CHAPTER III ## TRANSFORMATION SEMIGROUPS First, we recall for the following notation of transformation semigroups: For any set X, let P_x = the partial transformation semigroup on X, T_X = the full transformation semigroup on X, IX = the 1-1 partial transformation semigroup on X (the symmetric inverse semigroup on X), G_{v} = the symmetric group on X, CP_X = the transformation semigroup of all constant partial transformations of X (including 0), CT_X = the transformation semigroup of all constant transformations of X, U_X = the transformation semigroup of all almost identical partial transformations of X, V_{X} = the transformation semigroup of all almost identical transformations of X and W_{X} = the transformation semigroup of all almost identical 1-1 partial transformations of X. Since for any set X, I_X , G_X and W_X are inverse semigroups, we have by Theorem 1.3 that for any set X, I_X , G_X and W_X are absolutely closed. It is known that for any set X, P_X and T_X are absolutely closed (see [2],[3],[4],[5] and [6]). The first main purpose of the research is to generalize this result by proving that for any set X, every ideal of P_X and every ideal of T_X is absolutely closed. This implies that for any set X, the transformation semigroups CP_X and CT_X are absolutely closed since CP_X and CT_X are ideals of P_X and T_X , respectively. Our second main purpose is to prove that for any set X, the transformation semigroups $\mathbf{U}_{\mathbf{X}}$ and $\mathbf{V}_{\mathbf{X}}$ are absolutely closed. The following notation will be used: Let S be a semigroup. If S has an identity, set $S^1 = S$, and if S does not have an identity, let S^1 be the semigroup S with an identity adjoined, usually denoted by 1. Let X be a set. For any nonempty subset A of X and for $x \in X$, let A_x denote the constant partial transformation of X with domain A and range $\{x\}$. Hence $$CP_{X} = \{A_{X} \mid \emptyset \neq A \subseteq X, x \in X\} \cup \{0\},\$$ and for $X \neq \emptyset$, $$CT_X = \{X_x \mid x \in X\}.$$ If $X = \emptyset$, then $CT_X = \{0\}$. We need the two following lemmas to prove that for any set X, every ideal of T_X is absolutely closed. The first lemma follows directly from the remark given in Chapter I, page 8. Lemma 3.1. Let U be a subsemigroup of a semigroup S. Assume that $$u_0 = x_1 u_1,$$ $x_i u_{2i} = x_{i+1} u_{2i+1}, u_{2i-1} y_i = u_{2i} y_{i+1} \quad (i = 1, ..., m-1),$ $u_{2m-1} y_m = u_{2m},$ where $u_0, u_1, \dots, u_{2m} \in U, x_1, \dots, x_m, y_1, \dots, y_m \in S$. Then $u_0y_1 = x_mu_{2m}$. Lemma 3.2. Let X be a set and U a subsemigroup of T_X containing CT_X . Let S be a semigroup containing U as a subsemigroup. Let $q \in X$. For each s ϵS^1 , define $\phi_S \in T_X$ as follows: For $p \in X$, $$p\phi_{s} = \begin{cases} p(X_{p}s) & \text{if } X_{p}s \in U, \\ \\ q & \text{if } X_{p}s \not\in U. \end{cases}$$ Then the following statements hold: - (1) For any α , $\beta \in U$, s, $t \in S^1$, $\alpha s = \beta t$ implies $\alpha \phi_s = \beta \phi_t$. - (2) For any α , $\beta \in U$, $t \in S^1$, $\alpha = \beta t$ implies $\alpha = \beta \phi_t$. $$(p\alpha)\phi_{s} = (p\alpha)(x_{p\alpha}s)$$ $$= ((p\beta)X_{p\alpha})(X_{p\alpha}s)$$ $$= (p\beta)(X_{p\alpha}(x_{p\alpha}s))$$ $$= (p\beta)(X_{p\alpha}s)$$ $$= (p\beta)(X_{p\alpha}s)$$ $$= (p\beta)(X_{p\beta}t)$$ $$= (p\beta)\phi_{t}$$ since $(p\hat{\beta})X_{p\alpha} = p\alpha$, $X_{p\alpha}X_{p\alpha} = X_{p\alpha}$ and $X_{p\alpha}s = X_{p\beta}t$. But $$(p\alpha)\phi_{S} = \begin{cases} (p\alpha)(X_{p\alpha}s) & \text{if } X_{p\alpha}s \in U, \\ \\ q & \text{if } X_{p\alpha}s \not\in U \end{cases}$$ and $$(p\beta)\phi_{t} = \begin{cases} (p\beta)(X_{p\beta}t) & \text{if } X_{p\beta}t \in U, \\ \\ q & \text{if } X_{p\beta}t \notin U, \end{cases}$$ therefore $p(\alpha \phi_s) = (p\alpha)\phi_s = (p\beta)\phi_t = p(\beta\phi_t)$. Since p is an arbitary point in X, it follows that $\alpha \phi_s = \beta \phi_t$. The statement (2) follows from (1) and the fact that $\phi_1 = 1_X$, the identity map on X. Theorem 3.3. For any set X, every ideal of T_X is absolutely closed. <u>Proof:</u> Let X be a set and I an ideal of T_X . For the case $X = \emptyset$, I is absolutely closed since |I| = 1. Assume that $X \neq \emptyset$. To prove that I is absolutely closed, let S be a semigroup containing I as a subsemigroup. Suppose that $Dom(I,S) \neq I$. Let $d \in Dom(I,S) \setminus I$. By Theorem 1.1, there exist $\alpha_0, \alpha_1, \ldots, \alpha_{2m} \in I$, s_1, \ldots, s_m , $t_1, \ldots, t_m \in S$ such that (I) $$\begin{cases} d = \alpha_0 t_1, & \alpha_0 = s_1 \alpha_1, \\ s_i \alpha_{2i} = s_{i+1} \alpha_{2i+1}, & \alpha_{2i-1} t_i = \alpha_{2i} t_{i+1} \\ \alpha_{2m-1} t_m = \alpha_{2m} \end{cases}$$ Then $d = s_m \alpha_{2m}$. Since for $\alpha \in I$ and for $x \in X$, $X_x = \alpha X_x \in I$, we have that $CT_X \subseteq I$. Let q be a fixed point in X. For each $s \in S^1$, define $\phi_s \in T_X$ as follows: For p $\in X$, $$p\phi_{s} = \begin{cases} p(X_{p}s) & \text{if } X_{p}s \in I, \\ \\ q & \text{if } X_{p}s \not\in I. \end{cases}$$ Since $\alpha_{2m} = \alpha_{2m-1}t_m$ and $\alpha_{2i-1}t_i = \alpha_{2i}t_{i+1}$ (i = 1,...,m-1), by Lemma 3.2, we get that (II) $$\begin{cases} \alpha_{2m} = \alpha_{2m-1} \phi_{t_{m}}, \\ \alpha_{2i-1} \phi_{t_{i}} = \alpha_{2i} \phi_{t_{i+1}} \end{cases}$$ (i = 1,...,m-1). Since T_X is regular and $\alpha_{2m} \in I \subseteq T_X$, there exists $\beta \in T_X$ such that $\alpha_{2m} = \alpha_{2m} \beta \alpha_m$. From (II), we have (III) $$\begin{cases} \alpha_{2m} = \alpha_{2m-1}(\phi_{t_{m}}^{\beta\alpha_{2m}}), \\ \\ \alpha_{2i-1}(\phi_{t_{i}}^{\beta\alpha_{2m}}) = \alpha_{2i}(\phi_{t_{i+1}}^{\beta\alpha_{2m}}) \end{cases} (i = 1, ..., m-1).$$ Since I is an ideal of T_X and α_{2m} ϵ I, so ϕ_t $\beta \alpha_{2m}$ ϵ I \subseteq S for all i ϵ {1,...,m}. By (I) and (III), we have the following system of equalities: $$\alpha_{0} = s_{1}\alpha_{1} ,$$ $$s_{i}\alpha_{2i} = s_{i+1}\alpha_{2i+1} ,$$ $$\alpha_{2i-1}(\phi_{t_{i}}\beta\alpha_{2m}) = \alpha_{2i}(\phi_{t_{i+1}}\beta\alpha_{2m}) \quad (i=1,...,m-1) ,$$ $$\alpha_{2m-1}(\phi_{t_{m}}\beta\alpha_{2m}) = \alpha_{2m} .$$ By Lemma 3.1, $\alpha_0(\varphi_{t_1}\beta\alpha_{2m}) = s_m\alpha_{2m}$. Since $d = s_m\alpha_{2m}$, $d = \alpha_0(\varphi_{t_1}\beta\alpha_{2m})$. Therefore d ϵ I because α_0 , α_{2m} ϵ I and ϕ_{t_1} , β ϵ T_X . This is a contradiction. Hence Dom(I,S) = I. This proves that I is absolutely closed as required. # Let X be a set. Then T_X is an ideal of itself. The transformation semigroup CT_X is an ideal of T_X since $\alpha X_X = X_X$ and $X = X_X$ for all $\alpha \in T_X$, $x \in X$. Hence the two following corollaries are obtained directly from Theorem 3.3. Corollary 3.4. For any set X, Tx is absolutely closed. Corollary 3.5. For any set X, CT is absolutely closed. Next, we shall prove that for any set X, every ideal of P_{X} is absolutely closed. To prove this, Lemma 3.1 and the following lemma are required: Lemma 3.6. Let X be a set and U a subsemigroup of P_X containing CT_X . Let S be a semigroup containing U as a subsemigroup. For each $s \in S^1$, define $\phi_s \in P_X$ as follows: For $p \in X$, $$p\psi_{s} = \begin{cases} p(X_{p}s) & \text{if } X_{p}s \in U \setminus \{0\}, \\ \\ \text{undefined} & \text{if } X_{p}s \notin U \setminus \{0\}. \end{cases}$$ Then - (1) For each α , $\beta \in U$, s, t ϵS^1 , $\alpha s = \beta t$ implies $\alpha \psi_S = \beta \psi_t$. - (2) For each α , $\beta \in U$, $t \in S^1$, $\alpha = \beta t$ implies $\alpha = \beta \psi_t$. The proof that $\Delta\beta\psi_{t} \subseteq \Delta\alpha\psi_{s}$ can be given similarly. Hence $\Delta\alpha\psi_{s} = \Delta\beta\psi_{t}.$ Next, to show that $\alpha\psi_s = \beta\psi_t$, let $p \in \Delta\alpha\psi_s (= \Delta\beta\psi_t)$. Then $X_{p\alpha}s$, $X_{p\beta}t \in U \setminus \{0\}$. Since $\alpha s = \beta t$, it follows that $p(\alpha\psi_s) = (p\alpha)\psi_s = (p\alpha)(X_{p\alpha}s) = (p\alpha)(X_{p\alpha}s) = (p\alpha)(X_{p\beta}t) (p\alpha$ The statement (2) follows from (1) and the fact that ϕ_1 = 1_X , the identity map on X. Theorem 3.7. For any set X, every ideal of P_X is absolutely closed. <u>Proof</u>: Let X be a set and I an ideal of P_X . If $I = \{0\}$, then I is absolutely closed by Theorem 1.3. Assume that $I \neq \{0\}$. Since for each $\alpha \in P_X \setminus \{0\}$, $X_X = X_p \alpha X_x$ for all $x \in X$ and $p \in \Delta \alpha$, it follows that $CT_X \subseteq I$. To show that I is absolutely closed, let S be a semigroup containing I as a subsemigroup. Suppose that $Dom(I,S) \neq I$. Let $d \in Dom(I,S) \setminus I$. By Theorem 1.1, there exist $\alpha_0, \alpha_1, \ldots, \alpha_{2m} \in I$, s_1, \ldots, s_m , $t_1, \ldots, t_m \in S$ such that (I) $$\begin{cases} d = \alpha_0 t_1, & \alpha_0 = s_1 \alpha_1, \\ s_i \alpha_{2i} = s_{i+1} \alpha_{2i+1}, & \alpha_{2i-1} t_i = \alpha_{2i} t_{i+1} & (i=1, \dots, m-1), \\ \alpha_{2m-1} t_m = \alpha_{2m}. \end{cases}$$ Then $d = s_m \alpha_{2m}$. For each $s \in S^1$, define $\phi_s \in P_X$ as follows: For $p \in X$, $$p\psi_{s} \ = \left\{ \begin{array}{ll} p(X_{p}s) & \text{if } X_{p}s \in I \setminus \{0\}, \\ \\ & \text{undefined} & \text{if } X_{p}s \notin I \setminus \{0\}. \end{array} \right.$$ Since $\alpha_{2m}=\alpha_{2m-1}t_m$, $\alpha_{2i-1}t_i=\alpha_{2i}t_{i+1}$ (i = 1,...,m-1) and $CT_X\subseteq I$, by Lemma 3.6, we get that (II) $$\begin{cases} \alpha_{2m} = \alpha_{2m-1} \phi_{t_m}, \\ \alpha_{2i-1} \phi_{t_i} = \alpha_{2i} \phi_{t_{i+1}} \\ \end{cases} (i = 1, ..., m-1).$$ Since P_X is regular and α_{2m} ϵ $I \subseteq P_X$, there exists β ϵ P_X such that $\alpha_{2m} = \alpha_{2m} \beta \alpha_{2m}$. From (II), we have that (III) $$\begin{cases} \alpha_{2m} = \alpha_{2m-1}(\phi_{t_m} \beta \alpha_{2m}), \\ \alpha_{2i-1}(\phi_{t_i} \beta \alpha_{2m}) = \alpha_{2i}(\phi_{t_{i+1}} \beta \alpha_{2m}) & (i = 1, ..., m-1). \end{cases}$$ Since I is an ideal of P_X and α_{2m} ϵ I, so $\phi_{t_i} \beta \alpha_{2m} \epsilon$ I \subseteq S for all i ϵ {1,...,m}. By (I) and (III), we have the following system of equalities: $$\alpha_0 = s_1^{\alpha_1},$$ $$s_i^{\alpha_{2i}} = s_{i+1}^{\alpha_{2i+1}}, \alpha_{2i-1}^{\alpha_{2i-1}}(\phi_{t_i}^{\beta_{\alpha_{2m}}}) = \alpha_{2i}^{\alpha_{2i}}(\phi_{t_{i+1}}^{\beta_{\alpha_{2m}}})(i=1,...,m-1),$$ $$\alpha_{2m-1}^{\alpha_{2m-1}}(\phi_{t_m}^{\beta_{\alpha_{2m}}}) = \alpha_{2m}^{\alpha_{2m}}.$$ By Lemma 3.1, $\alpha_0(\phi_{t_1}^{\beta\alpha_{2m}}) = s_m^{\alpha_{2m}}$. Since $d = s_m^{\alpha_{2m}}$, $d = \alpha_0(\phi_{t_1}^{\beta\alpha_{2m}})$. Therefore d ϵ I because α_0 , α_{2m} ϵ I and ϕ_{t_1} , β ϵ P_X . It contradicts the choice of d. Hence Dom(I,S) = I. This proves that I is absolutely closed, as required. Let X be a set. Then P_X is an ideal of itself. It is easy to see that for $\alpha \in P_X$, $\emptyset \neq A \subseteq X$ and $x \in X$, $$A_{x}^{\alpha} = \begin{cases} 0 & \text{if } x \not\in \Delta \alpha \text{,} \\ \\ A_{x\alpha} & \text{if } x \in \Delta \alpha \end{cases}$$ and $$\alpha A_{X} = \begin{cases} 0 & \text{if } \nabla \alpha \cap A = \emptyset, \\ \\ (\Delta \alpha A_{X})_{X} & \text{if } \nabla \alpha \cap A \neq \emptyset. \end{cases}$$ It then follows that CP_X is an ideal of P_X . Hence the two following corollaries are consequences of Theorem 3.7. Corollary 3.8. For any set X, P_X is absolutely closed. Corollary 3.9. For any set X, CPx is absolutely closed. Our next step of this chapter is to show that for any set X, the transformation semigroup of all almost identical partial transformations of X, U_X , and the transformation semigroup of all almost identical transformations of X, V_X , are absolutely closed. Let X be a set. Recall that for $\alpha \in P_X$, $S(\alpha) = \{x \in \Delta\alpha \mid x\alpha \neq x\}$ (the shift of α) and α is almost identical if and only if $S(\alpha)$ is finite, $$U_X = \{\alpha \in P_X \mid S(\alpha) \text{ is finite}\}$$ and $$V_X = \{\alpha \in T_X \mid S(\alpha) \text{ is finite}\}.$$ Observe that VX UX. It is known that for $\alpha \in P_X$, $\alpha^2 = \alpha$ if and only if $\nabla \alpha \subseteq \Delta \alpha$ and $x_{\alpha} = x$ for all $x \in \nabla \alpha$. The following fact which is required to use is easily seen: For $\alpha \in P_X$, if $S(\alpha)$ is finite, then $S(\alpha) \cup S(\alpha) \alpha$ is a finite subset of X. In general, if F is a finite subset of U_X or V_X , then $U(S(\alpha) \cup S(\alpha) \alpha)$ is a finite subset of X. For convenience, we introduce the following notation: For $A\subseteq X$ and $x\in X$, let \overline{A}_X or \overline{A}_X be defined by $$y\overline{A}_{x} = \begin{cases} x & \text{if } y \in A, \\ \\ y & \text{if } y \notin A. \end{cases}$$ For $A \subseteq X$ and $x \in X$, the following statements clearly hold: (1) $$\nabla \overline{A}_{x} = \{x\} \cup (X \setminus A)$$. (2) $$S(\overline{A}_{X}) = \begin{cases} A & \text{if } x \notin A, \\ \\ A \setminus \{x\} & \text{if } x \in A. \end{cases}$$ (3) $\overline{A}_{X} \in V_{X}$ if and only if A is finite. $$(4) \quad (\overline{A}_{x})^{2} = \overline{A}_{x}.$$ (5) For $$\alpha \in T_X$$, if $S(\alpha) \subseteq A$, then $\overline{A}_X \alpha = \overline{A}_{X\alpha}$. The following lemma is required to show that for any set \mathbf{X} , $\mathbf{V}_{\mathbf{v}}$ is absolutely closed. Lemma 3.10. Let X be a set and S a semigroup containing V_X as a subsemigroup. Let F be a finite subset of V_X and $A = \bigcup_{\alpha \in F} (S(\alpha) \cup S(\alpha) \alpha)$ Let $q \in X$. For each $s \in S^1$, define $\phi_S \in V_X$ as follows: For $p \in X$, $$p\phi_{S} \; = \; \left\{ \begin{array}{ll} p(\overline{A}_{p}s) & \text{if p } \epsilon \; A \; \text{and} \; \overline{A}_{p}s \; \epsilon \; V_{X} \; , \\ \\ q & \text{if p } \epsilon \; A \; \text{and} \; \overline{A}_{p}s \; \epsilon \; V_{X} \; , \\ \\ p & \text{if p } \epsilon \; A. \end{array} \right.$$ Then: - (1) For each α , $\beta \in F$, s, $t \in S^1$, $\alpha s = \beta t$ implies $\alpha \phi_s = \beta \phi_t$. - (2) For each α , $\beta \in F$, $t \in S^1$, $\alpha = \beta t$ implies $\alpha = \beta \phi_t$. $\underline{\operatorname{Proof}}\colon\quad\text{To prove (1), let α, β ϵ F and s, t ϵ S^1 be such that αs = βt. Then $S(\alpha) \cup S(\alpha) \alpha \subseteq A$ and $S(\beta) \cup S(\beta) \beta \subseteq A$ which imply that $A\alpha \subseteq A$ and $A\beta \subseteq A$. Let p ϵ X. Then $(\overline{A}_{p\alpha})^2 = \overline{A}_{p\alpha}$.}$ Case 1: $p \in A$. Then $p\alpha$, $p\beta \in A$. Therefore we have that $(p\beta)\overline{A}_{p\alpha} = p\alpha$. Since $S(\alpha) \subseteq A$ and $S(\beta) \subseteq A$, $\overline{A}_p\alpha = \overline{A}_{p\alpha}$ and $\overline{A}_p\beta = \overline{A}_{p\beta}$. Thus $\overline{A}_p\alpha = (\overline{A}_p\alpha)s = \overline{A}_p(\alpha s) = \overline{A}_p(\beta t) = (\overline{A}_p\beta)t = \overline{A}_{p\beta}t$. Therefore, if $\overline{A}_p\alpha s \in V_X$, then $$\begin{array}{rcl} (p\alpha)(\overline{A}_{p\alpha}s) & = & ((p\beta)\overline{A}_{p\alpha})(\overline{A}_{p\alpha}s) \\ & = & (p\beta)(\overline{A}_{p\alpha}(\overline{A}_{p\alpha}s)) \\ & = & (p\beta)(\overline{A}_{p\alpha}s) \\ & = & (p\beta)(\overline{A}_{p\beta}t) \end{array}.$$ Since pa, pB & A, we have that $$(p\alpha)\phi_{S} \ = \ \left\{ \begin{array}{ccc} (p\alpha)(\overline{A}_{p\alpha}s) & \text{if} & \overline{A}_{p\alpha}s \in V_{X} \ , \\ \\ q & \text{if} & \overline{A}_{p\alpha}s \not\in V_{X} \end{array} \right.$$ and $$(p\beta)\phi_{t} \; = \; \left\{ \begin{array}{ccc} (p\beta)(\bar{A}_{p\beta}t) & \text{if } \bar{A}_{p\beta}t \in V_{X} \;, \\ \\ q & \text{if } \bar{A}_{p\beta}t \not \in V_{X} \;, \end{array} \right.$$ so $(p\alpha)\phi_s = (p\beta)\phi_t$. This implies that $p(\alpha\phi_s) = p(\beta\phi_t)$. Case 2: $p \not\in A$. Then $p\alpha = p = p\beta$. Since $p \not\in A$, $p\phi_S = p = p\phi_t$. Hence $p(\alpha\phi_S) = (p\alpha)\phi_S = p\phi_S = p = p\phi_t = (p\beta)\phi_t = p(\beta\phi_t)$. This proves that $\alpha \varphi_s = \beta \varphi_t$. The statement (2) follows from (1) and the fact that ϕ_1 = 1X , the identity map on X. Theorem 3.11. For any set X, V is absolutely closed. $$\text{(I)} \left\{ \begin{array}{c} d = \alpha_0 t_1, \; \alpha_0 = s_1 \alpha_1, \\ \\ s_i \alpha_{2i} = s_i \alpha_{2i+1}, \; \alpha_{2i-1} t_i = \alpha_{2i} t_{i+1} (i=1, \ldots, m-1), \\ \\ \alpha_{2m-1} t_m = \alpha_{2m}. \end{array} \right.$$ Then $d = s_m \alpha_{2m}$. Let q be a fixed point in X. Let $F = \{\alpha_0, \alpha_1, \dots, \alpha_{2m}\}$ and $A = \bigcup (S(\alpha) \bigcup S(\alpha) \alpha)$. For each $s \in S^1$, define $\phi_s \in V_X$ as $\alpha \in F$ follows: For $p \in X$, $$p\phi_S \ = \ \begin{cases} p(\overline{\mathbb{A}}_p s) & \text{if $p \in A$ and $\overline{\mathbb{A}}_p s \in V_X$,} \\ \\ q & \text{if $p \in A$ and $\overline{\mathbb{A}}_p s \notin V_X$,} \\ \\ p & \text{if $p \notin A$.} \end{cases}$$ Since $\alpha_{2i-1}t_i = \alpha_{2i}t_{i+1}$ (i=1,...,m-1) and $\alpha_{2m-1}t_m = \alpha_{2m}$, by Lemma 3.10,we get that $$\begin{cases} \alpha_{2i-1}\phi_{t_{i}} = \alpha_{2i}\phi_{t_{i+1}} & (i = 1, ..., m-1), \\ \alpha_{2m-1}\phi_{t_{m}} = \alpha_{2m}. & \end{cases}$$ By (I) and (II), we obtain the following system of equalities: $$\alpha_0 = s_1 \alpha_1,$$ $s_i \alpha_{2i} = s_{i+1} \alpha_{2i+1}, \quad \alpha_{2i-1} \phi_{t_i} = \alpha_{2i} \phi_{t_{i+1}}$ $\alpha_{2m-1} \phi_{t_m} = \alpha_{2m}.$ (i = 1,...,m-1), Hence by Lemma 3.1, we get that $\alpha_0^{\phi} q_1 = s_m^{\alpha} \alpha_{2m}$. Since $d = s_m^{\alpha} \alpha_{2m}$ and $\alpha_0^{\phi} q_1^{\phi} \epsilon V_X^{\phi}$, so $Dom(V_X,S) \subseteq V_X$. Hence $Dom(V_X,S) = V_X$. This proves that V_X is absolutely closed. Next, we shall show that for any set X, $U_{\overline{X}}$ is absolutely closed. The following lemma is required: Lemma 3.12. Let X be a set and S a semigroup containing U_X as a subsemigroup. Let F be a finite subset of U_X and $A = \bigcup (S(\alpha) \cup S(\alpha) \alpha)$. For each s ϵ s¹, define ϕ_s ϵ U_X as follows: For p ϵ X, $$p\psi_{S} = \left\{ \begin{array}{ll} p(A_{p}s) & \text{if } p \in A \text{ and } A_{p}s \in U_{X} \setminus \{0\}, \\ \\ p & \text{if } p \not\in A \text{ and } \{p\}_{p}s = \{p\}_{p}, \\ \\ \\ \text{undefined} & \text{otherwise.} \end{array} \right.$$ Then: - (1) For each α , $\beta \in F$, s, $t \in S^1$, $\alpha s = \beta t$ implies $\alpha \phi_s = \beta \phi_t$. - (2) For each α , $\beta \in F$, $t \in S^1$, $\alpha = \beta t$ implies $\alpha = \beta \psi_t$. <u>Proof:</u> To prove (1), let α , β ϵ F and s, t ϵ S¹ be such that $\alpha s = \beta t$. Then $A\alpha \subseteq A$ and $A\beta \subseteq A$. To show that $\Delta \alpha \psi_s = \Delta \beta \psi_t$, it suffices to show that $\{pex|pe\Delta\alpha\cap A \text{ and } p\alphae\Delta\phi_{S}\} = \{pex|pe\Delta\beta\cap A \text{ and } p\betae\Delta\phi_{t}\}$ and $\{peX|pe\Delta\alpha \setminus A \text{ and } p\alpha e\Delta\phi_S\} = \{peX|pe\Delta\beta \setminus A \text{ and } p\beta e\Delta\phi_t\}$. To show that $\{p \in X \mid p \in \Delta \alpha \cap A \text{ and } p \alpha \in \Delta \psi_s\} \subseteq \{p \in X \mid p \in \Delta \beta \cap A \text{ and } p \beta \in \Delta \psi_t\}$, let $p \in \Delta \alpha \cap A$ and $p \alpha \in \Delta \psi_s$. Then $p \alpha \in A$. Since $p \alpha \in \Delta \psi_s$, $A_{p \alpha} \in U_X \setminus \{0\}$. If $p \notin \Delta \beta$, then $A_p \beta = 0$, so $0t = A_p \beta t = A_p \alpha s = A_{p \alpha} s \in U_X$ and hence $0 = 0(0t) = 0t = A_{p \alpha} s$, a contradiction. Hence $p \in \Delta \beta$. Therefore $p \in \Delta \beta \cap A$. From $A_p \beta t = A_p \beta t = A_p \alpha s = A_p \alpha s \in U_X \setminus \{0\}$, we have that $p \beta \in \Delta \psi_t$. The proof that $\{p\epsilon X | p\epsilon \Delta \beta \cap A \text{ and } p\delta \epsilon \Delta \psi_t\} \subseteq \{p\epsilon X | p\epsilon \Delta \alpha \cap A \text{ and } p\alpha \epsilon \Delta \psi_s\}$ can be given similarly. Hence $\{p\epsilon X | p\epsilon \Delta \alpha \cap A \text{ and } p\alpha \epsilon \Delta \psi_s\} = \{p\epsilon X | p\epsilon \Delta \beta \cap A \text{ and } p\delta \epsilon \Delta \psi_t\}$. Next, to show that $\{p\epsilon X | p\epsilon \Delta \alpha \setminus A \text{ and } p\alpha\epsilon \Delta \phi_g\} \subseteq \{p\epsilon X | p\epsilon \Delta \beta \setminus A \text{ and } p\beta\epsilon \Delta \phi_t\}$, let $p\epsilon \Delta \alpha \setminus A$ and $p\alpha \epsilon \Delta \phi_g$. Since $S(\alpha) \subseteq A$, $p\alpha = p. \text{ Since } p\alpha \in \Delta \psi_{\text{S}}, \ \{p\alpha\}_{p\alpha} s = \{p\alpha\}_{p\alpha}. \text{ Then } \{p\}_{p} s = \{p\}_{p}. \text{ If } p \notin \Delta \beta, \text{ then } \{p\}_{p} \beta = 0 \text{ and hence } \{p\}_{p} = \{p\}_{p} s = \{p\}_{p\alpha} =$ The proof that $\{p\epsilon X | p\epsilon \Delta \beta \setminus A \text{ and } p\delta \epsilon \Delta \phi_t\} \subseteq \{p\epsilon X | p\epsilon \Delta \alpha \setminus A \text{ and } p\alpha \epsilon \Delta \phi_s\}$ can be given similarly. Hence $\{p\epsilon X | p\epsilon \Delta \alpha \setminus A \text{ and } p\alpha \epsilon \Delta \phi_s\} = \{p\epsilon X | p\epsilon \Delta \beta \setminus A \text{ and } p\delta \epsilon \Delta \phi_t\}$. Therefore $\Delta \alpha \psi_s = \Delta \beta \psi_t$. Now, let $p \in \Delta \alpha \psi_s$ (= $\Delta \beta \psi_t$). Then $p \alpha \in \Delta \psi_s$ and $p \beta \in \Delta \psi_t$. Case 1: $p \in A$. Then $p\alpha$, $p\beta \in A$. Since $p\alpha \in \Delta \psi_s$ and $p\beta \in \Delta \psi_t$, we have $A_{p\alpha}s$, $A_{p\beta}t \in U_X \setminus \{0\}$, so $(p\alpha)\psi_s = (p\alpha)(A_{p\alpha}s)$ and $(p\beta)\psi_t = (p\beta)(A_{p\beta}t)$. From $p\alpha$, $p\beta \in A$, we get that $(p\beta)A_{p\alpha} = p\alpha$ and $A_{p\alpha} = A_{p\alpha}A_{p\alpha}$. Since $\alpha s = \beta t$, $A_{p\alpha}s = A_{p\alpha}s = A_{p\beta}t = A_{p\beta}t$. Therefore $$p(\alpha \phi_s) = (p\alpha)\phi_s$$ $$= (p\alpha)(A_{p\alpha}s)$$ $$= ((p\beta)A_{p\alpha})(A_{p\alpha}s)$$ $$= (p\beta)(A_{p\alpha}(A_{p\alpha}s))$$ $$= (p\beta)(A_{p\alpha}s)$$ $$= (p\beta)(A_{p\beta}t)$$ $$= (p\beta)\phi_t$$ $$= p(\beta\phi_t).$$ Case 2: $p \notin A$. Then $p\alpha = p = p\beta \notin A$. But $p\alpha \in \Delta \psi_s$ and $p\beta \in \Delta \psi_t$, so $(p\alpha)\psi_s = p\alpha$ and $(p\beta)\psi_t = p\beta$ which imply that $p(\alpha\psi_s) = p(\beta\psi_t)$. This proves that $\alpha \phi_{s} = \beta \phi_{+}$, as required. The statement (2) follows from (1) and the fact that ψ_1 = $\mathbf{1}_X$, the identity map on X. Theorem 3.13. For any set X, U_X is absolutely closed. <u>Proof:</u> Let X be a set. For the case $X = \emptyset$, U_X is absolutely closed since $|U_X| = 1$. Assume that $X \neq \emptyset$. To prove that U_X is absolutely closed, let S be a semigroup containing U_X as a subsemigroup. Let $d \in Dom(U_X,S)$. Since $1_X \in U_X$, by Corollary 1.2, there exist $\alpha_0, \alpha_1, \ldots, \alpha_{2m} \in U_X$, $s_1, \ldots, s_m, t_1, \ldots, t_m \in S$ such that (I) $$\begin{cases} d = \alpha_0 t_1, & \alpha_0 = s_1 \alpha_1, \\ s_i \alpha_{2i} = s_{i+1} \alpha_{2i+1}, & \alpha_{2i-1} t_i = \alpha_{2i} t_{i+1} \\ \alpha_{2m-1} t_m = \alpha_{2m} \end{cases}$$ Then $d = s_m \alpha_{2m}$. Let $F = \{\alpha_0, \alpha_1, \dots, \alpha_{2m}\}$ and $A = \bigcup_{\alpha \in F} (S(\alpha) \bigcup_{\alpha \in F} S(\alpha) \cup_{\alpha S(\alpha)$ $$p(A_ps) \qquad \text{if } p \in A \text{ and } A_ps \in U_X \setminus \{0\},$$ $$p\psi_s = \left\{ \begin{array}{ll} p & \text{if } p \notin A \text{ and } \{p\}_ps = \{p\}_p \end{array}, \right.$$ $$\text{undefined otherwise.}$$ Since $\alpha_{2i-1}t_i = \alpha_{2i}t_{i+1}$ (i=1,...,m-1) and $\alpha_{2m}t_m = \alpha_{2m}$, by Lemma 3.12, we get that $$\begin{cases} \alpha_{2i-1} \phi_{t_{i}} &=& \alpha_{2i} \phi_{t_{i+1}} \\ \alpha_{2m-1} \phi_{t_{m}} &=& \alpha_{2m} \end{cases} (i = 1, ..., m-1),$$ By (I) and (II), we obtain the following system of equalities: $$\alpha_0 = s_1 \alpha_1$$, $s_i \alpha_{2i} = s_{i+1} \alpha_{2i+1}$, $\alpha_{2i-1} \phi_{t_i} = \alpha_{2i} \phi_{t_{i+1}}$ (i = 1,...,m-1), $\alpha_{2m-1} \phi_{t_m} = \alpha_{2m}$, so by Lemma 3.1, we get that $\alpha_0 \psi_{t_1} = s_m \alpha_{2m}$. Since $d = s_m \alpha_{2m}$ and α_0 , $\psi_{t_1} \in U_X, \ d = \alpha_0 \psi_{t_1} \in U_X, \ \text{so } \text{Dom}(U_X, S) \subseteq U_X. \ \text{Hence } \text{Dom}(U_X, S) = U_X.$ This proves that U_X is absolutely closed. # จหาลงกรณะเหตุวิทยาลัย