

and

operator A on X then for i

AF At
DET,(t) = lim — %%

sa

s—0 m
Ta
- F(a + 1) s—0

T,(t — T, (s)T,(t
This implies that lim (t+s)x (s)Ta(t)x

s—0+ C

=0, for every z € D(A). O

Now we introduce the definition for the solution operator that equivalent to the
definition 6.1.1, defined by purely algebraic conditions and give diverse properties

of them as well.
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Definition 6.1.7. For each a € (0,1), a family {T,(t)}+>0 of bounded linear op-
erators on X is called a solution operator if the following condition are satisfied;

1. T,(t) is strongly continuous fort > 0 and T,(0) = I;

2. for every s, t >0, To(8)T,(t) = To(t)To(s);
To(t+s)x — To(s)Ta(t)z _

3. for every x € X, lim

s—0t

A solution operator {T,(t)}>o
(6.26)

The operator A define

Az = Lo DRER\ N0 W03 € D(A) (6.27)
=P\
is called the infinitesimal frs n operator {Ta(t)}i>0 where

ists in X'}
the domain of A.

From the deﬁnit ( la a unique infinitesimal

generator. If T, (t) is Vﬁ

‘a generator is a bounded
operator. On the other hand, every bounded linear Op@tor A is the infinitesimal

generator of solution opepator of a uniformly continuous solution operator T,(t)

and this solutioﬂp%ﬁ 1’8}%&] 1/] lj w EI ’] ﬂ ‘j

Y

o2 RGP ST By e

equations of mixed type

Consider the nonlinear fractional system (6.1),

Dgx(t) = Ax(t) + f(t,x(t), Gx(t), Sx(t)), tel

a(t) = ¢(t), tel=r0]
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where A : D(A) — X be the infinitesimal generator of a solution operator
{To(t) }i>0 satistying ||To(t)||nx) < Me** for some M > 1,w > 0 for all t > 0,
f:IxXxXxX — X and ¢ € C([-r,T],X) are given functions satisfies
following conditions (HF);

(HF1) f:1x X x X x X — X is uniformly continuous in ¢ and locally Lipschitz
in z, &, n that is for any p > 0, there are constants ay = a¢(p, 7) such that

1t we, &m) — f(E 22, € — o|| + [|& — &l + [Im — mel[]
provided ||z1||, ||z2l], | ’ < p and for all ¢t € [0, 7].

» .—d_‘
(HF2) There exists ¢y > 0 f{E, L+ [|z|] + [|&]] + [In]|) for
all z, £, ne X an :

First of all, we study

Ga(t) = / k(t, )g(s

T

, (s))ds, forall z € X.

.\.
&\

nd locally Lipschitz in z, i.e.,

We introduce the following

(HG1) g: [-r,T] x X — X ig'mea

let p > 0, there exists a con S —

provided [|z1]], Hﬂ| <

(HG2) There exists.a const‘;ﬂha such that @/

quyx < ag%ﬂm?oxﬂaqﬂ;;xeX
(G k@W’ﬂﬁNﬂiﬂJ UANAINYAY

(HS1) ¢ : I x X — X is measurable in ¢ on I and locally Lipschitz in x, i.e., let
p > 0, there exists a constant L,(p) such that

||Q(ta1"1) - Q(t7x2)|| < LQHxl - l‘z”

provided ||z1||, ||x2|] < p, for all ¢t € I.
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(HS2) There exists a constant a, such that for 0 <y < 1,
llq(t,z)|| < a,(1+||z||"), forall tel, ze€ X.
(HS3) h € C(I*,R).

Using moving norm || - ||p one can verify that integral operator G and S have the

following properties.

Lemma 6.2.1. Under the operator G has the following

properties;
(1) G:C(]-r,T],X)
(2) Let zy, x5 € O]

||Gz1(t) — Gao(t)]] k (B )p—(@2)il|B, forall te€[-rT]

[—r,T1].

Proof. The proof is similar to the proo ,"-..:' 4.2.2. O
. Al Y
We can similarly p’ ---------------------- Y]
Lemma 6.2.2. Underﬂhe assumption (HS), the opﬁztor S has the following
properties;

oo SMEININTNYNT
© RRITINTOU I INYINY
1Sz1(t) = Swa(t)]| < Lg(p)||R[| T2y — 22llcx), for all te 1.

(3) For z € C(I,X), we have |[Sz(t)|| < aT||h[|(1 + [|2|[$; x)), for all t €
[—’/’,T].

Proof. The proof is similar to the proof of lemma 4.2.2. O
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Recall the fractional integro-differential equations of mixed type system (6.1);

Doa(t) = Ax(t) + f(t, (), Gx(t), Sz(t)), t€ (0,T]
z(t) = p(t), te[-r0].

Let 0 < a < 1. If z is a solution of (6.1), then the X —valued function
w(s) = T, (t — s)x(s) is a—differentiable for 0 < s < ¢ and

= Tu(t—s) ), Safs (6.28)

Since f is integrable, tegrable in the sense of

Bochner and integrati and applying the initial

w(0) = Ta(t)p(0), yields
2(t) = Ta(t)p(0) + s L 5) (o) Ge(s), Sa(s))ds, for te .
Therefore we will give a £ mild-solution for system (6.1) as follows.

Definition 6.2.3. Let x € . X)), If there exists a ty > 0 such that

71(s), Sx(s))ds, t€[0,t0]

(6.29)

o A\ 1131 () 1301 e R
P 13019 0 WP W ) Mgl

on [—r, T then ||z(t)|| < p, for allt € [—r,T].

Proof. Let « € C([-r,T],X). For t € [0,T], we use (HF2), lemma 6.2.1 and

lemma 6.2.2, there exists a constant ¢y such that for all s € [0, 7]

17 (s, 2(s), Gae(s), Sx(s))|| < e (1 +[|z(s)]] + [lzs|[5 + |2 (s)]]7) (6.30)
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and

Me*T cr

[(a)
Me“Te, T Me*Tep [t

<MwT f f/ t— a—1 5 d
< Mgl + L4 MG [ gt + s

Me“Tc;

ra [ = aras.

’l//)lchthatx W <p,fortel. O

1ld solution for the system

lz(®)]] < Melgllc + /(t—S)a A+ ()l + [asll5 + llz(s)]7)ds

By lemma 4.1.4, there exists a ¢

We will prove the exis

(6.1). We construct an a strictly contraction by

following next lemmas.
Fort>0,C" = C( ] Sup! norm and for A > 0, we
set S(\,7) ={y € C| (@) <A andyy(0) = ¢(0), t e [-r,0]}.

Fy(t) = Tu(0)5(0) + oy it~ 7, 0% 18 (), Gu(s), Sy(s))ds, ¢ € [0.7],
Fy(t) =o(t) te[-r0.
N 4 (6.31)
7

Then the map F is "i. )), we obtain
|Fy()<M€wT|W||C+4—% — )7 L+ ly() + sl s + [y(s)][)ds
Sincey € C7, thQu st n‘i“ﬂ]ﬂﬂiﬂfﬁ—ﬂy ()" <N,
qua\ﬂﬂi Nm}l’}ﬂﬂqaﬂ
1Fy(@)] <Melello +

Moreover, some properties of the map F' are listed as follows.

Lemma 6.2.5. The operator F is well-defined on S(\,7) for T > 0. Moreover,
there exists 7o > 0 such that F maps S(\, 7)) into itself, i.e., F(S(A\, 7)) C S(A,7)).
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Proof. For A > 0 and 7 > 0. Let {y,} be a sequence in S(A\,7) and y € S(\, 1)
such y, — .

By condition (HF1), lemma 6.2.1 and lemma 6.2.2, there exists a constant Z()\ +
ll¢l|c, 7) > 0 such that for all s € [0, 7],

1F (s, yn(s), Gyn(s), Syn(s))—f y(s))l
< L(\ ”llc, T)yn(s) =y + 1[(yn)s = ysll 5]

and for each t € [0, 7]

|| Fyn(t) — Fy(t)]] < “lyn(s) =y + 1(yn)s — sll]ds

,' Yllc (o7, x) — 0 asn — +oo,
ap F is well-defined.
») into itself.

Since [|(yn): — yillB = Supdfy AL
O 11(; ?
We next show that therefis alr, suche ha

For each y € S(\,7) and ¢t € [0; T Akﬁs D
= )

6.2.2, there exists a k, L()\ il ot
L

||Fy, — Fy|| — 0 as n

), lemma 6.2.1 and lemma

G

7
J.J

| 23
170, (0), G015 HOMEE(1 + Il

and for each s € [0, 7] V

||f(8y Gym‘sys - vy I\

Y]

), Sy
ﬂumwszu%fwmﬁ*”%
ARIANIAUNIINYAY

< IT.(01000) = )]+ s [ (6= 51" 1£10,3(0).Gy(0), Su(0))

Me(JJT
I'(a)
< max ||T,(t)(0) — ©(0)|| +

0<t<r

yo||B

we obtal

| Fy(t)

" / (£ — 5715, 9(5), Cy(s), Su(s)) — F(0,4(0), Gy(0), Sy(0))]|ds

MeT[r(1 + |lelle) + 2ALA + [l@lle, 7)I7°
al'(«)

< Aq(7)
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where

o(r) = 3l T 0)6(0) - p(0) + Pl L 2RO T lelle- DIy

Since ¢(17) — 0T as 7 — 0T, a suitable 7y can be found such that 0 < ¢(79) < 1, so
we conclude that the F' maps S(A, 79) into itself, i.e., F(S(A\,79)) € S(\,70). O

Theorem 6.2.6. Suppose (HF), (HS ) holds and A is an corresponding

to a solution operator {T,(t)}+> jally bound. Then there exists a g

-1, 7o) and the mild solution is

2(0)]] < 1,9(0) = (1), t €

show that F'is strictly ¢
Given p =2, lety1, 40 € S ;
lemma 6.2.2 and lemma 6.2.5; f '_ 5ok :: =m0, there exists b(1 + [|¢||c,7) > 0
such that _— -

Hf(37 yl(s)v Gy1(3)7

< b1+ [lello, T)lly L+ lelles Dy = valleqom.x)-

Then

[ Fy (1) Fmﬂwmwinﬂ(ﬁ)— Ty = velleqom) x

w0 TR S HHN TN B 2 < o

can be found such 0 < p(7) , so we conclude that the map F' is strictly
contraction. By the contraction mapping on Banach space, F' has a unique fixed
point z € S(1,79) such that Fx(t) = z(¢), i.e.,

x(t) = To(t)xo + 5 fo (t — 8)* T, (t — s) f(s,2(s), Gz(s), Sx(s))ds, t € [0, 7]

xz(t) =p(t), te [—r, 0].



92
In other word, we say that z(t) is the unique mild solution of system (6.1) on
[07 7-0] . O

We break the main system (6.1) for a moment and consider the initial value

problem,

Dix(t) = Ax(t) + f(t, 2(t), Gz(t), Sx(t), t=to (6.32)

//& operator {T,(t)}i>0 and f :

IE(to) =X

where A is the infinitesimal

,Gx(s), Sz(s))ds, t € [ty,T]

(6.33)

Theorem 6.2.8. Under the assumpt :_—' ) and (HS), if f : [to, T] X
l\' g“p,,—' + )

X x X x X — X is contin ), 1] 7 orly Lipschitz continuous

(with constant L) on w;;—::—i:?'_'__ Walue problem (6.52) has

cC ; t}@map xo — x is Lipschitz
continuous from X into C;([tO,T ], X).

Foraglﬁ ww@mm AR - ot
%‘ﬂﬂﬁﬂéﬁqugﬂﬂ'&@ Bho)as, t € fo. 7).

(6.34)

a unique mald solution

Then F' is well-defined and bounded, it follows readily from the definition of F,
lemma 6.2.1 and lemma 6.2.2 that

|F(t) = Fy(®)]] < MaL(t = to)llz = ylleom.x) (6.35)
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where M, is a bound of —— aI‘(a ||T (t)|] on [tg, T). Using (6.34), (6.35) and induction

on n it follows that

(M, L(t — to)o‘)"l
n!

[[F"(t) = Fry(8)]] < |z = ylleor (6.36)

(M, LTO‘ "
whence ||F"x — F"yl| < (MaLT7)"

e

7 = yllo(o.1,x)-

(6.37)

(Mo LT)"
n!

For n large enough n extension of the contraction
principle, F' has a unique

mild solution of (6.32).

ThlS fixed point is desired

The uniqueness of
consequences of the f

[to, T with the initial v.

|z(t) =y < |[Talt =
1 ' a—1 e e 7/ \
+m/to(t—s) || T L > 2(s)) — f(s,y(s), Gy(s), Sy(s))||ds

0 —y0||mfor all t€10,T)

and therefore ﬂuﬂqﬂﬂ‘n‘j?ﬂﬂ’]ﬂ‘j

|| _yHC(toT]X < %—‘ M eMa (T- to)a||$0 yob

it i ] e URA DY IRL ot e

To — T. O

From the result of theorem 6.2.8, if f is uniform Lipschitz, we have the existence
and uniqueness of a global mild solution for system (6.1). But if we assume that f
satisfies only local Lipschitz in z, uniformly continuous in ¢ on bounded intervals,

then we have the following local version of theorem 6.2.8.
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Theorem 6.2.9. Assume the assumptions of theorem 6.2.6 are holding. Then for

every xo € X, there is a tpq: < 00 such that the initial value problem

D¢x(t) = Ax(t) + f(t, z(t), Gz(t), Sz(t)), t>0
x(0) = xg

(6.38)

has a unique mild solution x on [—7,tma). Moreover, if tya, < 0o, then lim ||x(t)|| =

W//

every ro9 € X, there exists a 0 =

m%d solution x on an interval

Q.

Proof. We start by showin
8(7, ||o]|) such that the sys e
[7—07 70 + 6] whose length O isedef;

d(70, | |0l (6.39)

\ N ( )]l/a}
+ T0
— N

where L(c, t) is the local Lipschitzico %ﬁaﬁ of f -ov g from (HF1),lemma 6.2.1

1}, p(10) = 2|Jxol[M (7o)
-1}, Indeed, Let 17 = 19+ 0

and N (7o) = max{||f (¢, 0,600, SU(En}

Al

m v ) maps the ball of radius p(79)
centered at 0 of C([7o, 71], X) into ifself. llows from the estimate,

< 2M(ri)l ol = p(ro)

e AT B HINZ AR B, s

a uniform iapschltz condition with constant L = L(p(1), 7 + 1) and thus in the

proof of theorem 6.2.8, it possesses a unique fixed point x in the ball. This fixed
point is the desired solution of (6.32) on the interval [rg, 71].
From what we have just proved, it follows that if x is a mild solution of (6.38)

on the interval [0, 7], it can be extended to the interval [0,7 + §] with § > 0 by
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defining on |7, 7+, 2(t) = w(t) where w(t) is the solution of the integral equation,

for t € 1,7+ 4],

w(t) =Tyt —1)x(r) + ﬁ/ (t — 8)* 1T, (t — 5) f(s,w(s), Gw(s), Sw(s))ds

Moreover, § depends only on ||z(7)||, p(7) and N(1).

Let [—7, tnae) be the maximum interval of existence of mild solution z for (6.38).
If t)00 < 00, then t_l)ltrnl;laTH:U(t)H = 400, indeed, if it is false, then there exists a
sequence {t,} and C' > 0 such that &, =Ty« and ||z(t,)|| < C for all n. This
implies that for each t,, near.enough to.d,,.., & define on [—r, ¢,] can be extended
to [—7,t,+ 6] where 6 > 048 independent of £,,, hence ¥ ean be extend beyond ¢4,

this contradicts the deﬁmtlon Ot 4l Sci K, a0, When . litm [|z(t)|| = +o0.
%

max

To prove the umquenebq of the local mlld solution of (6.38) we note that if y
is a mild solution of (6. 38’) then on ey ery_closed interval [—r, 79| on which both x

and y exist they coincide by the unlqu@nee}}s argiment siven in the end of the proof

of theorem 6.2.8. Therefores both and y have the saime t,,,, and on [—7,t6),

“d

r=y. i Ydia O
’ J_- 77 = : -'f;

Theorem 6.2.10. If the assumptzon,s of them"em 0.2.0 are holding, then the system

(6.1) has a unique mzld solutwn on [ i T] o f

L -

Proof. Let [—r, tmas) "'b'ér‘the maximum interval of existe-nc‘% of mild solution z for

(6.1). If t;y0e > T, therelis nothing to prove. If t,,,, <I', by theorem 6.2.9, then

lim ||z(t)|| = +o0, contrfadiets with an a priori bound of solution. So the system

mazx

(6.1) has a unique mild Solution on' [+ 7. O

6.3 Existenceof Optimal Controls

In this section, we discuss the existence of optimal controls of systems governed
by the fractional integro-differential equation (6.1).
We suppose that A is the infinitesimal generator of a solution operator {7, (t) }+>0

and Y is another separable reflexive Banach space from which the controls u take
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the values. Let Uyq = L,(I,Y), 1 < ¢ < oo denoting the admissible controls set.

Consider the following controlled system:;

Dgx(t) = Ax(t) + f(t,x(t), Gz(t), Sz(t)) + B(t)u(t), te[0,T)

x(t) = (t), te]-r0].

(6.40)

continuous where 1 < ¢ < oo and B(-)u € L,(1,X) for all u € Uy

and we give the definition of ect to a control in U,,.

Definition 6.3.1. Let z € If x is a solution of,

Proof. Let u € Uad, ]
z € X. Use the fact-tha

(HF), lemma 6.2.1 an@emma 0.2.2)"we"obtain thatm satisfies the assumption
(HF). By theorem 6.2.6, 8qawe have complete the proof. O

MICATH mmmm o L8 st
AR FEWARAENAY oo

J(:v“,u)=/0 L(t, (1), x), u(t))dt, (6.42)

for short, denoting J(z*,u) by J(u) and z* denotes the mild solution of system

where

(6.40) corresponding to the control u € U,g.

We impose some assumption on [. Assumption (HL);
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1) 1: I xX xX XY — (—o0,00] is Borel measurable.
2) I(t,-,-,-) is sequentially lower semicontinuous on X x Y for a.e. on I.
3) l(t,x,ys,-) is convex on Y for each (z,y;) € X x X and for a.e. t € I.

4) There exist constants a, b > 0, ¢ > 0 and n € C (I, R) such that

it sati tion (6.40).

l(t7 T, Yt, U‘) 2

A pair (2%, u) is said to be

Theorem 6.3.3. Suppo iption e assumptions of theorem
6.3.2 hold. Then probl ' 7 ’\?ﬂ:"n\‘*.“\\ at least one optimal pair.
Proof. If inf{J(u)|u € U, th Al i\\u; prove. So we assume that
inf{J(u)|lu € U} = . [ ¥ \ \ <

N\
n € Li(I,R) such that { \ bl|z}|| 5 + c|u|]{. Since n is

onstants b > 0,c¢ > 0 and

nonnegative, we have

T . e e S L) » T
> / (@t +a | |2 @)lldth | ekl 4o / u(t)][2.dt
0 : T =

0

for some & > 0, for all u & Ugy. Hence m > &€ > —oo. By definition of minimum,

e st i b 913 WK B3 m o
R LRG0 e TSV R

T
m > J(u) > c/ ()| dt
0

m+m
(4

for some m > 0 and hence ||un||qu L) S

This show that u,, is contained in a bounded subset of the reflexive Banach space
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L,(I,Y). So u, has a convergence subsequence relabeled as u,, and u, — u° for
some u’ € Uy = L,(1,Y). Let z, C C([—r,T], X) be the corresponding sequence
of solutions for the integral equation;
() = Ta(t)p(0) + g5 Jo (t = )7 Tult = 9)[f (5, 2a(s), Ga(5), Saa(s))
(s)lds, tel

xn(t) , te [ T, 0]
y/ (6.43)
From the a priori estimate 0 such that

g
=
@
e
@
8
o
(oW
9
=
]
—+
@
-+
=
@
n
o,
o

l"':.“\
Yo -

C,J .
'.-:?"‘g
hll

K
+ Bl (sl 1 €1, 577

5 AT

(0 =), te - f 7

‘ J-ﬁu‘ -;" : (644)

By (HF), (HG), (#2), “‘f_"E‘-—"’c"-; 8 6.2 emma 6.2.2, there is a constant
a(p) such that for eagh't € 4 : \

|z (t) — 2" (@®)|] < 'j' (s —w”@)IIHI(wn)t—(ﬂﬁo)tHB]ds

m]’s AN

$)* H||wn(s) |+|| = (2"):l|Blds

qummmamm&am

By using lemma 4.1.3,

i

[l (t) = 2®(@)]] < MIIB(Jun — B[,

where M is a constant,independent of u, n and ¢. Since B(+) is strongly continuous,

we have ||B(-)u, — B(-)u’||r,,x) — 0. This implies that ||z, — 2°|| — 0 in
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C([=r,T),X). Let us set 1,,(t) = U(t, (), (zn)t, un(t)) for all t € [0,T]. Then by
(HL1) and (HL3), {l,(t)} is a sequence of non-negative measurable functions. So,
by using Fatou ’s Lemma,

T T
lim [0, ()dt > / Jim 1, (£)dt. (6.45)
0 0

n—oo n—oo

By (HL2) and (6.45),

m = i, S

This show that J(u°) =

6.4 Application to ‘ﬂ, car- quation
Consider the nonlinear heat eq g’iﬁ, c'fq_;,-

(24620 = Ay (e, QBT eI 3. y(z. 5))ds
< +f0 (t—s)q(x sm(:c,s (15— ,t)df-m(x,t)eﬂxl

RN Neng
;:h::zi ﬁa STAR T PN LLI0) 1

g:Qx[—T,T]><§R—>§R,q:QxIx?R—NR,andforeachp>0thereareL1,Lg,
Lz > 0 such that

(6.46)

|f(.’15,t,€)—f($,$,é)| SLl(|t_$|+|€_£|)7 (F)
\g(x,t,ﬁ)—g(:c,s,g)] §L2(|t—s|+\§—§~|), (G)
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la(x,t,€) — a(w,s,6)] < Ls(|t — s| +[¢ = €]), ()
provided |||, ||€]| < p and s, t € I. If we interpret y(z,t) as temperature at the
point & € Q at time ¢, then condition (6.46) means that the temperature at the
initial time ¢ = 0 is prescribed. Condition y(z,t) =0, (z,t) € 02 x I means that
the temperature on the boundary 0f2 is equal to zero. The function f describes an

external heat sources, for this system f and v are given. We introduce the integral
Gy(x,t) = f h(t —s)g (xsyxs 145 fo (t—s)q(x,s,y(z,s))ds,
both terms directly impact to the syste @r the system is controlled by

the control u via the sensor ma i @5 Let Uad =1L (Q x I) be

functional;

:/OT/Q|y(€’t)| K/ 7 f dt+/OT/Q|u(§,t)|2d§dt.

That is, find ug € Uy
Let X = L,(2). For ¢

and define

Dta "_f J €€ Q.

We define V 7 ‘

ft,y(t), Gy(t), Sgt))(x) [t y(, t))+Gy(]7Q ) +5(t)(2), (6.47)

ﬂﬁmmﬁn‘mmm 49
R AMATLURAINGNEY o

Sy(t)(x) = / E(t — s)q(x, s,y(z,s))ds. (6.50)

0
Define an operator A : X — X as

where

Ay = Ay forall y e D(A)

where D(A) consists of all C*(Q) function vanishing on 9.
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Lemma 6.4.1. The operator A defined above is the infinitesimal generator of a
solution operator {T,(t)}i>0 on X.
Proof. Consider the general heat equation of fractional order 0 < o < 1,
Diu = Au, u(0,2)= f(z). (6.51)

Applying the Fourier transformation, we obtain

(6.52)
By solving (6.52),
(6.53)
Take the inverse Fourier
u(t,z) = Eo(t°A F(€)ei ™ de. (6.54)
Set To(t) = E,(t*A). Theh T4(1) a&tid;ﬂ the conditions of lemma 6.1.7. Therefore
The operator A = A is the infinif '-H-‘_ rafor of asolution operator {7, (%) }>0
on X. .ﬁ"’, ;J’:\ i O

Then by lemma 6.4.1 and @ :
=

abstract problem as follo

Y.

Diy(t) = Ay( ‘='i

y(t) = »(1),

t
Theorem 6.4. a%} %’ q ? Then the control
problem (Pp) forngngléja; hasggﬂutwn:wh;ﬂ is ﬂe exists an admissible
tate- (20 .0 =13 | s
RT3 NEa Y
e J(y", Yo, u) u € Uyg.

uo) <J for all

(6.55)

=T, 0]
L]

Proof. We solve the control problem (FP,) for system(6.46) via the Cauchy abstract
form (6.55). By using the assumptions (F), (G), (S) and the cost functional J, it
satisfies all the assumptions given in theorem 6.3.3 and theorem 6.2.6. Then the

control problem (Fy) for system(6.46) has a solution. O



CHAPTER VII
CONCLUSIONS AND OUTLOOK

In this work, we start considering the nounlinear fractional integro-differential sys-
tem (4.1) in Chapter 4 when —=A is the infinifcsimal generator of Cy—semigroup
satisfying the exponential stability. We ;;’vin to preve the existence and uniqueness
of mild solution. We propesera mcthod for proving existence whose main com-
ponent is the use semigroup oibounded linear operators and Banach fixed point
theorem. We successfullygapply this me‘éhod and use some assumptions to prove

the existence and uniqueness of mild Solution. We win to prove the existence of the

— =t

optimal control problem via the Bolza coﬂ.dmon Beside the study of the solution,

we give some examples (fmodel of problcm in the real world). Then we transform

them to the abstract form@nd use our mam;result to conclude that these systems

FYE Y

have a mild solution with respeet-to a Control,“m admissible control set and the

Bolza problem for this system has a solut10n

o
In Chapter 6, we consader the fractional mtegro—dlfferentlal equations of mixed

‘_‘ -

type, this system resemble the system (6.1) in Chapter 4 The idea of semigroup
of bounded linear operaicprs 1s replaced by the idea of sg_lutlon operators. We win
to prove the existence of ammild solution with respect to a control in the admissible
controls set andalso the existence of a solution of the Lagrange problem for the
fractional integrosdifferential equations of mixed type, system (6.1).

In Chapterbywerconsider, the impulsive fractionakintrogrosdifferential equation
(5.1). We successfully prove the“existerce of piecewise contintous mild solution
w.r.t a control in the admissible controls set with compact semigroup of bounded
linear operators. In this case, we use Leray-Schauder theorem and the new version
of generalization Gronwall lemma for the fractional order. Also we successfully
prove the existence the optimal control problem by using the Bolza condition. In

the last section, some example was established to supporting the main result.
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Last but not least we should be interested in developing this method and use
weakly assumptions to prove the existence and uniqueness of classical solution a
little further. Moreover, we should be interested in studying the solution behaviors
for example;the stable property. Even though it seems likely that efforts in this
direction can be successful, there no guarantee for that. Therefore, we can only

hope for the best, but have to expect the worst.

LTI

\Z
i

AULINENINYINT
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