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CHAPTER I

INTRODUCTION

Let (X, d) be a metric space and T : X → X be a self map. We say that x ∈ X is a

fixed point of T if x = Tx . A fundamental result in fixed point theory is the Banach

contraction principle which ensures that a contraction map on a complete metric space

has a fixed point. Several extensions of this result have appeared in subsequent papers.

In 2003, one of the interesting extensions was given by Kirk, Srinivasan, and Veera-

mani [17]. They extended the fixed point theory from a self map to a map defined on

the union of two subsets A and B of a metric space and satisfying the cyclic condition,

i.e. T (A) ⊆ B and T (B) ⊆ A. Their result showed that, if there exists k ∈ (0, 1) such

that the map T satisfies d(Tx, Ty) ≤ kd(x, y) for all x ∈ A, y ∈ B, then T has a unique

fixed point in A ∩B.

In 2006, Eldred and Veeramani [13] extended the theorem of [17] to the case where

A ∩ B = ∅ and T is a cyclic contraction map by using the concept of best proximity

points. They showed that, on a nonempty closed and convex subset of a uniformly

convex Banach space, a cyclic contraction map T has a unique best proximity point.

And they raised a question that, does the conclusion of their result still hold or not

where X is a reflexive Banach space.

In 2009, Al-Thagafi and Shahzad [1] provided a positive answer of this question

by adding some conditions. Moreover, they introduced a new class of maps, called

cyclic ϕ-contractions, which contains the cyclic contraction mapping as a subclass. The

existence and convergence results of a best proximity point are obtained on a nonempty

closed and convex subsets of a uniformly convex Banach space. They also raised the

question that, in reflexive Banach space the existence of best proximity points still hold

for the case of a cyclic ϕ-contraction mapping or not.
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In the first part of this thesis, we extend the result of Al-Thagafi and Shahzad to a

metric space with the property UC (introduced in 2009 by Suzuki, Kikkawa and Vetro

[31]) and provide a positive answer by adding some conditions.

In the second part, we work on multi-valued maps. Let CB(X) be the family of all

nonempty closed bounded subsets of X and let T : X → CB(X) be a multi-valued map.

An element x ∈ X satisfying x ∈ Tx is called a fixed point of multi-valued map T . We

denote by H the Hausdorff metric on CB(X) induced by metric d. The study of fixed

point theorems for multi-valued mapping has been initiated by Markin [20] and Nadler

[23]. The result usually referred to as Nadler’s fixed point theorem and extended the

Banach contraction principle from single valued maps to multi-valued maps. Since then,

extensive literatures have been developed. There consist of many theorems dealing with

fixed points for multi-valued mappings, see [2, 3, 10, 11, 22, 24, 26, 27]. Most of these

cases require the image of each point to be closed and bounded. In others words, to

be compact. In this part, we study Theorems on multi-valued maps. We extend the

cyclic condition to multi-valued maps defined on the union of two subsets A and B of

a metric space, i.e., Tx ∈ CB(B) and Ty ∈ CB(A) for all x ∈ A and y ∈ B, and gave

the existence of a best proximity point for multi-valued cyclic map.

This study was organized into 6 chapters as follows: Chapter I is an introduction

to the research problem. Chapter II is concerned with some well known definitions and

useful results that will be used in our research.

In Chapter III, we extend the Theorem of Al-Thagafi and Shahzad to a metric space

with property UC and provide a positive answer for the question of them by adding

some conditions.

In Chapter IV, we prove that the Picard projection iteration sequence converges to

a fixed point, with a rate of convergence is given. The generalize Collage Theorem for

a special class of multi-valued mappings is also proved.

In Chapter V, we extend the cyclic condition to multi-valued mappings and study

the existence of a fixed point and the existence of a best proximity point.

In Chapter VI, we study data dependence problem for a special class of multi-valued

mappings.



CHAPTER II

PRELIMINARIES

In this chapter, we collect information that will be needed for understanding of the

research work. Almost all of them are merely stated without proof, since if can be found

in many standard text book, for example in [15, 32].

Let X be a nonempty set. A metric on X is a real function d : X ×X → [0,∞) which

satisfies the following three conditions : For any x, y, z in X

1. d(x, y) ≥ 0, and d(x, y) = 0 ⇔ x = y;

2. d(x, y) = d(y, x);

3. d(x, y) ≤ d(x, z) + d(z, y).

The space X with a metric d define on X ×X is called a metric space. Let X be a

metric space with metric d. If x0 is a point of X and r is a positive real number, the

open ball Br(x0) with center x0 and radius r is the subset of X define by

Br(x0) = {x ∈ X : d(x, x0) < r}.

The closed ball Br[x0] is define by

Br[x0] = {x ∈ X : d(x, x0) ≤ r}.

A subset G of the metric space X is called an open set, if given any point x in G,

there exists a positive real number r such that Br(x) ⊂ G. A subset F of X is called a

closed set if the complement F c of F is open. A subset C of X is called a bounded

set if there exists a positive real number M such that d(x, y) ≤ M for all x, y ∈ C.

Let X be a metric space with metric d, and let {xn} be a sequence of points in X. We

say that {xn} is convergent if there exists a point x in X such that for each ε > 0, we

can find a positive integer n0 with

n ≥ n0 ⇒ d(x, xn) < ε.
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We usually symbolize this by writing xn → x or lim
n→∞xn = x, and express it verbally

by saying that {xn} converges to x. The point x is called the limit of the sequence

{xn}.

Theorem 2.1. A subset F of a metric space X is closed if and only if

{xn} ⊂ F and lim
n→∞xn = x ⇒ x ∈ F.

A sequence {xn} in X is a Cauchy sequence if for each ε > 0, there exists a

positive integer n0 such that

m,n ≥ n0 ⇒ d(xm, xn) < ε.

It is obvious that every convergent sequence is a Cauchy sequence. A complete metric

space is a metric space in which every Cauchy sequence is convergent. The following

fact is quite useful.

Theorem 2.2. Every closed subspace of a complete metric space is itself complete.

Let X and Y be metric spaces with metrics d1 and d2, respectively, and let T be

a mapping of X into Y . T is said to be continuous at a point x0 in X if for each

ε > 0, there exists δ > 0 such that

d1(x, x0) < δ ⇒ d2(Tx, Tx0) < ε.

A mapping of X into Y is said to be continuous if it is continuous at each point in its

domain X. A mapping T of X into Y is called nonexpansive if

d2(Tx, Ty) ≤ d1(x, y) for all x, y ∈ X.

A mapping T of X into Y is called contractive if

d2(Tx, Ty) < d1(x, y) for all x, y ∈ X.

A mapping T of X into Y is called c-contraction if there exists a positive number

c < 1 with the property that

d2(Tx, Ty) ≤ cd1(x, y) for all x, y ∈ X.
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It is obvious that such mappings are continuous.

Let (X, d) be a metric space and let T : X → X be a map. We say that x ∈ X is a

fixed point of T if Tx = x. There are some well-known results on fixed point theorems

for a mapping on a complete metric space. For instance,

Theorem 2.3. [4] (Banach Contraction Theorem) Let (X, d) be a complete metric space

and T : X → X be a c-contraction mapping. Then T has a unique fixed point.

Theorem 2.4. [5, 6] (Collage Theorem) Let (X, d) be a complete metric space and

T : X → X be a c-contraction mapping. Then for any x ∈ X,

d(x, x∗) ≤ 1
1− c

d(x, Tx),

where x∗ is the fixed point of T .

Theorem 2.5. [8](Continuity of Fixed Points) Let (X, d) be a complete metric space

and T1, T2 : X → X be contraction mappings with contraction factors c1 and c2 and

fixed points x∗1 and x∗2, respectively. Then

d(x∗1, x
∗
2) ≤

1
1−min{c1, c2}d∞(T1, T2),

where d∞(T1, T2) = sup
x∈X

d(T1x, T2x).

Theorem 2.6. [14] (Kannan’s Theorem) Let (X, d) be a complete metric space and

T : X → X. If there exists a real number b with 0 ≤ b < 1
2 such that, d(Tx, Ty) ≤

b[d(x, Tx) + d(y, Ty)] for all x, y ∈ X. Then T has a unique fixed point.

Theorem 2.7. [9] (Chatterjea’s theorem) Let (X, d) be a complete metric space and

T : X → X. If there exists a real number c with 0 ≤ c < 1
2 such that, d(Tx, Ty) ≤

c[d(x, Ty) + d(y, Tx)] for all x, y ∈ X. Then T has a unique fixed point.

Let X be a nonempty set. A class F of subsets of X is called topology on X if it

satisfies the following conditions:

1. X ∈ F and ∅ ∈ F ;

2. the union of every class of sets in F is a set in F ;
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3. the intersection of every finite class of sets in F is in F .

A topological space consists of two objects: A nonempty set X and a topology F on

X. The set in the class F are called the open sets of the topological space (X,F).

It is customary to denote the topological space (X,F) by the symbol X which is used

for its underlying set of points. A closed set in a topological space is a set whose

complement is open. Let (X, d) be any metric space, and let the topology be the class

of all subsets of X which are open in the sense of the definition in the metric space.

This is called the usual topology on a metric space, and we say that these sets are the

open sets generated by the metric d on the space. Let X be a topological space

and let A be a subset of X. A closure A of a subset A is defined to be the intersection

of all closed subsets of X which contains A. A class {Fµ : µ ∈ D} of open subsets of

X is said to be an open cover of A if each point in A belongs to at least one of Fµ’s,

that is,
⋃

µ∈D

Fµ ⊃ A. A subclass of an open cover which is itself an open cover is called

a subcover. A subset A of a topological space X is called compact if every open cover

of A has a finite subcover and it is called relatively compact if A is compact . In

particular, if X is compact, X is said to be a compact space. This definition applies

to metric space as well. In this case, there is a characterization of compactness.

Theorem 2.8. A subset A of a metric space X is compact if and only if any sequence

{xn} of points of A has a subsequence {xnk
} which converges to a point of A.

A normed linear space is a linear space X in which to each vector x there corresponds

a real number, denoted by ‖x‖ and called the norm of x, in such a manner that

1. ‖x‖ ≥ 0, and ‖x‖ = 0 ⇔ x = 0;

2. ‖αx‖ = |α|‖x‖;

3. ‖x + y‖ ≤ ‖x‖+ ‖y‖, for any x and y in X and for any α ∈ R.

It is easy to verify that the normed linear space X is a metric space with respect to the

metric d defined by d(x, y) = ‖x − y‖. A subset C of a normed linear space is said to

be convex if λx+(1−λ)y ∈ C for each x, y ∈ C and each scalar λ ∈ [0, 1]. A Banach

space is a complete normed linear space.



7

Let X be a Banach space, and let T : X → R be a linear functional , that is,

T (αx + βy) = αT (x) + βT (y) for all x, y ∈ X and α, β ∈ R. In addition, T is called

bounded if there exists a real number K ≥ 0 with the property that |T (x)| ≤ K‖x‖ for

all x ∈ X. It is not difficult to see that if T is continuous then T is bounded but the

converse is not true. If T is a linear functional, then the following conditions on T are

all equivalent to the other.

1. T is continuous;

2. T is bounded;

3. T is continuous at the origin.

We now denote the set of all bounded (or continuous) linear functionals of X by X∗. For

x ∈ X and f ∈ X∗ defined i(x)(f) = f(x). It is easily seen that i(x) ∈ X∗∗ and that, in

fact, the map i : X → X∗∗ is an isometric isomorphism, called the canonical embedding

of X into X∗∗. If i(X) = X∗∗, then X is said to be reflexive. The weak topology on

X is the smallest topology such that each bounded linear functional on X is continuous.

We say that a sequence {xn} in X converges weakly to x if {xn} converges to x in

the weak topology, that is lim
n→∞ f(xn) = f(x) for all f ∈ X∗, and denoted by xn ⇀ x. A

subset C of X is weakly closed if it is closed in the weak topology. The weakly open

sets are now taken as those sets whose complements are weakly closed. Sets which are

compact in this topology are said to be weakly compact.

Theorem 2.9. Let C be convex subset of a Banach space X. Then C is closed in the

norm topology if and only if C is weakly closed.

Theorem 2.10. Let {xn} be a sequence in a Banach space X. If xn ⇀ x0, then {xn}
is a bounded set.

Theorem 2.11. Let {xn} be a sequence in a Banach space X. If xn ⇀ x0, then

‖x0‖ ≤ lim inf ‖xn‖.

Theorem 2.12. Let X be a Banach space. Then X is reflexive if and only if every

bounded closed convex subset of X is weakly compact.
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Convexity of Banach Spaces : Let X be a Banach space. Then X is strictly convex

if for all x, y, p ∈ X and R > 0,

‖x− p‖ ≤ R, ‖y − p‖ ≤ R, x 6= y ⇒ ‖x + y

2
‖ < R.

This condition is equivalent to the following:

‖x‖ = ‖y‖ = 1, x 6= y ⇒ ‖x + y‖ < 2.

A Banach space X is uniformly convex if for any two sequence {xn}, {yn} in X such

that

‖xn‖ = ‖yn‖ = 1 and lim
n→∞ ‖xn + yn‖ = 2,

then limn→∞ ‖xn − yn‖ = 0. We first have the following:

Theorem 2.13. Let X be a Banach space. Then the following conditions are equivalent:

1. X is uniformly convex;

2. if for any two sequences ‖xn‖, ‖yn‖ in X,

lim
n→∞ ‖xn‖ = lim

n→∞ ‖yn‖ = 1 and lim
n→∞ ‖xn + yn‖ = 2,

then limn→∞ ‖xn − yn‖ = 0;

3. for any ε with 0 < ε ≤ 2, there exists δ > 0 depending only on ε such that

‖x− y‖ ≤ 2(1− δ)

for any x, y ∈ X with ‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≥ ε.

As a direct consequence of the previous theorem, we have the following:

Theorem 2.14. If a Banach space X is uniformly convex, then X is strictly convex.

Remark 2.15. The converse of Theorem 2.14 is not true (see [21] in page 451).

Let X be a Banach space. Then we define a function δ : [0, 2] → [0, 1] called the

modulus of convexity of X as follows:

δ(ε) = inf
{

1− ‖x + y‖
2

: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
.

It is obvious that δ is a nondecreasing function. That is, if ε1 ≤ ε2, then δ(ε1) ≤ δ(ε2).

We also have the following:
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Theorem 2.16. Let X be a Banach space. Then E is uniformly convex if and only if

δ(ε) > 0 for all ε > 0.

The following theorem is really useful.

Theorem 2.17. Let X be a uniformly convex Banach space. Then, for any r and ε

with 0 < ε ≤ r, the inequalities ‖x‖ ≤ r, ‖y‖ ≤ r and ‖x− y‖ ≥ ε imply δ(
ε

r
) > 0 and

‖x + y‖
2

≤
{

1− δ(
ε

r
)
}

,

where δ is the modulus of convexity of X.

Theorem 2.18. If a Banach space X is uniformly convex, then X is reflexive.



CHAPTER III

CYCLIC ϕ-CONTRACTION MAPPING

In this chapter, we study theorems on a cyclic ϕ-contraction mapping. Let A and

B be nonempty subsets of a metric space (X, d). A mapping T : A ∪B → X is said to

be a cyclic mapping if T (A) ⊆ B and T (B) ⊆ A.

In 2003, Kirk, Srinivasan, and Veeramani [17] extended the Banach contraction theorem

for self map to a map T defined on the union of two subsets A and B of a metric space

and satisfying the cyclic condition. The result ensure that A ∩B 6= ∅.

Theorem 3.1. [17] Let A and B be nonempty closed subsets of a complete metric space

(X, d) and let T : A ∪ B → A ∪ B be a cyclic mapping. If there exists k ∈ (0, 1) such

that

d(Tx, Ty) ≤ kd(x, y) for all x ∈ A and y ∈ B. (3.1)

Then A ∩B 6= ∅ and T has a unique fixed point in A ∩B.

In 2006, Eldred and Veeramani[13] extended this result to the case where A ∩ B = ∅

and T is a cyclic contraction mapping by using the concept of a best proximity point.

A mapping T : A ∪B → A ∪B is said to be a cyclic contraction if T is a cyclic and

there exists k ∈ (0, 1) such that

d(Tx, Ty) ≤ kd(x, y) + (1− k)d(A,B) for all x ∈ A and y ∈ B. (3.2)

A point x in A∪B is called a best proximity point of T if d(x, Tx) = d(A,B), where

d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}. Obvious that in case of A ∩ B 6= ∅, (3.1) and

(3.2) are equivalent and a best proximity point of T is a fixed point of T . Theorem 3.2

is an extension of Theorem 3.1.

Theorem 3.2. [13] Let A and B be nonempty closed and convex subsets of a uniformly

convex Banach space X and T : A∪B → A∪B be a cyclic contraction mapping. Then
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for every x0 ∈ A, there exists a unique z ∈ A such that z is a best proximity point and

x2n → z where xn+1 = Txn.

Question 1 : In their paper, Eldred and Veeramani raised the problem that the con-

clusion of Theorem 3.2 still hold or not if X is a reflexive Banach space.

In 2009, Suzuki, Kikkawa and Vetro[31] prove the existence of best proximity points for

a special map which contains the cyclic contraction mappings as a subclass on a metric

space with the property UC. Let A and B be nonempty subsets of a metric space (X, d).

(A,B) is said to satisfy the property UC if the following holds:

If {xn} and {x′n} are sequences in A and {yn} is a sequence in B such that

lim
n→∞ d(xn, yn) = d(A,B) and lim

n→∞ d(x′n, yn) = d(A,B), then lim
n→∞ d(xn, x′n) = 0.

Example 3.3. [31] Let A and B be nonempty subsets of a metric space (X, d).

1. Let d(A,B) = 0. Then (A,B) satisfies the property UC.

2. Let A′ and B′ be nonempty subsets A ⊆ A′, B ⊆ B′ and d(A,B) = d(A′, B′). If

(A′, B′) satisfies the property UC, then (A,B) also satisfies the property UC.

3. Let X be a uniformly convex Banach space. Assume that A is convex. Then

(A,B) has the property UC.

4. Let X be a strictly convex Banach space X. Assume that A is convex and relatively

compact, and the closure of B is weakly compact. Then (A,B) has the property

UC.

Theorem 3.4 is a result of [31].

Theorem 3.4. [31] Let (X, d) be a metric space and let A and B be nonempty subsets

of X such that (A, B) satisfies the property UC. Let T be a cyclic mapping on A ∪ B

and there exists r ∈ [0, 1) such that

d(Tx, Ty) ≤ r max{d(x, y), d(x, Tx), d(y, Ty)}+ (1− r)d(A,B) (3.3)

for all x ∈ A and y ∈ B. Fixed x0 ∈ A and define xn+1 = Txn for each n ≥ 0. If A is

complete, then there exists a unique z ∈ A such that x2n → z, T 2z = z and z is a best

proximity point.
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Al-Thagafi and Shahzad[1] provided a positive answer of question 1 by adding some

conditions.

Theorem 3.5. [1] Let A and B be nonempty closed convex subsets of a reflexive strictly

convex Banach space X, and T : A ∪ B → A ∪ B be a cyclic contraction mapping. If

(A−A)∩(B−B) = {0}, then there exists a unique z ∈ A such that z is a best proximity

point and T 2z = z.

Theorem 3.6. [1] Let A and B be nonempty subsets of a reflexive Banach space X

such that A is closed convex and let T : A∪B → A∪B be a cyclic contraction mapping.

Then there exists a best proximity point z in A if one of the following conditions is

satisfied:

(a) T is weakly continuous on A.

(b) T satisfies the proximal property, i.e.,

if xn ⇀ x ∈ A ∪B and lim
n→∞ ‖xn − Txn‖ = d(A,B), then ‖x− Tx‖ = d(A,B).

Furthermore, this point is unique if X is strictly convex.

Moreover, Al-Thagafi and Shahzad introduced a new class of maps, called cyclic ϕ-

contraction, which contains the cyclic contraction mapping as a subclass.

Definition 3.7. Let A and B be nonempty subsets of a metric space (X, d). Let T :

A∪B → A∪B be cyclic and ϕ : [0,∞) → [0,∞) be strictly increasing. The mapping T

is said to be cyclic ϕ-contraction if

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)) + ϕ(d(A,B))

for all x ∈ A and y ∈ B.

Since ϕ is strictly increasing and T is cyclic, we have the Proposition 3.8.

Proposition 3.8. Let A and B be nonempty subsets of a metric space (X, d). If T :

A ∪ B → A ∪ B is a cyclic ϕ-contraction mapping, then d(T 2x, Tx) ≤ d(Tx, x) for all

x ∈ A ∪B. Furthermore, d(Tx, Ty) ≤ d(x, y) for all x ∈ A and y ∈ B.

Convergence and existence criterion of best proximity point for cyclic ϕ-contraction

mappings are obtained in Theorem 3.9.
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Theorem 3.9. [1] Let A and B be nonempty subsets of a uniformly convex Banach

space X such that A is closed and convex and let T : A ∪ B → A ∪ B be a cyclic ϕ-

contraction mapping. Let x0 ∈ A and xn+1 = Txn. Then there exists a unique z ∈ A

such that x2n → z, T 2z = z and z is a best proximity point of T .

Al-Thagafi and Shahzad[1] also raised the following question:

Question 2. Do the Theorem 3.5 and 3.6 still hold for the case of a cyclic ϕ-contraction

mapping ?

In this chapter, we extend Theorem 3.9 to a metric space with the property UC in the

Theorem 3.13. In addition, we give an existence of a best proximity point in a reflexive

Banach space in Theorem 3.19 and Theorem 3.22. This implies a positive answer of

Question 2.

3.1 Cyclic ϕ-contraction maps with property UC

In this section, we extend Theorem 3.9 to a metric space with the property UC in the

Theorem 3.13 . We begin with some lemmas which are related to the context of our

results.

Lemma 3.10. Let A and B be nonempty subsets of a metric space (X, d) such that

(A,B) satisfies the property UC and let T : A ∪ B → A ∪ B be a cyclic ϕ-contraction

map. Let z ∈ A. Then the followings are equivalent:

(i) z is a best proximity point of T .

(ii) z is a fixed point of T 2.

In this case, Tz is a best proximity point of T in B.

Proof. We first show that (i) implies (ii). Assume that z is a best proximity point of

T . Since ϕ is strictly increasing and T is cyclic, by Proposition 3.8, we have

d(A,B) ≤ d(T 2z, Tz)

≤ d(Tz, z)

= d(A,B).
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Thus, d(T 2z, Tz) = d(A,B) = d(Tz, z). This implies that Tz is a best proximity point

of T in B and by the property UC, we have d(T 2z, z) = 0. Hence T 2z = z, that is z is

a fixed point of T 2.

To prove (ii) implies (i), we assume that z is a fixed point of T 2 and z is not a best

proximity point of T . Hence

d(A,B) < d(z, Tz). (3.4)

By (3.4) and the facts that ϕ is strictly increasing and T is ϕ-contraction, we have

d(z, Tz) = d(T 2z, Tz)

≤ d(Tz, z)− ϕ(d(Tz, z)) + ϕ(d(A, B))

< d(Tz, z),

which is a contradiction. Hence z is a best proximity point of T .

Lemma 3.11. [1] Let A and B be nonempty subsets of a metric space (X, d) and let

T : A ∪B → A ∪B be a cyclic ϕ-contraction map. Then, for any fixed x0 ∈ A ∪B and

xn+1 = Txn, we have lim
n→∞ d(xn, xn+1) = d(A,B).

Lemma 3.12. Let A and B be nonempty subsets of a metric space (X, d) such that

(A,B) satisfies the property UC and let T : A ∪ B → A ∪ B be a cyclic ϕ-contraction

map. Then, for any fixed x0 ∈ A ∪ B and xn+1 = Txn, we have {x2n} is a Cauchy

sequence.

Proof. Let x0 ∈ A ∪ B and xn+1 = Txn. To show that {x2n} is a Cauchy sequence,

suppose the contrary. Then there exists ε0 > 0 such that for each k ≥ 1, there is

mk > nk ≥ k satisfying d(x2nk
, x2mk

) > ε0.

By Lemma 3.11, we have lim
n→∞ d(x2n+2, x2n+1) = d(A,B), lim

n→∞ d(x2n, x2n+1) = d(A,B)

and

lim
k→∞

d(x2nk
, x2nk+1) = d(A,B). (3.5)

From the property UC of (A,B), we obtain

lim
n→∞ d(x2n+2, x2n) = 0. (3.6)

From (3.5), (3.6) and the fact that
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d(A, B) ≤ d(x2nk+1, x2mk
)

≤ d(x2nk+1, x2nk+2) + d(x2nk+2, x2nk+4) + · · ·
· · ·+ d(x2mk−4, x2mk−2) + d(x2mk−2, x2mk

).

Thus

d(A,B) ≤ lim
k→∞

d(x2mk
, x2nk+1) ≤ d(A,B). (3.7)

Hence lim
k→∞

d(x2mk
, x2nk+1) = d(A, B).

From this fact, the equality (3.5) and the UC-property of (A,B), we have

lim
k→∞

d(x2nk
, x2mk

) = 0.

This contradicts the assumption that d(x2nk
, x2mk

) > ε0. Therefore {x2n} is Cauchy.

Theorem 3.13. Let A and B be nonempty subsets of a metric space (X, d) such that

(A,B) satisfies the property UC and A is complete. Let T : A ∪B → A ∪B be a cyclic

ϕ-contraction map. Then the followings hold:

(i) T has a unique best proximity point z in A.

(ii) z is a unique fixed point of T 2 in A.

(iii) T has at least one best proximity point in B.

(iv) For every x0 ∈ A and xn+1 = Txn, {x2n} converges to z.

Proof. (i) Fix x0 ∈ A and let xn+1 = Txn. By Lemma 3.12, {x2n} is a Cauchy sequence

in A. Since A is complete, there exists z ∈ A such that lim
n→∞ d(z, x2n) = 0.

Hence, by Lemma 3.11 and the fact that

d(A, B) ≤ d(z, x2n−1) ≤ d(z, x2n) + d(x2n, x2n−1),

we have

lim
n→∞ d(z, x2n−1) = d(A,B). (3.8)



16

Since {x2n} belongs to A, Tz ∈ B and Proposition 3.8, we have

d(A,B) ≤ d(x2n, T z)

= d(Tx2n−1, T z)

≤ d(x2n−1, z).

(3.9)

Therefore, letting n →∞ in (3.9) and (3.8), we have

d(z, Tz) = d(A,B), (3.10)

i.e., z is a best proximity point of T in A.

In order to show the uniqueness, we let z′ be another best proximity point of T in A.

By Lemma 3.10, we have z′ = T 2z′. From this fact and Proposition 3.8, we have

d(Tz, z′) = d(Tz, T 2z′)

≤ d(z, Tz′)

= d(T 2z, Tz′)

≤ d(Tz, z′)

Thus

d(z′, T z) = d(z, Tz′). (3.11)

Next we will show that

d(z′, T z) = d(A,B). (3.12)

Suppose that d(z′, T z) > d(A,B). Then

d(Tz′, z) = d(Tz′, T 2z)

≤ d(z′, T z)− ϕ(d(z′, T z)) + ϕ(d(A,B))

< d(z′, T z),

which contradictions to (3.11). Hence (3.12) holds. It follows from (3.10), (3.12) and

the property UC of (A,B) that d(z, z′) = 0. Thus z = z′.

The conditions (ii) and (iii) follow from (i) and Lemma 3.10.

(iv) is obtained in the proof of (i).
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Remark 3.14. In case of d(A, B) = 0, we know that (A,B) satisfies the property UC.

Hence we obtain the existence and uniqueness of the fixed point of a cyclic ϕ -contraction

map.

Remark 3.15. For nonempty subsets A and B of a uniformly convex Banach space X,

we know that (A,B) has the property UC if A is convex. By this fact, it is obvious that

Theorem 3.9 is a consequence of Theorem 3.13. But the converse is not true (see [21]

in page 451).

The following examples show that there exist cyclic ϕ-contraction maps which do not

satisfy (3.3).

Example 3.16.

1. Let X := R with the usual metric. For A = B = [0, 1], define T : A∪B → A∪B

by Tx :=
x

1 + x
. If ϕ(t) :=

t2

1 + t
for t ≥ 0, then T is a cyclic ϕ-contraction map

([1]). We see that T does not satisfy (3.3). Indeed, suppose there exists r ∈ [0, 1)

such that

d(Tx, Ty) ≤ r max{d(x, y), d(x, Tx), d(y, Ty)}+ (1− r)d(A,B).

If y = Tx, then we have

d(Tx, T 2x) ≤ r max{d(x, Tx), d(x, Tx), d(Tx, T 2x)}+ (1− r)d(A,B).

Thus

d(Tx, T 2x) ≤ rd(x, Tx) + (1− r)d(A,B),

i.e.,

| x

1 + x
− x

1 + 2x
| ≤ r|x− x

1 + x
|+ (1− r) · 0.

This implies
1

1 + 2x
≤ r for every x ∈ (0, 1].

Hence, as x → 0, r ≥ 1 which is a contradiction.
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2. Let X := R with the usual metric. For A = [0, 1] and B = [−1, 0], define

T : A ∪ B → A ∪ B by Tx :=
−x

1 + x
if x ∈ A and Tx :=

−x

1− x
if x ∈ B. If

ϕ(t) :=
t2

1 + t
for t ≥ 0, then T is a cyclic ϕ-contraction map ([1]) and by the

same argument of the above example, we see that T does not satisfy (3.3).

It follows from the above examples that, there exist pairs of (A,B) with the property

UC such that the existence of a best proximity point cannot be obtained from Theorem

3.4.

3.2 Best proximity point on reflexive Banach spaces

In this section, we give the existence of a best proximity point for a map on a reflexive

Banach space in Theorem 3.19 and Theorem 3.22. This implies a positive answer of

Question 2. To do this, we begin with the following lemmas.

Lemma 3.17. Let A and B be nonempty subsets of a strictly convex Banach space X

and let T : A ∪B → A ∪B be a cyclic map such that

‖T 2x− Tx‖ ≤ ‖Tx− x‖ for all x ∈ A ∪B.

Assume that A is convex and d(A,B) > 0. If x is a best proximity point of T in A, then

x = T 2x.

Proof. Let x is a best proximity point of T in A i.e, ‖x− Tx‖ = d(A, B).

Since d(A, B) ≤ ‖T 2x − Tx‖ ≤ ‖x − Tx‖ = d(A,B), then ‖T 2x − Tx‖ = d(A,B).

Suppose that T 2x 6= x, then T 2x − Tx 6= x − Tx. Since A is convex,
T 2x + x

2
∈ A. It

follows from the strict convexity of X that

d(A,B) ≤ ‖T 2x + x

2
− Tx‖

= ‖T 2x− Tx

2
+

x− Tx

2
‖

< d(A,B),

which is a contradiction. Thus T 2x = x.
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Lemma 3.18. Suppose that A and B are nonempty subsets of a strictly convex Banach

space X such that A is convex and d(A,B) > 0. Let T : A ∪ B → A ∪ B be a cyclic

ϕ-contraction map, x ∈ A. Then the followings are equivalent:

(i) x is a proximity point of T .

(ii) x is a fixed point of T 2.

Moreover, such point x is unique.

Proof. By Lemma 3.17, (i) implies (ii). To prove (ii) implies (i), we can use the same

argument of Lemma 3.10.

To show the uniqueness, let x′ be another best proximity point of T in A i.e., ‖x′−Tx′‖ =

d(A,B). Then by Lemma 3.17, we have x = T 2x and x′ = T 2x′.

From this, we have

‖Tx− x′‖ = ‖Tx− T 2x′‖
≤ ‖x− Tx′‖
= ‖T 2x− Tx′‖
≤ ‖Tx− x′‖.

Thus

‖x′ − Tx‖ = ‖x− Tx′‖. (3.13)

Next we will show that

‖x′ − Tx‖ = d(A,B). (3.14)

Suppose that ‖x′ − Tx‖ > d(A,B). Then

‖Tx′ − x‖ = ‖Tx′ − T 2x‖
≤ ‖x′ − Tx‖ − ϕ(‖(x′, Tx‖) + ϕ(d(A,B))

< ‖x′ − Tx‖,
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which contradiction to (3.13). Hence (3.14) holds. Since A is convex,
x + x′

2
∈ A. It

follows from the strict convexity of X that

d(A, B) ≤ ‖x + x′

2
− Tx‖

= ‖x− Tx

2
+

x′ − Tx

2
‖

< d(A,B),

which is a contradiction. Hence x′ = x.

Theorem 3.19. Let A and B be nonempty closed convex subsets of a reflexive Banach

space X such that A is bounded, d(A,B) > 0. And let T : A ∪ B → A ∪ B be a cyclic

ϕ-contraction map. Then T has a best proximity point in A if one of the following

conditions is satisfied:

(i) T is weakly continuous on A.

(ii) T satisfies the proximal property.

Furthermore, the best proximity point of T is unique if X is strictly convex.

Proof. For x0 ∈ A, let xn+1 = Txn for each n ≥ 0. Since A is bounded, the sequence

{x2n} also bounded. As X is reflexive and A is closed convex, we have {x2n} has a

subsequence {x2ni} converges weakly to x ∈ A.

(i) Since T is weakly continuous on A and T (A) ⊆ B , {x2ni+1} converges weakly

to Tx ∈ B. Therefore x2ni − x2ni+1 converge weakly to x − Tx. Hence ‖x − Tx‖ ≤
lim inf ‖x2ni − x2ni+1‖ = d(A,B), so ‖x− Tx‖ = d(A,B).

(ii) Since x2ni ⇀ x and by Remark 3.11, we have lim
ni→∞

d(x2ni , x2ni+1) = d(A,B).

Hence by the the proximal property, we get that ‖x− Tx‖ = d(A,B).

When X is strictly convex. The uniqueness follows from Lemma 3.18.

Remark 3.20. In case d(A,B) = 0, the result of Theorem 3.19 follows from Theorem

3.13.

To prove the Theorem 3.22 we need the following lemma.

Lemma 3.21. [18] Let A and B be nonempty closed convex subsets of a reflexive Banach

space X. If A is bounded, then there exists (x, y) ∈ A×B such that ‖x− y‖ = d(A,B).
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Theorem 3.22. Let A and B be nonempty closed convex subsets of a reflexive strictly

convex Banach space X such that A is bounded, d(A,B) > 0 and let T : A∪B → A∪B

be a cyclic and

‖Tx− Ty‖ ≤ ‖x− y‖ for all x ∈ A and y ∈ B. (3.15)

If (A−A)∩(B−B) = {0}, then T has a unique best proximity point x ∈ A. Furthermore

x is a fixed point of T 2.

Proof. By Lemma 3.21, there exists (x, y) ∈ A×B such that ‖x− y‖ = d(A,B).

Hence

d(A,B) ≤ ‖Tx− Ty‖
≤ ‖x− y‖
= d(A,B).

This implies

‖Tx− Ty‖ = d(A,B). (3.16)

Suppose that there exists (x′, y′) ∈ A × B such that (x′, y′) 6= (x, y) and ‖x′ − y′‖ =

d(A,B).

Case I. x− y = x′− y′. Then we have x−x′ = y− y′ ∈ (A−A)∩ (B−B) = {0}. This

show that x− x′ = y − y′ = 0. Hence x = x′ and y = y′, i.e., (x, y) = (x′, y′) which is a

contradiction.

Case II. x − y 6= x′ − y′. Since A and B are convex,
x + x′

2
∈ A and

y + y′

2
∈ B. It

follows from the strict convexity of X that

d(A,B) ≤ ‖x + x′

2
− y + y′

2
‖

= ‖x− y

2
+

x′ − y′

2
‖

< d(A,B),

which is a contradiction.

Thus there exists a unique order pair (x, y) ∈ A × B such that ‖x − y‖ = d(A,B). By

this fact and (3.16), we have x = Ty and y = Tx. Hence ‖x − Tx‖ = d(A,B) and

T 2x = x.
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Corollary 3.23. Let A and B be nonempty closed convex subsets of a reflexive strictly

convex Banach space X such that A is bounded, d(A,B) > 0 and let T : A∪B → A∪B

be a cyclic ϕ-contraction map. If (A − A) ∩ (B − B) = {0}, then T has a unique best

proximity point x ∈ A. Furthermore x is a fixed point of T 2.

Remark 3.24. In case d(A,B) = 0, the result of Corollary 3.23 follows from Theorem

3.13.

Remark 3.25. In case of A and B are unbounded, the following example shows that

the conclusion of Theorem 3.22 may be not true. Let

A = {(x, y) : 1 ≤ x < ∞, 1 + 1
x ≤ y ≤ 2} and

B = {(x, y) : 1 ≤ x < ∞, − 1 ≤ y ≤ − 1
x}. We can see that d(A,B) = 1 and there

exist no points a ∈ A, b ∈ B such that ‖a− b‖ = d(A,B).

Theorem 3.26. Let A and B be nonempty closed convex subsets of a reflexive Banach

space X, and let T : A ∪ B → A ∪ B be a cyclic map. Assume that for fixed x0 ∈ A, a

sequence {xn} defined by xn+1 := Txn has the following properties :

(1) {x2n} has a weakly convergent subsequence,

(2) lim
n→∞ ‖xn+1 − xn‖ = d(A,B).

Then there exists (x, y) ∈ A×B such that ‖x− y‖ = d(A,B).

Proof. Fix x0 ∈ A, and define xn+1 := Txn. From (1) and (2), there exists {x2ni}
converges weakly to x ∈ A and lim

ni→∞
‖x2ni − x2ni+1‖ = d(A,B). From this fact and the

inequality

‖x2ni+1‖ ≤ ‖x2ni − x2ni+1‖+ ‖x2ni‖,

we obtain that {x2ni+1} is bounded. Thus there exists subsequence {x2nij+1} converges

weakly to y ∈ B. Therefore x2nij
− x2nij+1 converge weakly to x− y. Hence ‖x− y‖ ≤

lim inf ‖x2nij
− x2nij+1‖ = d(A,B), so ‖x− y‖ = d(A,B).



CHAPTER IV

MULTI-VALUED WEAK CONTRACTION MAPPING

Let P(X) be the family of all nonempty subsets of X and let T be a multi-valued

mapping, i.e., T : X → P(X). An element x ∈ X such that x ∈ Tx is called a fixed

point of T . We denote by CB(X) the family of all nonempty closed bounded subsets

of X, K(X) the class of all nonempty compact subsets of X and FT the set of all fixed

points of T , i.e., FT = {x ∈ X : x ∈ Tx}. Let (X, d) be a metric space. If x0 is a point

of X and A,B are nonempty subsets of X, the distance between x and A defined by

d(x,A) = inf{d(x, a) : a ∈ A},

the distance between A and B defined by

d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.

Let h(A, B) = sup{d(a,B) : a ∈ A}, the Hausdorff-Pompeiu generalized function

on P(X) induced by d defined by

H(A,B) = max{h(A, B), h(B, A)}.

For x, y ∈ X, and nonempty subsets A,B,C of X, the followings are obvious ;

1. if A ⊆ B, then d(A,C) ≥ d(B, C) and h(A,C) ≤ h(B,C) and h(C,A) ≥ h(C, B),

2. d(x, A) ≤ d(x, y) + d(y, A),

3. d(x, A) ≤ d(x, y) + d(y, B) + h(B, A),

4. d(x, A) ≤ d(x, B) + h(B,A),

5. if x ∈ A, then d(x,B) ≤ H(A,B).

The following property of the functional H are well-known.
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Lemma 4.1. Let (X, d) be a metric space, A,B ∈ P(X) and q ∈ R, q > 1 be given.

Then for every a ∈ A there exists b ∈ B such that d(a, b) ≤ qH(A,B).

Theorem 4.2. Let X be a metric space, then H is a metric on CB(X).

Theorem 4.3 extends the Banach Contraction Theorem from single-valued maps to

multi-valued maps.

A multi-valued mapping T : X → P (X) is called a c-contraction mapping if there

exists a constant c ∈ (0, 1) such that

H(Tx, Ty) ≤ cd(x, y) for all x, y ∈ X.

Theorem 4.3. [23](Nadler Theorem) Let (X, d) be a complete metric space and T :

X → CB(X) be a multi-valued c-contraction map. Then T has at least one fixed point.

Given a point x ∈ X and a compact set A ⊂ X we know that there exist a∗ ∈ A such

that d(x, a∗) = d(x,A). We call a∗ the metric projection of the point x on the set A

and denote it by a∗ = PxA. Obviously PxA is not unique but we choose one of it.

Let T : X → P(X) be a multi-valued such that Tx is nonempty and compact for

all x ∈ X. We define the projection associated with a multi-valued T by Px = PxTx.

For x0 ∈ X, we define xn+1 = Pxn, n = 0, 1, 2, . . . and we call the sequence {xn}∞n=0 a

Picard projection iteration sequence of T at a point x0.

In 2007, Kunze, La Torre and Vrscay [19] extended Theorem 2.3-Theorem 2.5 to a

compact multi-valued c-contraction mapping.

Theorem 4.4-Theorem 4.6 are results of [19].

Theorem 4.4. [19] Let (X, d) be a complete metric space and T : X → K(X) be

a multi-valued c-contraction mapping. Then for any x0 ∈ X, the Picard projection

iteration sequence {xn}∞n=0 converges to some x∗ ∈ FT .

Theorem 4.5. [19] Let (X, d) be a complete metric space and T : X → K(X) be a

multi-valued c-contraction mapping. Then

d(x0, FT ) ≤ 1
1− c

d(x0, Tx0),

for all x0 ∈ X.
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Theorem 4.6. [19] Let (X, d) be a complete metric space and T1, T2 : X → K(X) be

multi-valued contraction mappings with contraction factors c1 and c2, respectively. If

FT1 and FT2 are compact, then

H(FT1 , FT2) ≤
d∞(T1, T2)

1−min{c1, c2} ,

where d∞(T1, T2) = sup
x∈X

H(T1x, T2x).

4.1 Multi-Valued Zamfirescu Mapping

In 1972, Zamfirescu[33] introduced a class of mappings need not continuous called Zam-

firescu mapping. We give here the definition.

Definition 4.7. [33] Let (X, d) be a metric space, T : X → X is called Zamfirescu

mapping if there exist positive real numbers a, b and c satisfying a < 1, b < 1
2 and

c < 1
2 , such that, for each x, y ∈ X at least one of the followings is true:

(z1) d(Tx, Ty) ≤ ad(x, y),

(z2) d(Tx, Ty) ≤ b[d(x, Tx) + d(y, Ty)],

(z3) d(Tx, Ty) ≤ c[d(x, Ty) + d(y, Tx)].

Theorem 4.8 is the main result of [33].

Theorem 4.8. [33] Let (X, d) be a complete metric space and T be a self map on X.

If T is a Zamfirescu mapping, then T has a unique fixed point.

Zamfirescu’ theorem (Theorem 4.8) is a generalization of Banach’s theorem (Theorem

2.3), Kannan’ s theorem (Theorem 2.6) and Chatterjea’s theorem (Theorem 2.7).

In this section, we extend the definition of Zamfirescu mappings for multi-valued map-

pings.

Definition 4.9. Let (X, d) be a metric space and T : X → CB(X) be a multi-valued

mapping. T is said to be a multi-valued Zamfirescu mapping if there exist positive

real numbers a, b and c satisfying a < 1, b < 1
2 and c < 1

2 , such that, for each x, y ∈ X

at least one of the followings is true:
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(z̃1) H(Tx, Ty) ≤ ad(x, y),

(z̃2) H(Tx, Ty) ≤ b[d(x, Tx) + d(y, Ty)],

(z̃3) H(Tx, Ty) ≤ c[d(x, Ty) + d(y, Tx)].

Theorem 4.12 and Theorem 4.13 are main results of this section. It basically shows that

any multi-valued Zamfirescu mapping has a fixed point. To do this, we begin with the

following lemmas.

Lemma 4.10. Let (X, d) be a complete metric space and {xn} be a sequence in X. If

there exists a positive number α < 1 such that d(xn, xn+1) ≤ αd(xn−1, xn) for all n ∈ N,

then {xn} converges to some u ∈ X which the following estimates

(1) d(xn, u) ≤ αn

1− α
d(x0, x1), n = 0, 1, 2, . . .

(2) d(xn, u) ≤ α

1− α
d(xn−1, xn), n = 1, 2, , 3, . . .

hold.

Proof. Let {xn} be a sequence in X such that there exists a positive number α < 1

such that d(xn, xn+1) ≤ αd(xn−1, xn) for all n ∈ N.

By mathematical induction, we have

d(xn, xn+1) ≤ αnd(x0, x1), n ∈ N (4.1)

and, respectively,

d(xn+k−1, xn+k) ≤ αkd(xn−1, xn), k ∈ N ∪ {0}. (4.2)

So, for any n, p ∈ N, by (4.1), we obtain

d(xn, xn+p) ≤
n+p−1∑

k=n

d(xk, xk+1)

≤
n+p−1∑

k=n

αkd(x0, x1)

=
αn(1− αp)

1− α
d(x0, x1)

≤ αn

1− α
d(x0, x1). (4.3)
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Since 0 < α < 1, it yields that αn → 0 (as n → ∞), which together with (4.3) implies

that {xn}∞n=0 is a Cauchy sequence. Since (X, d) is complete, {xn}∞n=0 converges to

some u ∈ X.

By (4.2), we have

d(xn, xn+p) ≤
p∑

k=1

d(xn+k−1, xn+k, )

≤
p∑

k=1

αkd(xn−1, xn)

=
α(1− αp)

1− α
d(xn−1, xn)

≤ α

1− α
d(xn−1, xn). (4.4)

From (4.3) and (4.4), by letting p →∞, we have the estimations (1) and (2).

Lemma 4.11. Let (X, d) be a complete metric space, T : X → CB(X) be a multi-valued

Zamfirescu mapping and let {xn} be a sequence in X such that for all n = 0, 1, 2, . . . ,

xn+1 ∈ Txn. If lim
n→∞xn = u, then u is a fixed point of T .

Proof. Let lim
n→∞xn = u. We have

d(u, Tu) ≤ d(u, xn+1) + d(xn+1, Tu)

≤ d(u, xn+1) + H(Txn, Tu).

In case xn, u satisfy (z̃1), we have

d(u, Tu) ≤ d(u, xn+1) + ad(xn, u). (4.5)

If xn, u satisfy (z̃2), then

d(u, Tu) ≤ d(u, xn+1) + b[d(xn, Txn) + d(u, Tu)]

≤ d(u, xn+1) + b[d(xn, xn+1) + d(u, Tu)]. (4.6)

Suppose that xn, u satisfy (z̃3). Then

d(u, Tu) ≤ d(u, xn+1) + c[d(xn, Tu) + d(u, Txn)]

≤ d(u, xn+1) + c[d(xn, Tu) + d(u, xn+1)]. (4.7)

Therefore, letting n →∞ in (4.5), (4.6, (4.7), we get d(u, Tu) = 0.

Since Tu is closed, u ∈ Tu. Hence u is a fixed point of T .
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Theorem 4.12. Let (X, d) be a complete metric space and T : X → CB(X) be a

multi-valued Zamfirescu mapping. Then T has at least one fixed point.

Proof. Choose q be such that 1 < q < min{1
a
,

1
2b

,
1
2c
} and α = max{qa,

qb

1− qb
,

qc

1− qc
}.

Note that 0 < α < 1. Let x0 ∈ X and x1 ∈ Tx0.

If H(Tx0, Tx1) = 0 then Tx0 = Tx1, i.e., x1 ∈ Tx1. This means that FT 6= ∅.

Suppose that H(Tx0, Tx1) > 0. By Lemma 4.1 there exists x2 ∈ Tx1 such that

d(x1, x2) ≤ qH(Tx0, Tx1).

For x1 and x2, if H(Tx1, Tx2) = 0 then Tx1 = Tx2, i.e., x2 ∈ Tx2. Hence T has a fixed

point. Let H(Tx1, Tx2) > 0. Again by Lemma 4.1 there exists x3 ∈ Tx2 such that

d(x2, x3) ≤ qH(Tx1, Tx2).

By this procedure, we have two cases.

Firstly, if there is kth procedure such that H(Txk−1, Txk) = 0, then xk is a fixed point.

Secondly, we obtain a sequence {xn} such that xn+1 ∈ Txn and

d(xn, xn+1) ≤ qH(Txn−1, Txn) for all n ∈ N.

If xn−1, xn satisfy (z̃1), then we have

d(xn, xn+1) ≤ qad(xn−1, xn). (4.8)

If xn−1, xn satisfy (z̃2), then

d(xn, xn+1) ≤ qb[d(xn−1, Txn−1) + d(xn, Txn)]

≤ qb[d(xn−1, xn) + d(xn, xn+1)].

Hence

d(xn, xn+1) ≤ (
qb

1− qb
)d(xn−1, xn). (4.9)

For the last case, if xn−1, xn satisfy (z̃3), then

d(xn, xn+1) ≤ qc[d(xn−1, Txn) + d(xn, Txn−1)]

= qcd(xn−1, Txn)

≤ qcd(xn−1, xn+1)

≤ qc[d(xn−1, xn) + d(xn, xn+1)].
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Thus

d(xn, xn+1) ≤ (
qc

1− qc
)d(xn−1, xn). (4.10)

From (4.8), (4.9), (4.10), we have

d(xn, xn+1) ≤ αd(xn−1, xn), n = 1, 2, , 3, . . . .

Hence by this fact and Lemma 4.10, {xn} converges to some u ∈ X. By Lemma

4.11, u is a fixed point of T .

The next theorem shows that the Picard projection iteration sequence of a multi-valued

Zamfirescu mapping with compact valued converges to its fixed point.

Theorem 4.13. Let (X, d) be a complete metric space and T : X → K(X) be a multi-

valued Zamfirescu mapping. Then

(1) for any x0 ∈ X, the Picard projection iteration sequence {xn}∞n=0 converges to

some x∗ ∈ FT ;

(2) The following estimates

d(xn, x∗) ≤ αn

1− α
d(x0, x1), n = 0, 1, 2, . . .

d(xn, x∗) ≤ α

1− α
d(xn−1, xn), n = 1, 2, , 3, . . .

hold, for a certain constant 0 < α < 1.

Proof. Let T be a multi-valued Zamfirescu mapping, i.e., for each x, y ∈ X satisfying

at least one condition (z̃1), (z̃2) or (z̃3), and Tx is compact for all x ∈ X.

(1) Let x0 ∈ X be arbitrary and let {xn}∞n=0 be the Picard projection iteration

sequence.

For x1, x2 we see that

d(x1, x2) = d(x1, Px1) = d(x1, Tx1) ≤ h(Tx0, Tx1) ≤ H(Tx0, Tx1).

If x0, x1 satisfy (z̃1), then d(x1, x2) ≤ ad(x0, x1).

In case that x0, x1 satisfy (z̃2), then

d(x1, x2) ≤ b[d(x0, Tx0) + d(x1, Tx1)]

= b[d(x0, x1) + d(x1, x2)].
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Hence d(x1, x2) ≤ b

1− b
d(x0, x1).

Suppose that x0, x1 satisfy (z̃3). Thus

d(x1, x2) ≤ c[d(x0, Tx1) + d(x1, Tx0)]

= cd(x0, Tx1)

≤ c[d(x0, x1) + d(x1, Tx1)]

= c[d(x0, x1) + d(x1, x2)].

This implies d(x1, x2) ≤ c

1− c
d(x0, x1).

Therefore, in all cases, we have

d(x1, x2) ≤ αd(x0, x1), where α = max{a,
b

1− b
,

c

1− c
}.

Consequently, for each n ∈ N we have

d(xn, xn+1) ≤ αd(xn−1, xn).

Hence by this fact and Lemma 4.10, {xn} converges to some u ∈ X. Thus by Lemma

4.11, we have u is a fixed point of T . The condition (2) holds from Lemma 4.10.

In example 4.14, we give a mapping T such that Nadler’s fixed point theorem can not

be applied while we can use Theorem 4.12 to assure that T has a fixed point.

Example 4.14. Let X = [0, 1] and T : X → CB(X) be defined by

Tx =





[0, 1
4 ] ;x ∈ [0, 1)

[0, 1
2 ] ;x = 1.

Then T satisfies (z̃3) by choosing c = 1
3 . To show this, it suffices to show in case x = 1

and y ∈ [0, 1). Note that Tx = [0, 1
2 ] and Ty = [0, 1

4 ]. Thus d(x, Ty) = d(1, [0, 1
4 ]) = 3

4

and H(Tx, Ty) = H([0, 1
2 ], [0, 1

4 ]) = 1
4 .

Hence

H(Tx, Ty) = 1
4

= 1
3 [34 ]

≤ 1
3 [d(x, Ty) + d(y, Tx)].
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Therefore T is a a multi-valued Zamfirescu mapping. By Theorem 4.12, T has a fixed

point. For y = 1, x ∈ [34 , 1), we observe that H(Tx, Ty) = 1
4 ≥ |x − y|. This implies

that T is not a multi-valued c-contraction for any c ∈ (0, 1). Then we can not apply

Nadler’s theorem with this example.

Proposition 4.15. Let (X,d) be a complete metric space. If T is a multi-valued Zam-

firescu mapping then FT is complete.

Proof. Let {xn}∞n=0 be a Cauchy sequence in FT . Since X is complete then there exist

u ∈ X such that lim
n→∞xn = u. Hence by Lemma 4.11, u is a fixed point of T . Therefore

we have the theorem.

4.2 Multi-valued Weak Contraction

In 2007, one of interesting generalization of the Nadler’s fixed point theorem was given

by Berinde [7].

Definition 4.16. [7] Let (X, d) be a metric space and T : X → CB(X) be a multi-

valued mapping. T is said to be a multi-valued weak contraction or multi-valued

(θ, L)-weak contraction if there exist constants θ ∈ (0, 1) and L ≥ 0 such that

H(Tx, Ty) ≤ θd(x, y) + Ld(x, Ty), for all x, y ∈ X.

Remark 4.17. It is known that a c-contraction mapping is a weak contraction.

Theorem 4.18. [7] Let (X, d) be a metric space and T : X → CB(X) be a multi-valued

weak contraction mapping. Then T has at least one fixed point.

In this section, we prove that the Picard projection iteration sequence converges to a

fixed point, give a rate of convergence and generalize Collage Theorem (Theorem 2.4

and Theorem 4.5) for the case of multi-valued weak contraction.

Lemma 4.19. Let (X, d) be a complete metric space, T : X → CB(X) be a multi-

valued (θ, L)-weak contraction mapping and let {xn} be a sequence in X such that for

all n = 0, 1, 2, . . . , xn+1 ∈ Txn. If lim
n→∞xn = x∗, then x∗ is a fixed point of T .
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Proof. Assume that lim
n→∞xn = x∗. Thus we have

d(x∗, Tx∗) ≤ d(x∗, xn+1) + d(xn+1, Tx∗)

≤ d(x∗, xn+1) + H(Txn, Tx∗)

≤ d(x∗, xn+1) + θd(xn, x∗) + Ld(x∗, Txn)

≤ d(x∗, xn+1) + θd(xn, x∗) + L[d(x∗, xn+1) + d(xn+1, Txn)]

= d(x∗, xn+1) + θd(xn, x∗) + Ld(x∗, xn+1),

for all n = 0, 1, 2, ...

Hence we have d(x∗, Tx∗) = 0 by letting n → ∞. Since Tx∗ is closed, x∗ ∈ Tx∗.

Therefore x∗ is a fixed point of T .

The next Proposition is immediately obtained from Lemma 4.19.

Proposition 4.20. Let (X,d) be a complete metric space. If T is a multi-valued weak

contraction mapping then FT is complete.

Theorem 4.21. Let (X, d) be a complete metric space and T : X → K(X) be a multi-

valued (θ, L)-weak contraction. Then

(1) for any x0 ∈ X, the Picard projection iteration sequence {xn}∞n=0 converges to

some x∗ ∈ FT ;

(2) the following estimates

d(xn, x∗) ≤ θn

1− θ
d(x0, x1), n = 0, 1, 2, . . .

d(xn, x∗) ≤ θ

1− θ
d(xn−1, xn), n = 1, 2, , 3, . . .

hold.

Proof. Fix x0 ∈ X and {xn}∞n=0 the Picard projection iteration.
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For each n ∈ N we see that,

d(xn, xn+1) = d(xn, Pxn)

= d(xn, Txn)

≤ H(Txn−1, Txn)

≤ θd(xn−1, xn) + Ld(xn, Txn−1)

= θd(xn−1, xn). (4.11)

By this fact and Lemma 4.10, {xn} converges to some x∗ ∈ X. Thus by Lemma 4.19,

u is a fixed point of T and (2) holds by Lemma 4.10.

Corollary 4.22. (Generalized Collage Theorem) Let (X, d) be a complete metric space

and T : X → K(X) be a multi-valued (θ, L)-weak contraction mapping. Then

d(x0, FT ) ≤ 1
1− θ

d(x0, Tx0),

for all x0 ∈ X.

Proof. Let x0 ∈ X. By Theorem 4.21(1), there exists a point x∗ ∈ FT such that the

Picard projection iteration {xn}∞n=0 converges to x∗. Hence, by Theorem 4.21(2), we

have

d(x0, FT ) ≤ d(x0, x
∗) ≤ 1

1− θ
d(x0, x1) =

1
1− θ

d(x0, Tx0).

Theorem 4.23. Let (X, d) be a complete metric space and T1, T2 : X → K(X) be multi-

valued weak contractions with parameters (θ1, L1) and (θ2, L2), respectively. If FT1 and

FT2 are closed and bounded, then

H(FT1 , FT2) ≤
d∞(T1, T2)

1−max{θ1, θ2} ,

where d∞(T1, T2) = sup
x∈X

H(T1x, T2x).
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Proof. Let x ∈ FT1 . By Corollary 4.22, we have

(1− θ2)d(x, FT2) ≤ d(x, T2x) ≤ H(T1x, T2x) ≤ d∞(T1, T2).

Take the supremum with respect to x ∈ FT1 , we get

(1− θ2)h(FT1 , FT2) ≤ d∞(T1, T2).

Next, upon interchanging FT1 with FT2 we obtain

(1− θ1)h(FT2 , FT1) ≤ d∞(T1, T2).

. Hence

H(FT1 , FT2) ≤
d∞(T1, T2)

1−max{θ1, θ2} .

Remark 4.24. Since a c-contraction is a (θ, 0)-weak contraction, Theorem 4.4 can be

deduced from Theorem 4.21 and Theorem 4.5 can be deduced from Corollary 4.22.

The next corollary is immediate using Theorem 4.23.

Corollary 4.25. Let (X, d) be a complete metric space and Tn : X → K(X) be a

sequence of multi-valued weak contractions with weak contractivity constants θn such

that supn θn = θ < 1. Suppose that Tn → T with the metric d∞ and T is a compact

multi-valued weak contraction. Then FTn → FT in the Hausdorff metric.

Corollary 4.25 implies the following corollary.

Corollary 4.26. [19] Let (X, d) be a complete metric space and Tn : X → K(X)

be a sequence of multi-valued contractions with contractivity constants an such that

supn an = a < 1. Suppose that Tn → T with the metric d∞ and T is a compact

multi-valued contraction. Then FTn → FT in the Hausdorff metric.

The next theorem shows that a multi-valued Zamfirescu mapping is a multi-valued weak

contraction. Hence Theorem 4.13 follows immediately from Theorem 4.21.

Theorem 4.27. Let (X, d) be a metric space and T : X → CB(X) be a multi-valued

Zamfirescu mapping. Then T is a multi-valued weak contraction.
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Proof. Let T be a multi-valued Zamfirescu mapping and x, y ∈ X. Then at least one of

(z̃1), (z̃2) or (z̃3) is true with parameters a, b and c, respectively.

If x and y satisfy (z̃1), then H(Tx, Ty) ≤ ad(x, y).

In case that x and y satisfy (z̃2) we see that

H(Tx, Ty) ≤ b[d(x, Tx) + d(y, Ty)]

≤ b[[d(x, Ty) + H(Tx, Ty)] + [d(y, x) + d(x, Ty)]]

= bd(x, y) + 2bd(x, Ty) + bH(Tx, Ty).

Hence H(Tx, Ty) ≤ b

1− b
d(x, y) +

2b

1− b
d(x, Ty).

If x and y satisfy (z̃3), then we have

H(Tx, Ty) ≤ c[d(x, Ty) + d(y, Tx)]

≤ c[d(x, Ty) + [d(y, x) + d(x, Ty) + H(Tx, Ty)]]

= cd(x, y) + 2cd(x, Ty) + cH(Tx, Ty).

Thus H(Tx, Ty) ≤ c

1− c
d(x, y) +

2c

1− c
d(x, Ty).

Let

θ = max{a,
b

1− b
,

c

1− c
}.

Then we have 0 < θ < 1 and for all x, y ∈ X,

H(Tx, Ty) ≤ θd(x, y) + 2θd(x, Ty).

Hence T is a multi-valued (θ, 2θ)-weak contraction.

The following example shows that a multi-valued weak contraction may not be a Zam-

firescu mapping.

Example 4.28. Let X = [0, 1] and Tx = {x} for all x ∈ X. Then T is a multi-valued

weak contraction and is not a Zamfirescu mapping.

Proof. Recall that, for all x, y ∈ X,

H(Tx, Ty) = H({x}, {y})

= d(x, y)

= θd(x, y) + (1− θ)d(x, y)
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for θ ∈ (0, 1). Then T is a (θ, 1− θ)-weak contraction for all θ ∈ (0, 1). If T is a multi-

valued Zamfirescu mapping, Then there exist positive real numbers a, b and c satisfying

a < 1, b < 1
2 and c < 1

2 , such that, for each x, y ∈ X at least one of the followings is

true:

(z̃1) H(Tx, Ty) ≤ ad(x, y),

(z̃2) H(Tx, Ty) ≤ b[d(x, Tx) + d(y, Ty)],

(z̃3) H(Tx, Ty) ≤ c[d(x, Ty) + d(y, Tx)].

Let θ = max{a, 2b, 2c}. Observe that 0 < θ < 1. Thus for all x, y ∈ X, we have

H(Tx, Ty) ≤ θ max{d(x, y), d(x, Tx), d(x, Ty), d(y, Ty), d(y, Tx)}

= θ|x− y|

< θ|x− y|.

This is impossible, since H(Tx, Ty) = |x−y|. Hence T is not a multi-valued Zamfirescu

mapping.



CHAPTER V

CYCLIC MULTI-VALUED MAPPING

In this chapter, we extend the cyclic property of single-valued mapping to multi-

valued mapping and investigate the existence of its fixed point and the existence of a

best proximity point.

To establish our results, we introduce the following class of multi-valued mappings.

Definition 5.1. Let A and B be nonempty subsets of a metric space (X, d). A multi-

valued mapping T is said to be cyclic(on A and B) if T : A ∪ B → P(X) such that

Tx ⊆ B, for all x ∈ A and Ty ⊆ A for all y ∈ B.

5.1 Fixed point of cyclic multi-valued mapping

The next theorem is the main result of this section. It basically shows that any cyclic

multi-valued mappings which satisfy a contractive condition has at least one fixed point.

Theorem 5.2. Let A and B be nonempty closed subsets of a metric space (X, d). Sup-

pose T is a cyclic(on A and B) multi-valued mapping with nonempty closed bounded

valued. If there exists a constant k ∈ (0, 1) such that

H(Tx, Ty) ≤ kd(x, y) for all x ∈ A and y ∈ B.

Then T has at lest one fixed point in A ∩B.

Proof. Let α > 1 be such that αk < 1. Let x0 ∈ A and x1 ∈ Tx0 ⊆ B.

If H(Tx0, Tx1) = 0, then Tx0 = Tx1, i.e., x1 ∈ Tx1 which actually means that FT 6= ∅.

Assume that H(Tx0, Tx1) > 0. By Lemma 4.1, there exists x2 ∈ Tx1 ⊆ A such that

d(x1, x2) ≤ αH(Tx0, Tx1). By the definition of T , we have d(x1, x2) ≤ αkd(x0, x1).

Next, if H(Tx1, Tx2) = 0, then Tx1 = Tx2, i.e., x2 ∈ Tx2. This means that FT 6= ∅.

If H(Tx1, Tx2) > 0, by Lemma 4.1, there exists x3 ∈ Tx2 ⊆ B such that d(x2, x3) ≤
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αkd(x1, x2).

Continue this procedure, we have two cases.

Case I. There is kth procedure such that H(Txk−1, Txk) = 0. Then xk is a fixed point.

Case II. There exists a sequence {xn} such that x2n ∈ A, x2n+1 ∈ B and for all n ∈ N,

d(xn, xn+1) ≤ αkd(xn−1, xn).

Since 0 < αk < 1, by Lemma 4.10, {xn} converges. Let x := limxn. Note that

d(x, Tx) ≤ d(x, xn+1) + d(xn+1, Tx)

≤ d(x, xn+1) + H(Txn, Tx)

≤ d(x, xn+1) + kd(xn, x).

By letting n →∞, we obtain d(x, Tx) = 0. Since Tx is closed, x ∈ Tx. Therefore x is

a fixed point of T . To show x ∈ A∩B, we note that x2n → x, x2n+1 → x. Since A and

B are closed, x ∈ A ∩B.

Theorem 5.2 can be extended to a finite chain of nonempty closed subsets of X.

Theorem 5.3. Let {Ai}n
i=1 be a finite family of nonempty closed subsets of complete

metric space. Suppose T :
⋃n

i=1 Ai → P(X) with closed bounded valued satisfying the

following conditions (where An+1 = A1)

(a) Tai ⊆ Ai+1, for ai ∈ Ai and 1 ≤ i ≤ n;

(b) ∃k ∈ (0, 1) such that H(Tx, Ty) ≤ kd(x, y) for all x ∈ Ai and y ∈ Ai+1, for

1 ≤ i ≤ n.

Then T has at lest one fixed point in
⋂n

i=1 Ai.

The proof of Theorem 5.3 is similar to that of Theorem 5.2.

Similarly, the proof of Theorem 5.2 we can extend to next theorem.

Theorem 5.4. Let A and B be nonempty closed subsets of a complete metric space

(X, d). Suppose T is a cyclic(on A and B) multi-valued mapping. If there exist two

constants θ ∈ (0, 1) and L ≥ 0 such that

H(Tx, Ty) ≤ θd(x, y) + Ld(y, Tx)
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and

H(Tx, Ty) ≤ θd(x, y) + Ld(x, Ty}

for all x ∈ A and y ∈ B, with closed bounded valued. Then T has at lest one fixed point

in A ∩B and FT is complete.

Proof. The proof of existence of a fixed point are essentially similar to those of Theorem

5.2 and, therefore, are omitted here.

To show that FT is complete, it suffice to prove that FT is closed. Let {xn}∞n=0 be

a sequence in FT , which xn → u. Since FT ⊆ A ∩ B and A ∩ B is closed, we have

u ∈ A ∩B.

Note that

d(u, Tu) ≤ d(u, xn) + d(xn, Txn) + H(Txn, Tu)

= d(u, xn) + H(Txn, Tu)

≤ d(u, xn) + θd(xn, u) + Ld(u, Txn)

≤ d(u, xn) + θd(xn, u) + L(d(u, xn) + d(xn, Txn))

= d(u, xn) + θd(xn, u) + Ld(u, xn).

Therefore, letting n →∞, we get d(u, Tu) = 0. Since Tu is closed, u ∈ Tu. Hence FT

is closed.

The next Corollary 5.5 is immediately obtained from Theorem 5.4.

Corollary 5.5. Let A and B be nonempty closed subsets of a complete metric space

(X, d). Suppose T is a cyclic multi-valued mapping. If there exist two constants θ ∈
(0, 1) and L ≥ 0 such that H(Tx, Ty) ≤ θd(x, y) + Lmin{d(y, Tx), d(x, Ty)} for all

x ∈ A and y ∈ B, with closed bounded valued. Then T has at lest one fixed point in

A ∩B.

Remark 5.6. Theorem 4.18 is a consequence of Corollary 5.5.

5.2 Best proximity point of cyclical multi-valued mapping

In this section, we extend the results of the Theorem 5.2 to the case of disjoint sets

with property UC.
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Definition 5.7. Let A and B be nonempty subsets of a metric space (X, d), and T a

multi-valued mapping cyclic on A and B. Then T is said to be k-contraction if there

exists a constant k ∈ (0, 1) such that

H(Tx, Ty) ≤ kd(x, y) + (1− k)d(A,B) for all x ∈ A and y ∈ B.

To prove the main result of this section, we shall need a lemma.

Lemma 5.8. Let A and B be nonempty subsets of a metric space (X, d) with the

property UC and let {xn} be a sequence in A. If there exists a sequence {yn} in B such

that lim
n→∞ d(xn, yn) = d(A,B) and lim

n→∞ d(xn+1, yn) = d(A,B), then {xn} is a Cauchy

sequence.

Proof. By the property UC, we have lim
n→∞ d(xn, xn+1) = 0.

Suppose that {xn} is not a Cauchy sequence. Hence, there is ε > 0 such that for

each k ∈ N, ∃mk > nk > k such that

d(xnk
, xmk

) > ε. (5.1)

By the assumption, we have

lim
k→∞

d(ynk
, xnk

) = d(A, B). (5.2)

Note that

d(A,B) ≤ d(ynk
, xmk

)

≤ d(ynk
, xnk

) + d(xnk
, xmk

)

≤ d(ynk
, xnk

) + d(xnk
, xnk+1) + · · ·+ d(xmk−1, xmk

).

Letting k →∞, we have

d(A,B) ≤ lim
k→∞

d(ynk
, xmk

)

≤ lim
k→∞

d(ynk
, xnk

)

= d(A,B).

Hence

lim
k→∞

d(ynk
, xmk

) = d(A,B). (5.3)

From (5.2), (5.3) and property UC, we have lim
k→∞

d(xnk
, xmk

) = 0. This contradicts to

(5.1).



41

Theorem 5.9. Let A and B be nonempty subsets of a metric space (X, d) such that

(A,B) satisfies the property UC and A is complete. Let T be a cyclic(on A and B)

k-contraction multi-valued mapping, with closed bounded valued. Then T has a best

proximity point z in A.

Proof. Fix x0 ∈ A. Let x1 ∈ Tx0 ⊆ B. There exists x2 ∈ Tx1 ⊆ A such that

d(x1, x2) ≤ d(x1, Tx1) + k

≤ H(Tx0, Tx1) + k.

Similarly, there exists x3 ∈ Tx2 ⊆ B such that

d(x2, x3) ≤ H(Tx1, Tx2) + k2.

Continue this process, we have a sequence {xn} such that {x2n} ⊆ A, {x2n+1} ⊆ B,

xn+1 ∈ Txn and

d(xn, xn+1) ≤ H(Txn−1, Txn) + kn

≤ kd(xn−1, xn) + (1− k)d(A,B) + kn

≤ k[H(Txn−2, Txn−1) + kn−1] + (1− k)d(A,B) + kn

= k[kd(xn−2, xn−1) + (1− k)d(A,B) + kn−1] + (1− k)d(A,B) + kn

= k2d(xn−2, xn−1) + (1− k2)d(A,B) + 2kn.

Inductively, we have

d(xn, xn+1) ≤ knd(x0, x1) + (1− kn)d(A,B) + nkn.

Hence lim
n→∞ d(xn, xn+1) = d(A,B). This implies

lim
n→∞ d(x2n, x2n+1) = d(A,B), lim

n→∞ d(x2n+2, x2n+1) = d(A,B).

Since {x2n} ⊆ A, {x2n+2} ⊆ A and {x2n+1} ⊆ B, by Lemma 5.8 we have {x2n} is a

Cauchy sequence.

Since A is complete, there exists z ∈ A such that lim
n→∞ d(z, x2n) = 0.

From this fact and the fact that

d(A,B) ≤ d(z, x2n−1)

≤ d(z, x2n) + d(x2n, x2n−1),
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we have lim
n→∞ d(z, x2n−1) = d(A,B).

Since

d(A,B) ≤ d(x2n, T z)

≤ H(Tx2n−1, T z)

≤ kd(x2n−1, z) + (1− k)d(A,B)

≤ kd(x2n−1, z) + (1− k)d(x2n−1, z)

= d(x2n−1, z),

we have d(z, Tz) = d(A,B), i.e. z is a best proximity point of T in A.

Remark 5.10. In view of the Example 3.3,

1. In case of d(A, B) = 0, (A,B) satisfies the property UC. By this fact we see that

Theorem 5.9 is an extension of Theorem 5.2.

2. For nonempty subsets A and B of a uniformly convex Banach space X, we know

that (A,B) has the property UC if A is convex. So Theorem 3.2 is a consequence

of Theorem 5.9.



CHAPTER VI

DATA DEPENDENCE

In this chapter, we study a problem of data dependence for a special class of

multi-valued mappings. The following data dependence problem is well known

Problem : Let (X, d) be a metric space and T1, T2 be two multi-valued maps such that

FT1 and FT2 are nonempty and there exists η > 0 with the property H(T1x, T2x) ≤ η

for all x ∈ X. Data dependence problem is a problem of finding an upper bound of

H(FT1 , FT2).

In 2003, Rus, Petruşel and Ŝıntămărian[30] gave an important abstract notions as

follows.

Definition 6.1. Let (X, d) be a metric space and T : X → P(X) be a multi-valued

mapping. T is said to be a multi-valued weakly Picard (briefly MWP) mapping if for

each x ∈ X and any y ∈ Tx, there exists a sequence {xn}∞n=0 such that

(i) x0 = x, x1 = y;

(ii) xn+1 ∈ Txn for all n = 0, 1, 2 . . . and

(iii) {xn}∞n=0 converges to a fixed point of T .

Remark 6.2. A sequence {xn}∞n=0 satisfying conditions (i) and (ii) in Definition 6.1

is also called a sequence of successive approximations of T starting from (x, y).

Definition 6.3. Let (X, d) be a metric space and T : X → P(X) be a MWP mapping.

Then we define the multi-valued mapping T∞ : G(T ) → P(FT ) where G(T ) = {(x, y) :

x ∈ X, y ∈ Tx}, by the formula;

T∞(x, y) := {z ∈ FT | there exists a sequence of successive approximations of T

starting from (x, y) which converges to z }.
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Definition 6.4. Let (X, d) be a metric space, T : X → P(X) be a MWP mapping and

c > 0. Then T is a c−multi-valued weakly Picard (briefly c-MWP ) mapping if for every

(x, y) ∈ G(T ) there exists a selection t∞(x, y) in T∞(x, y) such that d(x, t∞(x, y)) ≤
cd(x, y).

We shall present some examples of c-MWP mappings given in [30]. (See more

details in ([11], [23]-[28]).

Example 6.5. Let (X, d) be a metric space.

1. Let T : X → CB(X) be a multi-valued a-contraction (0 < a < 1). Then T is a

c-MWP mapping with c = (1− a)−1.

2. Let T : X → CB(X) be a multi-valued mapping for which there exist positive real

numbers α, β and γ such that α + β + γ < 1 and

H(Tx, Ty) ≤ αd(x, y) + βd(x, Tx) + γd(y, Ty),

for all x, y ∈ X. Then T is a c-MWP mapping with c = (1−γ)[1−(α+β+γ)]−1.

3. Let T : X → CB(X) be a closed multi-valued mapping for which there exist positive

real numbers α and β such that α + β < 1 and

H(Tx, Ty) ≤ αd(x, y) + βd(y, Ty),

for all x ∈ X and y ∈ Tx. Then T is a c-MWP mapping with c = (1 − β)[1 −
(α + β)]−1.

4. Let x0 ∈ X and r > 0. Let T : B̃(x0, r) → CB(X), where B̃(x0, r) = {x ∈ X :

d(x0, x) ≤ r} be a multi-valued mapping for which there exist α, β, γ ∈ R+ and

α + β + γ < 1 such that

(i) H(Tx, Ty) ≤ αd(x, y) + βd(x, Tx) + γd(y, Ty), ∀x, y ∈ B̃(x0, r)

(ii) δ(x0, Tx0) < [1− (α + β + γ)](1− γ)−1r.

Then T is a c-MWP mapping with c = (1− γ)[1− (α + β + γ)]−1.
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Now we introduce an important abstract notion of Collage mapping as follow.

Definition 6.6. Let (X, d) be a metric space, T : X → P(X), FT 6= ∅. Then T is a

Collage multi-valued mapping if there exists c > 0 such that d(x, FT ) ≤ cd(x, Tx) for

all x ∈ X.

Remark 6.7. It is obvious that a c-MWP mapping(in Definition 6.1) is a Collage

multi-valued mapping.

The following example shows that a Collage multi-valued mapping may not be a

c-MWP mapping.

Example 6.8. Let T : {1, 2, 3} → {1, 2, 3} be such that T (1) = 3, T (2) = 2 and

T (3) = 1. It obvious that T is not MWP mapping. We see that FT = {2}, d(x, Tx) = 2

and d(x, FT ) = 1 where x 6= 2 and hence we can choose c > 0 with satisfying d(x, FT ) ≤
cd(x, Tx) for all x ∈ {1, 2, 3}. Therefore T is a Collage multi-valued mapping.

Our main results are the followings.

Theorem 6.9. Let (X, d) be a metric space and T1, T2 : X → P(X) be two multi-valued

mappings. Suppose that:

(i) Ti is a ci-Collage multi-valued mapping, for i ∈ {1, 2} and

(ii) there exists η > 0 such that H(T1x, T2x) ≤ η, for all x ∈ X.

Then H(FT1 , FT2) ≤ η max{c1, c2}.

Proof. We note that

H(FT1 , FT2) = max{ sup
a∈FT2

d(a, FT1), sup
b∈FT1

d(b, FT2)}.

Since Ti is a ci-Collage multi-valued mappings, for i ∈ {1, 2},

H(FT1 , FT2) ≤ max{ sup
a∈FT2

c1d(a, T1a), sup
b∈FT1

c2d(b, T2b)},

that is

H(FT1 , FT2) ≤ max{c1, c2}max{ sup
a∈FT2

d(a, T1a), sup
b∈FT1

d(b, T2b)}.
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Since a ∈ T2a and b ∈ T2b,

H(FT1 , FT2) ≤ max{c1, c2}max{ sup
a∈FT2

H(T2a, T1a), sup
b∈FT1

H(T1b, T2b)}.

Therefore, by assumption we have H(FT1 , FT2) ≤ η max{c1, c2}. Then we complete

the proof.

Corollary 6.10. Let (X, d) be a complete metric space and Tn : X → CB(X) be a

sequence of Collage multi-valued with Collage constants cn such that supn cn < ∞.

Suppose that Tn → T with the metric d∞ and T is a Collage multi-valued mapping.

Then FTn → FT with the Hausdorff metric.

Proof. This is obvious by Theorem 6.9.

Let us consider several consequences of this result which follow by Example 6.5,

Remark 6.7 and Theorem 6.9.

Corollary 6.11. Let (X, d) be a metric space and T1, T2 : X → CB(X) be two multi-

valued mappings for which there exist positive real numbers αi, βi and γi, αi+βi+γi < 1

such that

H(Tix, Tiy) ≤ αid(x, y) + βid(x, Tx) + γid(y, Ty),

for all x, y ∈ X and i ∈ {1, 2}.
Suppose that there exists η > 0 such that H(T1x, T2x) ≤ η for all x ∈ X.

Then

H(FT1 , FT2) ≤ η max{c1, c2},
with ci = (1− γi)[1− (αi + βi + γi)]−1, i ∈ {1, 2}.

Corollary 6.12. Let (X, d) be a metric space and T1, T2 : X → CB(X) be two multi-

valued mappings for which there exist positive real numbers αi and βi, αi + βi+ < 1

such that

H(Tix, Tiy) ≤ αid(x, y) + βid(y, Ty),
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for all x ∈ X, y ∈ Tx and i ∈ {1, 2}.
Suppose that there exists η > 0 such that H(T1x, T2x) ≤ η for all x ∈ X.

Then H(FT1 , FT2) ≤ η max{c1, c2}, with ci = (1− βi)[1− (αi + βi)]−1, i ∈ {1, 2}.

Corollary 6.13. Let x0 ∈ X and r > 0. Let T : B̃(x0, r) → CB(X), where B̃(x0, r) =

{x ∈ X : d(x0, x) ≤ r} be a multi-valued mapping for which there exist α, β, γ ∈ R+ and

α + β + γ < 1 such that

(i) H(Tx, Ty) ≤ αd(x, y) + βd(x, Tx) + γd(y, Ty), ∀x, y ∈ B̃(x0, r)

(ii) δ(x0, Tx0) < [1− (α + β + γ)](1− γ)−1r.

Suppose that there exists η > 0 such that H(T1x, T2x) ≤ η for all x ∈ X.

Then H(FT1 , FT2) ≤ η max{c1, c2}, with with c = (1− γ)[1− (α + β + γ)]−1.
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