

CHAPTER I

PRELIMINARIES

A nonempty subset I of a semigroup S is called an <u>ideal</u> of S if xa, ax ϵ I for all x ϵ S, a ϵ I.

Let S be a semigroup. An element e of S is called an <u>identity</u> of S if xe = ex = x for all $x \in S$. An element z of S is called a <u>zero</u> of S if xz = zx = z for all $x \in S$.

Any semigroup can have at most one identity and at most one zero. If an identity of a semigroup exists, it is usually denoted by 1, and if a semigroup has a zero, then 0 is usually used to denote its zero.

A semigroup S with zero 0 is called a zero semigroup if xy = 0 for all x, $y \in S$.

A subsemigroup G of a semigroup S is called a <u>subgroup</u> of S if G is also a group. A semigroup S with zero 0 is called a <u>group</u> with zero if $S \sim \{0\}$ is a subgroup of S.

A semigroup S is called a <u>regular</u> <u>semigroup</u> if for every element a of S, there is an element x of S such that a = axa.

A semigroup S is called an <u>inverse</u> semigroup if for every element a of S, there is a unique element a^{-1} of S such that $a = aa^{-1}a$ and $a^{-1} = a^{-1}aa^{-1}$.

Let S and T be semigroups and $\phi\colon S\to T$ a map. The map ϕ is called a homomorphism of S into T if

$$(xy)_{\phi} = (x_{\phi})(y_{\phi})$$

for all x, y & S.

Let X be a nonempty set. A nonempty finite sequence a_1, a_2, \ldots, a_n usually written by juxtaposition, $a_1 a_2 \ldots a_n$, of elements of X is called a <u>word</u> over the alphabet X. The set \mathcal{F}_X of all words with the operation of juxtaposition

$$(a_1 a_2 ... a_m) (b_1 b_2 ... b_n) = (a_1 a_2 ... a_m b_1 b_2 ... b_n)$$

is a semigroup called the free semigroup on the set X.

Let X be a set and B_X the set of all binary relations on X. For any ρ , $\sigma \in B_X$, define their composition $\rho \sigma$ by

 $\rho\sigma = \{(a,b) \in X \times X \mid (a,x) \in p \text{ and } (x,b) \in \sigma \text{ for some } x \in X\}.$ Then B_X is a semigroup under composition of relations, which is called

the semigroup of binary relations on X.

Into X. The empty transformation of X is a map from a subset of X into X. The empty transformation of X is the partial transformation of X with empty domain and it is denoted by 0. For a partial transformation α of X, the domain and range of α are denoted by $\Delta\alpha$ and $\nabla\alpha$, respectively. Let P_X be the set of all partial transformations of X (including 0). For α , β \in P_X , define the product $\alpha\beta$ as follows: If $\nabla\alpha \cap \Delta\beta = \emptyset, \text{ let } \alpha\beta = 0. \text{ If } \nabla\alpha \cap \Delta\beta \neq \emptyset, \text{ let } \alpha\beta = (\alpha|_{(\nabla\alpha \cap \Delta\beta)\alpha^{-1}})(\beta|_{(\nabla\alpha \cap \Delta\beta)\alpha^{-1}})$ (the composition of the maps $\alpha|_{(\nabla\alpha \cap \Delta\beta)\alpha^{-1}}$ and α and α where α and α denote the restrictions of α and α to α and α denote the restrictions of α and α to

 $(\nabla \alpha \cap \Delta \beta)\alpha^{-1}$ and $\nabla \alpha \cap \Delta \beta$, respectively. Then P_X is a regular semigroup having 0 and 1_X as its zero and identity, respectively where 1_X is the identity map on X. The semigroup P_X is called the <u>partial transformation semigroup</u> on X. Observe that α , $\beta \in P_X$, $\Delta \alpha \beta = (\nabla \alpha \cap \Delta \beta)\alpha^{-1} \subseteq \Delta \alpha$ and $\nabla \alpha \beta = (\nabla \alpha \cap \Delta \beta)\beta \subseteq \nabla \beta$. In fact, P_X is a subsemigroup of B_X .

By a $\underline{\text{transformation}}$ $\underline{\text{semigroup}}$ on X, we mean a subsemigroup of P_X .

Let I_X be the set of all 1-1 partial transformation of X.

Then I_X is an inverse subsemigroup of P_X and it is called the 1-1

partial transformation semigroup or the symmetric inverse semigroup on X.

By a transformation of X, we mean a map of X into itself.

Let T_X be the set of all transformations of X. Then T_X is a regular subsemigroup of P_X with identity 1_X and it is called the <u>full</u> transformation semigroup on X.

Let

 G_{X} = the symmetric group on X,

 M_{χ} = the set of all 1-1 transformations of X

and

 O_{X} = the set of all onto transformations of X.

Then M_X and O_X are subsemigroups of T_X containing G_X .

For $\alpha \in T_X$, $x \in X$, α is said to be $\underline{1-1}$ at x if $(x\alpha)^{\alpha-1} = \{x\}$. For $\alpha \in T_X$, α is said to be $\underline{almost} \ \underline{1-1}$ if the set $\{x \in X \mid \alpha \text{ is not } 1-1 \text{ at } x\}$ is finite. Let AM_X be the set of all almost 1-1 transformations of X. Clearly, $M_X \subseteq AM_X$. Claim that AM_X is a subsemigroup of T_X . To prove this, let α , $\beta \in AM_X$. For convenience, for $\gamma \in T_X$, let $A_{\gamma} = \{x \in X \mid \gamma \text{ is not } 1-1 \text{ at } x\}$. Hence for $\gamma \in T_X$, $\gamma \in AM_X$ if and

only if A_{γ} is finite. Let $x \in X \setminus (A_{\alpha} \cup (A_{\beta})\alpha^{-1})$. Then $x \in X \setminus A_{\alpha}$ and $x\alpha \in X \setminus A_{\beta}$. Let $y \in (x(\alpha\beta))(\alpha\beta)^{-1}$. Then $(y\alpha)\beta = y(\alpha\beta) = x(\alpha\beta) = (x\alpha)\beta$. Since $x\alpha \in X \setminus A_{\beta}$, $y\alpha = x\alpha$. This implies that y = x since $x \in X \setminus A_{\alpha}$. Hence $(x(\alpha\beta))(\alpha\beta)^{-1} = \{x\}$. This proves that if $x \in X \setminus (A_{\alpha} \cup (A_{\beta})\alpha^{-1})$, then $x \in X \setminus A_{\alpha\beta}$. Hence $A_{\alpha\beta} \subseteq A_{\alpha} \cup (A_{\beta})\alpha^{-1}$. Since α and β are almost 1-1, A_{α} and A_{β} are finite. The set $(A_{\beta})\alpha^{-1}$ is finite since A_{β} is a finite subset of X and α is almost 1-1. It follows that $A_{\alpha\beta}$ is finite. Therefore $\alpha\beta \in AM_{\chi}$.

For $\alpha \in T_X$, α is said to be <u>almost onto</u> if $X \setminus \nabla \alpha$ is finite. Let AO_X be the set of all almost onto transformations of X. Clearly, $O_X \subseteq AO_X$. For α , $\beta \in T_X$, we have that

 $X \setminus \nabla \alpha \beta = (X \setminus \nabla \beta) \cup (\nabla \beta \setminus \nabla \alpha \beta)$ $= (X \setminus \nabla \beta) \cup (X\beta \setminus (\nabla \alpha)\beta)$ $\subseteq (X \setminus \nabla \beta) \cup (X \setminus \nabla \alpha)\beta.$

Thus, if α , $\beta \in AO_X$, then $X \setminus V\alpha$ and $X \setminus V\beta$ are finite, and it follows that $X \setminus V\alpha\beta$ is finite. This proves that AO_X is a subsemigroup of T_X containing O_X .

The <u>shift</u> of a partial transformation α of X, S(α), is defined to be the set $\{x \in \Delta\alpha \mid x\alpha \neq x\}$. A partial transformation α of X is said to be <u>almost identical</u> if the shift of α is finite. Let

 $\mathbf{U}_{\mathbf{X}}$ = the set of all almost identical partial transformations of \mathbf{X} ,

 $\mathbf{V}_{\mathbf{X}}$ = the set of all almost identical transformations of \mathbf{X} and

 W_X = the set of all almost identical 1-1 partial transformations of X.

If α , $\beta \in P_X$, then $S(\alpha\beta) \subseteq S(\alpha) \cup S(\beta)$. Hence U_X , V_X and W_X are subsemigroups of P_X , T_X and I_X , respectively. Moreover, W_X is an inverse semigroup.

Let

and

 CT_X = the set of all constant transformations of X. Then CP_X and CT_X are subsemigroups of P_X and T_X , respectively.

A subsemigroup U of a semigroup S is said to be <u>closed</u>* in S if for any element x ε S\U, there are a semigroup T and homomorphisms ϕ , ϕ : S \to T such that $\phi|_U = \psi|_U$ and $x\phi \neq x\phi$.

A semigroup S is said to be <u>absolutely closed</u> if S is closed in every semigroup which contains S as a subsemigroup.

Let S be a semigroup and U a subsemigroup of S. For any element d of S, d is said to be <u>dominated</u> by U or U <u>dominates</u> d if for any semigroup T and for any homomorphisms ϕ , ψ : S \rightarrow T, ϕ $|_U = \psi$ $|_U$ implies $d\phi = d\psi$. The set of all elements of S which are dominated by U is called the dominion of U in S and it is denoted by Dom(U,S).

The following statements clearly hold:

^{*} In Topology, it is known that for a metric space X and for $C \subseteq X$, C is closed in X if and only if for any $x \in X \setminus C$, there are a metric space Y and continuous mappings $f,g: X \to Y$ such that $f|_{C} = g|_{C}$ and $f(x) \neq g(x)$.

- (i) Dom(U,S) is a subsemigroup of S containing U.
- (ii) U is closed in S if and only if Dom(U,S) = U.
- (iii) If U and V are subsemigroups of S such that $U \subseteq V$, then $Dom(U,V) \subseteq Dom(U,S)$, and hence U is closed in S implies that U is closed in V.

Let U be a subsemigroup of a semigroup S. A zigzag of length $m(m \in N)$ in U over S with value d ϵ S is a system of equalities

$$\begin{cases} d = u_0 y_1, u_0 = x_1 u_1, \\ x_i u_{2i} = x_{i+1} u_{2i+1}, u_{2i-1} y_i = u_{2i} y_{i+1} & (i=1,2,...,m-1), \\ u_{2m-1} y_m = u_{2m}, \end{cases}$$

with $u_0, u_1, \dots, u_{2m} \in U, x_1, \dots, x_m, y_1, \dots, y_m \in S$.

Remark. If (*) holds, then $d = x_m u_{2m}$.

A form of (*) can be given as follows :

The following results will be used in this thesis :

Theorem 1.1 (Isbell's Zigzag Theorem, [1]). Let U be a subsemigroup of a semigroup S. Then d ϵ Dom(U,S) if and only if d ϵ U or there is a zigzag in U over S with value d.

It follows from the Theorem 1.1 that every ideal of a semigroup S is closed in S.

Let U be a subsemigroup of a semigroup S. Assume that U has an identity 1. If d ϵ U, then

which implies that there is a zigzag in U over S with value d. Hence by Theorem 1.1, we have

Corollary 1.2. Let U be a subsemigroup of a semigroup S. Assume that U has an identity. Then $d \in Dom(U,S)$ if and only if there is a zigzag in U over S with value d.

Theorem 1.3 ([2]). Every inverse semigroup is absolutely closed.

It follows from Theorem 1.3 that every group is absolutely closed.

Theorem 1.4 ([2]). If a semigroup S contains elements a_1, a_2, a_3 such that $a_1 S \cap a_2 S = Sa_2 \cap Sa_3 = \emptyset$, then S is not absolutely closed.