CHAPTER III
GENERALIZED TRANSFORMATION SEMIGROUPS HAVING

PROPER DENSE SUBSEMIGROUPS

’%s defined in Chapter I are nat-

ural and extensive gener ns of us ransformation semigroups. Then

Generalized tran

any results of such izéd rmation semig roups extending from some
results of usual tr

characterized the t d transformation semigroups having proper dense

For convenien is result wil Dok

The main ]mrpose of this research is to 'ﬂtroduce -a generalization of

Higgins Them ﬁ;ﬁ Wgﬂgwﬁﬁlﬁo?emigmps as follows:

“ITX anyY are sets, 8(X, ¥') denotes any one of T(X, ¥), PT(X,Y)

VA TRAHEAANE AL e

subsemigroup if and only if X and Y are both infinite and
V6| = min{|X], [Y]}.”

Higgins has proved Higgins Theorem by using the Zigzag Theorem, The-
orem 1.1, Theorem 1.5 and Theorem 1.6 as lemmas. In his proof, he separated

the proof for § = Tx, the proof for § = PTx and that for § = Jx completely.
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However, the proof for § = Jx was given briefly by referring to the previous
proofs for § = Tx and § = ﬁ"J‘x.

Included in this chapter, a new proof for Higgins Theorem is given.
Theorem 1.1 and Theorem 1.5 are not required in our proof. The proof of
Theorem 1.5 given in [1] is quite éomplicated. Moreover, our proof is not sepa-
\He ,&t e Zigzag Theorem, Theorem 1.6, ‘

: & 2.4 are required for our proof.
S —
only elementary concepts of

Remind that the pro(y obsi , :
mappings and cardinalit] \ proving nain theorem of this chapter,

we use our technique o iggins Theoremy, presented as follows:

rated for the different types ¢

Proposition 2.1, Propositi

Assume that X ife g; 4 8 Be any one of Tx, PTx or Jx. Then
the symmetric group on

of 8. To show that UNGx

Zigzag Theorem that a = l- : @mﬁ
Af=%F= X L-_“"_T"& NG x # . Now we have
that UNGx is a subgmu |VaB| < min{|val,|vg|}-

for all o, € PTx, we‘h ve that for alng B €S a,B € Gx implies o, 3 € Gx.

o i L HQTHIN S HB G e
AT R

a €8N U such that |Va| = max {|vg| I B €8\ U}. Then |Va| < |X| since

7 € 3. Then | X| = |Va| < |v4|, so

Sx € U. But U is dense in §, so by Corollary 1.4 a:= \y = (Bp)y where
Mp€U,B,y€8\U and A = Bu. From a = Ay = Buvy, we have [Va| <

[VB|,|Va| < |vy| and |Va| < |V, and from A = Bu, we have [VA| < |vB|. By
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the property of @, we have that |Va| > |V3| and |Va| > |V4|. These inequal-
ities yield that |Va| = |VB| = |Vy| = |VA|. Then |Va| = |[VAy| = |Vy|. Since
VAy C Vv and |Vy| < oo, we get that VAy = V. Now we have VMy = Vy and
|VA| < |X|, so by Proposition 2.1(i), An = My for some n € 8 with |vn| > |Vv4].

Then |Vn| > |Va| which implies by the property of a that n € U. Thus

a = My = An € U since A,n 7. w U, so we have a contradiction.This
proves that 8 has no proper. e su Wgroup.

et A C X be such that A is

Conversely,

infinite and | X \

st@ € S. Then Aa= |J za™?,

z€EVa

{za™!|z € Va ant | <|Ale |z € Vaand za™ ' NA=0}| <

Vel < |X]| = apping ¢ such that Ad =

{z "llera} a:a 1)<S'€A1f.vr:az nA and (za™1')d € X N A if

w0 BN T NDATG 1 e oo

Then X € § YUnd by the deﬁnx&xon of 4, we have A\ C A By the definition
RRARIIT T VR LA - 0 o
T € Va and y € za~!. Since § is 1-1, it implies that (yA)A~! = za™! for all
z E’ Va and y € za~!. If z € AMN(= Aa), then za € Va and z € (za)a™?,
and hence (zA)A~! = (za)a~!. This implies that (zA)A™! = (za)a™! for all
z € AX. By Proposition 2.4(i), there exists v € 8 such that o = Ay. Since

IVA| < |X| = |X ~ Al, there exists 71 € Txwith An; € X ~ A and Yy = V.
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Let 72: X — X be such that n3|a,;, = 7 and |A17§| < |A|. Define n = n, if
S =PTx orJx and np = 2 if § = Tx. TﬂennES. Since A\ C A and
|An| < |Al, it follows that A, € U. From defining A and 7, we have V) C vy,
so by Proposition 2.4(ii), 1 = A for some 8 € §. Since |An| < |A|, we get that

|An~y| < |A|. This implies that 7y € U. Now we have the following zigzag in S

over U with value a:

Then a € Dom(U, 8)by s proves that U is dense in 8, as
required.#

We give a remark t % Proper dense subsemigroup of 8§ where X is
infinite, given by Hig .;__.__.-..-__-__-___-___--__.,‘ {ix}. Our constructed

roper dense subsemig d and depends on our given
P !

set A. It can be show‘; by our constructlon of U that § has infinitely many

R T ﬂ)%g Q, | ifead) ‘§ HY $how]thdt Fhere is a collection of

cardinality |X| of proper dense sdbsemigroups,of 8. Moreover, our constructed
U givexﬂqemglﬁamim umu.::]lg m;ﬂl;l anﬂsubsemigroups
in generalized transfoﬁnation semigroups. To show that there exists a collection
€ of proper dense subsemigroups of § such that |€| = |X| where X is infinite,
consider the set X and X x X. We have that |X x X| = |X|. Then there exists

a bijection ¢: X x X — X. For each z € X, let A, = {(z,t)¢ |t € X}. Then
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X=AU Az, A;:NAy = @ if £ # y and |A;| = |X| for every z € X. Hence
zeX
|X N Az] = |X| for all z € X. For each z € X, let
U, ={a€8 | |[Ad;an (X \ 4;)| < |4}

and € = {U,; |z € X}. Then by the previous proof, U, is a proper dense

subsemigroup of 8. To show that ifz #yin X, let z,y € X be

= |A;|, there exists a € Jx such

that Aa = A;UA, an an extension of a and set v = 3

i & =Ty amd v = . Since A;vy=A,a C A,

and Ayy = Aya C* x’yﬂ(X\A)]-—Oa.nd

|4y y N (X N Ay)| =94 v & Uy. Hence U, 3£ Uy,

This proves that |C| =

Our proof of the ite eomplicated. To make the proof

easier to follow, we shall sepa.r fet] '_ to be lemmas. There are five lemmas.

S

Vf
Lemma 3.1. LetvadY be sets,

The first lemma is A
)

X, Y )denote my oneof J(X,Y), PT(X,Y)

:;JE(:; g ﬂy gigjii]wsemmmf (8(X,Y),6). Then

Proot frhlc O LU ’}CJ PEARLL e, e s

B € U,7 € 8(X,Y), which implies that |Va| < |V6|. Hence we have that for

a € 8(X,Y), |Va| > |v6| implies that a € U, so the lemma is proved. #

Lemma 3.2. Let X andY be sets, §(X,Y’) denote any one of T(X,Y), PT(X,Y)
or I(X,Y), 6 € 8(Y,X) and U a dense subsemigroup of (S(X,Y),0). If
|v0| < min{|X|, Y|}, then U = §(X,Y").
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Proof. To prove tha.tAU = §8(X,Y), suppose not. Then §(X,Y)\U # .

Case 1. X orY is finite. Then min{|X|, |Y|} < oco. Since [Va| < min{|X], Y|}
for all & € §(X,Y) and §(X,Y)\U # @, it follows that there exists 8 €
8(X,Y) \ U such that |VB| = |[Va| for all « € §(X,Y) \ U. Since U is dense

in (8(X,Y),6), we have by Corollary 1.4 that 8 = A0y for some \ € U~ €

| < [VB|. But V8] = [v(A6y)| <

S y 5 / v L ; ; ’)’
V6| < |77], so we havesZ8E= | a

oo. Since V#y C Vv, we get
g ists u € 8(X,Y) such that
property of B yields u € U.

Hence 8 = A0y = o" ws that 8 € U, which is a
N\

contradiction.

Case2. X and Y are i )N U. Then by the Zigzag

%)

Theorem, n = A\fv for som By Proposition 2.1(ii), v = 63

for some 3 € S(X,Y) with _!_-~ min{ }. Since IV,Bl = min{|X|,|Y]|} >
|v6|, by Lemma 3. VA‘;_;...'._;__._....,_...—...W.T By = MG € U, which is a

contradiction.

This proves that U = §(X,Y), as,required.

ﬂ‘lJEJ\’JVIEWlﬁWEJ’]ﬂ’i

Lemma 3.3. [t X andY be sets, $(X,Y) denote any one ofaX Y), PUX,¥)

orJ(X, ﬂ Ve s\ 74T § bniel %’]@ UASF (SOEYNd). 17X is finite

and V0 = X then U =§8(X,Y).

Proof. Since V8 = X, there exists a 1-1 mapping v: X — Y such that o8 = ix.
Then ~ € 8(X,Y).

Next, we set

V={aed§X,Y)|ab € Gx}
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and define a relation p on V by
apf <= af = (6 _ (aB € V).

The following statements give an outline of our proof for the lemma.

(1) V is a subsemigroup of (8

(2) For a € S(X‘,Y), v , that a € V.
(3) For o, € 8(X

(4) pisa congru{

(5) KV € U, the &nse subsemigroup of V.
6 veu. hIQM ‘
(7) U =8(X, Y).
We shall prove eV,soV£a. lfa,feV,
then af, 80 € Gx, which #inplies’that, (@8B)0 @ Sx, and thus 788 € V. Hence

The ﬁniteness of X ges Ak Y and so@e € §Gx. Then o € V. This

proves (2).

e B MEINIRTNEAD . 0, st
of V, wdxw ﬁoéa@ D:ﬁwwﬁo%&mﬁ{gms of X that

af, 30 €gS5x. Hence a,

To prove (4), it is obvious that p is an equivalence relation on V. If
a,B € V are such that apf, then af = 0, so (y0a)f = (v66)8 and (abv)0 =
(B67)0 for all ¥ € V and hence (v0a)p(v88) and (abvy)p(B6v) for all v € V.
Thus p is a congruence on V. Define ¢: V/p — Gx by (ap)p = af (a € V). By

the definition of p, ¢ is well-defined and 1-1. For o, € V, ((ap) * (Bp)) ¢ =
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((abB)p) ¢ = (a8B)8 = (ab)(86) = (ap)p(Bp)y where  is the operation on
V/p. To show that ¢ is onto, let 3 € Gx. Then By € §(X,Y) and (8+)8 =
B(8) = Bix = B € Sx, which implies By € V and ((87)p)¢ = (8v)6 = B
This proves that ¢ is an isomorphism of V/p onto Gx. Therefore V/p = Gx.
To prove (5), assum'e that V Z U. Let n € V N\ U. Since U is dense in
| # a zigzag, say Z, in §(X,Y’) over
4’c Zi1sazigzagin VoverUNV
——

with value n. This pr NV i MSemigroup of V.

8(X,Y), by the Zigzag Theo

U with value 7. Since i

a € V,AeUNV. Then for some o 7/ Thusn=a’0A € UNV,
a contradiction. Tliiﬁ

- Finally, we sh rove (7). Suppose U # 8(X,Y). Since |Val| <

%] < oo forﬁu&&%&lﬂﬁ PEL LA %) < v suets tha
V46| = max {|Vas| C U (from(6)),
e\ AP iok (4T VIR
Corollary 1.4, st = Ao = (60A1)88 for some Ao, Ay € U, 8,6 € S(X,Y)\ U
such that Ao = §6\;. Then pé = 661,680 and \of = 66)16, so we have

that |Vud| < |vB6],|vub| < |Vé6| and [Vub| < |VAe8| < |VE6|. Since 3,6 €

S8(X,Y) N\ U, by the property of p, we get

|Vl = |vB0| = |Véb| = |VAb| < | X]| < oo.
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Let 2o € X\ VB0 and z1 € X \ VA¢f. Since V8 = X (by assumption), zo € V4.

Let y € Y be such that yf = zo. Let 8’ € PT(X,Y) be such that

Aﬂ, = Aﬁ U {.'121},

zf' =zf forall @ € AB N\ {z,} and

Claim that g’ € 8§(X, ASe Qlt is clear that 3’ € §(X,Y)
for the case that SM n)y). If y = z6' for some
z € AB~ {z,}, then gl = . =% vﬂe But 9 ¢ V36, so
218 =y # 2 for ‘
B €IX,Y), then B

‘~ is 1-1 at z;. Therefore if

denice we have the claim. From the fact that

ﬁ \ ws that A\o68' = A8 = p.

From p = A\o603, we have ‘5{%2- Vb = |VB8| < oo, so Vub = V4.

= .. 3 __*.

ﬂ’lAﬂ\{zl} = ﬂ'Aﬁ\{z

Thus
LS w ' 7 Y-

ora.ll'yéﬁ(X Y),ACX)

ﬁﬂff;ﬁ i, ..,

q WSO UAFIEIA ¢

= |vBO U {zo}| ( since V36 = Vu6)
= |vpBo|+1 ( since zo ¢ V39)
> |v30|
= |Vl

It follows from the property of p that 3’ € U. Since Ao € U and pu = \o88’, we

have p € U which is a contradiction since p € §(X,Y) \ U.
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This proves that U =§(X,Y’), as required. #

Lemma 3.4. Let X andY be sets, S(X,Y’) denote any one of J(X,Y), PI(X.Y)
or J(X,Y), 0 € 8(Y,X)and U a dense subsemigroup of (S(X, Y),0). IfY is finite
and A0 =Y, then U =8(X,Y).

Proof. Since |Af| =|Y| < ’#}él, we have that |V6| < co. By the

0f < min{|X], [Y]},]76] = |X] or

[V =Y. If |V6] < t fa

mma 3.2 that U =§(X,Y).
If |v6| = | X]|, then \Y. mma. 3.3, U =8(X,Y).

f| = | V| < co which implies

Next =B )
ext we assum =1 ’ , 140
that 6 is 1-1, and henc . : ’

6IG N and' (Vf)a =Y}

0l

=
Il
ke
i 3
i '-. ‘%? Ei-..

| |
E i

Since V| = |Y| < oo, it follows that fofia € 8$(X,Y), (V6)a = Y implies that

V6 C Aa. Th%uﬂg J}s)nvj)ﬂ EJ) zllowing steps give an
AR TR INNaY

(a,B V).

(1)
(2) For o, € §(X,Y), Vabf =Y implies that B € V.

1s a subsemigroup of (§(

(3) For o, 0 € 8(X,Y), abB € V implies that o, 3 € V.
(4) pis a congruence on V and V/p = Gy.

(5) fV € U, then U NV is a dense subsemigroup of V.
(6) VCU.
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(7) For a € §(X,Y), Va =Y implies that a € U.
(8) U =8(X,Y).
To prove (1), let A: X — Y be such that A|yg = 67!. Define v = 6!
if $(X,Y) = PT(X,Y) or I(X,Y) and v = A if (X,Y) = T(X,Y). Then
v € 8(X,Y) and (V)y = (V)™ = A0 =Y,soy € V. If a,8 € V, then

(V8)a = Y = (v6)B3 and hence (V6 l ﬁ — ((V0)) 68 = Y68 = (VO)B = Y

which implies that af( € migroup of (§(X,Y), ).

If a,8 € S(X ,then Y = vafg C v83 =
(v8)3 C Y which impl , € V by the definition of V.
Hence (2) is proved.

To prove ( that a8 € V. Then

Y = (v8)(abp).
1(v0)(abB)| = |((VO)ex

(w8ed) 8 C (v0)8 C Y and
6] =

Y| < oo, we get that

Next, we-shall prove (4). The relation o obviously an equivalence
’ e — = 3 ‘ q
w i

relation on V. To Bo v o enﬁ on V, it suffices to show

that for @, 8 € V, (abf8)lgs = (a|v)8(Blvs). Let a,8 € V and z € V6. Then

cafe =z (ol AR o ke b 0031 = (00 =

((zalve)d (a ﬁi Therefére ence on V. Since
|vé| %ﬁﬁ iﬂi ﬁf]a E‘ljnﬁjﬂ‘that for every
a €V, Alalvef) = V(a|veb) = V0. But |Vl| < oo, so alyef € Gyp for every
a € V. To show V/p = Gyg, define ¢:V/p — Gyg by (ap)p = a|vef for all |
a € V. It is clear from the definition of p that ¢ is well-defined. Since 6 is 1-1

and Af =Y, it follows that 867! =iy. If o, 8 € V are such that a|ye6 = B|veb,

then a|vp = alveiy = (a|vef)0~! = (B|ved)0~" = Blvsiy = Blve. Thus ¢ is
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1-1. To show ¢ is onto, let A € Gyg. Then A0~! € J(X,Y) and ANG~! = V4.
Let A; € J(X,Y) be such that A;|vs = A0~! and thenlet ' = A0~ 1if §(X,Y) =
PT(X,Y)or J(X,Y)and M = A\, if §(X,Y) = T(X,Y). Then X € §(X,Y) and
M|ge = A871. Since (VO)N = (VN = ((VON) 671 = (VO)d~ ! = Ab=Y,

we have that \' € V and (Mp)p = N|ved = (A071) = A. From the fact

that (a88)|ve = (a|ve)8(B| i V, we have that (aff)|vef =
' ¢ is a homomorphism. Hence
V/p = Gvs = Gy.
To prove (5), ass = V' \ U and let Z be a zigzag
in 8(X,Y) over U with it .- lows fro ‘ hat Z is a zigzag in V over
U NV with value 7. - /\is'e _s_ subsemigroup of V.
To prove (6) »\- n € VU. By (5 and
Proposition 1.2, {ap | a ¥ ] bsemigroup of V/p. Since Y is
finite and Gy = V/ P, by ;r‘.w 7,{_ ‘ 'FA no proper dense subsemigroup.
Then {ap|a e UM L,,.:?-:if;‘»;:sa:au“f“’-:s« < '-:3: of p, we have that for

each a € V there ex1ﬂ 5 0 ﬁﬁ |ve. Since U NV is dense

inV and n € V \U, by.the Zigzag Theprem, n = A3 for some A € UNV
wd g < v. Whld N BIUHAPH: 09 - o s o
n = A6g@ E U since A, €°U. This is#contradictiofisince n € V \ U.
This p%eﬂnr] acq}ﬂ ﬁm NM’]’J WEJ’] a EJ

To prove (7), let a € 8(X,Y’) be such that Va =Y. Suppose o ¢ U.
Then by the Zigzag Theorem, o = 36+ for some § € U and v € §(X,Y). Thus
Y = Va = vf36y. By (2), we have that v € V. We have by (6) that v € U. It

then follows that « = 36+ € U, a contradiction. Hence a € U.
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Finally, we shall prove (8). Suppose that U # §(X,Y). Since for all a €
8(X,Y), |[Va| £ |Y] < oo, it follows that there exists u € 8§(X,Y)\ U such that
|Vu| = max{|Va| | @ € 8(X,Y)~\U}. This implies by (7) that |Vy| < |¥].
Since U is dense in (S(X,Y),6) and 1 € 8(X,Y) ~ U, by Corollary 1.4, 4 =
XoBy = (86)1)8 for some Ao, A; € U, B,7 € $(X,Y) N U such that Ao = 86),.
Then |[Vu| < |[VAo| < |V | M y the property of u, we have that
(98] < V4l and 7] <sVallah ré- Bl = 199] = V4l < [Y] < co.

Aoby, p € 8(X,Y)\ U and

Then Vy = V-~ since ¥

Ao € U give AXo # O, a

t we claim that there exists
0" € 8(Y,X) such that A4 d |v8'| < |Y|. To prove the
claim, let 6o:Y — X b suehf tha . and (Y N VAg)bo C (VAo)6.

Then 6o € T(Y,X) and 4 :g@xo '_
*','111‘11‘

9|v,\0 if §(X,Y) = PT(X,Y)
or I(X,Y) and 0 = 6o ifS(F) = T
and |V6'| = |(V/\o 6] < |Jﬁ7—_1| ax A
(VXob)y = v(,\oe @F——-Ew-mz*::m?‘
V8’| < min{|X]|, |YB Vﬂ < |Y]) and v€'y = v~.
Then by Proposition 2.1(i), there exisgs, 7 € 8(X,Y) such that |vn| > |v+|

sl efﬂ D& VIR VLRI - soperty of . From
= Aob' and 'y = 6'n, we hdve p = Ao(0'y) =
e S SRR AT e

contradiction since u ¢ U. This proves that U =8(X,Y), as required. #

)t Then 6" € 8(Y,X), Ao’ = Aof
also have that V8'y = (V6')y =

obtained. Now we have

Lemma 3.5. Let X andY be infinite sets, §(X,Y’) denote any one of T(X, Y),
PI(X,Y) orI(X,Y) and let 6 € §(Y, X) be such that |V6| = min{|X|,|Y|}. Let
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A C V0 be such that A is infinite and |V8 ~ A| = |V6|. For each a € A, let

Ya € a1, Set
U={ae8X,Y) | [Aan (Y ~{ya|a € A})| < |A]}.

Then U is a proper dense subsemigroup of (S(X,Y),6).

Proof. We have by Prope is a proper subsemigroup of

(8(X,Y),6). To avoid eonfusing t6tations yos (a € A) in the

assumption and the notaés as any element of V', we shall

denote y, in the assumapt € af” ! for all @ € A and

U={a€

A A})] < |A|}

To show that U is dense i

is, Dom(U,8(X,Y)) = 8(X,Y), let

ae $(X,Y). To show tha.t "t:""r"c ists zag in S(X Y') over U with value

a, we first construet= follows For y € Va, if

ya~l N A # @, chooﬁay c 1

o} C {z67! |z € A} and,the mappinggea ™' + a,6~! gives a 1-1 correspon-

dence betweeﬂhueﬂ‘{’;‘qlq ﬂ%ﬁaﬂﬂ H Wﬂ QE} and {a,67" |y €

M VTP (01

|{z6~! |z € V0 \ A}|. Now we have

v‘
yemlyEVaandya"lﬂA#

—

ya~! s a,07! is a bijection of {ya™! |y € Va and ya~' N A # &}
onto {a,0~! |y € Va and ya~! N A # @},
{ay07' |y € Vaandya ' NA # @} C {26! |z € A} and

Hya™!|y € Vaandya ' NA =0} < |{z67! |z € V8 \ A}|.
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Then there exists a 1-1 mapping ¢: {ya™' |y € Va} = {26! |z € V6} such
that

(1) (e )p =6~ if yao N A #  and

(II) (ya')pe{z ! |zeVoNA}ifya ' NA=0.

We have from the construction of ¢ that |J (ya=!)e C A6 and fa, € ay™! =
yeEVa

(Iv)  (ya™HAr=
e exists 7; € J(X,Y) such

that An; C V< A mapping 7; to a mapping 7,

such that 72: X — X \ napping 7 as follows: n = n,
if §(X,Y) = PT(X,Y) if §(X,Y) = T(X,Y). Then
n € 8§(X,Y).

Next, we ;r———-"j]

(1) \,nevU. 7 7

(2) AN e ﬁqag € Aa.

(3) Therﬁ ﬁﬁﬁm Il] ng

“WW”i ANNIUUMINYINY

(6) There exists 8 € $(X,Y) such that A\ = 86r.
If these statements hold, then we have the following zigzag in 8(X,Y) over U
with value a:

D= My , AeU ,y€e§(X,Y) (by(1),(3)),

=P8y , nelU ,BeSX,Y) , A=06n (by(1),(5)),

= [0(nby) | by €U (by(4)),
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which implies by the Zigzag Theorem that a € Dom(U,8(X,Y)), as required.
Now, it remains to show that these statements hold.
By (IV), we have that (ya™! N A)A = {f,,} for all y € Va such that

ya~ ! N A # @. It follows that

AN

Hence AAN (Y \ {fal y definition of n, |[An| = |An,| <

4] i S(X,Y) = TEHLY | . :ff M S(X,Y) = PT(X,Y) or

] —
J(X,Y). These imply that € U. Hence (1) holds.

Nexﬁﬂeﬂmﬂﬁw%ﬂ@ i 5] e i

AXE = Aa Si,llce forrea.rch y E, V‘I? (yq-l)r(p a‘zefl forr soigg & € V6 (from (I)
wnd 1} Wb F | STV IVIE TR E
(%) |(ya~1)pb| =1 forally € Va

and hence for y,z € Va,(ya!)pd = (za™!)pf implies (ya~!)p = (za™1)p.

But ¢ is a 1-1 mapping, so we have

(xx)  for y,z € Va, (ya " )pb = (za™1)pb implies ya™! = za™!.
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Let ¢ € Aa. Then za € Va and ((za)a™!)(M) C (((za)a™)p)f (from(I1L)),
so by (*), we have |((za)a')(Ad)] = 1. Since z € (za)a~!, we have
z(M) € ((za)a~)(A8). Then {z(7\0)} = ((za)a~')(\0) and hence (za)a~! C
(«(A0))(A6)~1. Conversely, if z € (=(A8))(A8)~!, then 2(A8) = z()f) and

thus z(A\) € ((za)a™1)(A0) C ((za)a™!)pb (from(III)) and 2(\8) = z(\) €

((za)a™1)eb. It follows fro ' j?/)x ) (¢8) = ((za)a™1)ph. By (**),

(za) (za) we have that (z(\8))(\0)~! =
(za)a™!. Hence (2) l( '
By (2) an | 1sts v € §(X,Y) such that

N
ce (3) holds.

\Q‘\.‘ < l4n| < 4.

AN
By the definitigh of %~ and n, e haveithat VA = vp, = (Am)m C
LAl

2
(V8)m C (Vo) = vén. Ea;:ﬁ"’;-

We obtain (4) ffo

, there exists 8 € §(X,Y) such
that 8(6n) = \. Thus (5) issproyed: /i
- e — l‘ #

Theorem 3.6. Letm( and Y be sets, S(X Y) enote any one of T(X,Y),

PI(X,Y) orw Hq% Ejm Wﬂ‘(‘s‘m ) has a proper dense

subsemigroup iPand only if X andY are both mflmte and |Vﬂ = min{|X|, |Y|}.

VBB NS FENED e e st

statements hold:
(1) Suppose A is an infinite subset of V6 such that |V6 \ A| = |V8|. For each

a € A, choose y, € af™!. Then the set U defined by

U= {aeS(X,Y) ‘ [AaN (Y N {ya |a € A})| < |A|}.
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is a proper dense subsemigroup of (8(X,Y),9).
(2) (8(X,Y),0) has infinitely many proper dense subsemigroups and the car-
dinality of the collection of such proper dense subsemigroups is not less

than min{|X|, |Y'|}.

Proof. We shall prove that if (8( ),8) has a proper dense subsemigroup,

then X and Y are both infinite a ﬂ = min{|X|,|Y|} by contrapositive,
rémin{lxmm, then (S(X,Y),0)

To V\w,it can be easily seen that it

suffices to show that e : ‘ 2 the ses implies that (8(X,Y),0)

that is, if X is finite or s-fin
———

has no proper dense

By Lemma 3.2, (1)_3@ f at (8(X,Y),6) has no proper dense sub-
{ ,}l ' '

Assume thﬂ- ) holds. ﬂ < 00, so V8 = X since

semigroup.

Vo C X. It follows by Lemma 3.3 thaUS(X Y), ) has no proper dense sub-

semigrouy. ﬂ‘Nﬂ’WIEJWiWEJ']ﬂ‘i

Next, assume that (iii) Holds. ThendY | = |v6] < |A6| < |Y| < oo, and
theref% Wﬂ:ﬁﬂa glnﬁ mcu' wf]i:nlma&r]‘ ﬁ’ ELy Lemma 3.4,
(S()'{ ,Y),8) has no proper dense subsemigroup.

The converse and (1) of the theorem follow directly from Lemma 3.5.

Next,to prove (2) assume that X and Y are both infinite and |V6| =

min{|X|,|Y|}. Consider the sets V8 x V6 and V6. Since [V x V| = |V6|, there

exists a partition {A; | £ € V8} of V6 such that |A;| = |V6| for all z € VO (see
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page 20). Then |V A;| = |V9| for all z € V6. For = € V0, choose y, € z671.

For each = € V6, let
Uy ={a€S8(X,Y)||AzaN (Y ~{ya|a € A;})| < |Az|}

and € = {U; | z € V0}. By Lemma 3.5, U; is a proper dense subsemigroup

V0 be distinct. Then |A; U Ay/| =

&Y) such that Aa = A, U A,

‘ ';“““x,”*”"o uch that ,BIAC: = a. Then

of (S(X,Y),0) for all = € V4 L
|Az| = {ya | @ € Az},
and Va = {ya |a €
A8 C{ya|a€ Az} and
|48 0 (Y ~ {¥a | @

|AxB| = |Axr].

(z € Vv0) are all distinc

N~ {¥Ya|a € Ax} and hence

r‘(31’\{yala‘€/1x'})l—

\\1 his shows that the sets Uls
\ [1X1, Y]}

#
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