

การกำจัดสารปนเปื้อนอะเซทิลีนในการผลิตพอลิเอทิลีนโดยตัวเร่งปฏิกิริยา แพลเลเดียม

Removal of Acetylene Contaminants in Polyethylene Production by

Pd Catalysts

โดย

จูงใจ ปั้นประณต โครงการวิจัยเลขที่ 104G-CHEM-2552 ทุนงบประมาณแผ่นดินปี 2552

> คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย กรุงเทพฯ

> > มีนาคม 2553

การกำจัดสารปนเปื้อนอะเซทิลีนในการผลิตพอลิเอทิลีนโดยตัวเร่งปฏิกิริยา แพลเลเดียม

Removal of Acetylene Contaminants in Polyethylene Production by Pd Catalysts

โดย

จูงใจ ปั้นประณต โครงการวิจัยเลขที่ 104G-CHEM-2552 ทุนงบประมาณแผ่นคินปี 2552

> คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย กรุงเทพฯ

> > มีนาคม 2553

การกำจัดสารปนเปื้อนอะเซทิลีนในการผลิตพอลิเอทิลีนโดยตัวเร่งปฏิกิริยาแพลเลเดียม

Removal of Acetylene Contaminants in Polyethylene Production by Pd Catalysts

โดย

จูงใจ ปั้นประณต Ph.D. (Clemson, USA) โครงการวิจัยเลขที่ 104G-CHEM-2552 ทุนงบประมาณแผ่นดินปี 2552

> คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย กรุงเทพฯ

> > มีนาคม 2553

กิตติกรรมประกาศ

โครงการวิจัยนี้ได้รับการสนับสนุนจาก

เงิบงบประมาณแผ่นดิน ประจำปึงบประมาณ พ.ศ. ๒๕๕๒ ของสำนักงานคณะกรรมการวิจัย แห่งชาติ (วช.)

บทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์ในการพัฒนาด้วเร่งปฏิกิริยาแพลเลเดียมบนอะลูมินาสำหรับ ใช้ในปฏิกิริยาไฮโครจิเนชันของอะเซทิลีนเพื่อกำจัคสารปนเปื้อนอะเซทิลีนปริมาณเล็กน้อยออก

จากสายป้อนเอทิลีนก่อนเข้าสู่กระบวนการพอลิเมอไรเซชันของเอทิลีนในการผลิตพอลิเอทิลีน ต่อไป โดยได้ศึกษาปัจจัยต่างๆได้แก่ วิธีการสังเคราะห์อะลูมินา (วิธีโซล-เจล วิธีโซลโวเทอร์มอล และวิธีการตกตะกอนร่วม) และการเติมโลหะตัวที่สอง (เหล็ก) ลงบนอะลูมินานำไปใช้เป็นตัว รองรับในการเตรียมตัวเร่งปฏิกิริยาแพลเลเดียมบนอะลูมินา จากผลการทคลองพบว่าวิธีการที่

เหมาะสมในการสังเคราะห์อะลูมินาสำหรับใช้เป็นตัวรองรับตัวเร่งปฏิกิริยาแพลเลเคียมบนอะลูมิ นาสำหรับใช้ในปฏิกิริยาไฮ โครจิเนชันแบบเลือกเกิคของอะเซทิลีนเป็นเอทิลีนคือวิธี โซล โวเทอร์

นาถาหรบารานบฏกรอาเอาหรงนรงนรบแอบแอกกพของอะเรากถนเบนเอกถนกอรรรจายส่ว มอลเนื่องจากทำให้ได้ผลึกของอะลูมินาที่มีขนาดพอเหมาะ มีรูพรุนขนาดกลางที่มีการกระจายตัว ของขนาดรูพรุนในช่วงแกบ ส่งผลให้แพลเลเดียมมีการกระจายตัวสูง ทำให้มีความว่องไวในการทำ ปฏิกิริยามากขึ้น นอกจากนี้อันตรกิริยาที่แข็งแรงระหว่างแพลเลเดียมและอะลูมินาที่สังเคราะห์โดย วิธีโซลโวเทอร์มอลยังช่วยเพิ่มค่าการเลือกเกิดเป็นเอทิลีนอีกด้วย

ส่วนการเติมเหล็กปริมาณเล็กน้อยลงในตัวรองรับอะลูมินาในระหว่างการเตรียม (ประมาณ 1% โดย น้ำหนัก) ช่วยลดความเป็นกรดของอะลูมินาได้ โดยไม่เปลี่ยนแปลงพื้นที่ผิวมากนัก ทำให้เมื่อ นำไปใช้เป็นตัวรองรับตัวเร่งปฏิกิริยาแพลเลเดียมบนอะลูมินาในปฏิกิริยาไฮโดรจิเนชันแบบเลือก เกิดของอะเซทิลีน ส่งผลให้ตัวเร่งปฏิกิริยามีประสิทธิภาพที่สูงขึ้น

> เลขหมู่ เลขทะเบียน 014686 วัน. เดือน. ปี 27 ส.ค. 53

ABSTRACT

The purpose of this study was to develop a highly efficient $Pd/\Omega - Al_2O_3$ catalyst for the selective hydrogenation of acetylene used for removal trace amount of acetylene contaminant in ethylene feed stream in the polyethylene production process. The effects of preparation method namely solvothermal, sol-gel, and precipitation and an addition of small amount of a second metal (Fe) to alumina support on the catalyst performances have been investigated. The best catalyst performance of Pd/ Ω -Al₂O₃ catalysts in the selective hydrogenation of acetylene was obtained using the solvothermal-derived Ω -Al₂O₃ due to their suitable properties such as high surface area and narrow pore size distribution. A stronger interaction between Pd and Al₂O₃ prepared by solvothermal also facilitated H₂ reduction at low temperature and desorption of ethylene and CO. The use of nanocrystalline Fe-modified Ω -Al₂O₃ as supports for Pd catalysts also resulted in an improved catalyst performance in selective acetylene hydrogenation by lower acidity of the Ω -Al₂O₃ supports so that the amount of coke deposits was reduced.

สารบัญเรื่อง

เรื่อง	หน้า
กิตติกรรมประกาศ	ii
บทคัดย่อ (ไทย)	iii
บทคัดย่อ (อังกฤษ)	iv
1. บทนำ	
1.1 ที่มาและความสำคัญของปัญหา	1
1.2 วัตถุประสงค์ของโครงการวิจัย	2
1.3 การทบทวนวรรณกรรม	2
1.4 ทฤษฎีที่เกี่ยวข้อง	3
1.5 ขอบเขตของการวิจัย	9
1.6 วิธีดำเนินการวิจัย	9
1.7 ประโยชน์ที่คาดว่าจะได้รับ	10
2. เนื้อเรื่อง	
2.1 อุปกรณ์และวิชีการทคลอง	11
2.2 ผลการทดลอง	17
3. อภิปรายและวิจารณ์ผล	34
4. สรุปและข้อเสนอแนะ	35

บรรณานุกรม

ภาคผนวก

บทความที่ตีพิมพ์ในวารสาร

- 1. Industrial and Engineering Chemistry Research (2009), 48, 6273-6279
- 2. Reaction Kinetics and Catalysis Letters (2009), 97,115-123

ประวัตินักวิจัยและคณะ

สารบัญรูปภาพ

รูปภาพ

รูปที่ 1.1	ความสัมพันธ์ระหว่างเฟสต่างๆของอะลูมินากับอุณหภูมิ
รูปที่ 1.2	โครงสร้างผลึกของแอลฟาอะลูมินา
รูปที่ 1.3	เส้นทางปฏิกิริยาหลักของกระบวนการไฮโครจิเนชันของอะเซทิลีน 7
รูปที่ 2.1	ชุคอุปกรณ์สำหรับการทคสอบปฏิกิริยาไฮโครจิเนชันของอะเซทิลีน
รูปที่ 2.2	รูปแบบ XRD ของตัวรองรับอะลูมินาที่ซึ่งเตรียม โคยวิธี โซล-เจล โซลโวเทอร์
	มอลและวิธีตกตะกอนร่วม18
รูปที่ 2.3	เสปกตรัม FT-IR ของตัวรองรับอะลูมินาที่ซึ่งเตรียม โคยวิธี โซล-เจล โซล โวเทอร์
	มอลและวิชีตกตะกอนร่วม ก่อนและหลังการเผาในอากาศศ. 19
รูปที่ 2.4	การกระจายของขนาครูพรุนของอะลูมินาที่ซึ่งเตรียม โคยวิธี โซล โวเทอร์มอล
	(a) โซล-เจล (b) และวิธีตกตะกอนร่วม (c)
รูปที่ 2.5	ใอโซเทอร์มของการดูคซับของแก๊สในโตรเจนที่อุณหภูมิ 77 K
รูปที่ 2.6	ภาพถ่ายโคยกล้องจุลทรรศน์อิเลกตรอนแบบส่องผ่านของอะลูมินาที่ซึ่งเตรียม
	โดยวิธี โซลโวเทอร์มอล (a) โซล-เจล (b) และวิธีตกตะกอนร่วม (c)
รูปที่ 2.7	ผลของ Temperature Program Reduction ด้วยแก๊สไฮโครเจน
รูปที่ 2.8	ผลของ Temperature Program Desorption ของแก๊สเอทิลีน
รูปที่ 2.9	ผลการทคสอบตัวเร่งปฏิกิริยาในปฏิกริยาไฮโครจิเนชันแบบเลือกเกิคของ
	อะเซทิลีน25
รูปที่ 2.10	รูปแบบการกระเจิงรังสีเอ็กซ์ของตัวเร่งปฏิกิริยาบนตัวรองรับอะลูมินาและอะลูมิ
	นาที่มีการเติมเหล็ก โดยวิธี โซล-เจล (SG) และ โซล โวเทอร์มอล (SV) 26
รูปที่ 2.11	ภาพถ่ายโดยกล้องจุลทรรศน์อิเลคตรอนแบบส่องผ่านของตัวเร่งปฏิกิริยาบนตัว
	รองรับอะลูมินาและอะลูมินาที่มีการเติมเหล็ก โดยวิธีโซล-เจล และโซลโวเทอร์
	มอล พบอนุภาคแพลเลเดียมขนาด 10 นาโนเมตรกระจายตัวบนอะลูมินา 27
รูปที่ 2.12	ผลการวิเคราะห์ด้วยเทคนิคการคายซับของแอม โมเนียแบบ โปรแกรมอุณหภูมิ
	ของตัวเร่งปฏิกิริยาที่เตรียมบนอะลูมินาที่มีการเติมเหล็ก เตรียมโคยวิธีโซลเจล
	(SG) และ วิธีโซลโวเทอร์มอล (SV)
รูปที่ 2.13(a)	แสดงก่าการเปลี่ยนแปลงของอะเซทิลีนต่ออุณหภูมิในการทำปฏิกริยาโคย
	ตัวเร่งปฏิกริยาแพลเลเคียมบนอะลูมินาที่เติมเหล็กที่เตรียม โดยวิธี โซลเจล (SG)
	และ วิธีโซลโวเทอร์มอล (SV)
รูปที่ 2.13(b)	แสดงก่าการเลือกเกิดเป็นเอทิลีนต่ออุณหภูมิในการทำปฏิกริยาโดยตัวเร่ง

	ปฏิกริยาแพลเลเคียมบนอะลูมินาที่เติมเหล็กที่เตรียม โดยวิธี โซลเจล (SG) แล	ះ วิธี
	โซลโวเทอร์มอล (SV)	31
รูป 2.14a	แสดงผล TGA ของตัวเร่งปฏิกริยาที่ผ่านการใช้งานแล้ว	32
รูป 2.14b	แสดงผล DTA ของตัวเร่งปฏิกริยาที่ผ่านการใช้งานแล้ว	33

สารบัญตาราง

ตาราง

ตาราง 1.1	สมบัติทางกายภาพของ โลหะแพลเลเดียม5
ตาราง 2.1	แสดงสารเคมีที่เกี่ยวข้อง11
ตารางที่ 2.2	สภาวะการคำเนินงานของเครื่องก๊าซโครมาโทกราฟี
ตารางที่ 2.3	แสดงสมบัติทางกายภาพของ $lpha ext{-Al}_2 ext{O}_3$ ที่สังเคราะห์ โดยวิธี โซลเจล
	วิธีโซลโวเทอร์มอล และวิธีตกตะกอนร่วม17
ตารางที่ 2.4	ผลการทดลอง TPR และ การคายซับของ ethylene และ CO 23
ตารางที่ 2.5	สมบัติทางกายภาพและเคมีของตัวเร่งปฏิกิริยา

1. บทนำ

1.1 ที่มาและความสำคัญของปัญหา

ในการผลิตพอลิเอทิลีนซึ่งเป็นพอลิเมอร์ที่มีการใช้งานมากที่สุดในปัจจุบัน มีเอทิลีนเป็น สารตั้งต้นที่สำคัญในการผลิต โดยเอทิลีนส่วนใหญ่ได้มาจากปฏิกิริยาการแตกตัวของแนฟทาหรือ แก๊สธรรมชาติ ซึ่งมักมีสารปนเปื้อนเช่นอะเซทิลีนอยู่ในปริมาณเล็กน้อย (0.3-1% โดยน้ำหนัก) อะเซทิลีนเป็นสารพิษสำหรับกระบวนการพอลิเมอไรเซชันของเอทิลีนโดยทำให้ตัวเร่งปฏิกิริยาที่ ใช้ในการพอลิเมอไรเซชันเกิคการเสื่อมสภาพ ทำให้พอลิเมอร์ที่ได้มีสมบัติด้อยลง นอกจากนี้อาจ เกิดเป็นสารประกอบเมทัลอะเซทิลิไคน์ ซึ่งสามารถเกิดระเบิดได้ ดังนั้นในกระบวนการผลิตพอลิเอ ทิลีนจึงต้องกำจัดอะเซทิลีนออกจากสายป้อนเอทิลีนให้มีปริมาณไม่เกิน 1-5 ppm ซึ่งอาจทำได้โดย (1) การแยกด้วยซีโอไลท์ และ (2) การทำปฏิกิริยาไฮโครจิเนชันบนตัวเร่งปฏิกิริยาแพลเลเดียม ้วิธีการแยกด้วยซีโอไลท์เป็นวิธีที่ก่อนยุ่งยากและสิ้นเปลือง ดังนั้นวิธีการกำจัดโดยการทำปฏิกิริยา บนตัวเร่งปฏิกิริยาจึงเป็นวิธีที่ได้รับความนิยมมากกว่า โดยตัวเร่งปฏิกิริยาที่นิยมใช้คือตัวเร่ง ปฏิกิริยาแพลเลเดียมบนตัวรองรับอะลูมินา อย่างไรก็ตามเมื่อใช้งานไประยะหนึ่งจะพบการ เกิดปฏิกิริยาพอลิเมอไรเซชันของสารไฮโครคาร์บอนเกิดเป็นโค้กหรือกรีนออยล์บนตัวเร่งปฏิกิริยา แพลเลเดียมทำให้ตัวเร่งปฏิกิริยาเสื่อมสภาพ เมื่อประสิทธิภาพของตัวเร่งปฏิกิริยาลคลงจึง ้งำเป็นต้องปรับสภาวะที่ใช้ในการทำปฏิกิริยาเช่นการเพิ่มอุณหภูมิ ซึ่งจะส่งผลให้ตัวเร่งปฏิกิริยา ้ว่องไวขึ้นแต่อาจทำให้อัตราการไฮโครจิเนชันของอะเซทิลีนเป็นอีเทนเพิ่มขึ้นทำให้เอทิลีนในสาย ้ป้อนลคลงซึ่งถือเป็นการสูญเสียสารตั้งต้นสำหรับการผลิตพอลิเอทิลีนนอกจากนี้ในท้ายที่สุดต้อง หยุดกระบวนการผลิตเพื่อนำตัวเร่งปฏิกิริยาไปฟื้นฟูสภาพด้วยความร้อนและไอน้ำที่อุณหภูมิสูงซึ่ง เป็นการสิ้นเปลืองพลังงานและเสียเวลา ในการผลิต

ในงานวิจัยที่ผ่านมา มีการพัฒนาตัวเร่งปฏิกิริยาแพลเลเคียมที่มีประสิทธิภาพสูงและมีความ เสถียรมากขึ้นโดยการเติมโลหะตัวที่สอง เช่น Ag [1-2] Si [3] K [4] และAu [5] และการปรับปรุง ตัวรองรับต่างๆเช่นการใช้นาโน TiO₂ [6-10] และตัวรองรับซีโอไลท์ [11-12] ในเบื้องต้นผู้วิจัยและ กณะได้พบว่าการสังเคราะห์อะลูมินาให้มีขนาดผลึกระดับนาโนเมตร สามารถเพิ่มประสิทธิภาพ ของตัวเร่งปฏิกิริยาในปฏิกิริยาดังกล่าวได้ [13] และการเติมโลหะตัวที่สองเช่น Ni [14] และ Zn [15] ส่งผลดีต่อประสิทธิภาพของตัวเร่งปฏิกิริยาเช่นกัน ในงานวิจัยนี้สนในการปรับปรุงสมบัติของ อะลูมินาด้วยการเติมเหล็ก มีรายงานว่าอะลูมินาที่มีการเติมเหล็กช่วยเพิ่มเสถียรภาพและความ ทนทานต่อปฏิกิริยาออกซิเดชัน [16-17]

1

1.2 วัตถุประสงค์ของโครงการวิจัย

เพื่อพัฒนาตัวเร่งปฏิกิริยาแพลเลเคียมที่มีประสิทธิภาพสูงสำหรับใช้ในการกำจัดอะเซทิลีนใน การผลิตพอลิเอทิลีน

1.3 การทบทวนวรรณกรรม

มึงานวิจัยจำนวนมากศึกษาเกี่ยวกับการเพิ่มประสิทธิภาพของตัวเร่งปฏิกิริยาแพลเลเดียมในปฏิกิริยา การกำจัดอะเซทิลีนในการผลิตพอลิเอทิลีนด้วยปฏิกิริยาไฮโดรจิเนชัน สามารถสรุปได้เป็นวิธีต่างๆ ดังนี้

 การเติม โลหะตัวที่สองลงบนตัวเร่งปฏิกิริยา เช่น Ag [1-4], Au [5-6], Cu [2], Si [7], K [8], Co [9]

การเติมโลหะตัวที่สองลงบนตัวเร่งปฏิกิริยาจะทำให้สมบัติทางไฟฟ้าและทางกายภาพ (electronic and geometric) ของตัวเร่งปฏิกิริยาแพลเลเดียมเปลี่ยแปลงไป เช่นการเปลี่ยนแปลง ปริมาณความหนาแน่นของอิเลคตรอนของแพลเลเดียมส่งผลต่อการดูดซับของสารตั้งต้น สารมัธ ยันต์และไฮโครเจนบนตัวเร่งปฏิกิริยา ทำให้การเกิดผลิตภัณฑ์ที่ต้องการมากขึ้นได้ นอกจากนี้การ เติมโลหะตัวที่สองอาจทำให้ปริมาณจุดที่ว่องไวบนตัวเร่งปฏิกิริยาเกิดการเปลี่ยนแปลง ทำให้ ประสิทธิภาพของตัวเร่งปฏิกิริยาเพิ่มขึ้น

 การเติมแก๊สการ์บอนมอนออกไซด์ปริมาณเล็กน้อยลงในสายป้อนเอทิลีน [10-15] พบว่าการเติมแก๊สการ์บอนมอนออกไซด์ปริมาณเล็กน้อยลงในสายป้อนเอทิลีนสามารถลดการ เกิดปฏิกิริยาพอลิเมอไรเซชันของไฮโดรการ์บอนเป็นโค้กและกรีนออยล์ได้ อย่างไรก็ตามวิธีนี้ไม่ เป็นที่นิยมเนื่องจากเกิดการปนเปื้อนของการ์บอนในผลิตภัณฑ์พอลิเอทิลีน ทำให้พอลิเมอร์ที่ได้มี สมบัติต่ำลง

 การปรับสภาพพื้นผิวของตัวเร่งปฏิกิริยาก่อนการใช้งานด้วยออกซิเจนหรือสารประกอบ ออกซิเจนต่างๆเช่น NO N₂O CO และ CO₂ [16-19]

ตัวเร่งปฏิกิริยาแพลเลเดียมสามารถถูกกระตุ้นได้ด้วยออกซิเจนหรือสารประกอบออกซิเจน ต่างๆเช่น NO N₂O CO และ CO₂ ทำให้ความว่องไวในการทำปฏิกิริยาไฮโครจิเนชันเปลี่ยนแปลงไป ทำให้ได้ผลิตภัณฑ์เป็นเอทิลีนมากขึ้น

1.4 ทฤษฎีที่เกี่ยวข้อง

1.4.1 อะลูมินา

อะลูมินาหรืออะลูมิเนียมออกไซด์เป็นสารประกอบเคมีของอะลูมิเนียมและออกซิเจนมีสูตร ทางเกมีกือ ALO, อะลูมินาสามารถคงอยู่ได้ในหลายเฟสในภาวะกึ่งเสถียร (metastable) ก่อนที่จะ เปลี่ยนรูปไปเป็นเฟสที่เสถียร คือ เฟสแอลฟา(□) เฟสในสภาวะกึ่งเสถียรมีอยู่ด้วยกันทั้งหมดหลักๆ 6 เฟส กำกับโดยอักษรกรีกดังต่อไปนี้ ไคน์(□), คัปปา(□), อีตาร์(□), เทตาร์(□), เดลตาร์(□) และ แกมม่า(□) แม้ว่าช่วงอุณหภูมิที่เฟสต่างๆจะกงอยู่อย่างเสถียรจะถูกรายงานโดยนักวิจัยหลายท่าน ค่า ช่วงอุณหภูมิดังกล่าวก็เปลี่ยนแปลงไปตามปัจจัยต่างๆหลายปัจจัย เช่น ระดับความเป็นผลึก (degree of crystallinity) ของสารตัวอย่าง, ปริมาณสารปนเปื้อนในสารตั้งต้น และประวัติการผ่านกวามร้อนของ สารตัวอย่าง การศึกษาการเปลี่ยนเฟสของอะลูมินาส่วนมากถูกกระทำโดยให้ความร้อนแก่อะลูมินา และศึกษาโครงสร้างของอะลูมินาที่อุณหภูมิต่างๆกันไป นอกจากนี้จากการ ทดลองยังพบว่าการเปลี่ยน เฟสดังกล่าวเป็นกระบวนการไม่ผันกลับ คุณสมบัติของอะลูมินาที่ได้จึงขึ้นกับคุณสมบัติของสารตั้งค้น และการผ่านความร้อน

รูปที่ 1.1: ความสัมพันธ์ระหว่างเฟสต่างๆของอะลูมินากับอุณหภูมิ

การเปลี่ยนเฟสของอะลูมินาโคยปกติเริ่มจากอลูมิเนียมไฮครอกไซค์ (Al(OH)₃ และ AlOOH) แปลงเป็นอะลูมินาที่อุณหภูมิค่ำ(เฟส 🗌 และ 🗋) ที่อุณหภูมิประมาณ 150-500°C ไล่ไป ยังเฟสที่อุณหภูมิสูงขึ้น(🗍 🗍 🗍 🗍 🗍 🗍 ที่อุณหภูมิช่วง 650-1000°C และท้ายที่สุคเฟสที่เสถียร ทางเทอร์ โมไคนามิก (🗋) เกิดขึ้นที่อุณหภูมิช่วง 1,100-1,200°C โคยปกติการเปลี่ยนเฟสของอะลูมิ นาโดยการปรับเพิ่มอุณหภูมิจะส่งผลให้เกิคการลดลงของพื้นที่ผิวสัมผัสแม้กระทั่งที่อุณหภูมิค่ำกว่า 800°ซ. การลดลงของพื้นที่ผิวสัมผัสจะเกิดขึ้นอย่างสำคัญที่อุณหภูมิสูงกว่า 1000°ซ. เมื่อมีการสร้าง อะลูมินาในเฟสแอลฟา (🗍) เกิดขึ้น

โครงสร้างผลึกของแอลฟาอะลูมินา

โครงสร้างของแอลฟาอะลูมินาประกอบด้วยการจัดเรียงตัวกันอย่างหนาแน่น (close packed) ของออกซิเจนไอออนขนาคใหญ่ โดยมีการเรียงลำดับแบบ A-B-A-B ดังนั้นการเรียงตัว ของออกซิเจนไอออนจึงเป็นแบบทรงเหลี่ยมหกหน้า (hexagonal) โดยมีไอออนบวกของ โลหะอลูมิเนียมแทรกอยู่ในช่องว่างระหว่างผลึกของออกซิเจนไอออน อย่างไรก็ตามเพื่อที่จะรักษา สภาพความเป็นกลางทางประจุไฟฟ้าของทั้งระบบผลึก 2 ใน 3 ของช่องว่างระหว่างผลึกจึงถูกบรรจุ ด้วยไอออนบวก

1.4.2 แพลเลเดียม

แพลเลเดียมเป็นโลหะทรานซิชันหมู่ 8 โดยมีคุณสมบัติสามารถใช้เป็นตัวเร่งปฏิกิริยาได้ทั้ง ในปฏิกิริยาแบบเนื้อเดียวและเนื้อผสม ในปฏิกิริยาเนื้อผสมแพลเลเดียมมักใช้ในการทำปฏิกิริยา ออกซิเดชั่น และปฏิกิริยาการเติมไฮโครเจน เนื่องจากคุณสมบัติที่สำคัญอย่างหนึ่งของแพลเลเดียม กือ กวามสามารถในการดูดจับและแตกตัวโมเลกุลของไฮโครเจน โดยโมเลกุลของไฮโครเจนจะถูก จับไว้ในช่องว่างระหว่างผลึกของทรงแปคหน้าของโครงสร้างของแพลเลเดียม แพลเลเดียมสามารถ ดูดซับไฮโครเจนได้ถึง 935 เท่าของปริมาตรของตัวมันเอง โดยขึ้นอยู่กับความคันย่อยของก๊าซ ไฮโครเจน และอุณหภูมิของการดูดซับ สมบัติทางกายภาพที่สำคัญบางประการของโลหะ แพลเลเดียมแสดงในตาราง 1

เลขอะคอม	46
มวลอะตอม	106.42
เส้นผ่านศูนย์กลาง	275.2 พิโคเมตร
จุคหลอมเหลว	1,872 เกลวิน
โครงสร้างผลึก	Cubic close pack
การจัคเรียงอิเล็กตรอน	$[Kr] 4d^{10}$
อิเล็กโทรเนกาทิฟวิดี้	1.4

ตาราง 1.1: สมบัติทางกายภาพของโลหะแพลเลเดียม

1.4.3 ปฏิกิริยาไฮโดรจิเนชันของอะเซทิลีน

เอทิลีนที่ใช้ในกระบวนการพอลิเมอไรเซชันผลิตมาจากการทำปฏิกิริยาไฮโครไลซิสของ สารประกอบไฮโครคาร์บอนอิ่มตัวโคยใช้ไอน้ำช่วยในการทำปฏิกิริยา ผลิตภัณฑ์เอทิลีนที่ได้ จะต้องถูกทำให้บริสุทธิ์ก่อนที่จะนำไปขาย โคยปฏิกิริยาการเคิมไฮโครเจนของอะเซทิลีนก็เป็นหนึ่ง ในกระบวนการทำให้เอทิลีนที่ได้บริสุทธิ์ ปฏิกิริยาที่เกิคสามารถแสดงได้ดังนี้

 $C_2H_2 + H_2 \longrightarrow C_2H_4 \quad \Delta H = -172 \text{ kJ/mol}, \Delta S = -111 \text{ J/K.mol} (298 \text{ K})$

อะเซทิลีนจะทำให้ตัวเร่งปฏิกิริยาที่ใช้ในกระบวนการต่างๆ เช่น กระบวนการโพลิเมอไร เซชั่นไม่สามารถทำงานได้ เนื่องจากความที่อะเซทิลีนมีความไวต่อปฏิกิริยาสูงกว่าเอทิลีน ทำให้ อะเซทิลีนสามารถแย่งจับกับพื้นที่ส่วนที่ไวต่อปฏิกิริยาของตัวเร่งปฏิกิริยาต่างๆได้ดี ดังนั้น อะเซทิลีนจึงต้องถูกขจัดออกจากเอทิลีน โดยปกติอนุญาติให้มีอะเซทิลีนเจือปนอยู่ได้ในระดับส่วน ในล้านส่วน ปฏิกิริยาการเติมไฮโครเจนของอะเซทิลีนที่ปนอยู่กับเอทิลีนนั้น ควรจะใช้ตัวเร่ง ปฏิกิริยาที่มีความสามารถในการเลือกเกิดปฏิกิริยาสูง เนื่องจากมีปฏิกิริยาข้างเกียงที่ไม่ต้องการที่ อาจเกิดขึ้นได้ ดังต่อไปนี้

 $C_{2}H_{2} + H_{2} \xrightarrow{k_{1}} C_{2}H_{4} \quad \Delta H = -176.4 \text{ J/mol}$ $C_{2}H_{4} + H_{2} \xrightarrow{k_{2}} C_{2}H_{6} \quad \Delta H = -138.2 \text{ J/mol}$ $C_{2}H_{4} + (n) C_{2}H_{2} \xrightarrow{k_{3}} C_{x}H_{x} \quad (\text{polymer/ green oil})$

ปฏิกิริยาแรก เป็นปฏิกิริยาที่พึงประสงค์ ในขณะที่ปฏิกิริยาที่สอง เป็นปฏิกิริยาที่ก่อให้เกิด ผลิตภัณฑ์ข้างเคียงที่ไม่ต้องการ คือ อีเทน ซึ่งเกิดจากการทำปฏิกิริยาไฮโดรจีเนชันของเอทิลีน ในขณะที่ปฏิกิริยาที่สาม เป็นการก่อตัวของโค้กซึ่งจะทำให้ความสามารถของตัวเร่งปฏิกิริยาตกลง เช่น การเกิดปฏิกิริยาโพลิเมอไรเซชันกับตัวเองของอะเซทิลีน ทำให้เกิดสายโซ่ยาวที่เรียกกัน โดยทั่วไปว่า "กรีนออยล์" (green oil)

เมื่อพิจารณาปฏิกิริยาข้างต้นทั้งสามปฏิกิริยา ตัวแปรที่ส่งผลต่อปฏิกิริยามีอยู่ด้วยกันสองตัว หลักๆ โคยตัวแปรแรกคืออุณหภูมิของปฏิกิริยา ซึ่งมีความสัมพันธ์อย่างแปรผันตรงโดยตรงต่อ ้อัตราการเกิดปฏิกิริยาของระบบ อย่างไรก็ตามการเพิ่มของอุณหภูมิไม่เพียงแต่เพิ่มค่าคงที่การ ้เกิดปฏิกิริยาของปฏิกิริยาที่ต้องการ (k,) แต่ยังเพิ่มค่าคงที่การเกิดปฏิกิริยาของปฏิกิริยาข้างเคียงที่ไม่ ต้องการอีกด้วย (k,, k,) โดยการเพิ่มอัตราการเกิดปฏิกิริยาของปฏิกิริยาที่สองและสามจะส่งผลให้ เกิดการใช้เอทิลีนซึ่งเป็นผลิตภัณฑ์ที่ด้องการ นอกจากนี้ยังทำให้อัตราการเกิดโค้กสูงขึ้นส่งผลให้ ประสิทธิภาพในการทำงานของตัวเร่งปฏิกิริยาต่ำลง เนื่องจากบริเวณที่ไวต่อปฏิกิริยาถูกปกคลุม ้ด้วยโพลิเมอร์ ดังนั้นเมื่อตัวเร่งปฏิกิริยาใหม่ถูกบรรจุลงในระบบ ค่าความไวต่อปฏิกิริยาของจะยังมี ้ ค่าสูง และจะลคลงเรื่อยๆตามเวลา เนื่องจากเกิดการสะสมตัวของโค้กบนผิวของตัวเร่งปฏิกิริยา ้โดยทั่วไปเพื่อทำการเพิ่มความไวต่อปฏิกิริยาของตัวเร่งปฏิกิริยา จึงต้องมีการเพิ่มอุณหภูมิของ ระบบในช่วงท้ายของการเกิดปฏิกิริยาเพื่อให้การขจัดอะเซทิลีนสมบูรณ์ อย่างไรก็ตามการขจัด อะเซทลีนซึ่งมีปริมาณน้อยเมื่อเทียบกับเอทิลีนนั้นทำได้ยาก เนื่องจากการให้พลังงานด้วยการเพิ่ม อุณหภูมิจะทำให้ปฏิกิริยาที่สอง (2.4) เกิดมากขึ้น หรือ อาจกล่าวได้ว่าการเพิ่มอุณหภูมิส่งผลให้เกิด การลดค่าการเลือกทำปฏิกิริยา (selectivity) ดังนั้นไฮโดรเจรปริมาณมากขึ้นจะถูกใช้ไปกับการทำ ปฏิกิริยาไฮโครจีเนชั่นของเอทิลีน ซึ่งก่อให้เกิดผลิตภัณฑ์ข้างเคียงคืออีเทนมากขึ้น และทำให้เกิด การสูญเสียเอทิลีนไปมากขึ้น ดังนั้นในการทำปฏิกิริยาอุณหภูมิควรถูกลดลงให้ต่ำที่สุดเท่าที่จะทำ ้ได้ เพื่อลดการเกิดผลิตภัณฑ์ข้างเคียงที่ไม่ต้องการ ตัวแปรอีกตัวหนึ่งที่ส่งผลอย่างสำคัญต่อก่าการ เลือกทำปฏิกิริยาคืออัตราส่วนระหว่างไฮโครเจน และอะเซทิลีน (H,: C,H,) ในอุคมคตินั้น อัตราส่วน H2: C2H2 เป็น 1:1 หรือหมายความว่าไฮโครเจนทั้งหมคในก๊าซป้อนทำปฏิกิริยาเฉพาะกับ ปฏิกิริยาที่ต้องการ (2.3) โคยไม่มีไฮโครเจนสูญเสียไปกับปฏิกิริยาข้างเคียงเลย อย่างไรก็ตามในทาง ปฏิบัตินั้นตัวเร่งปฏิกิริยาไม่สามารถเลือกทำปฏิกิริยาได้ 100% ดังนั้นอัตราส่วน $m H_2: C_2
m H_2$ จึงมักจะ มากกว่า 1:1 เพื่อให้เกิดการขจัดอะเซทิลีนโดยสมบูรณ์ เนื่องจากไฮโดรเจนเป็นหนึ่งในสารตั้งค้น ้ ก่าอะเซทลีนกอนเวอร์ชั่นจึงเพิ่มสูงขึ้นไปตามกวามเข้มข้นของไฮโครเจน การเพิ่มอัตราส่วน $\mathrm{H_2^{2}}$ C_{2} H, จึงสามารถชดเชยอัตราการเกิดปฏิกิริยาที่ต่ำลงเนื่องจากการเสื่อมสภาพของตัวเร่งปฏิกิริยา เพราะการสะสมของโค้กได้ อย่างไรก็ตามการเพิ่มอัตราส่วนดังกล่าวอาจลดความสามารถในการ ้เลือกทำปฏิกิริยาของตัวเร่งปฏิกิริยา และทำให้เกิดการสูญเสียของเอทิลีนเพิ่มขึ้นได้

กระบวนการเติมไฮโครเจนแบบจำเพาะของอะเซทิลีน ประกอบค้วย 4 เส้นทางการ เกิดปฏิกิริยาหลักคังแสคงในรูปที่ 2.4 เส้นทางที่ 1 เป็นการเติมไฮโครเจนของอะเซทิลีนให้ กลายเป็นเอทิลีน ซึ่งเอทิลีนที่เกิดขึ้นอาจกายซับออกจากตัวเร่งปฏิกิริยาใยสถานะก๊าซ หรืออาจเกิด การเติมไฮโครเจนต่อไปทำให้ได้ผลิตภัณฑ์เป็นอีเทนเช่นเส้นทาง 2 จากการวิจัยพบว่าเส้นทาง 1 นั้นเกิดมากในบริเวณของตัวเร่งปฏิกิริยาแพลเลเดียมที่ภายใต้กวามเข้มข้นของอะเซทิลีนสูง ขณะที่ เส้นทางที่สองนั้นพบได้ในบริเวณของตัวเร่งปฏิกิริยาที่ถูกปกกลุมด้วยโค้กหรือโพลิเมอร์

รูปที่ 1.3 เส้นทางปฏิกิริยาหลักของกระบวนการเติมไฮโครเจนในอะเซทิลีนแบบจำเพาะ

จากเส้นทางปฏิกิริยาหลักจะเห็นได้ว่าการเพิ่มก่าการเลือกทำปฏิกิริยาการเติมไฮโครเจนใน อะเซทิลีนแบบจำเพาะนั้น สามารถทำได้โดยทั้งลดการดูคซับของเอทิลีนบนตัวเร่งปฏิกิริยา หรือลด ปริมาณ โพลิเมอร์ที่สะสมอยู่บนตัวเร่งปฏิกิริยา วิธีหนึ่งที่สามารถใช้ในการเพิ่มก่าการเลือกทำ ปฏิกิริยากีอการกวบกุให้ก่าอัตราส่วน H₂:C₂H₂ มีก่าต่ำๆ ทำให้ไม่มีไฮโครเจนเพียงพอที่จะไปทำ ปฏิกิริยาการเติมในเอทิลีนที่ถูกดูคซับอยู่บนตัวเร่งปฏิกิริยา อย่างไรก็ตามวิธีนี้มีข้อเสียคือทำให้การ ก่อตัวของพอลิเมอร์เกิดได้เร็วขึ้น ดังนั้นการปรับกวบกุมอัตราส่วน H₂:C₂H₂ นั้นต้องทำอย่าง ละเอียด เส้นทางปฏิกิริยาที่ 3 นั้นสามารถละทิ้งได้ในกรณีที่อะเซทิลีนปกกลุมตัวเร่งปฏิกิริยาอย่าง ทั่วถึง และมีกวามเข้มข้นของไฮโครเจนต่ำ เอทิลิลีนเป็นสารอินเทอมีเดียตในเส้นทางปฏิกิริยาที่ 3 แต่ในภายหลังได้รับการพิสูจน์ว่าเอทิลีนที่เกิดจากเส้นทางปฏิกิริยาที่ 1 จะไม่เข้าร่วมในปฏิกิริยา โดยเอทิลีนที่จะผ่านเส้นทางปฏิกิริยาที่ 3 เป็นเอทิลีนในสายป้อนซึ่งเกิดปฏิกิริยาที่ผิวหน้าของตัวเร่ง ปฏิกิริยาเท่านั้น สำหรับเส้นทางที่ 4 ซึ่งมีการจับตัวกันของสาร C₂ สามารถทำให้เกิดการสะสมของ โก้กบนผิวตัวเร่งปฏิกิริยา ซึ่งนำไปสู่การเสื่อมประสิทธิภาพของตัวเร่งปฏิกิริยาได้ การเกิดโค้กหรือ โพลิเมอร์นี้มีผลลดการเลือกเกิดปฏิกิริยาการเติมไฮโครเจนของสาร Laงกูปอนตรีงเปลิกิริยาได้ กรเกิดโค้กหรือ โพลิเมอร์นี้มีผลลดการเลือกเกิดปฏิกิริยาการเติมไบโครเจนของสารไห้เกิดปฏิกิริยาได้ การเกิดโค้กหรือ โมลิเมอร์นี้มีผลลดการเลือกเกิดปฏิกิริยาการเติมไฮโครเจนของสารได้ กายบูบนด้วเร่งปฏิกิริยาได้ การเกิดโค้กหรือ เมื่อพิจารณาจากเส้นทางการเกิดปฏิกิริยาทั้งหมด จะเห็นได้ว่าก่าการเลือกทำปฏิกิริยาการ เติมไฮโครเจนของอะเซทิลีนจะสูงขึ้นเมื่อเส้นทางปฏิกิริยาที่ 1 เพิ่มสูงขึ้น ขณะที่เส้นทางอื่นๆถูก ชลอลง

ในการศึกษานี้ ค่าประสิทธิภาพของตัวเร่งปฏิกิริยาถูกวัค โดยค่าอะเซทิลีนกอนเวอร์ชัน และค่า%เอทิลีนที่เพิ่มขึ้น วิธีการคำนวณก่าบ่งชี้ทั้งสองสามารถแสคงเป็นสมการได้ดังนี้

ค่าอะเซทิลีนคอนเวอร์ชัน นิยามโดยปริมาณของอะเซทิลีนที่ทำปฏิกิริยาไป เทียบกับปริมาณ อะเซทิลีนในสายป้อน

 $C_2H_2conversion(\%) = \frac{\sum_{k=1}^{n} \sum_{k=1}^{n} \sum_{k$

้ค่า % เอทิลีนที่เพิ่มขึ้น นิยามโดยอัตราส่วนระหว่างอะเซทิลีนที่ถูกทำปฏิกิริยาไปเป็นเอทิลีน ค่อ อะเซทิลีนทั้งหมดที่ทำปฏิกิริยาไป

$$C_2 H_4 \tilde{\mathfrak{m}} \tilde{\mathfrak{m}} \tilde{\mathfrak{m}} \mathfrak{m} \tilde{\mathfrak{m}} (\%) = \frac{C_2 H_2 \tilde{\mathfrak{m}} \mathfrak{m} \mathfrak{m} \tilde{\mathfrak{m}} \tilde{\mathfrak{m}} \tilde{\mathfrak{m}} \tilde{\mathfrak{m}} \tilde{\mathfrak{m}} \mathcal{L}_2 H_4}{C_2 H_2 \tilde{\mathfrak{m}} \mathfrak{m} \tilde{\mathfrak{m}} \tilde{\mathfrak{m}} \tilde{\mathfrak{m}} \tilde{\mathfrak{m}} \tilde{\mathfrak{m}} \mathcal{L}_2 H_4} \times 100 - - - (ii)$$

อย่างไรก็ตามในการวิเคราะห์หาปริมาณเอทิลีนโดยตรงสามารถทำได้ยาก ดังนั้นจึงต้องทำการ แปลงสมการการกำนวณให้อยู่ในรูปของปริมาณอะเซทิลีนที่ทำการตรวจวัดได้ง่ายกว่า ดังนี้

เอทิลีนที่ถูกเปลี่ยนเป็นอีเทนเท่ากับผลต่างระหว่างไฮโครเจนที่ถูกใช้ไปทั้งหมด กับปริมาณ อะเซทิลีนที่ถูกทำปฏิกิริยาไป

$$C_2 H_4 \vec{n}_1 \vec{n}_2 \vec{n}_2$$

เมื่อค่า Δ แสคงถึงผลต่างของปริมาณสารในสายป้อนเทียบกับสายผลิตภัณฑ์

ไฮโครเจน 2 โมลถูกใช้ไปในการเปลี่ยนอะเซทิลีนเป็นอีเทน และ 1 โมลของไฮโครเจนถูกใช้ไปใน การเปลี่ยนอะเซทิลีนไปเป็นเอทิลีน คังนั้นค่า % เอทิลีนรวมที่เพิ่มขึ้นสามารถแสคงได้คังนี้

$$C_2 H_4$$
ที่เพิ่มขึ้น(%) = $100 \times \left[2 - \frac{dH_2}{dC_2 H_2}\right] - - - (iv)$

สมการที่ (iii) และ (iv) เป็นสมการเดียวกันที่ทำการจัดรูปใหม่ โดยในการศึกษาวิจัยนี้ ได้ใช้สมการ ที่ (iii) ในการคำนวณ ค่าที่คำนวณได้จะเป็นค่า % เอทิลีนที่เพิ่มขึ้นทางทฤษฎี เทอมที่เป็นบวกแสดง ถึงการเพิ่มขึ้นของเอทิลีน ในขณะที่เทอมที่เป็นลบแสดงถึงเอทิลีนที่ถูกทำปฏิกิริยาข้างเคียง กลายเป็นอีเทน อย่างไรก็ตามการใช้สมการดังกล่าวไม่สามารถครอบคลุมถึงการเกิดโค้ก หรือการ โพลิเมอไรเซชันซึ่งก่อให้เกิดน้ำมันเขียว (green oil)

โดยทั่วไปช่วงอุณหภูมิของการทำปฏิกิริยาการเติมไฮโดรเจนในอะเซทิลีนนั้นอยู่ใน ระหว่าง 65-85°C โดยในช่วงการเริ่มทำปฏิกิริยา อุณหภูมิอาจอยู่เพียง 45°ซ. หลังจากตัวเร่งปกิกิริยา เข้าสู่สภาวะเสถียร อุณหภูมิของการเกิดปฏิกิริยาจะคงตัวตลอดการทำปกิกิริยา โดยการทำปฏิกิริยา นั้นสามารถแบ่งได้เป็น 3 ช่วง ในช่วงแรก (0-2 นาทีแรก) ปฏิกิริยาจะเกิดอย่างรวดเร็ว ทำให้เกิดทั้ง เอทิลีนและอีเทนเป็นผลิตภัณฑ์ ในช่วงที่ 2 (2-60 นาที) อัตราการใช้อะเซทิลีน และอัตราการผลิตเอ ทิลีนและอีเทน จะคงที่ ในช่วงนี้ ปฏิกิริยาการเติมไฮโดรเจนลงในอะเซทิลีนจะเป็นปฏิกิริยาหลัก ช่วงที่ 3 เป็นช่วงที่การเติมไฮโดรเจนลงในอะเซทิลีนใกล้เสร็จสมบูรณ์ และช่วงนี้เป็นช่วงที่ ใกล้เกียงกับสภาพการเกิดปฏิกิริยาจริงในอุตสาหกรรม

1.5 ขอบเขตของโครงการวิจัย

 สังเคราะห์ตัวเร่งปฏิกิริยาแพลเลเคียมบนตัวรองรับอะลูมินาที่มีสมบัติใกล้เคียงกับตัวเร่ง ปฏิกิริยาที่ใช้ในทางการค้าเพื่อใช้ในการเปรียบเทียบ

2) สังเคราะห์ตัวเร่งปฏิกิริยาแพลเลเดียมบนสารประกอบจำพวกอะลูมิเนท เช่นนิกเกิลอะลูมิเนต โกบอลต์อะลูมิเนท เหล็กอะลูมิเนท ซึ่งเป็นสารประกอบที่มีความเสถียรกว่าอะลูมินาและมีความ เป็นกรดน้อยกว่า

3) ศึกษาผลของการปรับปรุงตัวเร่งปฏิกิริยาต่อคุณลักษณะและสมบัติทางเคมีฟิสิกส์ของตัวเร่ง ปฏิกิริยาด้วยเครื่องมือวิเคราะห์ต่างๆอาทิ เครื่องมือวิเคราะห์พื้นที่ผิวและการดูดซับของแก๊ส เครื่อง กระเจิงรังสีเอ็กซ์ กล้องอิเลคตรอนแบบส่องกราด และเอ็กซเรย์โฟโตอิเลคตรอนสเปกโตรสโกปี เป็นด้น

4) ศึกษาประสิทธิภาพของตัวเร่งปฏิกิริยาในปฏิกิริยาไฮโครจิเนชันของอะเซทิลีนในเอทิลีนปริมาณ มาก ที่สภาวะต่างๆ

1.6 วิธีดำเนินการวิจัย

ศึกษาหลักการพื้นฐาน รวบรวมงานวิจัยที่เกี่ยวข้อง ออกแบบและสร้างเครื่องปฏิกรณ์สำหรับปฏิกิริยาไฮโครจิเนชัน สังเคราะห์ตัวเร่งปฏิกิริยาต่างๆ ทคสอบคุณลักษณะและสมบัติของตัวเร่งปฏิกิริยา วิเคราะห์และสรุปผลการทคลอง จัดทำรายงานและผลงานเพื่อการตีพิมพ์

1.7 ประโยชน์ที่คาดว่าจะได้รับ

ได้ความรู้ใหม่ซึ่งอาจนำไปเผยแพร่ในวารสารในระดับนานาชาติได้ เป็นแหล่งข้อมูล/ความรู้สำหรับการพัฒนาตัวเร่งปฏิกิริยาขึ้นใช้เองลดการนำเข้าของตัวเร่ง ปฏิกิริยาและการพึ่งพาเทคโนโลยีจากต่างประเทศ

หน่วยงานที่นำผลการวิจัยไปใช้ประโยชน์ ได้แก่ อุตสาหกรรมปีโตรเคมีของประเทศ

2. เนื้อเรื่อง

2.1 อุปกรณ์และวิธีการทดลอง

ตาราง 2.1 แสดงสารเคมีที่เกี่ยวข้อง

Chemical	Supplier	
Aluminium Isopropoxide 98%+	Aldrich	
Palladium (II) nitrate hydrate	Aldrich	
Iron (II) nitrate	Fluka	
Toluene 99.5%	Carlo Erba Reagenti	
Methyl alcohol	Aldrich	
Ethyl alcohol absolute anhydrous	Mallinckrodt Baker	
Urea 99.5%	Univar	

2.1.1 การเตรียมตัวรองรับอะลูมินาและอะลูมินาที่มีการเติมโลหะดัวที่สอง

2.1.1.1 วิธีโซล-เจล

อะลูมิเนียมในเตรท โนนาไฮเครต ละลายในเอทานอล 50 มิลลิลิตรจนเป็นเนื้อเคียวกัน จากนั้น นำไปเข้าชุด reflux-condenser โดยรักษาอุณหภูมิของระบบให้อยู่ในช่วง 70-80°C เป็นเวลา 18 ชั่วโมง จากนั้น เติมสารละลายยูเรีย ซึ่งประกอบด้วยยูเรีย 60 กรัม และ น้ำกลั่น 50 มิลลิลิตร และรักษาอุณหภูมิของ ระบบเท่าเดิม เป็นเวลา 24 ชั่วโมงหรือจนกระทั่งกลายเป็นเจล จากนั้น นำเจลที่ได้ไปเผาที่อุณหภูมิ 1150°C เป็นเวลา 3 ชั่วโมง

2.1.1.2 วิธีโซลโวเทอร์มอล

สำหรับวิธีโซลโวเทอร์มอล, อะลูมิเนียมไอโซโพรพรอกไซด์ 15 กรัม ละลายในสารละลายโทลูอีน 100 มิลลิลิตรในบีกเกอร์ จากนั้นนำไปใส่ในเครื่อง autoclave ซึ่งช่องว่างระหว่างบีกเกอร์กับผนังของเครื่อง autoclave มีสารละลายโทลูอีน 40 มิลลิลิตรเติมอยู่ จากนั้น ทำการเพิ่มอุณหภูมิด้วยอัตรา 2.5°Cต่อนาที จนถึงอุณหภูมิ 300°C ทิ้งไว้ 2 ชั่วโมง หลังจาก autoclave ลดอุณหภูมิจนถึงอุณหภูมิห้อง นำผลิตภัณฑ์ที่ได้ ไปล้างด้วยสารละลายเมทานอลโดยการเซนติฟิวและ ปล่อยให้แห้งที่อุณหภูมิห้อง จากนั้น นำไปเผาที่ อุณหภูมิ 1150°C เป็นเวลา 1 ชั่วโมง การเตรียมอะลูมินาที่มีการเติมเหล็กจะใช้สารตั้งต้นของเหล็กเป็นเหล็กอะซิติลอะซิโตเนตและ เหล็กในเตรทสำหรับการเตรียมโดยวิชีโซลเจลและวิชีโซลโวเทอร์มอลตามลำดับ และทำตามวิชีเคียวกันกับ การเตรียมอะลูมินา

2.1.2 การเตรียมตัวเร่งปฏิกิริยาแพลเลเดียมบนตัวรองรับอะลูมินาและอะลูมินาที่มีการเติมโลหะตัวที่สอง

- ทำการเติมโลหะแพลเลเดียมลงบนแอลฟาอะลูมินาที่เตรียมได้ โดยหยดด้วยสารละลายแพลเลเดียมใน เตรต ความเข้มข้นร้อยละ 2.91 โดยน้ำหนัก โดยใช้อัตราส่วนแพลเลเดียมต่อสารรองรับเท่ากับร้อยละ 0.3 โดยน้ำหนัก โดยเตรียมสารรองรับไว้ในถ้วยกระเบื้อง
- ผสมสารแพลเลเดียมลงบนตัวรองรับให้ทั่วถึง โดยคลุกสารละลายแพลเลเดียมเข้ากับตัวรองรับโดยใช้ ช้อนตักสาร จากนั้นจึงปิดถ้วยกระเบื้องด้วยกระดาษฟอยล์เจาะรูพรุน
- นำตัวรองรับที่เติมแพลเลเดียมแล้ว ไปพักในตู้ดูดควันเป็นเวลา 1 ชม.
- 4. นำตัวรองรับที่เติม โลหะแพลเลเดียมแล้ว ไปเผาที่ 500°ซ. เป็นเวลา 2 ช.ม. โดยใช้เตาเผา (calcine)
- ปล่อยให้ตัวรองรับเย็นลง และทำการเก็บบรรจุลงในขวดแก้วเพื่อใช้ต่อไป

2.1.3 การทดสอบคุณสมบัติของตัวเร่งปฏิกิริยา

การทดสอบประสิทธิภาพของตัวเร่งปฏิกิริยาที่เตรียมได้ ในปฏิกิริยาไฮโดรจิเนชันของอะเซทิลีน

- บรรจุตัวเร่งปฏิกิริยาที่เตรียมได้ปริมาณ 0.1 กรัมลงในหลอดแก้ว โดยใช้เส้นใยควอทซ์ (quartz wool) เป็นตัวรองรับ
- นำหลอดแก้วไปติดตั้งในชุดอุปกรณ์ทำการทดลองดังรูปที่ 2.1
- เปิดก๊าซอาร์กอนเพื่อไล่อากาศออกจากเตาปฏิกรณ์เป็นเวลา 5-10 นาที
- ปิดก๊าซอาร์กอนและเปิดก๊าซไฮโครเจนเพื่อรีดิวซ์ตัวเร่งปฏิกิริยา และปรับอุณหภูมิของเตาปฏิกรณ์ไป ที่ 150 °ซ.เป็นเวลา 2 ชั่วโมง โดยใช้อัตราการเพิ่มของอุณหภูมิ 10 °ซ.ต่อนาที
- 5. ปิคก๊าซไฮโครเจนและเปิคก๊าซอาร์กอนเพื่อลดอุณหภูมิของเตาปฏิกรณ์ลงมาที่ 60 °ซ.
- ปิดก๊าซอาร์กอน และเปิดวาล์วก๊าซผสมอะเซทิลีนและ ไฮโครเจน
- เก็บตัวอย่างก๊าซผสมที่วิ่งผ่านเตาปฏิกรณ์หลอดแก้วควอทซ์ (quartz tube) 1 เครื่องทุกๆ 1 ช.ม. ด้วยเข็ม ฉีดเป็นปริมาตร 50 ไมโครลิตร โดยทำการเก็บก๊าซผลิตภัณฑ์ที่จุดเก็บตัวอย่างหลังหลอดแก้ว
- ทำการปรับค่าอัตรการใหลของแก๊ซป้อนเป็น 10, 20, 40, 60 และ 100 ลูกบาศเซนติเมตรต่อนาที ตามลำคับ หลังทำการเก็บก๊าซตัวอย่าง
- ทำการเก็บก๊าซป้อนที่งุคเก็บตัวอย่างก่อนเข้าสู่หลอดแก้ว

- 10. วัคปริมาณก๊าซไฮโครเจนและอะเซทิลีน โคยใช้วิธี Gas Chromatography
- 11. นำข้อมูลที่ได้ไปวิเคราะห์เพื่อคำนวณค่า % C_2H_2 Conversion และ % C_2H_2 ที่เพิ่มขึ้น

รูปที่ 2.1: ชุดอุปกรณ์สำหรับการทดสอบปฏิกิริยาการเติมไฮโครเจนอย่างจำเพาะในอะเซทิลีน

เทคนิคการวิเคราะห์ด้วยเครื่องก๊าซโครมาโทกราฟี

การทดสอบปฏิกิริยาการเติมไฮโครเจนลงในอะเซทิลีนถูกใช้ในการตรวจวัดประสิทธิภาพของ ดัวเร่งปฏิกิริยา โดยทำการทดลองในเตาปฏิกรณ์แบบหลอดแก้ว (quartz tube reactor) ที่มีเส้นผ่านศูนย์กลาง 10.1 มม. ก๊าซที่ป้อนเข้าสู่เครื่องปฏิกรณ์มีองค์ประกอบดังนี้ 1.5% C₂H₂, 1.7% H₂ และส่วนที่เหลือเป็น C₂H₄ องค์ประกอบของก๊าซป้อน และก๊าซผลิตภัณฑ์ถูกทำการวิเคราะห์โดยใช้เครื่องก๊าซโครมาโทกราฟี Shimadzu GC 8A ที่ติดตั้งตัวตรวจวัดแบบ TCD และ FID (molecular sieve-5A และ carbosieve S2 columns ตามลำดับ) สภาวะในการดำเนินงานของเครื่องมือทั้งสองแสดงดังตาราง 2.2

ตารางที่ 2.2: สภาวะการคำเนินงานของเครื่องก๊าซโครมาโทกราฟี

รายละเอียด	Shimadzu FID GC 9A	Shimadzu TCD GC 8A
เครื่องตรวจจับ	FID	TCD
คอลัมน์	Carbosieve column S-II	Molecular sieve 5A
ก๊าซตัวนำ	ก๊าซไนโตรเจนความบริสุทธิ์สูง	ก๊าซอาร์กอนความบริสุทธิ์สูง
อัตราการใหลของก๊าซตัวนำ (มล./	30	30
นาที)		
อุณหภูมิของการฉีด (°ซ.)	180	80
อุณหภูมิเริ่มต้นของคอลัมน์ (°ซ.)	100	50
เวลาคงตัวเริ่มต้น (นาที)	50	-
อัตราการเพิ่มอุณหภูมิ (°ซ./ นาที)	10	-
อุณหภูมิสุคท้ายของคอลัมน์ (°ซ.)	160	50
เวลาคงตัวสุคท้าย (นาที)	160	-
กระแสไฟฟ้า (มิลลิแอมแปร์)	-	70
แก๊ซที่ทำการวิเคราะห์	CH ₄ , C ₂ H ₂ , C ₂ H ₄ , C ₂ H ₆	H ₂

เทคนิคการกระเจิงรังสีเอกซ์

การกระเจิงรังสีเอกซ์ถูกใช้เพื่อทำการวิเคราะห์เฟสของสารรองรับที่เตรียมได้ และยังสามารถใช้ใน การคำนวณขนาคของผลึกได้ด้วย ในการศึกษาวิจัยนี้ได้ใช้เครื่องกระเจิงรังสีเอกซ์รุ่น Siemens D 5000 โดย ใช้ CuK_α เป็นแหล่งกำเนิดรังสี และใช้ตัวกรองเป็นนิกเกิล โดยมีช่วงมุม 20 อยู่ระหว่าง 20-80 องศา และมี ความคมชัดที่ 0.04 องศา

การตรวจวัดพื้นที่ผิวของตัวรองรับด้วยเทกนิก BET

ในการตรวจวัคพื้นที่ผิวของตัวดูคซับในการศึกานี้ ได้ทำโดยใช้การดูคซับก๊าซไนโตรเจที่อุณหภูมิ ด่ำ โดยใช้ระบบ Micrometric Chemisorb 2750 การคำนวณทำโดยใช้ BET 1 ตำแหน่ง โดยสารตัวอย่าง ปริมาณประมาณ 0.2 กรัม ถูกบรรจุลงในหลอดรูปตัวยู จากนั้นจึงทำการให้ความร้อนไปที่ 200 องศา เซลเซียส ภายใต้บรรยากาศของก๊าซฮีเลียม เป็นเวลา 2 ชม. เพื่อทำการไล่น้ำออกจากสารตัวอย่าง จากนั้น สารตัวอย่างจึงถูกปล่อยให้เย็นตัวลงมาที่อุณหภูมิห้อง ก๊าซที่ใช้ในการวิเคราะห์ประกอบด้วยในโตรเจน 30% ถูกป้อนเข้ามาในหลอกรูปตัวยู จากนั้นจึงทำการลดอุณหภูมิของสารตัวอย่าง โดยทำการชุบหลอกรูป ตัวยูในในโตรเจนเหลว เพื่อให้เกิดการดูดซับของก๊าซในโตรเจนลงบนสารตัวอย่าง จนกระทั่งพื้นผิวของ สารตัวอย่างอิ่มตัวด้วยก๊าซในโตรเจน จากนั้นจึงทำการกายซับก๊าซไนโตรเจนที่พื้นผิวโดยปล่อยให้สาร ตัวอย่างมีอุณหภูมิกลับมาที่อุณหภูมิห้อง ปริมาณในโตรเจนที่ถูกปล่อยออกมานี้จะถูกตรวจวัด และนำมา แปลงเป็นก่าพื้นที่ผิวของสารตัวอย่าง

การตรวจวัดปริมาณบริเวณที่ไวต่อปฏิกิริยา (active site) ของตัวเร่งปฏิกิริยาโดยวิธีการดูดซับทาง เคมี (Chemical Adsorption)

การตรวจวัดปริมาณ active sites ของตัวเร่งปฏิกิริยา ทำโดยใช้การดูดซึมของก๊าซ การ์บอนมอนอกไซด์ ในระบบอัตโนมัต Micrometric Chemisorb 2750 ก๊าซการ์บอนมอนอกไซด์ปริมาณ แน่นอนถูกป้อนเข้าสู่ตัวเร่งปฏิกิริยาที่อุณหภูมิห้อง ก๊าซการ์บอนไดออกไซด์ที่ไม่ถูกดูดซับจะถูกตรวจจับ ด้วยเครื่องตรวจวัดการนำความร้อน การป้อนก๊าซการ์บอนมอนอกไซด์ จะถูกทำต่อไปจนกระทั่งพื้นผิวของ ตัวเร่งปฏิกิริยาอิ่มตัวด้วยก๊าซการ์บอนมอนอกไซด์ จำนวนของ active site ของตัวเร่งปฏิกิริยานั้นถูกทำการ กำนวณโดยถือว่า ก๊าซการ์บอนมอนอกไซด์ 1 โมเลกุล จะถูกดูดซับลงบน active site 1 จุด

ตัวเร่งปฏิกิริยาปริมาณ 0.1 กรัมถูกทำการบรรจุลงในหลอครูปตัวยู ซึ่งถูกติดตั้งในเครื่องควบคุม อุณหภูมิ และมีเทอร์โมคอปเปิลใช้ในการวัดอุณหภูมิ ก๊าซฮีเลียมถูกเปิดเข้าสู่หลอครูปตัวยูด้วยอัตรา 30 100 มล./นาทีเพื่อที่จะกำจัดอากาศในหลอด ก่อนที่จะทำการดูดซับ สารตัวเร่งปฏิกิริยาจะถูกทำการรีดิวซ์ด้วย ใฮโครเจนที่อัตราการป้อน 50 100 มล./นาที และทำการให้กวามร้อนด้วยอัตรา 10°ซ/นาทีจากอุณหภูมิห้อง ใปยัง 150 °ซ. และทำการคงไว้ที่อุณหภูมินี้เป็นเวลา 1 ซม. หลังจากนั้นจึงถูกทำให้เย็นลงภายใต้บรรยากาศ ของก๊าซไฮโครเจน จากนั้นก๊าซการ์บอนมอนอกไซด์จึงถูกป้อนเข้าสู่หลอครูปตัวยูที่อุณหภูมิห้อง ก๊าซ การ์บอนมอนอกไซด์ที่ไม่ถูกดูดซับจะถูกตรวจวัดโดยใช้เกรื่องตรวจวัดการนความร้อน การป้อนก๊าซ ลาร์บอนมอนอกไซด์ที่ไม่ถูกดูดซับจะถูกตรวจวัดโดยใช้เกรื่องตรวจวัดการนความร้อน การป้อนก๊าซ ลาร์บอนมอนอกไซด์จะถูกทำต่อไปจนกระทั่งไม่เห็นการดูดซับอีกต่อไป การกำนวณการกระจายตัวของ active site แสดงในภาคผนวก จ

Thermal Gravimetric Analysis (TGA)

การตรวจวัดปริมาณโด้กที่สะสมบนตัวเร่งปฏิกิริยาหลังการทำปฏิกิริยาการเติมไฮโครเจนใน อะเซทิลีนแบบจำเพาะ สามารถทำได้โดยการใช้เทคนิค TGA โดยนำตัวเร่งปฏิกิริยาที่ผ่านการใช้ในการทำ ปฏิกิริยามาแล้ว มาตรวจสอบด้วยเครื่อง SDT Analyzer รุ่น Q600 โดยการวิเคราะห์ถูกทำโดยให้ความร้อน แก่ตัวเร่งปฏิกิรยาภายใต้บรรยากาศของออกซิเจนที่อัตราการไหล 100 มล./นาที โดยช่วงอุณหภูมิที่ทำการ วิเคราะห์คือตั้งแต่ 30°ซ. ถึง 1000°ซ. โดยมีอัตราการให้ความร้อนอยู่ที่ 10°ซ/นาที โดยน้ำหนักโค้กที่สะสม อยู่บนตัวเร่งปฏิกิริยา สามารถหาได้จากน้ำหนักที่เปลี่ยนแปลงไปของตัวเร่งปฏิกิริยาซึ่งเกิดจากการที่โค้กถูก เผาทำลายไป

2.2 ผลการทดลอง

2.2.2 ผลของวิธีที่ใช้ในการสังเคราะห์อะลูมินาต่อประสิทธิภาพในการเร่งปฏิกิริยาไฮโดรจิเนชัน ของตัวเร่งปฏิกิริยาแพลเลเดียมบนอะลูมินาในการกำจัดอะเซทิลีนออกจากเอทิลีน

ในงานวิจัยนี้ทำการศึกษาผลของวิธีที่ใช้ในการสังเคราะห์อะลูมินาต่อประสิทธิภาพในการเร่ง ปฏิกิริยาไฮโครจิเนชันของตัวเร่งปฏิกิริยาแพลเลเดียมบนอะลูมินาในการกำจัดอะเซทิลีนออกจากเอทิลีน โดยเปรียบเทียบ 3 วิธีคือวิธีโซลเจล วิธีโซลโวเทอร์มอล และวิธีตกตะกอนร่วม ตารางที่ 2.3 แสดงสมบัติ ทางกายภาพของ α-Al₂O₃ ที่สังเคราะห์โดยวิธี โซลเจล วิธีโซลโวเทอร์มอล และวิธีตกตะกอนร่วม ขนาด ผลึกของ α-Al₂O₃ ที่สังเคราะห์โดยวิธี โซลเจลมีขนาดเล็กที่สุดคือ 33.8 nm ในขณะที่ผลึกที่ได้จากวิธี โซล โวเทอร์มอล และวิธีตกตะกอนร่วม มีขนาด 53 และ 67.6 nm ตามลำดับ นอกจากนี้ α-Al₂O₃ ที่สังเคราะห์ โดยวิธี โซลเจลยังมีพื้นที่ผิวและปริมาตรของรูพรุนน้อยที่สุด คือ 1.7 m²/g และ 0.0065 cm³/g เมื่อ เปรียบเทียบกับผลึกที่ได้จากวิธี โซลโวเทอร์มอล และวิธีตกตะกอนร่วม ซึ่งมีพื้นที่ผิว 19.8 m²/g และ 41.2 m²/g และมีปริมาตรของรูพรุน 0.0739 และ 0.2020 cm³/g ตามลำดับ

ตารางที่ 2.3 แสดงสมบัติทางกายภาพของ α-Al₂O₃ ที่สังเคราะห์โดยวิธี โซลเจล วิธีโซลโวเทอร์มอล และวิธี ตกตะกอนร่วม

Catalysts	BET surface area (m ² /g) ^a .*	Pore volume (cm³/g) ^{b,} *	Average pore diameter (nm) ^b .*	Crystallite size (nm) ^c .*	Pd active sites (×10 ⁻¹⁷ sites/g- catalyst) ^d	%Pd dispersion ^e	Average Pd° particle size (nm) ^f
Pd/Al ₂ O ₃ Solvothermal	19.8	0.0739	14.9	53	22.3	14.8	7.6
Pd/Al ₂ O ₃ Sol-Gel	1.7	0.0065	46	33.8	11.3	7.5	15
Pd/Al ₂ O ₃ Precipitation	41.2	0.2020	26.9	67.6	7.2	4.8	23.6

ส่วนปริมาณโลหะที่ว่องไวการกระจายตัวของแพลเลเดียมและขนาคของโลหะแพลเลเดียมคำนวณ จากเทกนิกการดูดซับของแก๊สการ์บอนมอนออกไซด์โดยใช้สมมติฐานแพลเลเดียม 1 จุดที่ว่องไวดูดซับ การ์บอนมอนออกไซด์เพียง 1 โมเลกุล และไม่มีการดูดซับของการ์บอนมอนออกไซด์บนอะลูมินา พบว่า ปริมาณการกระจายตัวของแพลเลเดียมลดลงจาก 22.3 เป็น 11.3 และ 7.2 × 10¹⁷ โมเลกุลการ์บอนมอน ออกไซด์ต่อกรัมตัวเร่งปฏิกิริยา หรือคิดเป็นเปอร์เซ็นการกระจายตัว 14.8 7.5 และ 4.8 เมื่อเตรียมตัวเร่ง ปฏิกิริยาบนอะลูมินาที่สังเคราะห์โดยวิชีโซลโวเทอร์มอล โซลเจล และวิชีตกตะกอนร่วม ตามลำคับ

รูปที่ 2.2 แสคงรูปแบบ XRD ของตัวรองรับอะลูมินาที่ซึ่งเตรียม โดยวิธีโซล-เจล โซลโวเทอร์มอลและวิธี ตกตะกอนร่วม

รูปที่ 2.3 เสปกตรัม FT-IR ของตัวรองรับอะลูมินาที่ซึ่งเตรียมโดยวิธีโซล-เจล โซลโวเทอร์มอลและวิธี ตกตะกอนร่วม ก่อนและหลังการเผาในอากาศ

จากรูป 2.3 ซึ่งแสคงเสปกตรัม FT-IR ของตัวรองรับอะลูมินาที่ซึ่งเตรียม โดยวิธี โซล-เจล โซลโวเทอร์มอล และวิธีตกตะกอนร่วม ก่อนและหลังการเผาในอากาศ พบพีคที่ตำแหน่งต่างๆดังนี้ ตำแหน่ง 3450 cm⁻¹ แสดงการดูดซับของ โมเลกุลของน้ำ ซึ่งพีคนี้หายไปหลังการเผาเช่นเดียวกับพีคของ CO₃^{2−} และNH ¼ ที่ ตำแหน่ง 860 และ 1425 cm⁻¹จากผลทั้งหมดแสดงการเกิดเป็น α-Al₂O₃ โดยไม่มีการเจือปนของสารอินทรีย์ อื่นๆ

รูปที่ 2.4 การกระจายของขนาครูพรุนของอะลูมินาที่ซึ่งเตรียมโคยวิธี โซลโวเทอร์มอล (a) โซล-เจล (b) และ วิธีตกตะกอนร่วม (c)

จากรูป 2.4 พบว่าอะลูมินาที่ซึ่งเครียมโดยวิธีโซลโวเทอร์มอลและวิธีคกตะกอนร่วมแสดงรูพรุนขนาดกลาง (mesopores) ที่มีขนาครูพรุนเฉลี่ยประมาณ 16-32 nm อะลูมินาที่ซึ่งเครียมโคยวิธีโซล-เจลไม่ปรากฏรูพรุน ใดๆ ไอโซเทอร์มของการดูดซับของแก๊สไนโตรเจนแสดงในรูปที่ 2.5

รูปที่ 2.5 ไอโซเทอร์มของการคูคซับของแก๊สไนโตรเจนที่อุณหภูมิ 77 K

รูปที่ 2.6 ภาพถ่ายโดยกล้องจุลทรรศน์อิเลคตรอนแบบส่องผ่านของอะลูมินาที่ซึ่งเตรียมโดยวิธี โซลโวเทอร์ มอล (a) โซล-เจล (b) และวิธีดกตะกอนร่วม (c) จากภาพถ่ายโดยกล้องจุลทรรศน์อิเลกตรอนแบบส่องผ่านพบว่าตัวเร่งปฏิกิริยาแพลเลเดียมบนโซล-เจลอะลูมินา ประกอบด้วยอนุภาคเกสะกลุ่มกันโดยไม่มีรูปร่างที่แน่นอน ในขณะที่อะลูมินาซึ่งเตรียมโดยวิธี โซลโวเทอร์มอล และวิธีตกตะกอนร่วมมีลักษณะอนุภาคเป็น finger-like และ rod-like ขนาดของ แพลเลเดียมวัดได้โดยประมาณเรียงลำดับดังนี้ α-Al₂O₃ precipitation ≈ α-Al₂O₃ sol-gel > α-Al₂O₃ solvothermal.

a			4	
ตารางท 2.4	ผลการทดลอง	TPR และ	การคายซับของ	ethylene 118° CO

Catalysts	Temperature at maximum (°C)			H ₂ consumption H ₂ desorption		n (°C) H_2 Amount of ethylene desorption		Amount of CO desorption
	Peak 1	Peak 2	Peak 3	(µmol)*	(µmol)*	(µmol)*		
Pd/Al ₂ O ₃ Solvothermal	60ª,90 ^b ,90 ^c	240 ^b ,230 ^c	420 ^b	658	131	76		
Pd/Al ₂ O ₃ Sol-Gel	65ª,100 ^b ,90 ^c	280 ^b ,230 ^c	500 ^b	488	75	10		
Pd/Al ₂ O ₃ Precipitation	70 ^a ,100 ^b ,90 ^c	260 ^b ,250 ^c	440 ^b	610	122	33		

โดยทั่วไปรูปแบบของ TPR ปรากฏอุณหภูมิการรีดิวซ์ที่ประมาณ 60-70⁰ซ ซึ่งแสดงการรีดิวซ์ของ PdO เป็น Pd [18-20] พี่ถดังกล่าวปรากฏที่อุณหภูมิต่ำกว่าเมื่อตัวเร่งปฏิกิริยาอยู่บนอะลูมินาโซลโวเทอร์มอล แสดงว่าตัวรองรับดังกล่าวสามารถส่งเสริมการรีดิวซ์ของตัวเร่งปฏิกิริยาได้

รูปที่ 2.9 ผลการทคสอบตัวเร่งปฏิกิริยาในปฏิกริยาไฮโครจิเนชันแบบเลือกเกิคของอะเซทิลีน

จากผลของ Temperature Program Desorption ของแก๊สเอทิลีนพบพีคจำนวน 3 พีคที่อุณหภูมิต่างๆ จาก รายงานของ Shin et al. [21-22] พีกที่ 95[°]ซ แสดงการดูดซับของเอทิลีนแบบ TT-bonded พีกที่ 240[°]ซ แสดง การดูดซับของเอทิลีนแบบ di-**O**-bonded และพีคที่ 420[°]ซ เนื่องมาจากการดูดซับของ CH₃ ที่อาจเกิดขึ้น เนื่องจากการแตกตัวของเอทิลีนหรืออีเทน [23-24] ในงานวิจัยนี้พบว่าอะลูมินาโซลโวเทอร์มอล แสดงว่าตัว รองรับดังกล่าวสามารถส่งเสริมการคายซับของเอทิลีนได้ โดยดูจากอุณหภูมิการกายซับที่ลดลง จากรูปที่ 2.9 แสดงให้เห็นว่า ตัวเร่งปฏิกิริยาบนอะลูมินาโซลโวเทอร์มอลมีค่าผลได้ของเอทิลีนสูงกว่าตัวเร่ง ปฏิกิริยาที่เตรียมบนอะลูมินา โซล-เจลและวิธีตกตะกอนร่วม ซึ่งจากการวิเกราะห์ด้วยเครื่องมือวิเคราะห์ ต่างๆตัวเร่งปฏิกิริยาบนอะลูมินา โซล-เจลและวิธีตกตะกอนร่วม ซึ่งจากการวิเกราะห์ด้วยเครื่องมือวิเคราะห์ ต่างๆตัวเร่งปฏิกิริยาบนอะลูมินาโซลโวเทอร์มอลมีก่าการกระจายตัวของแพลเลเดียมที่สูง มีการรีดักชันของ PdO ที่อุณหภูมิต่ำ ซึ่งส่งผลต่อการเพิ่มก่าการแปลงของอะเซทิลีน นอกจากนี้ผลจาก TPD ยังแสดงการกาย ซับของเอทิลีนที่อุณหภูมิด่ำลงของตัวเร่งปฏิกิริยาบนอะลูมินาโซลโวเทอร์มอลทำให้ก่าผลได้ของเอทิลีน สูงขึ้นอีกด้วย 2.2.1 ผลของการเติมเหล็กในอะลูมินาที่สังเคราะห์โดยวิธีโซลเจลและวิธีโซลโวเทอร์มอลเพื่อใช้เป็น ตัวรองรับตัวเร่งปฏิกริยาแพลเลเดียมในปฏิกริยาไฮโดรจิเนชันแบบเลือกเกิดของอะเซทิลีน

รูปที่ 2.10 แสดงการกระเจิงรัวสีเอ็กซ์ที่องศา 2 $\Theta = 20^{\circ}$ -80° ของตัวเร่งปฏิกิริยาแพลเลเดียมบนตัว รองรับอะลูมินาและแพลเลเดียมบนตัวรองรับอะลูมินาที่มีการเติมเหล็ก ทุกตัวอย่างพบพีคแสดงอะลูมินาใน เฟสแอลฟา โดยที่ไม่พบพีกของ เหล็กออกไซค์ เหล็ก เหล็กอะลูมิเนต แพลเลเดียมและแพลเลเดียมออกไซค์ เนื่องมาจากมีปริมาณน้อย ขนาดผลึกของอะลูมินาคำนวณจากพีคที่ 2 $\Theta = 43^{\circ}$ โดยใช้สมการเชอเรอร์ พบว่า มีขนาดผลึก 46-63 นาโนเมตร ซึ่งสอดกล้องกับปริมาณพื้นที่ผิวที่วัดได้กือ 1-5 ตร.ม.ต่อกรัม โดยอะลูมินาที่ เตรียมโดยวิธีโซลเจลจะมีปริมาตรของรูพรุนน้อยกว่าที่เตรียมโดยวิธีโซลโวเทอร์มอลและมีพื้นที่ผิวน้อย กว่า [15].

รูปที่ 2.10 แสดงรูปแบบการกระเจิงรังสีเอ็กซ์ของตัวเร่งปฏิกิริยาบนตัวรองรับอะลูมินาและอะลูมินาที่มีการ เติมเหล็ก โดยวิชีโซล-เจล (SG) และ โซลโวเทอร์มอล (SV)

รูปที่ 2.11 แสดงภาพถ่ายโดยกล้องจุลทรรศน์อิเลคตรอนแบบส่องผ่านของตัวเร่งปฏิกิริยาบนตัว รองรับอะลูมินาและอะลูมินาที่มีการเติมเหล็ก โดยวิธีโซล-เจล และโซลโวเทอร์มอล พบอนุภากแพลเลเดียม ขนาด 10 นาโนเมตรกระจายตัวบนอะลูมินา

		Avg.	CO		
	BET surface	crystallite	chemisorption	% Pd	$d_p P d^0$
	area (m^2/g)	size [*] (nm)	$(10^{17} \text{ site/g cat.})$	Dispersion	(nm)
Pd/Al ₂ O ₃ SG	1.0	46	10.0	8.4	13
Pd/Fe-Al ₂ O ₃ SG	1.4	62	4.1	2.7	42
Pd/Al ₂ O ₃ SV	5.1	52	11.0	7.2	16
Pd/Fe-Al ₁ O, SV	3.9	63	7.8	5.1	22

ดารางที่ 2.5 สมบัติทางกายภาพและเคมีของตัวเร่งปฏิกิริยา

ปริมาณโลหะที่ว่องไว การกระจายตัวของแพลเลเดียมและขนาคของโลหะแพลเลเดียมคำนวณจาก เทคนิกการดูดซับของแก๊สการ์บอนมอนออกไซด์แสดงในตารางที่ 2.3 โดยเทคนิคนี้ตั้งอยู่บนสมมติฐานที่ว่า แพลเลเดียม 1 จุดที่ว่องไวดูดซับการ์บอนมอนออกไซด์เพียง 1 โมเลกุล และไม่มีการดูดซับของการ์บอน มอนออกไซด์บนอะลูมินา [25] จากการทดลองพบว่าปริมาณการกระจายตัวของแพลเลเดียมลดลงเมื่อมีการ เติมเหล็กลงในอะลูมินา โดยวิธีโซลเจลจะมีค่าต่ำกว่าวิธีโซลโวเทอร์มอลเนื่องมาจากการรวมตัวกันของ อะลูมินามากกว่าสอดกล้องกับผลจากกล้องจุลทรรศน์อิเลกตรอนแบบส่องผ่าน ปริมาณกวามเป็นกรควัคโดยเทกนิกการกายซับของแอมโมเนียแบบโปรแกรมอุณหภูมิ (NH₃-TPD) [26] แสคงในรูปที่ 2.12

รูปที่ 2.12 ผลการวิเคราะห์ด้วยเทคนิคการคายซับของแอม โมเนียแบบ โปรแกรมอุณหภูมิของตัวเร่งปฏิกิริยา ที่เตรียมบนอะลูมินาที่มีการเติมเหล็ก เตรียม โคยวิธี โซลเจล (SG) และ วิธี โซล โวเทอร์มอล (SV)

จากรูปพบว่าปริมาณความเป็นกรคที่รุนแรงของอะลูมินาลคลงเมื่อมีการเติมเหล็กปริมาณเล็กน้อย ในระหว่างการเตรียมอะลูมินา โคยวิธีโซลเจลและวิธีโซลโวเทอร์มอล [27] ผลการทคสอบตัวเร่งปฏิกริยาซึ่งเตียมโคยวิธีโซล-เจลและโซลโวลเทอร์มอล ในปฏิกริยาไฮโครจิเน ชันแบบเลือกเกิคของอะเซทิลีนในสภาวะที่มีเอทิลีนมากเกินพอ โคยทำปฏิกริยาที่อุณหภูมิ 40, 60, 80 และ 100°C และ gas hourly space velocity (GHSV) = 16901 ต่อชั่วโมง แสคงในรูปที่ 2.5(a) (ก่าการแปลงของ อะเซทิลีน) และ 2.5(b) (การเลือกเกิคเป็นเอทิลีน)

รูปที่ 2.13(a) แสคงค่าการเปลี่ยนแปลงของอะเซทิลีนต่ออุณหภูมิในการทำปฏิกริยาโคยตัวเร่งปฏิกริยา แพลเลเดียมบนอะลูมินาที่เติมเหล็กที่เตรียม โคยวิธีโซลเจล (SG) และ วิธีโซลโวเทอร์มอล (SV)

จากการทคลองพบว่าก่าการเปลี่ยนแปลงของอะเซทิลีนเพิ่มขึ้นเมื่ออุณหภูมิเพิ่มขึ้นในขณะที่การ เลือกเกิคเป็นเอทิลีนลคลง ทั้งนี้เนื่องมาจากเอทิลีนเป็นสารมัธยันต์ในปฏิกิริยาไฮโครจเนชันของอะเซทิลีน อย่างไรก็ตามก่าการเลือกเกิดของเอทิลีนที่ก่าการแปลงของอะเซทิลีนสูงๆ (> 80%) เพิ่มขึ้นสำหรับตัวเร่ง ปฏิกิริยาที่มีการเติมเหล็กนอกจากนี้พบว่าความว่องไวในปฏิกิริยาไฮโครจิเนชันขึ้นกับขนาดของ แพลเลเดียมโดยแพลเลเดียมขนาดใหญ่จะมีความว่องไวสูงกว่าซึ่งผลดังกล่าวสอดกล้องกับงานวิจัยในอดีต [29-31] หลังจากการทำปฏิกิริยา ปริมาณโค้กที่เกิดขึ้นถูกตรวจวัดโดยเทคนิค thermal gravimetric analysis และแสดงผลในรูปที่ 2.14a และ 2.14b น้ำหนักที่หายไปในช่วงอุณหภูมิ 200-400°C แสดง การเกิดปฏิกิริยาออกซเคชันของโค้ก [32] โดยคาคว่าโค้กที่เกิดขึ้นเป็นชนิดที่เรียกว่า ซอฟท์โค้ก [33] จากการทคลองพบว่าตัวเร่งปฏิกิริยาที่เตรียมบนอะลูมินาที่มีการเติมเหล็กมีการเกิดโค้กลดลง โดยวิธีโซลเจลให้ค่าการเกิดโค้กน้อยกว่าตัวเร่งปฏิกิริยาที่เตรียมโดยวิธีโซลโวเทอร์มอล ผลที่ได้มี ความสอดกล้องกับการวิเคราะห์ความเป็นกรดของอะลูมินาด้วยเทคนิคการคายซับของแอมโมเนีย แบบโปรแกรมอุณหภูมิ

รูป 2.14a แสดงผล TGA ของตัวเร่งปฏิกริยาที่ผ่านการใช้งานแล้ว

รูป 2.14b แสดงผล DTA ของตัวเร่งปฏิกริยาที่ผ่านการใช้งานแล้ว

3. อภิปรายและวิจารณ์ผล

ในการศึกษาผลของการปรับปรุงประสิทธิภาพของตัวเร่งปฏิกิริยาแพลเลเดียมบน ้อะลูมินาในปฏิกิริยาไฮโครจิเนชันของอะเซทิลีนปริมาณเล็กน้อยในสายป้อนเอทิลีน พบว่าวิธีการ สังเคราะห์อะลูมินาส่งผลต่อสมบัติทางกายภาพและเคมีของอะลูมินาซึ่งส่งผลต่อไปยัง ประสิทธิภาพของตัวเร่งปฏิกิริยาในปฏิกิริยาไฮโครจิเนชันแบบเลือกเกิดของอะเซทิลีนด้วย อะถมิ นาที่สังเคราะห์โดยวิธีโซลเจลจะทำให้ได้ขนาดผลึกที่เล็กที่สุด แต่ผลึกที่ได้มีปริมาตรรูพรุนและ พื้นที่ผิวจำเพาะน้อยที่สุดค้วย ในขณะที่การสังเคราะห์โดยวิธีโซลโวเทอร์มอุลจะทำให้ปริมาตรรู พรุนและพื้นที่ผิวจำเพาะสูงและมีการกระจายตัวของขนาคของรูพรุนในช่วงแคบ มีขนาดรพรุน ประมาณ 15 นาโนเมตร ส่วนการสังเคราะห์โคยวิชีการตกตะกอนร่วมจะได้ขนาดอนุภากที่ใหญ่ และมีกระจายตัวของขนาคของรูพรุนกว้าง เมื่อนำอะลูมินาต่างๆเหล่านี้มาใช้เป็นตัวรองรับในการ เตรียมตัวเร่งปฏิกิริยาแพลเลเคียม อะลูมินาที่สังเคราะห์โคยวิธีโซลโวเทอร์มอลให้การกระจายตัว ของแพลเลเดียมสูงที่สุดซึ่งส่งผลให้ตัวเร่งปฏิกิริยามีความว่องไวในปฏิกิริยาไฮโครจิเนชันสูง ้นอกจากนี้ตัวเร่งปฏิกิริยาแพลเลเคียมบนอะลูมินาที่สังเคราะห์ โดยวิธี โซล โวเทอร์มอลยังให้ค่าการ ้เลือกเกิดเป็นเอทิลีนสูงอีกด้วย ซึ่งผลดังกล่าวเนื่องมาจากอันตรกิริยาที่แข็งแรงระหว่างแพลเลเดียม และอะลูมินาทำให้อุณหภูมิของการดูคซับ-คายซับของแก๊สเอทิลีนและการ์บอนมอนออกไซค์มีก่า ด่ำลง และมีการรีคักชั้นโคยไฮโครเจนที่อุณหภูมิต่ำลง

ส่วนการเติม โลหะตัวที่สอง (เหล็ก) สามารถเพิ่มประสิทธิภาพของตัวเร่งปฏิกิริยา แพลเลเคียมบนอะลูมินาในปฏิกิริยาไฮ โครจิเนชันแบบเลือกเกิคของอะเซทิลีน โคยเพิ่มค่าการเลือก เกิคเป็นเอทิลีนที่ค่าการแปลงผันของอะเซทิลีนมีค่าสูง ทั้งนี้พบว่าการเกิค โค้กลคลงเนื่องมากจาก ความเป็นกรคที่ลคลงของตัวรองรับอะลูมินาเมื่อมีการเติมเหล็ก ทำให้เกิคปฏิกิริยาข้างเคียงน้อยลง การเติมเหล็กปริมาณเล็กน้อยไม่ส่งผลต่อพื้นที่ผิวของอะลูมินามากนัก

34

4. สรุปและข้อเสนอแนะ

วิธีการที่เหมาะสมในการสังเคราะห์อะลูมินาขนาดนาโนสำหรับใช้เป็นตัวรองรับตัวเร่ง ปฏิกิริยาแพลเลเดียมบนอะลูมินาในปฏิกิริยาไฮโครจิเนชันแบบเลือกเกิดของอะเซทิลีนเป็นเอทิลีน คือวิธีโซลโวเทอร์มอลเนื่องจากทำให้ได้ผลึกของอะลูมินาที่มีขนาคพอเหมาะ มีรูพรุนขนาดกลางที่ มีการกระจายตัวของขนาครูพรุนในช่วงแคบ ส่งผลให้แพลเลเดียมมีการกระจายตัวสูง ทำให้มีความ ว่องไวในการทำปฏิกิริยามากขึ้น นอกจากนี้อันตรกิริยาที่แข็งแรงระหว่างแพลเลเดียมและอะลูมินา ที่สังเคราะห์โดยวิธีโซลโวเทอร์มอลยังช่วยเพิ่มค่าการเลือกเกิดเป็นเอทิลีนอีกด้วย

ส่วนการเติมเหล็กปริมาณเล็กน้อยลงในตัวรองรับอะลูมินาในระหว่างการเตรียม (ประมาณ 1% โดยน้ำหนัก) ช่วยลดความเป็นกรดของอะลูมินาได้ โดยไม่เปลี่ยนแปลงพื้นที่ผิวมากนัก ทำให้ เมื่อนำไปใช้เป็นตัวรองรับตัวเร่งปฏิกิริยาแพลเลเดียมบนอะลูมินาในปฏิกิริยาไฮโดรจิเนชันแบบ เลือกเกิดของอะเซทิลีน ส่งผลให้ตัวเร่งปฏิกิริยามีประสิทธิภาพที่สูงขึ้น

ควรศึกษาเพิ่มเติมสำหรับการนำไปใช้งานในอุตสาหกรรมจริงต่อไป เช่นการทคสอบโคย ใช้เครื่องปฏิกรณ์ความคันสูง ทคสอบการเสื่อมสภาพของตัวเร่งปฏิกิริยาภายหลังการใช้งาน เป็นค้น

บรรณานุกรม

- 1. Q. Zhang, J. Li, X. Liu, Q. Zhu: Appl. Catal. A, 197, 221 (2000).
- Y. Jin, A. K. Datye, E. Rightor, R. Gulotty, W. Waterman, M. Smith, M. Holbrook, J. Maj, J. Blackson: J. Catal., 203, 292 (2001).
- 3. E.W. Shin, C.H. Choi, K.S. Chang, Y.H. Na, S.H. Moon: Catal. Today, 44, 137 (1998).
- 4. Y.H. Park, G.L. Price: Ind. Eng. Chem. Res., 31, 469 (1992).
- 5. A. Sarkany, A. Horvath, A. Beck: Appl. Catal. A, 229, 117 (2002).
- 6. H.K. Jung, W.S. Eun, J.K Woo, D.P. Jae, H.M. Sang: J. Catal., 208, 310 (2002).
- 7. C. Shi, R. Hoisington, B.W.-L. Jang: Ind. Eng. Chem. Res. 46, 4390 (2007).
- 8. J. Panpranot, L. Nakkararuang, B. Ngamsom, P. Praserthdam: Catal. Lett., 103, 53 (2005).
- 9. J. Panpranot, K. Kontapakdee, P. Praserthdam: Appl. Catal. A, 314, 128 (2006).
- 10. J. Hong, W. Chu, M. Chen, X. Wang, T. Zhang: Catal. Commun., 8, 593 (2007).
- 11. W. Huang, J.R. McCormick, R.F. Lobo, J.G. Chen: J. Catal., 246, 40 (2007).
- 12. W. Huang, W. Pyrz, R.F. Lobo, J.G. Chen: Appl. Catal. A, 333, 254 (2007).
- N. Wongwaranon, O. Mekasuwandumrong, P. Praserthdam, J. Panpranot: Catal. Today, 131, 553 (2008).
- O. Mekasuwandumrong, N. Wongwaranon, J. Panpranot, P. Praserthdam: Mater. Chem. Phys., 111, 431 (2008).
- 15. S. Chinayon, O. Mekasuwandumrong, P. Praserthdam, J. Panpranot: Catal. Commun., 9, 2297 (2008).
- 16. Y.L. Huang, D.S. Xue, P.H. Zhou, Y. Ma, F.S. Li: Mater. Eng. A, 359, 332 (2003).
- 17. A.K. Ladavos, T.V. Bakas: React. Kinet. Catal. Lett., 73, 223 (2001).
- Figoli, N. S.; Largentiere, P. C.; Arcoya, A.; Seoane, X. L. Modification of the Properties and Sulfur Resistance of a Pd/SiO, Catalyst by La Addition. J. Catal. 1995, 155 (1), 95-105.
- Seoane, X. L.; Figoli, N. S.; L'Argentiere, P. C.; González, J. A.; Arcoya, A. Palladium-Lanthanum Interaction Phenomena in Pd-LaCl₃/SiO₂ and Pd-La₂O₃/SiO₂ Catalysts. *Catal. Lett.* 1997, 47 (3-4), 213-220.
- Yang, C.; Ren, J.; Sun, Y. Role of La₂O₃ in Pd-Supported Catalysts for Methanol Decomposition. Catal. Lett. 2002, 84 (1-2), 123-129.
- Shin, E. W.; Kang, J. H.; Kim, W. J.; Park, J. D.; Moon, S. H. Performance of Si-modified Pd Catalyst in Acetylene Hydrogenation: The Origin of the Ethylene Selectivity Improvement. *Appl. Catal., A: Gen.* 2002, 223 (1-2), 161-172.
- 22. Kang, J. H.; Shin, E. W.; Kim, W. J.; Park, J. D.; Moon, S. H. Selective Hydrogenation of Acetylene on Pd/SiO, Catalysts Promoted with Ti, Nb and Ce Oxides. *Catal. Today* **2000**, *63* (2-4), 183-188.
- 23. Tsuchiya, S.; Nakamura, M. Study of Chemisorption and Hydrogenation of Ethylene on Platinum by Temperature-Programmed Desorption. J. Catal. 1977, 50 (1), 1-7.

- Park, Y. H.; Price, G. L. Temperature-Programmed-Reaction Study on the Effect of Carbon Monoxide on the Acetylene Reaction over Palladium/Alumina. Ind. Eng. Chem. Res. 1991, 30 (8), 1700-1707.
- 25. B. Heinrichs, P. Delhez, J.-P. Schoebrecht, J.-P. Pirard: J. Catal., 172, 322 (1997).
- 26. M.C. Kung, H. H. Kung: Catal. Rev. Sci. Eng., 27, 425 (1985).
- 27. W. Kania, K. Jurczyk: Appl. Catal., 34, 1 (1987).
- Y.A. Ryndin, M.V. Stenin, A.I. Boronin, V.I. Bukhtiyarov, V.I. Zaikovskii: Appl. Catal., 54, 277 (1989).
- S. Dominguez-Dominguez, A. Berenguer-Murcia, A. Linares-Solano, D. Cazorla-Amoros: J. Catal.,
 257, 87 (2008).
- J. Panpranot, K. Phandinthong, T. Sirikajorn, M. Arai, P. Praserthdam: J. Mol. Catal. A, 261, 29 (2007).
- 31. N. Semagina, A. Renken, L. Kiwi-Minsker: J. Phys. Chem. C, 111, 13933 (2007).
- 32. R.W. Soares, V.J. Menezes, M.V.A. Fonseca, J. Dweck: J. Thermal Analysis, 49, 657 (1997).

....

33. Z. Xiangjing, W. Yan, X. Feng: Appl. Catal. A, 307, 222 (2006).

ภาคผนวก

•

Effect of Fe-modified α -Al₂O₃ on the properties of Pd/ α -Al₂O₃ catalysts in selective acetylene hydrogenation

Tatiya Sangkhum · Okorn Mekasuwandumrong · Piyasan Praserthdam · Joongjai Panpranot

Received: 5 November 2008/Accepted: 10 February 2009/Published online: 17 June 2009 © Akadémiai Kiadó, Budapest, Hungary 2009

Abstract The use of nanocrystalline Fe-modified α -Al₂O₃ prepared by sol-gel and solvothermal method as supports for Pd catalysts resulted in an improved catalyst performance in selective acetylene hydrogenation. Moreover, the amount of coke deposits was reduced due to lower acidity of the Fe-modified α -Al₂O₃ supports.

Keywords Fe-modified Al₂O₃ · Selective acetylene hydrogenation

Introduction

Selective hydrogenation of acetylene using supported Pd-based catalysts is an important process in the polyethylene industry because acetylene contaminant in ethylene feedstock poisons the polymerization catalyst. It is of particular challenge to produce an effective catalyst that can remove trace amounts of acetylene in ethylene feedstock while ethylene remains inactive during hydrogenation to prevent ethylene loss. Because Pd catalysts have poor selectivity at high acetylene conversion and oligomer formation on the catalysts, which lessens the catalyst lifetime, promotion with a second component such as Ag [1, 2], Si [3], K [4], Au [5], and TiO₂ [6] has often been employed in order to improve the catalyst performance. Besides Pd/Al₂O₃, new, efficient catalyst systems for selective hydrogenation of acetylene have been continuingly developed including Pd on nano-sized TiO₂ [7-10] and zeolite-supported Pd-Ag catalysts [11, 12].

O. Mekasuwandumrong

T. Sangkhum · P. Praserthdam · J. Panpranot (🖂)

Department of Chemical Engineering, Faculty of Engineering, Center of Excellence on Catalysis and Catalytic Reaction Engineering, Chulalongkorn University, Bankok 10330, Thailand e-mail: joongjai.p@eng.chula.ac.th

Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakorn Pathom 73000, Thailand

Recently, our studies showed that the use of nanocrystalline α -Al₂O₃ prepared by sol-gel and solvothermal method as supports for Pd catalysts yielded superior catalyst performance compared to those on commercial α -Al₂O₃ [13]. Moreover, modification of α -Al₂O₃ with a second metal such as Ni [14] and Zn [15] has been shown to result in significant improvement of Pd/ α -Al₂O₃ catalyst properties in selective acetylene hydrogenation in terms of both acetylene conversion and selectivity to ethylene. Formation of NiAl₂O₄ or ZnAl₂O₄ spinels dramatically decreased the acidity of the alumina supports hence the catalysts showed less deactivation by coke formation.

The present paper is our follow-up effort to produce a highly effective catalyst for purification of ethylene feed stream in polyethylene production. The effect of Fe-modified α -Al₂O₃ on the properties of Pd/ α -Al₂O₃ catalyst in selective acetylene hydrogenation is focused. The Fe-substituted alumina is interesting as a catalyst support due to its improved stability and high resistance to oxidation [16, 17]. The catalyst performances were correlated with the catalyst characterization results from N₂ physisorption, CO chemisorption, X-ray diffraction (XRD), ammonia temperature program desorption (NH₃-TPD), and thermal gravimetric and differential temperature analysis (TG/DTA).

Experimental

Preparation of α -Al₂O₃ and Fe-modified α -Al₂O₃

The nanocrystalline α -Al₂O₃ was prepared by solvothermal and sol-gel method according to that of Panpranot and co-workers [13]. The iron precursors used for the preparation of Fe-modified α -Al₂O₃ by solvothermal and sol-gel method were iron (II) acetylacetonate ((C₅H₈O₂)₃Fe) and ferric nitrate nonahydrate (FeN₃O₉·9H₂O), respectively. The Pd/Fe-modified α -Al₂O₃ catalysts were prepared by incipient wetness impregnation of support with a desired amount of an aqueous solution of palladium (II) nitrate hydrate (Aldrich) to obtain the final Pd loading of ca. 0.3 wt%. The catalysts were dried overnight at 110 °C and then calcined in N₂ flow (60 cm³/min) with a heating rate of 10 °C/min until the temperature reached 500 °C and then in air flow (100 cm³/min) at 500 °C for 2 h.

Catalyst characterization

X-ray diffraction patterns were recorded between 20° and 80° (2 θ) with a SIEMENS D5000 X-ray diffractometer using Cu K_a radiation with a Ni filter. Specific surface areas were measured using nitrogen adsorption with a Micromeritic Chemisorb 2750 system. Prior to measurements, the samples were degassed at 200 °C for 2 h. Metal active sites were measured using CO chemisorption technique at room temperature in a Micromeritic Chemisorb 2750 automated system attached with ChemiSoft TPx software. Before chemisorption measurement, the sample was reduced in a H₂ flow at 150 °C for 2 h then cooled down to ambient temperature in a He flow. NH₃-TPD was also performed in the Micromeritic Chemisorb 2750

automated system attached with ChemiSoft TPx software. The distribution of palladium on catalyst supports were characterized using a JEOL 2010 transmission electron microscope operated at 2,000 kV. Thermal gravimetric analysis (TGA) thermograms were performed using a SDT Analyzer Model Q600 from TA Instruments, USA.

Reaction study

The selective hydrogenation of acetylene was performed in a quartz tube reactor. Prior to the start of the reaction, the catalyst was reduced in H₂ at 150 °C for 2 h. Then the reactor was purged with argon and cooled down to the reaction temperature. The feed gas was composed of 1.5% C₂H₂, 1.7% H₂, and balanced C₂H₄ (TIG Co., Ltd.). The composition of product and feed stream were analyzed by a Shimadzu GC 8A equipped with TCD and FID detectors (molecular sieve-5A and carbosieve S2 columns, respectively). Acetylene conversion as used herein is defined as moles of acetylene converted with respect to acetylene in feed. Ethylene selectivity is defined as the percentage of acetylene hydrogenated to ethylene over totally hydrogenated acetylene.

Results and discussion

The XRD patterns of Pd/α -Al₂O₃ and Pd/Fe-modified α -Al₂O₃ are shown in Fig. 1. For all the samples, the characteristic peaks of α -Al₂O₃ were evident while the diffraction lines of iron, iron oxides, iron aluminate, palladium or palladium oxide

Fig. 1 XRD patterns of the Pd/ α -Al₂O₃ and Pd/Fe-modified α -Al₂O₃ prepared by sol-gel (SG) and solvothermal (SV) methods

	BET surface area (m ² /g)	Avg. crystallite size ^a (nm)	CO chemisorption $(\times 10^{17} \text{ site/g cat.})$	% Pd dispersion	d _p Pd ⁰ (nm)
Pd/Al ₂ O ₃ SG	1.0	46	10.0	8.4	13
Pd/Fe-Al2O3_SG	1.4	62	4.1	2.7	42
Pd/Al2O3_SV	5.1	52	11.0	7.2	16
Pd/Fe-Al2O3_SV	3.9	63	7.8	5.1	22

Table 1 Physicochemical properties of Pd/Al₂O₃ and Pd/Fe-Al₂O₃ catalysts

^a Average crystallite size of α-Al₂O₃ supports determined from XRD results using Scherrer equation

were not apparent due probably to the very low amount present. The average crystallite sizes of α -Al₂O₃ were calculated from the full width at half maximum of the XRD peaks at $2\theta = 43^{\circ}$ using the Scherrer equation; the results are shown in Table 1. The average crystallite sizes of α -Al₂O₃ and Fe-modified α -Al₂O₃ prepared by sol-gel and solvothermal method were ranged between 46 and 63 nm. The corresponding surface areas of the catalysts were 1–5 m²/g which were quite low

Fig. 2 TEM micrographs of Pd/a-Al2O3 and Pd/Fe-modified a-Al2O3 catalysts

probably due to high agglomeration of these nanocrystalline particles during calcination at high temperature. In a previous study, we have shown that sol-gel Al_2O_3 possessed much less pore volume than the samples prepared by the solvothermal method, as a consequence lower surface area was obtained [15].

Figure 2 shows the TEM micrographs with SAED patterns of Pd/ α -Al₂O₃ and Pd/Fe-modified α -Al₂O₃ prepared by sol-gel and solvothermal methods. Palladium particles/clusters with average particle size ≤ 10 nm were found to be deposited on both of the alumina supports. The metal active sites, the Pd dispersion, and the average Pd metal particle sizes were also determined from CO chemisorption experiment and are summarized in Table I. The technique is based on the assumption that only one CO molecule adsorbed on one metal active site and CO did not chemisorb on Al₂O₃ support [18]. It is clearly seen that when the catalysts were supported on Fe-modified α -Al₂O₃, Pd dispersion decreased. The larger rystallite size of α -Al₂O₃ resulted in larger Pd particle size being formed and lower Pd dispersion. Moreover, Pd catalyst supported on Fe-modified α -Al₂O₃ support as also noticed from TEM measurements.

NH₃ temperature program desorption is a commonly used technique for the titration of surface acid sites [19]. The strength of an acid site can be related to the corresponding desorption temperature, while the total amount of ammonia desorption after saturation coverage permits quantification of the number of acid sites at the surface. The temperature-programmed desorption profiles for the nanocrystalline α -Al₂O₃ and Fe-modified α -Al₂O₃ supports are shown in Fig. 3. It was found that modification of Al₂O₃ with small amounts of Fe considerably changed its acid properties, i.e., reduction in the number of strong acid sites [20].

Fig. 3 NH₃ temperature program desorption profiles for α -Al₂O₃ and Fe-modified α -Al₂O₃ supports

The catalytic properties of Pd/α - Al_2O_3 and Pd/Fe-modified α - Al_2O_3 catalysts were evaluated in the selective hydrogenation of acetylene using a fixed bed flow reactor with a GHSV of 16,901 h⁻¹. A study of the temperature dependence of acetylene conversion and selectivity toward ethylene on Pd/α - Al_2O_3 and Pd/Femodified α - Al_2O_3 catalysts is shown in Fig. 4 in the temperature range between 40 and 100 °C. In all cases, acetylene conversion increases with increasing temperature while ethylene selectivity decreases due to the fact that the ethylene is produced as an intermediate in acetylene hydrogenation reaction. Ethylene selectivity at relatively high acetylene conversion (>80%) improved in the order: Pd/Fe-modified

Fig. 4 Temperature dependence of the catalytic performance of Pd/α -Al₂O₃ and Pd/Fe-modified α -Al₂O₃ catalysts; a % conversion of C₂H₂, b % selectivity of C₂H₄

 α -Al₂O₃-sol-gel > Pd/Fe-modified α -Al₂O₃-solvothermal \approx Pd/ α -Al₂O₃-sol-gel > Pd/ α -Al₂O₃-solvothermal. It was also found that acetylene hydrogenation activity depended on Pd particle size in which the activity increased with increasing Pd particle size. A similar trend has been observed for supported Pd catalysts in other selective hydrogenation reactions [21–24].

After reaction, the amounts of carbonaceous deposits on the catalyst samples were measured by thermal gravimetric analysis and the results are shown in Fig. 5. The weight loss at around 200–400 °C was due to oxidation of the carbonaceous deposited on the surface of used catalysts [25]. As shown by the exothermic peaks in

Fig. 5 Thermal gravimetric and differential temperature analysis (TG/DTA) of Pd/ α -Al₂O₃ and Pd/Femodified α -Al₂O₃ catalysts after reaction; **a** in terms of temperature (°C) and weight loss (%), **b** in terms of temperature (°C) and temperature difference (°C/mg)

121

Fig. 5b, the type of coke species occurred during reaction was probably "soft coke" similar to those suggested by Xiangjing et al. [26]. Based on TGA results, the amount of coke deposits on the catalysts on Fe-modified α -Al₂O₃ prepared by solgel or solvothermal method was lower than those on the unmodified ones. The results were in good agreement with acidity of the Al₂O₃ supports measured from NH₃ TPD technique.

Acknowledgments The financial supports from the Thailand Research Fund (TRF) and the National Research Council of Thailand (NRCT) for the author J.P. are gratefully acknowledged.

References

- Zhang, Q., Li, J., Liu, X., Zhu, Q.: Synergetic effect of Pd and Ag dispersed on Al₂O₃ in the selective hydrogenation of acetylene. Appl. Catal. A 197, 221-228 (2000)
- Jin, Y., Datye, A.K., Rightor, E., Gulotty, R., Waterman, W., Smith, M., Holbrook, M., Maj, J., Blackson, J.: The influence of catalyst restructuring on the selective hydrogenation of acetylene to ethylene. J. Catal. 203, 292-306 (2001)
- Shin, E.W., Choi, C.H., Chang, K.S., Na, Y.H., Moon, S.H.: Properties of Si-modified Pd catalyst for selective hydrogenation of acetylene. Catal. Today 44, 137-143 (1998)
- Park, Y.H., Price, G.L.: Promotional effects of potassium on palladium/alumina selective hydrogenation catalysts. Ind. Eng. Chem. Res. 31, 469-474 (1992)
- Sarkany, A., Horvath, A., Beck, A.: Hydrogenation of acetylene over low loaded Pd and Pd-Au/SiO₂ catalysts. Appl. Catal. A 229, 117-125 (2002)
- Jung, H.K., Eun, W.S., Woo, J.K., Jae, D.P., Sang, H.M.: Selective hydrogenation of acetylene on TiO₂-added Pd catalysts. J. Catal. 208, 310-320 (2002)
- Shi, C., Hoisington, R., Jang, B.W.-L.: Promotion effects of air and H₂ nonthermal plasmas on TiO₂ supported Pd and Pd-Ag catalysts for selective hydrogenation of acetylene. Ind. Eng. Chem. Res. 46, 4390–4395 (2007)
- Panpranot, J., Nakkararuang, L., Ngamsom, B., Praserthdam, P.: Promotion effects of air and H₂ nonthermal plasmas on TiO₂ supported Pd and Pd-Ag catalysts for selective hydrogenation of acetylene. Catal. Lett. 103, 53-58 (2005)
- Panpranot, J., Kontapakdee, K., Praserthdam, P.: Selective hydrogenation of acetylene in excess ethylene on micron-sized and nanocrystalline TiO₂ supported Pd catalysts. Appl. Catal. A 314, 128– 133 (2006)
- Hong, J., Chu, W., Chen, M., Wang, X., Zhang, T.: Preparation of novel titania supported palladium catalysts for selective hydrogenation of acetylene to ethylene. Catal. Commun. 8, 593-597 (2007)
- Huang, W., McCormick, J.R., Lobo, R.F., Chen, J.G.: Selective hydrogenation of acetylene in the presence of ethylene on zeolite-supported bimetallic catalysts. J. Catal. 246, 40-51 (2007)
- Huang, W., Pyrz, W., Lobo, R.F., Chen, J.G.: Selective hydrogenation of acetylene in the presence of ethylene on K⁺-β-zeolite supported Pd and PdAg catalysts. Appl. Catal. A 333, 254-263 (2007)
- Wongwaranon, N., Mekasuwandumrong, O., Praserthdam, P., Panpranot, J.: Performance of Pd catalysts supported on nanocrystalline α-Al₂O₃ and Ni-modified α-Al₂O₃ in selective hydrogenation of acetylene. Catal. Today 131, 553-558 (2008)
- Mekasuwandumrong, Wongwaranon, N., Panpranot, J., Praserthdam, P.: Preparation of novel titania supported palladium catalysts for selective hydrogenation of acetylene to ethylene. Mater. Chem. Phys. 111, 431-437 (2008)
- Chinayon, S., Mekasuwandumrong, O., Praserthdam, P., Panpranot, J.: Preparation of novel titania supported palladium catalysts for selective hydrogenation of acetylene to ethylene. Catal. Commun. 9, 2297-2302 (2008)
- Huang, Y.L., Xue, D.S., Zhou, P.H., Ma, Y., Li, F.S.: α-Fe-Al₂O₃ nanocomposites prepared by solgel method. Mater. Eng. A 359, 332-337 (2003)
- Ladavos, A.K., Bakas, T.V.: The Al₂O₃-Fe₂O₃ mixed oxidic system, I. Preparation and characterization. React. Kinet. Catal. Lett. 73, 223-228 (2001)

- Heinrichs, B., Delhez, P., Schoebrecht, J.-P., Pirard, J.-P.: Palladium-silver sol-gel catalysts for selective hydrodechlorination of 1,2-dichloroethane into ethylene. J. Catal. 172, 322-335 (1997)
- Kung, M.C., Kung, H.H.: IR studies of NH₃, pyridine, CO, and NO adsorbed on transition metal oxides. Catal. Rev. Sci. Eng. 27, 425-460 (1985)
- 20. Kania, W., Jurczyk, K.: Acid-base properties of modified y-alumina. Appl. Catal. 34, 1-12 (1987)
- Ryndin, Y.A., Stenin, M.V., Boronin, A.I., Bukhtiyarov, V.I., Zaikovskii, V.I.: Effect of Pd/C dispersion on its catalytic properties in acetylene and vinylacetylene hydrogenation. Appl. Catal. 54, 277-288 (1989)
- Dominguez-Dominguez, S., Berenguer-Murcia, A., Linares-Solano, A., Cazorla-Amoros, D.: Inorganic materials as supports for palladium nanoparticles: application in the semi-hydrogenation of phenylacetylene. J. Catal. 257, 87-95 (2008)
- Panpranot, J., Phandinthong, K., Sirikajorn, T., Arai, M., Praserthdam, P.: Impact of palladium silicide formation on the catalytic properties of Pd/SiO₂ catalysts in liquid-phase semihydrogenation of phenylacetylene. J. Mol. Catal. A 261, 29-35 (2007)
- Semagina, N., Renken, A., Kiwi-Minsker, L.: Palladium nanoparticle size effect in 1-hexyne selective hydrogenation. J. Phys. Chem. C 111, 13933-13937 (2007)
- Soares, R.W., Menezes, V.J., Fonseca, M.V.A., Dweck, J.: Characterization of carbonaceous products by TG and DTA. J. Therm. Anal. 49, 657–661 (1997)
- Xiangjing, Z., Yan, W., Feng, X.: Coke deposition and characterization on titanium silicalite-1 catalyst in cyclohexanone ammoximation. Appl. Catal. A 307, 222-230 (2006)

6273

Influence of Preparation Method on the Nanocrystalline Porosity of α -Al₂O₃ and the Catalytic Properties of Pd/ α -Al₂O₃ in Selective Acetylene Hydrogenation

Sataporn Komhom,[†] Okorn Mekasuwandumrong,[‡] Joongjai Panpranot,^{*,†} and Piyasan Praserthdam[†]

Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand, and Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhonphatom, 73000 Thailand

Nanocrystalline α -Al₂O₃ powder with average crystallite sizes of 34-68 nm have been synthesized by three different methods, namely, solvothermal, sol-gel, and precipitation. Although the smallest crystallite size of α -Al₂O₃ was obtained via the sol-gel synthesis, the α -Al₂O₃ sol-gel possessed the least amount of specific surface area and pore volume. A narrow pore size distribution with an average pore diameter of 15 nm can be obtained via solvothermal method, whereas the precipitation method yielded α -Al₂O₃ solvothermal provided the highest palladium dispersion and the best catalyst performance in selective hydrogenation of acetylene. The catalytic properties of Pd/ α -Al₂O₃ solvothermal were improved, in terms of both acetylene conversion and ethylene selectivity. As shown by temperature program studies, the use of solvothermal derived α -Al₂O₃ facilitated H₂ reduction at low temperature and the desorption of ethylene and CO.

1. Introduction

Because of their fine particle size, high surface area, high melting point, high purity, good adsorbence, and high catalytic activity, alumina (Al₂O₃) powders find use in a myriad of applications.^{1,2} They are well-known to be used as adsorbents, coatings, soft abrasives, ceramic tools, fillers, wear-resistant ceramics, catalysts, and catalyst supports.^{3,4} Armong the various transition phases of alumina (such as α_- , γ_- , χ_- , $\dot{\alpha}_-$, η_- , and θ -Al₂O₃), α -Al₂O₃ is the typical support used for the preparation of Pd/Al₂O₃ catalysts for the selective removal of acetylene in ethylene feed streams.

Polymer-grade ethylene has a strict specification of acetylene impurity (~1 ppm maximum), because acetylene is poison to catalysts for ethylene polymerization.^{5,6} Typically, α -Al₂O₃ provides a lower dispersion of active metal than the other transition phases of Al₂O₃, because of its lower surface area, but it is desirable in this reaction, because Pd/ α -Al₂O₃ catalysts possess less active sites for direct ethane formation than Pd/ γ -Al₂O₃ catalysts.⁷ In addition, less oligomer/green oil was formed on Pd/ α -Al₂O₃, because α -Al₂O₃ is less acidic than γ -Al₂O₃. The performance of Pd/ α -Al₂O₃ in such reactions also is dependent largely on metal dispersion and reducibility of the palladium metal.^{8,9} These properties are functions of the nature of the support, which typically is influenced by the preparation method that is used.

Many studies have shown supporting effects for palladium catalysts in selective acetylene hydrogenation.¹⁰⁻¹² However, in those studies, the addition of a second component such as SiO₂, MgO, TiO₂, or Nb₂O₅ was necessary for modification of the catalyst properties. In our previous studies, we have reported the improved catalytic performance of supported palladium

catalysts in selective acetylene hydrogenation, using mixedphase γ - $/\alpha$ -Al₂O₃,¹³ nanocrystalline TiO₂,^{14,15} and nanocrystalline α -Al₂O₃,¹⁶ as palladium catalyst supports. Modification of α -Al₂O₃ with a second metal such as nickel¹⁷ or zinc¹⁸ also resulted in significant improvement of Pd/ α -Al₂O₃ catalysi properties in selective acetylene hydrogenation, in terms of both acetylene conversion and selectivity to ethylene. The formation of NiAl₂O₄ or ZnAl₂O₄ spinels dramatically decreased the acidity of the alumina supports; hence, the catalysts showed less deactivation by coke formation.

Different preparation methods have been proposed for the synthesis of nanocrystalline Al_2O_3 , such as solvothermal, ^{19,20} sol-gel,^{21,22} and precipitation.²³ The physical properties such as crystallite size, particle shape, particle size distribution, degree of agglomeration, and porosity can be controlled by adjusting the preparation parameters and conditions. Despite much effort that has been exerted, it is, however, still unclear about the most convenient method, in terms of precursor decomposition and crystal growth.

In this work, nanocrystalline α -Al₂O₃ was prepared via solvothermal, sol-gel, and precipitation methods and then used as supports for palladium catalysts for the selective hydrogenation of acetylene. The catalyst behaviors were determined to be strongly dependent on the porosity of α -Al₂O₃ supports, which itself a function of the preparation method used. Various analytical techniques, such as N₂ physisorption, X-ray diffraction (XRD), CO pulse chemisorption, H₂ temperature-programmed reduction (H₂-TPR), temperature-programmed desorption (C₂H₄-TPD and CO-TPD), infrared spectroscopy (IR), and transmission electron microscopy (TEM) were used to investigate the physicochemical properties of α -Al₂O₃ supports and the corresponding Pd/ α -Al₂O₃ catalysts.

2. Experimental Section

2.1. Preparation of α -Al₂O₃. The Al₂O₃ support was prepared via the solvothermal, sol-gel, and precipitation methods. For the solvothermal method, aluminum isopropoxide (AIP,

^{*} To whom correspondence should be addressed. Tel.: 66-2-2186869. Fax: 66-2-2186877. E-mail: joongjai.p@eng.chula.ac.th.

[†] Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkom University.

⁴ Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University.

25 g) was suspended in 100 mL of toluene within a test tube, which was placed in an autoclave and then added with 30 mL of toluenc in the gap between the test tube and the autoclave wall. The autoclave was completely purged by nitrogen before heating to 300 °C at a rate of 2.5 °C/min, and the autoclave was kept at that temperature for 2 h. After cooling to room temperature, the resulting product was collected after repeated washing with methanol by centrifugation and air-dried overnight. The obtainable powder was placed into a box furnace and heated to 1150 °C with a rate of 10 °C/min and kept at 1150 °C for 3 h. Finally, a white α -Al₂O₃ powder was obtained.

For the sol-gcl method, 24 g of aluminum nitrate was dissolved in 50 mL of ethanol. The experiment was conducted in the reflux-condenser reactor at a temperature of \sim 70-80 °C for 18 h. Urea solution, which consists of urea (60 g) and distilled water (50 mL), then was added, to adjust the pH of solution. The mixture was permitted to rest at the same temperature for 24 h, to be gelled under neutral conditions. Then, it was calcined with two steps of heating rate to avoid the overflowing of gel during calcination (i.e., 3 °C/min from room temperature to 500 °C and continue heating at 5 °C/min to 1150 °C). The temperature was held for 3 h.

For the precipitation method, ammonium aluminum sulfate solution was gradually added to an ammonium hydrogen carbonate aqueous solution with a concentration ratio of 0.2: 2.0 mol/L. The experiment was controlled at temperatures in the range of 40–45 °C, a mixing speed of 450 rpm, an addition rate of 3 mL/min, and a constant pH value of 9. The mixture was aged for 15 min to permit crystal growth. The white precipitate that formed was separated from the final solution by centrifugation, repeatedly washed with methanol, and dried in an oven at 110 °C overnight. The obtainable powder was calcined in a depleted-oxygen atmosphere in a box furnace at 1150 °C for 3 h at a rate of 10 °C/min for the obtained α -Al₂O₃.²⁴

2.2. Preparation of Pd/α -Al₂O₃ Catalysts. The Al₂O₃ obtained from various methods were used as supports for the preparation of 0.3% Pd/Al₂O₃ catalysts. Palladium was deposited on the alumina by incipient wetness impregnation, using Pd(NO₃)₂·x(H₂O) as the palladium precursor and deionized water as a solvent. After being allowed to stand at room temperature for 6 h and drying at 110 °C in air overnight, the catalyst was further calcined in a N₂ flow (60 cm³/min) at a rate of 10 °C/min until the temperature reached 500 °C; then, the environment was switched to an air flow (100 cm³/min) at 500 °C for 2 h.

2.3. Characterization. The XRD pattern obtained within the range of $20^{\circ} - 80^{\circ}$ (2 θ), with a resolution of 0.04°, in a Siemens Model XRD D5000 system, with Cu Ka radiation and a nickel filter. The specific surface area of the support with various preparations was measured by adsorption of N₂ at 77 K, using a Micromeritic ASAP 2000 automated system. The functional group in the samples was determined using infrared (IR) spectroscopy (Nicolet Impact 400). Before measurement, the sample was mixed with KBr and then was formed into a thin pellet. The amount of CO chemisorbed on the Pd/Al2O2 catalyst was measured using a Micromeritics Model Chemisorb 2750 automated system, in conjunction with ChemiSoft TPx software, at room temperature. Temperature program experiments were conducted in a Micromeritics Model Chemisorb 2750 automated system. The temperature ramping was controlled by a temperature controller (Furnace Power 48 VAC 8A MAX). A mixture of 10% H₂ in argon, with a flow rate of 25 cm³/min, was used in the TPR experiment. TPR was applied with a constant rate

Figure 1. XRD patterns of the α -Al₂O₃ supports: solvothermal, sol-gel, and precipitation method.

of 10 °C/min from 35 °C to 300 °C. For the C2H4-TPD experiment, the sample was prereduced at 150 °C in H₂ for 2 h, followed by cooling to room temperature. Ethylene adsorption then was performed at room temperature for 3 h. TPD was applied with a constant rate of 10 °C/min from 30 °C to 780 °C. For the CO-TPD experiment, the sample was prereduced at 150 °C in H₂ for 2 h (at a flow rate of 50 cm³/min), followed by cooling to room temperature. CO adsorption then was performed at room temperature by continuous injection until the disappearance of CO adsorption. TPD was applied with a constant rate of 10 °C/min from 35 °C to 800 °C. The amount of desorbed CO was measured by analyzing the effluent gas with a thermal conductivity detector. The distribution of palladium on the catalyst support was observed using a transmission electron microscopy system (JEOL, Model JEM-2010) that was operated at 200 keV.

2.4. Reaction Study. The catalyst performance in the selective hydrogenation of acetylene was evaluated using a 10-mm (inner diameter (id)) Pyrex reactor. First, the catalyst was reduced in situ with hydrogen by heating from room temperature to 150 °C at a rate of 10 °C/min. The reactor then was purged with argon and cooled to the reaction temperature (80 °C). The reaction was performed using a feed composition of 1.5% C₃H₂ and 1.7% H₂, with the balance being C₂H₄, with various gas hourly space velocities (GHSV = 52580, 32577, 22534, 12385, 9366, 6660, and 4282 h⁻¹). The products and feeds were analyzed by two gas chromatographs: one that was equipped with a flame ionization detection (FID) device (Shimadzu, Model FID GC 9A, carbosieve column S-2) and another that was equipped for thermal conductivity detection (TCD) (Shimadzu, Model TCD GC 8A, molecular sieve-5A).

Acetylene conversion, as used herein, is defined as the number of moles of acetylene converted, with respect to the number of moles of acetylene in the feed. Ethylene selectivity is defined as the percentage of acetylene hydrogenated to ethylene over the total amount of hydrogenated acetylene. The ethylene being hydrogenated to ethane (ethylene loss) is the difference between all the hydrogen consumed and all the acetylene that has been totally hydrogenated.

3. Results and Discussion

3.1. Characteristics of α -Al₂O₃. Figure 1 shows the XRD patterns of Al₂O₃ supports prepared by different preparation methods. The typical characteristic peaks for α -Al₂O₃ were detected for all samples, without any contamination of other transition alumina phases. The IR spectra of as-synthesized and calcined products are shown in Figure 2. In all cases, the strong H₂O peak at a wavenumber of ~3450 cm⁻¹ disappeared after

Figure 2. IR spectra of α -Al₂O₃ from (a) solvothermal, (b) sol-gel, and (c) precipitation methods.

calcination, suggesting that moisture that was trapped between crystals was removed by heat treatment. For the a-Al2O3 prepared by the precipitation method, absorption bands at 860 and 1425 cm⁻¹, corresponding to organic groups (CO,^{2~} and NH4¹), were eliminated during calcination. For the sol-gel α -Al₂O₃, the disappearance of the absorption peaks at 1400, 1700, and 3500 cm⁻¹ after calcination indicated that organic groups and the NO,~ ion have been removed. The characteristic absorption bands of boehmite observed at 773 and 615 cm⁻¹ from the as-synthesized solvothermal powder also disappeared after calcination. Boehmite resulted from the presence of a small amount of water, which was byproduct from AIP decomposition.²⁵ From IR analyses, it is confirmed that the α -Al₂O₃ powders obtained after calcination in all cases were pure Al₂O₃, without residual organic moiety. The calcination conditions were also satisfactory for complete phase transformation or decomposition to α -Al₂O₁.

The BET surface area, pore volume, average pore diameter, and average crystallite size of Al2O3 supports are given in Table 1. The average crystallite sizes of α -Al₂O₃ were calculated from XRD results using the Scherrer equation and the characteristic peak of α -Al₂O₃ at $2\theta = 43^\circ$. The crystallite size of sol-gelderived α -Al₂O₃ support was smallest at 33.8 nm, whereas the solvothermal- and precipitation-derived α -AbO₃ supports gave larger crystallite sizes (53 and 67.6 nm, respectively). The specific surface area usually shows a reversed tendency with crystallite size. However, in this study, the a-Al2O3 obtained from the sol-gel method not only possessed the smallest crystallite size but also had the minimum value of specific surface area $(1.7 \text{ m}^2/\text{g})$, compared to those obtained by the solvothermal (19.8 m²/g) and precipitation (41.2 m²/g) methods. This could possibly be due to the difference in the degree of agglomeration. From Table 1, the total pore volume of sol-gelderived α -Al₂O₃ (0.0065 cm³/g) was much less than those obtained from other preparation methods (0.2020 cm³/g for the precipitation method and 0.0739 cm³/g for the solvothermal method). These results indicated that the sol-gel-derived support had the smallest space between particles, compared to the other

supports, which prohibited the adsorption of N_2 molecules on the catalyst surface and led to the smallest surface area.

The pore size distribution curves of α-Al₂O₃ supports are shown in Figure 3. While the solvothermal- and precipitationderived a-Al₂O₃ exhibited the typical characteristic of a mesopore system (having an average pore size of 16-32 nm), the sol-gel-derived α -Al₂O₃ did not show any distinguishing curves. Peak areas under the pore size distribution curves that were directly correlated with the pore volume increased in the following order: precipitation > solvothermal > sol-gel. The nitrogen adsorption isotherms for the a-Al₂O₃ prepared by different methods are shown in Figure 4. It can be seen that the precipitation-derived support represented adsorption isotherms with hysteresis loops with type-A adsorption characteristics, which corresponds to the presence of a two-ended tabular pore structure. However, the solvothemal- and sol-gel-derived alumina exhibited a Type-E hysteresis loop, which is an indication of the presence of a tabular pore structure, through short pores with winded parts of various widths.^{26,27} These pores were formed among the primary particles of alumina.

3.2. Physicochemical Properties of Pd/a-Al2O3. The CO chemisorption results, such as the number of active Pd atoms, palladium dispersion (%), and average palladium-metal particle size, for the Pd/ α -Al₂O₃ catalysts are given in Table 1. The mean stoichiometry of palladium metal to CO molecule (X_{Pd-CO}) was determined by the iterative method, according to those of Lambert et al.²⁸ A polynomial function was fitted based on the table established by Joyal and Butt,²⁹ who determined X_{Pd-CO} as a function of palladium dispersion. The values of X_{Pd-CO} were determined to be 0.51, 0.34, and 0.29 for palladium catalysts supported on solvothermal-, sol-gel-, and precipitation-derived α -Al₂O₃, respectively. The numbers of active sites of palladium supported on solvothermal-, sol-gel and precipitation-derived α -Al₂O₃ catalysts were 11.5 x 10¹⁷, 3.9 x 10¹⁷, and 2.1 \times 10¹⁷ sites/g-catalyst, corresponding to palladium dispersions of 7.6%, 2.6%, and 1.4%, respectively. The lower percetnage of palladium dispersion that was obtained for the Pd/sol-gel-derived α -Al₂O₃ would be due to the lower specific surface area and pore volume. On the other hand, the larger pore size of precipitation-derived α -Al₂O₃ could also result in a low percentage of palladium dispersion, because of the agglomeration of palladium particles within the pores. Among the various Pd/a-Al2O3 catalysts, the maximum CO chemisorption was obtained on the solvothermal-derived α -Al₂O₃ with medium pore size. In a previous study from our group about palladium dispersed on silica and MCM-41 with various pore sizes, a lower percentage of palladium dispersion was found on the small pore SiO₂, because of the significant amount of palladium being located outside the pores of the supports.³⁰ A similar result was obtained when palladium was supported on the sol-gel α -Al₂O₃ with a very low amount of porosity.

The TEM micrographs of Pd/ α -Al₂O₃ catalysts were also taken to physically measure the size of the palladium oxide particles and/or palladium clusters on the various α -Al₂O₃: these micrographs are shown in Figure 5. The palladium catalyst supported on the sol-gel-derived support consisted of agglomerated particles primarily with irregularly shaped structure, whereas, for those prepared by the solvothermal and precipitation methods, the agglomeration of fingerlike and rodlike particles was observed. The palladium metal cluster size on the various alumina supports increased in the following order:

 α -Al₂O₃ (precipitation) = α -Al₂O₃ (sol-gel) > α -Al₂O₃

in a second a second of a seco	Table I. Physicoche	mical Properties of	a-Al ₁ O ₃ Various	Preparation Metho	ids and 0.3%	Pd/Al ₂ O ₃ Catal	yste
--	---------------------	---------------------	--	-------------------	--------------	---	------

		201 NO. 1	and the second se		and the second		
Pd/Al ₂ O3 catalyst	BET surface area ^{«,b} (m ² /g)	pore volume ^{6,c} (cm ³ /g)	average pore diameter ⁶ * (nm)	crystallite size ^{»,d} (nm)	Pd active sites" (× 10 ⁻¹⁷ sites/ g-catalyst)	Pd dispersion ^f (%)	average Pd ⁰ particle size ^e (nm)
solvothermal-derived sol-gel-derived precipitation-derived	19.8 1.7 41.2	0.0739 0.0065 0.2020	14.9 46 26.9	53 33.8 67.6	11.5 3.9 2.1	7.6 2.6 1.4	14.7 43.2 80.2

^a Error of measurement = 10%. ^b Only catalyst supports were measured. ^c Calculated from the Barrett-Joyner-Halenda (BJH) method. ^d Determined from XRD line broadening. ^c Determined from CO chemisorption. Fraction of Pd active sites = $S_f \times (V_{xdy}/V_z) \times (6.02 \times 10^{23})$, where V_{xd_y} the volume adsorbed, V_g the molar volume of gas at standard temperature and pressure (STP), and S_f the stoichiometry factor for CO on Pd. Error of measurement = $\pm 5\%$. ^f Based on $D = [fraction of Pd active sites <math>\times (MW/\%M) \times 100\% \times 100\% | / (6.02 \times 10^{23})$, where D is the fractional metal dispersion. MW the molecular weight of the metal, and %M the percentage of metal. ^s Based on d (nm) = (1.12/D).⁴⁰

Table 2. Consumption of Hydrogen in TPR, and the Amount of Ethyl	ene and CO Desorption
--	-----------------------

	Temperature at Maximum (°C)								
	Pcak 1		Peak 2		Peak 3		amount of ethyl	amount of CO	
Pd/Al2O3 catalyst	H2-TPR"	C₂H₄-TPD ^c	CO-TPD ^d	C ₂ H ₄ -TPD ^c	CO-TPD4	C₂H₄-TPD"	H ₂ consumption (µmol)"	ene desorption (µmol) ^o	desorption (umol) ^o
solvothermal-derived	60	90	90	240	230	420	658	131	76
sol-gel-derived	65	100	90	280	230	500	488	75	10
precipitation-derived	70	100	90	260	250	440	610	122	33

"Measured using the same weight of catalysts. " Based on H2-TPR results. " Based on C2H4-TPD results." Based on CO-TPD results.

Figure 3. Pore size distribution results of the α -Al₂O₃ supports from (a) solvothermal, (b) sol-gel, and (c) precipitation methods.

The reduction behaviors and reducibility of catalysts were studied by the TPR technique. The TPR profiles of Pd/ α -Al₂O₃ catalysts are shown in Figure 6. All the TPR profiles showed a single reduction peak in the range of 60~70 °C, which corresponded to the reduction of PdO to palladium metal.³¹⁻³³ This peak was shifted to higher temperature for the catalysts that were supported on sol~gel- and precipitation-derived α -Al₂O₃ by ~10 °C. The lower reduction temperature of the TPR profile suggested that PdO/Pd supported on the solvothermal-derived α -Al₂O₃ facilitated reduction at lower temperature. The average oxidation states of palladium were calculated

Figure 5. TEM image of the palladium supported by α -Al₂O₃ from (a) solvothermal, (b) sol~gel, and (c) precipitation methods. Characteristic palladium is shown within the circles in the micrographs.

according to the amount of H_2 consumption, and the results are given in Table 2. The solvothermal Pd/Al₂O₃ possessed the highest fraction of Pd active sites, probably because it had the smallest PdO/Pd sizes produced, as determined by TEM measurement.

Ethylene-temperature-programmed desorption (C₂H₄-TPD) was performed to obtain information about the ethylene adsorp-

Figure 6. H₂-TPR profiles for the various Pd/α -Al₂O₃ catalysts.

Figure 7. C2H4-TPD profiles for the various Pd/a-Al2O3 catalysts.

tion behavior on the catalyst surface, and the results are shown in Figure 7. We observed the peak locations and found that it appeared at different temperature ranges, depending on the characteristic modes of the ethylene adsorbed on the surface. All of the catalysts showed that the three major peaks had differences in their temperature positions and peak intensities. According to Shin et al.,^{34,35} the first peak, at ~95 °C, was assigned to π -bonded ethylene, which was weakly adsorbed and, consequently, desorbed without decomposition. The peak at ~240 °C was due to di-\sigma-bonded ethylene, which undergoes decomposition, followed by the recombination of the surface hydrocarbon species with hydrogen to produced ethylene as well as ethane. The last peak, at ~420 °C, was the CH₃ group, because the CH₃ signal was due to the decomposition of C₂ hydrocarbons that were adsorbed on the catalyst (tentatively, ethane or ethylene).36,37

It is generally accepted that ethylene adsorption is dependent on palladium particle size; it adsorbs more strongly on larger palladium particles. The results in this study follow the same trend in the literature. The low-temperature ethylene desorption peak decreased and slightly shifted to higher temperature as the palladium particle size increased from 14.7 to 80.2 nm for the a-Al2O3 supports prepared by solvothermal, sol-gel, and precipitation, respectively. According to Shaikhutdinov et al.,38 adsorption of π -bond ethylene occurs at low temperature and then desorbs when the temperature increases without hydrogenation reaction. Small palladium particles favor such a process, whereas, on larger palladium particles, a fraction of ethylene molecules adsorbs as di-o-bonded ethylene, which can either desorb near room temperature or dehydrogenate, producing surface species such as ethylidyne and atomic hydrogen. The formation of these surface species is believed to be the origin

Figure 8. CO-TPD profiles for the various Pd/a-Al2O3 catalysts.

for ethane production and carbon deposits during acetylene hydrogenation.

The CO temperature-programmed desorption (CO-TPD) behavior for the palladium catalysts supported on Al2O1 from different preparation methods is shown in Figure 8. Two desorption peaks, one with strong intensity at ca. 95 °C and another small peak located at ca. 220 °C, were observed for all the catalysts, which could be attributed to CO adsorption on two adsorptive site groups. The first group gave the strong peak, ranging from 95 to 180 °C, which was weak CO species over the catalyst. The second one was characteristic of the strong chemically adsorbed CO molecules. The amount of chemisorbed CO (see Table 2) on Pd/α-Al₂O₃ (solvothermal-derived support) was 7 and 2 times greater than those on the Pd/a-Al2O3 sol-gclderived support and the Pd/a-Al2O3 precipitation-derived support, respectively. The difference may be related to different geometry states of the adsorptive sites on catalysts that may have occurred from the different support configurations of the Pd/a-Al2O3 catalysts. Moreover, it has been reported that the activation energy of CO desorption decreased as the size of the palladium particles decreased. 39 The results from this study also show that the Pd/Al2O3 solvothermal-derived support with the smallest palladium particle size facilitated CO desorption. The atomic structures of CO and ethylene were similar, in terms of the double bond, which consisted of a π -bond and a σ -bond; thus, both the C2H4-TPD and CO-TPD results show the same trend.

3.3. Catalytic Performance in Selective Acetylene Hydrogenation. The effect of nanocrystalline porosity of α -Al₂O₃ obtained from various preparation methods on the catalytic properties of Pd/ α -Al₂O₃ was investigated in selective acetylene hydrogenation. The catalyst performances are shown by the plots of acetylene conversion × ethylene selectivity versus the GHSV value in Figure 9. Ethylene yield (%) clearly was improved in the following order of Pd/ α -Al₂O₃ catalysts:

Pd/solvothermal-derived α -Al,O₃ > Pd/sol-

gel-dcrived α -Al₂O₃ > Pd/precipitation-derived α -Al₂O₃

Among the three catalyst systems, the Pd/solvothermal-derived α -Al₂O₃ showed better performance than catalysts supported on the other α -Al₂O₃ supports. Based on our characterization results, Pd/solvothermal-derived α -Al₂O₃ had the appropriate total pore volume, the highest fraction of Pd active sites, and the highest metal dispersion of Pd on Al₂O₃ support: it also facilitated the reduction of PdO at lower temperature, which promoted acetylene conversion. Moreover, the TPD profiles of Pd/solvothermal-derived α -Al₂O₃ suggested that the amount of ethylene adsorbed at low temperature on the catalyst surface

Figure 9. Performance of Pd/α -Al₂O₃ catalysts in selective acetylene hydrogenation.

was highest, which was important for the improvement of ethylene gain, especially at high acetylene conversions.

4. Conclusions

Nanocrystalline porosity of α -Al₂O₃ powders was varied by changing the preparation methods. While the sol-gel method yielded the smallest crystallite size of α -Al₂O₃ with little pore volume and surface area, a mesopore structure with an average pore size of 15-27 nm was obtained via the solvothermal and precipitation methods. Suitable properties of the solvothermalderived α -Al₂O₃, such as high surface area and narrow pore size distribution, were determined to result in the best catalyst performance of Pd/ α -Al₂O₃ catalysts in the selective hydrogenation of acetylene. The solvothermal-derived α -Al₂O₃ not only provided the highest percentage of palladium dispersion and smallest palladium particle size, but it also facilitated H₂ reduction at low temperature and the desorption of ethylene and CO.

Acknowledgment

The financial support from the Thailand Research Fund (TRF) and the National Research Council of Thailand (NRCT) are gratefully acknowledged.

Literature Cited

 Pajonk, G.; Tcichner, S.; Fricke, J. Aerogels; Springer: Berlin, 1986.
 Church, J. S.; Cant, N. W.; Trimm, D. L. Stabilisation of Aluminas by Rare Earth and Alkaline Earth Jons. Appl. Catal., A 1993, 101 (1), 105– 116.

(3) Misra, C. Industrial Alumina Chemiculs: ACS Monograph 184; American Chemical Society: Washington, DC, 1986.

(4) Topsoe, H.; Clausen, B. S.; Massoth, F. E. Hydrotreating Catalysis; Springer: Berlin, 1996.

(5) Mohundro, E. L. Presented at the American Institute of Chemical Engineers 15th Ethylene Produces Conference, Spring National Meeting, New Orleans, LA, March-April 3, 2003.

(6) Didillon, B.; Cosyns, J.; Cameron, C.; Uzio, D.; Sarazzi, P.; Boitiaux, J. P. Industrial Evaluation of Selective Hydrogenation Catalyst Poisoning. *Stud. Surf. Sci. Catal.* 1997, 111, 447-454.

(7) Vincent, M. J.; Gonzalez, R. D. A Langmuir-Hinshelwood Model for a Hydrogen Transfer Mechanism in the Selective Hydrogenation of Acetylene over a Pd/α -Al₂O₃ Catalyst Prepared by the Sol-Gel Method. *Appl. Catal.*, A 2001, 217 (1-2), 143-156.

(8) Zakarina, N. A.; Zakumbaeva, G. D.; Toktabaeva, N. F.; Kuanyshev, A. Sh.; Litvyakova, E. L. Preparation and Properties of High Dispersity Palladium Catalysts. *React. Kinet. Catal. Lett.* **1984**, *26* (3-4), 441-445.

(9) Park, Y. H.; Price, G. L. Promotional Effects of Potassium on Palladium/Alumina Selective Hydrogenation Catalysts. Ind. Eng. Chem. Res. 1992. 31 (2), 469–474. (10) Hong, J.; Chu, W.; Chen, M.; Wang, X.; Zhang, T. Preparation of Novel Titania Supported Palladium Catalysts for Selective Hydrogenation of Acetylene to Ethylene. *Catal. Commun.* 2007, 8 (3), 593-597.

(11) Noronha, F. B.; Aranda, D. A. G.; Ordine, A. P.; Schmal, M. The Promoting Effect of Nb₂O₅ Addition to Pd/Al₂O₃ Catalysts on Propane Oxidation. *Catal. Today* 2000, 57 (3-4), 275-282.

(12) Guimon, C.: Auroux, A.: Romero, E.; Monzon, A. Acciviene Hydrogenation over Ni-Si-Al Mixed Oxides Prepared by Sol-Gel Technique. Appl. Catal., A 2003, 251 (1), 199-214.

 (13) Komhom, S.; Mekasuwandumrong, O.; Praserthdam, P.: Panpranot,
 J. Improvement of Pd/Al₂O₃ Catalyst Performance in Selective Acetylene Hydrogenation Using Mixed Phases Al₂O₃ Support. *Catal. Commun.* 2008, 10, 86–91.

(14) Kontapakdee, K.; Panpranot, J.; Praserthdam, P. Effect of Ag Addition on the Properties of Pd-Ag/TiO₂ Catalysts Containing Different TiO₂ Crystalline Phases. *Catal. Commun.* 2007, 8 (12), 2166–2170.

(15) Panpranot, J.; Kontapakdee, K.; Prasenhdam, P. Selective Hydrogenation of Acetylene in Excess Ethylene on Micron-sized and Nanocrystalline TiO₂ Supported Pd Catalysts. *Appl. Catal.*, A 2006, 314 (1), 128– 133.

(16) Wongwaranon, N.: Mekasuwandumrong, O.; Praserthdam, P.; Panpranot, J. Performance of Pd Catalysts Supported on Nanocrystalline α-Al₂O₃ and Ni-modified α-Al₂O₃ in Selective Hydrogenation of Acetylene. *Catal. Today* 2008, 131 (1-4), 553-558.

(17) Mekasuwandumrong, O.; Wongwaranon, N.; Panpranot, J.; Praserthdam, P. Effect of Ni-modified α -Al₂O₃ Prepared by Sol-Gel and Solvothermal Methods on the Characteristics and Catalytic Properties of Pd/ α -Al₂O₃ Catalysts. *Mater. Chem. Phys.* 2008, 111 (2-3), 431-437.

(18) Chinayon, S.; Mekasuwandumrong, O.: Praserthdam, P.: Panpranot, J. Sclective Hydrogenation of Acetylene over Pd Catalysts Supported on Nanocrystalline α-Al₂O₃ and Zn-modified α-Al₂O₃. *Catal. Commun.* 2008, 9 (14), 2297–2302.

(19) Inoue, M.; Kominami, H.; Inui, T. Thermal Reaction of Aluminum Alkoxide in Glycols. J. Am. Ceram. Soc. 1990, 73 (4), 1100-1102.

(20) Inoue, M.; Kominami, H.; Inui, T. Thermal Transformation of *x*-Alumina Formed by Thermal Decomposition of Aluminum Alkoxide in Organic Media. J. Am. Ceram. Soc. 1992, 75 (9), 2597-2598.

(21) Bahlawane, N.; Watanabe, T. New Sol-Gel Route for the Preparation of Pure Alumina at 950 °C. J. Am. Ceram. Soc. 2000, 83 (9), 2324-2326.

(22) Lin, C.-P.; Wen, S.-B.; Lee, T.-T. Preparation of Nanometer-Sized α-Alumina Powders by Calcining an Emulsion of Boehmite and Oleic Acid. J. Am. Ceram. Soc. 2002, 85 (1), 129–133.

(23) Scott, W. B.; Matijevic, E. Aluminum hydrous oxide sols: III. Preparation of Uniform Particles by Hydrolysis of Aluminum Chloride and Perchlorate Salts. J. Colloid Interface Sci. 1978, 66 (3), 447-454.

(24) Kato, S.; Iga, T.; Hatano, S.; Isawa, Y. U.S. Patent 4,053,579, October 11, 1975.

(25) Mekasuwandumrong, O.; Silveston, P. L.: Prascrthdam, P.: Inoue, M.; Pavarajam, V.; Tanakulrungsank, W. Synthesis of Thermally Stable Micro Spherical y-Alumina by Thermal Decomposition of Aluminum Isopropoxide in Mineral Oil. *Inorg. Chem. Commun.* 2003. 6 (7), 930– 934.

(26) Lippens, B. C.; de Boer, J. H. Studies on Pore Systems in Catalysts
 1. The Adsorption of Nitrogen; Apparatus and Calculation. J. Catal. 1964,
 3 (1), 32-37.

(27) Lippens, B. C.; de Boer, J. H. Studies on Pore Systems in Catalysts: V. The *t* Method. J. Catal. 1965. 4 (3), 319-323.

(28) Lambert, S.; Cellier, C.; Grange, P.; Pirard, J. P.; Heinrichs, B. Synthesis of Pd/SiO₂, Ag/SiO₂, and Cu/SiO₂ cogelled xerogel catalysts: study of metal dispersion and catalytic activity. *J. Catal.* 2004, 221 (2), 335– 346.

(29) Joyal, C. L. M.; Buu, J. B. Chemisorption and Disproportionation of Carbon Monoxide on Palladium/Silica Catalysts of Differing Percentage Metal Exposed. J. Chem. Soc., Faraday Trans. 1 1987, 83 (9), 2757-2764.

(30) Panpranot, J.: Pattamakomsan, K.; Goodwin, J. G.; Praserthdam, P. A. Comparative Study of Pd/SiO₂ and Pd/MCM-41 Catalysts in Liquid-Phase Hydrogenation. *Catal. Commun.* 2004, 5 (10), 583–590.

(31) Figoli, N. S.; Largentiere, P. C.; Arcoya, A.; Seoane, X. L. Modification of the Properties and Sulfur Resistance of a Pd/SiO₂ Catalyst by La Addition. J. Catal. 1995, 155 (1), 95-105.

(32) Seoane, X. L.; Figoli, N. S.: L'Argentiere, P. C.; González, J. A.; Arcoya, A. Palladium-Lanthanum Interaction Phenomena in Pd-LaCl/SiO₂ and Pd-La₂O₂/SiO₂ Catalysts. *Catal. Lett.* **1997**, *47* (3-4), 213-220.

(33) Yang, C.; Rcn, J.; Sun, Y. Role of La₂O₃ in Pd-Supported Catalysts for Methanol Decomposition. *Catal. Lett.* 2002, 84 (1-2), 123-129.

(34) Shin, E. W.; Kang, J. H.; Kim, W. J.; Park, J. D.; Moon, S. H. Performance of Si-modified Pd Catalyst in Acetylene Hydrogenation: The Origin of the Ethylene Selectivity Improvement. Appl. Catal., A 2002, 223 (1-2), 161-172.

(35) Kang, J. H.; Shin, E. W.; Kim, W. J.; Park, J. D.; Moon, S. H. Sclective Hydrogenation of Acetylene on Pd/SiO₂ Catalysts Promoted with Ti, Nb and Ce Oxides. *Catal. Today* 2000, 63 (2–4), 183–188.

(36) Tsuchiya, S.; Nakamura, M. Study of Chemisorption and Hydrogenation of Ethylene on Platinum by Temperature-Programmed Desorption. J. Catal. 1977, 50 (1), 1-7.

(37) Park, Y. H.; Price, G. L. Temperature-Programmed-Reaction Study on the Effect of Carbon Monoxide on the Acetylene Reaction over Palladium/Alumina. *Ind. Eng. Chem. Res.* 1991, 30 (8), 1700– 1707.

(38) Shaikhutdinov, Sh.; Heemeier, M.; Bäumer, M.; Lear, T.; Lennon, D.; Oldınan, R. J.; Jackson, S. D.; Freund, H.-J. Structure-Reactivity

Relationships on Supported Metal Model Catalysts: Adsorption and Reaction of Ethene and Hydrogen on Pd/Al₂O₃/NiAl(110). J. Catal. 2001, 200 (2), 330–339.

(39) Matolin, V. Rheed and TPD Studies of the Effect of Particle Size on CO Desorption from Al₂O₃ Supported Pd and Rh Model Catalysts. *Fiz.* A 1995, 4 (2), 181–189.

(40) Mahata, N.; Vishwanathan, V. Influence of Palladium Precursors on Structural Properties and Phenol Hydrogenation Characteristics of Supported Palladium Catalysts. J. Catal. 2000, 196 (2), 262-270.

> Received for review November 21, 2008 Revised manuscript received March 23, 2009 Accepted May 8, 2009

> > 1E801784F

<u>ประวัติผู้วิจัย</u>

ชื่อ นาง จูงใจ ปั้นประณต

ตำแหน่ง ผู้ช่วยศาสตราจารย์

ที่อยู่ ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

การศึกษา

Ph.D. (Chemical Engineering) Clemson University, Clemson, SC, USA
Dissertation title: Mesoporous Silica Supported Cobalt-Based Catalysts
M.S. (Chemical Engineering) West Virginia University, Morgantown, WV, USA
Thesis title: Hydrothermal Aging of Zeolite-Based Catalysts

2538 B.S. (Chemical Engineering) จุฬาลงกรณ์มหาวิทยาลัย

ผลงานวิจัยในอดีต (ตั้งแต่ปี พ.ศ. 2547)

- Somyod Sombatchaisak, Piyasan Praserthdam*, Chuwong Chaisuk, and Joongjai Panpranot "An Alternative Correlation Equation between Particle Size and Structure Stability of H-Y Zeolite under Hydrothermal Treatment Conditions", *Industrial and Engineering Chemistry Research*, <u>43</u> (15) (2004) 4066-4072 [IF2008 = 1.895].
- Joongjai Panpranot*, Kanda Pattamakomson, Piyasan Praserthdam, and James G. Goodwin, Jr. "Impact of Silica Support Structure on Liquid Phase Hydrogenation on Pd Catalysts", *Industrial and Engineering Chemistry Research*, <u>43</u> (19) (2004) 6014-6020 [IF2008 = 1.895].
- Joongjai Panpranot*, Kanda Pattamakomsan, James G. Goodwin, Jr., and Piyasan Praserthdam "A comparative Study of Pd/SiO₂ and Pd/MCM-41 in Liquid Phase Hydrogenation" *Catalysis Communications*, <u>5</u> (2004) 583-590 [IF2008 = 2.791].
- Joongjai Panpranot*, Sujaree Kaewgun, and Piyasan Praserthdam "Metal-Support Interaction in Mesoporous Silica Supported Cobalt Fischer-Tropsch Catalysts" *Reaction Kinetics and Catalysis Letters* <u>85</u> (2005) 299-304 [IF2008 = 0.61].
- 5) Joongjai Panpranot*, Lakkana Nakkararuang, Bongkot Ngamsom and Piyasan Praserthdam "Synthesis, Characterization, and Catalytic Properties of Pd and Pd-Ag Catalysts Supported on Nanocrystalline TiO₂ Prepared by the Solvothermal Method" *Catalysis Letters* <u>103</u> (2005) 53-58 [IF2008 = 1.867].
- 6) Patta Soisuwan, Piyasan Praserthdam*, Dean C. Chambers, David L. Trimm, Okorn Mekasuwandumrong, and Joongjai Panpranot "Characteristics and Catalytic Properties of Alumina-Zirconia Mixed Oxides Prepared by the Modified Pechini Method" Catalysis Letters <u>103</u> (2005) 63-68 [IF2008 = 1.867].
- 7) Joongjai Panpranot*, Orathai Tangjitwattakarn, Piyasan Praserthdam, and James G. Goodwin, Jr. "Effect of palladium precursors on the catalytic activity and deactivation

of silica supported Pd catalysts in liquid phase hydrogenation", *Applied Catalysis A:* General <u>292</u> (2005) 322-327 [IF2008 = 3.19].

- Joongjai Panpranot*, Usnee Toophorm, and Piyasan Praserthdam "Effect of Particle Size on the Hydrothermal Stability and Catalytic Activity of Polycrystalline Beta Zeolite" *Journal of Porous Materials* <u>12</u> (2005) 301-307 [IF2008 = 0.959].
- 9) Joongjai Panpranot*, Kanda Pattamakomsan, Piyasan Praserthdam, and James G. Goodwin, Jr. "Deactivation of silica supported Pd catalysts in liquid phase hydrogenation", *Reaction Kinetics and Catalysis Letters*, <u>86</u> (2005) 141-147 [IF2008 = 0.61].
- 10) Joongjai Panpranot*, Nattakarn Taochaiyaphoom, and Piyasan Praserthdam "Glycothermal synthesis of nanocrystalline zirconia and their applications as cobalt catalyst supports" *Materials Chemistry and Physics* vol. <u>94</u> (No.2-3) (2005) 207-212 [IF2008 = 1.799].
- 11) Joongjai Panpranot*, Nuttakarn Taochaiyaphum, Bunjerd Jongsomjit, and Piyasan Praserthdam "Differences in Characteristics and Catalytic Properties of Co Catalysts Supported on Micron- and Nano-Sized Zirconia" *Catalysis Communications* <u>7</u> (2006) 192-197 [IF2008 = 2.791].
- 12) Joongjai Panpranot*, Nuttakarn Taochaiyaphum, and Piyasan Praserthdam "Effect of Si Addition on the Properties of Nanocrystalline ZrO₂-Supported Cobalt Catalysts" *Reaction Kinetics and Catalysis Letters* <u>87</u> (2006) 185-190 [IF2008 = 0.61].
- 13) Patta Soisuwan, Joongjai Panpranot, David L. Trimm and Piyasan Praserthdam* "A Study of Alumina-Zirconia Mixed Oxides Prepared by the Modified Pechini Method as Co Catalyst Supports in CO Hydrogenation" *Applied Catalysis A. General* <u>303</u> (2006) 268-272 [IF2008 = 3.19].
- 14) Patta Soisuwan, Piyasan Praserthdam*, Joongjai Panpranot, and David L. Trimm "Effects of Si- and Y-Modified Nanocrystalline Zirconia on the Properties of Co/ZrO₂ Catalysts" Catalysis Communications <u>7</u> (2006) 761-767 [IF2008 = 2.791].
- 15) Joongjai Panpranot*, Kunyaluck Kontapakdee, and Piyasan Praserthdam "Effect of TiO₂ Crystalline Phase Composition on the Physicochemical and Catalytic Properties of Pd/TiO₂ in Selective Acetylene Hydrogenation" *Journal of Physical Chemistry B* <u>110</u> (2006) 8019-8024 [IF2008 = 4.189].
- 16) Joongjai Panpranot*, Kunnika Phandinthong, Piyasan Praserthdam, Masashi Hasegawa, Shin-Ichiro Fujita, and Masahiko Arai "A Comparative Study of Liquid Phase Hydrogenation on Pd/SiO₂ in Organic Solvents and Under Pressurized Carbon Dioxide: Activity Change and Metal Leaching/Sintering" Journal of Molecular Catalysis A: Chemical 253 (2006) 20-24 [IF2008 = 2.814].
- 17) Bunjerd Jongsomjit*, Joongjai Panpranot, Mitsuhiro Okada, Takeshi Shiono, and Piyasan Praserthdam "Characteristics of LLDPE/ZrO₂ Nanocomposite Synthesized by the *in-situ* Polymerization using a Zirconocene/MAO Catalyst" Iranian Polymer Journal 15 (5) (2006) 431-437 [IF2008 = 1.072].

- 18) Bunjerd Jongsomjit*, Chitlada Sakdamnuson, Joongjai Panpranot, and Piyasan Praserthdam "Roles of Ruthenium on Reduction Behaviors of Ruthenium-Promoted Cobalt/Titania Fischer-Tropsch Catalyst" *Reaction Kinetics and Catalysis Letters* 88 (2006) 65-71 [IF2008 = 0.61].
- 19) Joongjai Panpranot*, Kunyaluck Kontapakdee, and Piyasan Praserthdam "Selective Hydrogenation of Acetylene in Excess Ethylene on Micron-Sized and Nanocrystalline TiO₂ Supported Pd Catalysts" *Applied Catalysis A: General* 314 (2006) 128-133 [IF2008 = 3.19].
- 20) Wilasinee Kongsuebchart, Piyasan Praserthdam*, Joongjai Panpranot, Akawat Sirisuk, Piyawat Supphasrirongjaroen, and Chairit Satayaprasert "Effect of Crystallite Size on the Surface Defect of Nano-TiO₂ Prepared via Solvothermal Synthesis" *Journal of Crystal Growth* 297 (2006) 234-238 [IF2008 = 1.757].
- 21) Joongjai Panpranot*, Kunnika Phandinthong, Terachai Sirikajorn, Masahiko Arai, and Piyasan Praserthdam "Impact of Palladium Silicide Formation on the Catalytic Properties of Pd/SiO₂ Catalysts in Liquid-Phase Semihydrogenation of Phenylacetylene" Journal of Molecular Catalysis A: Chemical 261 (2007) 29-35 [IF2008 = 2.814].
- 22) Bunjerd Jongsomjit*, Joongjai Panpranot, and Piyasan Praserthdam, "Effect of nanoscale SiO₂ and ZrO₂ as the fillers on the microstructure of LLDPE nanocomposites synthesized via in situ polymerization with zirconocene", *Material Letters* 61 (2007) 1376-1379 [IF2008 = 1.748].
- 23) Kamonchanok Pansanga, Okorn Mekasuwandumrong, Joongjai Panpranot, and Piyasan Praserthdam* "Synthesis of Nanocrystalline Al₂O₃ by Thermal Decomposition of Aluminum Isopropoxide and its Application as Co Catalyst Support for Carbon Monoxide Hydrogenation" *Korean Journal of Chemical Engineering* 24 (2007) 397-402 [IF2008 = 0.83].
- 24) Wilasinee Kongsuebchart, Joongjai Panpranot, Chairit Satayaprasert, and Piyasan Praserthdam* Effect of TiO₂ Crystallite size on the Dispersion of Co on Nanocrystalline TiO₂" *Reaction Kinetics and Catalysis Letters* 91 (2007) 119-126 [IF2008 = 0.61].
- 25) Kunyaluck Kontapakdee, Joongjai Panpranot*, and Piyasan Praserthdam "Effect of Ag Addition on the Properties of Pd-Ag/TiO₂ Catalysts Containing Different TiO₂ Crystalline Phases" *Catalysis Communications* 8 (2007) 2166-2170 [IF2008 = 2.791].
- 26) Joongjai Panpranot*, Songphol Aungkapipattanachai, Thanapon Sangvanich, Pawin Boonyaporn, and Piyasan Praserthdam "Effect of N₂O Pretreatment on Fresh and Regenerated Pd-Ag/Al₂O₃ Catalysts during Selective Hydrogenation of Acetylene" *Reaction Kinetics and Catalysis Letters*, Vol. 91 No. 2 (2007) 195-202 [IF2008 = 0.61].
- 27) Kamonchanok Pansanga, Nattaporn Lohitharn, Andrew C. Y. Chien, Edgar Lotero, Joongjai Panpranot, Piyasan Praserthdam, and James G. Goodwin, Jr.* "Copper-

Modified Alumina as a Support for Iron Fischer-Tropsch Synthesis Catalysts" *Applied Catalysis A. General*, 332 (2007) 130-137 [IF2008 = 3.19].

- 28) Sirima Somboonthanakij, Okorn Mekasuwandumrong, Joongjai Panpranot*, Tarit Nimmanwudtipong, Reto Strobel, Sotiris E. Pratsinis, and Piyasan Praserthdam "Characteristics and Catalytic Properties of Pd/SiO₂ Synthesized by One-Step Flame Spray Pyrolysis in Liquid-Phase Hydrogenation of 1-Heptyne" Catalysis Letters, 119 (2007) 346-352 [IF2008 = 1.867].
- 29) Patcharaporn Weerachawanasak, Piyasan Praserthdam, Masahiko Arai, and Joongjai Panpranot* "A Comparative Study of Strong Metal-Support Interaction and Catalytic Behaviors of Pd Catalysts Supported on Micron- and Nano-sized TiO₂ in Liquid-Phase Selective Hydrogenation of Phenylacetylene" *Journal of Molecular Catalysis A. Chemical*, 279 (2007) 133-139 [IF2008 = 2.814].
- 30) Kamonchanok Pansanga, Joongjai Panpranot, Okorn Mekasuwandumrong, Chairit Satayaprasert, James G. Goodwin, Jr., and Piyasan Praserthdam^{*} "Effect of Mixed γ and Crystalline Phases in Nanocrystalline Al₂O₃ on the Dispersion of Cobalt on Al₂O₃" *Catalysis Communications* 9 (2008) 207-212 [IF2008 = 2.791].
- 31) Nitikon Wongwaranon, Okorn Mekasuwandumrong, Piyasan Praserthdam, and Joongjai Panpranot* "Performance of Pd Catalysts Supported on Nanocrystalline Al₂O₃ and Ni-Modified Al₂O₃ in Selective Hydrogenation of Acetylene" Catalysis Today 131 (2008) 553-558 [IF2008 = 3.004].
- 32) Piyawat Supphasrirongjaroen, Wilasinee Kongsuebchart, Joongjai Panpranot, Okorn Mekasuwandumrong, Chairit Satayaprasert, Piyasan Praserthdam* "Dependence of Quenching Process on the Photocatalytic Activity of Solvothermal-Derived TiO₂ with Various Crystallite Sizes" *Ind. Eng.Chem. Res.* 47 (2008) 693-697 [IF2008 = 1.895].
- 33) Piyawat Supphasrirongjaroen, Piyasan Praserthdam*, Joongjai Panpranot, Duangkamol Na-Ranong, and Okorn Mekasuwandumrong "Effect of Quenching Medium on Photocatalytic Activity of Nano-TiO₂ Prepared by Solvothermal Method" *Chem. Eng. J.* 138 (2008) 622-627 [IF2008 = 2.813].
- 34) Tanuchnun Burakorn, Joongjai Panpranot*, Okorn Mekasuwandumrong, Choowong Chaisuk, Piyasan Praserthdamm and Bunjerd Jongsomjit, "Characterization of Cobalt Dispersed on the Mixed Nanoscale Alumina and Zirconia Supports" *Journal of Materials Processing Technology*, 206 (2008) 352-358 [IF2008 = 1.143].
- 35) Jutharat Khom-in, Piyasan Praserthdam*, Joongjai Panpranot, and Okorn Mekasuwandumrong "Dehydration of Methanol to Dimethyl Ether over Nanocrystalline Al_2O_3 with Mixed γ and χ -Crystalline Phases" Catalysis Communications, 9 (2008) 1955-1958 [IF2008 = 2.791].
- 36) Okorn Mekasuwandumrong, Nitikon Wongwaranon, Piyasan Praserthdam, and Joongjai Panpranot* "Effect of Ni-Modified α-Al₂O₃ Prepared by Sol-Gel and Solvothermal Methods on the Characteristics and Catalytic Properties of Pd/α-Al₂O₃ Catalysts" *Materials Chemistry and Physics*, 111 (2008) 431-437 [IF2008 = 1.799].

- 37) Suthana Chinayon, Okorn Mekasuwandumrong, Piyasan Praserthdam, and Joongjai Panpranot*, "Selective Hydrogenation of Acetylene over Pd Catalysts Supported on Nanocrystalline α -Al₂O₃ and Zn-Modified α -Al₂O₃" *Catalysis Communications*, 9 (2008) 2297-2302 [IF2008 = 2.791].
- 38) Sataporn Komhom, Piyasan Praserthdam, Okorn Mekasuwandumrong, Joongjai Panpranot* "Improvement of Pd/Al₂O₃ Catalyst Performance in Selective Acetylene Hydrogenation using Mixed-Phases Al₂O₃ Support" Catalysis Communications, 10 (2008) 86-91 [IF2008 = 2.791].
- 39) Terachai Sirikajorn, Okorn Mekasuwandumrong, Piyasan Praserthdam, James G. Goodwin, Jr., and Joongjai Panpranot* "Effect of Support Crystallite Size on Catalytic Activity and Deactivation of Nanocrystalline ZnAl₂O₄ Supported Pd Catalysts in Liquid-Phase Hydrogenation" *Catalysis Letters*, 126 (2008) 313-318 [IF2008 = 1.867].
- 40) Sataporn Komhom, Piyasan Praserthdam, Okorn Mekasuwandumrong, Joongjai Panpranot* "Effects of Support Crystallite Size and Reduction Temperature on the Properties of Pd/α-Al₂O₃ Catalysts in Selective Acetylene Hydrogenation" *Reaction Kinetics and Catalysis Letters*, 94 (2008) 223-241 [IF2008 = 0.61].
- 41) Wilaiwan Chouyyok, Joongjai Panpranot, Chanchana Thanachayanant, Seeroong Prichanont* "Effects of pH and pore characters of mesoporous silicas on horseradish peroxidase immobilization", *Journal of Molecular Catalysis B. Enzymatic* 56 (2009) 246-252 [IF2008 = 2.015].
- 42) Patcharaporn Weerachawanasak, Okorn Mekasuwandumrong, Piyasan Praserthdam, Masahiko Arai, Shin-Ichiro Fujita, Joongjai Panpranot* "Effect of strong metalsupport interaction on the catalytic performance of Pd/TiO₂ in the liquid-phase semihydrogenation of phenylacetylene" *Journal of Catalysis*, 262 (2009) 199-205 [IF2008 = 5.167].
- 43) Okorn Mekasuwandumrong, Sirima Somboonthanakij, Piyasan Praserthdam, and Joongjai Panpranot* "Study on the Preparation of Nano-Pd/SiO₂ by One-Step Flame Spray Pyrolysis and its Hydrogenation Activities: Comparison to Conventional Impregnation Method" *Industrial Engineering and Chemistry Research*, 48 (2009) 2819-2825 [IF2008 = 1.895].
- 44) Waraporn Chatpaisalsakul, Okorn Mekasuwandumrong, Joongjai Panpranot*, Chairit Satayaprasert, and Piyasan Praserthdam "Impact of quenching process on the surface defect of titanium dioxide for hydrogen production from photocatalytic decomposition of water" *Journal of Industrial and Engineering Chemistry*, 15 (2009) 77-81 [IF2008 = 1.235].
- 45) Pongsapak Pawinrat, Okorn Mekasuwandumrong, Joongjai Panpranot* "Synthesis of nanocrystalline Au-ZnO and Pt-ZnO by flame spray pyrolysis and its application for photocatalytic degradation of dyes" *Catalysis Communications*, 10 (2009) 1380-1385 [IF2008 = 2.791].

- 46) Tatiya Sangkam, Okorn Mekasuwandumrong, Piyasan Praserthdam, Joongjai Panpranot* "Effect of Fe-Modified α-Al₂O₃ on the Properties of Pd/α-Al₂O₃ Catalysts in Selective Hydrogenation of Acetylene" *Reaction Kinetics and Catalysis*, 97 (2009) 115-123 [IF2008 = 0.61].
- 47) Sataporn Komhom, Okorn Mekasuwandumrong, Joongjai Panpranot*, Piyasan Praserthdam "Influence of preparation method on the nanocrystalline porosity of Al₂O₃ and the catalytic properties of Pd/Al₂O₃ in selective acetylene hydrogenation" *Industrial and Engineering Chemistry Research*, 48 (2009) 6273-6279 [IF2008 = 1.895].
- 48) Sukanya Pisduangdaw, Joongjai Panpranot, Chatthip Methastidsook, Choowong Chaisuk, Piyasan Praserthdam, and Okorn Mekasuwandumrong* "Characteristics and Catalytic Properties of Pt-Sn/Al₂O₃ Nanoparticles Synthesized by One-Step Flame Spray Pyrolysis in the Dehydrogenation of Propane" *Applied Catalysis A. General*, In press July (2009) [IF2008 = 3.19].
- 49) Nuttaya Khumsup, Joongjai Panpranot, Piyasan Praserthdam* "Effect of TiO₂ crystallite size on the activity of CO oxidation" *Catalysis Letters*, In press August (2009) [IF2008 = 1.867].