จุดตรึงและจุดใกล้เคียงที่สุดของการส่งแบบวน

Thesis Title

By
Field of Study
Thesis Advisor

FIXED POINTS AND BEST PROXIMITY POINTS OF A CYCLIC MAP

Mr. Annop Kaewkhao
Mathematics
Professor Kritsana Neammanee, Ph.D.

Accepted by the Faculty of Selence, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctoral Degree

(Professor Supot Haynongbua. Dr.rer.nat.)

THESIS COMMITTED

(Associate Professof Imphit Permwuttipong, Ph.D.)

(Professof Kitisana Neammanee, Ph.D.)

Suthep....Suantory......... External Examiner
(Professor Suthep Suantai, Ph.D.)

อรรแพ แก้วขาว : จดตรึงและจุดใกล้เดียงที่สุดของการส่งแบบวน(FIXED POINTS AND BEST PROXIMITY POINTS OF A CYCLIC MAP) อ.ที่ปรีกษาวิทยานิพนธ์หลัก : ศ. ตร. กฤษณะ เนียมมณี, 50 หน้า

วิทยานิพนธ์ดบับนี้ประกอบด้วขสองส่วน
ในส่วนแรก เราตอบคำถามของ Al -Thagati !nะ shahzad เกี่ยวกับการมีจุดใกล้เคียงที่สุดของการ ส่งหดตัวชนิดฟีแบบวนบนปริภูมิบานาตแบบสะท้อน นยกนกนั้นเราขยายผลทฤษฎีบทของ Al -Thagafi และ Shahzad ไปสู่ปริภูมิอิงระยะทางที่สอภลคืองกัษสมบัติบC

 ค่าชนิดพิเศษบางกลุ่ม

ศูนย์วิทยทรัพยากร

 จุหาลงกรณ์มหาวิทยาลัยภาควิชา ...คณิตศาสตร์...
สาขาวิชา ...คณิตศาสตร์...
ปีการกึกตา 2553.

\# \# 5073899323 : MAJOR MATHEMATICS
KEYWORDS : BEST PROXIMITY POINT / CONTRACTION MAP / CYCLIC MAP / DATA DEPENDENCE / MULTI VALUED MAP

ANNOP KAEWKHAO : FLXED POINTS AND BEST PROXIMITY POINTS OF A CYCLIC MAP. ADVISOR :PROF. KRITSANA NEAMMANEE, Ph.D., 50 pp .

This thesis contains two prits.
In the first part, we proyide a positive answer to a question raised by Al-Thagafi and Shahzad on the existeace:of:abest proximity point for a cyclic φ-contraction map in a reflexive Banach space, Moreover, we extend the Al-Thagafi and Shahzad theorem to metric spaces with property UC.

In the second part, we prove that the Picard projection iteration sequence converges to a fixed point and the rate of convergence is given. We also prove the generalize Collage Theorem for a multi-valued weak contraction map, In addition, we extend the cyctic condition to multi-yalued maps and study the existence of a fixed point and the existence of a best proximity point for the map having been extended. Moreover, we stydy data dependence problem for a special class of multi-valued maps. $89 \sim 9 N ? \cap ?$

จุหาลงกรณ์มหาวิทยาลัย

Department : ...Mathematics...
Field of Study : ...Mathematics...
 Academic Year ; \qquad 2010 \qquad

ACKNOWLEDGEMENTS

I am greatly indebted to Professor Dr. Kritsana Neammanee, my thesis advisor, for his willingness to sacrifice his time to suggest and advise me in preparing and writing this thesis. I would like to thank Professor Dr. Suthep Suantai, Associate Professor Dr. Imchit Termwuttipong, Associate Professor Dr. Phichet Chaoha and Assistant Professor Dr. Songkiat Sumetkijakan, my thesis committee, for their suggestions to this thesis. I appreciate mentioning that my graduate study was supported in part by Burapha University, under UDC project scholarship. I would like to thank all of my teachers for my knowledge and skill.

Finally, I would like to express my deep gratitude to my beloved family for their love and encouragement throughoutmy graduate study, in particular, thank you my brother for his helpful suggestionsuashi

CONTENTS

page
ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH v
ACKNOWLEDGEMENTS vi
CONTENTS vii
CHAPTER
I INTRODUCTION 1
II PRELIMINARIES 3
III CYCLIC φ-CONTRACTION MAPPING 10
IV MULTI-VALUED WEAK CONTRACTION MAPPING 23
V CYCLIC MULTI-VALUED MAPPING 37
VI DATA DEPENDENCE... 43
REFERENCES 48
VITA 50

CHAPTER I

INTRODUCTION

Let (X, d) be a metric space and $T: X \rightarrow X$ be a self map. We say that $x \in X$ is a fixed point of T if $x=T x$. A fundamental result in fixed point theory is the Banach contraction principle which ensures that a contraction map on a complete metric space has a fixed point. Several extensions of this result have appeared in subsequent papers.

In 2003, one of the interesting extensions was given by Kirk, Srinivasan, and Veeramani [17]. They extended the fixed point theory from a self map to a map defined on the union of two subsets A and B of a metric space and satisfying the cyclic condition, i.e. $T(A) \subseteq B$ and $T(B) \subseteq A$. Their result showed that, if there exists $k \in(0,1)$ such that the map T satisfies $d(T x, T y) \leqslant d(x, y)$ for all $x \in A, y \in B$, then T has a unique fixed point in $A \cap B$.

In 2006, Eldred and Veeramani 13 extended the theorem of [17] to the case where $A \cap B=\varnothing$ and T is a cyclic contraction map by using the concept of best proximity points. They showed that, on a nonempty closed and convex subset of a uniformly convex Banachspace, a cyelicogontraction map T has unique best proximity point. And they raised a question that, does the conclusion of their result still hold or not where X is a reflexive Banach space 9198
In 2009 , Al-Thagafi and Shahzad $[1]$ provided a positive answer of this question by adding some conditions. Moreover, they introduced a new class of maps, called cyclic φ-contractions, which contains the cyclic contraction mapping as a subclass. The existence and convergence results of a best proximity point are obtained on a nonempty closed and convex subsets of a uniformly convex Banach space. They also raised the question that, in reflexive Banach space the existence of best proximity points still hold for the case of a cyclic φ-contraction mapping or not.

In the first part of this thesis, we extend the result of Al-Thagafi and Shahzad to a metric space with the property UC (introduced in 2009 by Suzuki, Kikkawa and Vetro [31) and provide a positive answer by adding some conditions.

In the second part, we work on multi-valued maps. Let $\mathcal{C B}(X)$ be the family of all nonempty closed bounded subsets of X and let $T: X \rightarrow \mathcal{C B}(X)$ be a multi-valued map. An element $x \in X$ satisfying $x \in T x$ is called a fixed point of multi-valued map T. We denote by H the Hausdorff metric on $C B(X)$ induced by metric d. The study of fixed point theorems for multi-valued mapping has been initiated by Markin [20] and Nadler [23]. The result usually referred to as Nadler's fixed point theorem and extended the Banach contraction principle from single valued maps to multi-valued maps. Since then, extensive literatures have been developed. There consist of many theorems dealing with fixed points for multi-valued mappings, see $[2,3,10,11,22,24,26,27]$. Most of these cases require the image of each point to be closed and bounded. In others words, to be compact. In this part, we study Theorems on multi-valued maps. We extend the cyclic condition to multi-valued maps defined on the union of two subsets A and B of a metric space, i.e., $T x \in \mathcal{C B}(B)$ and $T y^{\prime} \in \mathcal{C B}(A)$ for all $x \in A$ and $y \in B$, and gave the existence of a best proximity point for multi-valued cyclic map.

This study was onganized into 6 chapters as follows: Chapter I is an introduction to the research problem. Chapter II is concerned with some well known definitions and useful results that will be used in our research.

$$
6 \mathrm{O}
$$

In Chapterfif, que extend the Theoternof All Thagafi and Shâhzad to a metric space with property UC and provide a positive answer for the question of them by adding some conditions. a fixed point, with a rate of convergence is given. The generalize Collage Theorem for a special class of multi-valued mappings is also proved.

In Chapter V, we extend the cyclic condition to multi-valued mappings and study the existence of a fixed point and the existence of a best proximity point.

In Chapter VI, we study data dependence problem for a special class of multi-valued mappings.

CHAPTER II

PRELIMINARIES

In this chapter, we collect information that will be needed for understanding of the research work. Almost all of them are merely stated without proof, since if can be found in many standard text book, for example in 15,32 .

Let X be a nonempty set. A metric on X is a real function $d: X \times X \rightarrow[0, \infty)$ which satisfies the following three conditions: For any x, y, z in X

1. $d(x, y) \geq 0$, and $d(x, y)=0 \Leftrightarrow x \geq y$;
2. $d(x, y)=d(y, x)$;
3. $d(x, y) \leq d(x, z)+d(z, y)$.

The space X with a metric d define on $X \times X$ is called a metric space. Let X be a metric space with metric d. If x_{0} is a point of X and r is a positive real number, the open ball $B_{r}\left(x_{0}\right)$ with center x_{0} and radius r is the subset of X define by

$$
B_{r}\left(x_{0}\right)=\left\{x \in X: d\left(x, x_{0}\right)<r\right\}
$$

The closed ball $B_{r}\left[x_{0}\right]$ is define by

ค9 $9 \quad B_{0}\left[x_{0}\right] \neq\left\{x \in X_{0}: d\left(x, x_{0}\right) \leq r\right\}$.

A subset G of the metric space X is called an open set, if given any point x in G, there exists a positive real number nuch that $B_{r}(x) \subset G$. A subset F of X is called a closed set if the complement F^{c} of F is open. A subset C of X is called a bounded set if there exists a positive real number M such that $d(x, y) \leq M$ for all $x, y \in C$.

Let X be a metric space with metric d, and let $\left\{x_{n}\right\}$ be a sequence of points in X. We say that $\left\{x_{n}\right\}$ is convergent if there exists a point x in X such that for each $\epsilon>0$, we can find a positive integer n_{0} with

$$
n \geq n_{0} \Rightarrow d\left(x, x_{n}\right)<\epsilon
$$

We usually symbolize this by writing $x_{n} \rightarrow x$ or $\lim _{n \rightarrow \infty} x_{n}=x$, and express it verbally by saying that $\left\{x_{n}\right\}$ converges to x. The point x is called the limit of the sequence $\left\{x_{n}\right\}$.

Theorem 2.1. A subset F of a metric space X is closed if and only if

$$
\left\{x_{n}\right\} \subset F \text { and } \lim _{n \rightarrow \infty} x_{n}=x \Rightarrow x \in F .
$$

A sequence $\left\{x_{n}\right\}$ in X is a Cauchy sequence if for each $\epsilon>0$, there exists a positive integer n_{0} such that

$$
m_{0} \Rightarrow d\left(x_{m}, x_{n}\right)<\varepsilon .
$$

It is obvious that every convergent sequence is a Cauchy sequence. A complete metric space is a metric space in which every Cauchy sequence is convergent. The following fact is quite useful.

Theorem 2.2. Every closed subsspace of a complete metric space is itself complete.

Let X and Y be metric spaces with metrics d_{1} and d_{2}, respectively, and let T be a mapping of X into $Y . T$ is said to be continuous at a point x_{0} in X if for each $\epsilon>0$, there exists

A mapping of X pinto Y_{0} is said to be continuous if it is continuous at each point in its domain X. A

A mapping T of X into Y is called contractive if

$$
d_{2}(T x, T y)<d_{1}(x, y) \text { for all } x, y \in X .
$$

A mapping T of X into Y is called c-contraction if there exists a positive number $c<1$ with the property that

$$
d_{2}(T x, T y) \leq c d_{1}(x, y) \text { for all } x, y \in X
$$

It is obvious that such mappings are continuous.
Let (X, d) be a metric space and let $T: X \rightarrow X$ be a map. We say that $x \in X$ is a fixed point of T if $T x=x$. There are some well-known results on fixed point theorems for a mapping on a complete metric space. For instance,

Theorem 2.3. [4] (Banach Contraction Theorem) Let (X, d) be a complete metric space and $T: X \rightarrow X$ be a c-contraction mapping. Then T has a unique fixed point.

Theorem 2.4. [5, 6] (Collage Theorem) Let (X,d) be a complete metric space and $T: X \rightarrow X$ be a c-contraction mapping, Then for any $x \in X$,
where x^{*} is the fixed point of T.

Theorem 2.5. [8] (Continuity of Fixed Points) Let (X, d) be a complete metric space and $T_{1}, T_{2}: X \rightarrow X$ be contraction mappings with contraction factors c_{1} and c_{2} and fixed points x_{1}^{*} and x_{2}^{*}, respectively.t Then

where $d_{\infty}\left(T_{1}, T_{2}\right)$
Theorem 2.6. 14] (Kannan's Theorem) Let (X, d) be a complete metric space and $T: X \rightarrow X$. If there exists a real numberbwith $0 \leq b<\frac{1}{2}$ such that, $d(T x, T y) \leq$ $b[d(x, T x)+d(\hat{9}, T y)]$ for all $x, y \in X$. Then $T \mid$ has a unique fixed point.
 $c[d(x, T y)+d(y, T x)]$ for all $x, y \in X$. Then T has a unique fixed point.

Let X be a nonempty set. A class \mathcal{F} of subsets of X is called topology on X if it satisfies the following conditions:

1. $X \in \mathcal{F}$ and $\varnothing \in \mathcal{F}$;
2. the union of every class of sets in \mathcal{F} is a set in \mathcal{F};
3. the intersection of every finite class of sets in \mathcal{F} is in \mathcal{F}.

A topological space consists of two objects: A nonempty set X and a topology \mathcal{F} on X. The set in the class \mathcal{F} are called the open sets of the topological space (X, \mathcal{F}). It is customary to denote the topological space (X, \mathcal{F}) by the symbol X which is used for its underlying set of points. A closed set in a topological space is a set whose complement is open. Let (X, d) be any metric space, and let the topology be the class of all subsets of X which are open in the sense of the definition in the metric space. This is called the usual topology on a metric space, and we say that these sets are the open sets generated by the metric d on the space. Let X be a topological space and let A be a subset of X. A closure A of a subset A is defined to be the intersection of all closed subsets of X which contains A. A class $\left\{\mathcal{F}_{\mu}: \mu \in D\right\}$ of open subsets of X is said to be an open cover of A if each point in A belongs to at least one of \mathcal{F}_{μ} 's, that is, $\bigcup_{\mu \in D} \mathcal{F}_{\mu} \supset A$. A subclass of an open cover which is itself an open cover is called a subcover. A subset A of a topological space X is called compact if every open cover of A has a finite subcover and it-is called relatively compact if \bar{A} is compact. In particular, if X is compact, X is said to be a compact space. This definition applies to metric space as well. In this case, there is a characterization of compactness.

Theorem 2.8. A subset A of a metric space X is compact if and only if any sequence $\left\{x_{n}\right\}$ of points of A has a subsequence $\left\{x_{n_{k}}\right\}$ which converges to a point of A.

A normed linear space isa linearspace X in which to each vector x there corresponds a real number, denoted by $\|x\|$ and called the norm of x, in such a manner that

2. $\|\alpha x\|=|\alpha|\|x\|$;
3. $\|x+y\| \leq\|x\|+\|y\|$, for any x and y in X and for any $\alpha \in \mathbb{R}$.

It is easy to verify that the normed linear space X is a metric space with respect to the metric d defined by $d(x, y)=\|x-y\|$. A subset C of a normed linear space is said to be convex if $\lambda x+(1-\lambda) y \in C$ for each $x, y \in C$ and each scalar $\lambda \in[0,1]$. A Banach space is a complete normed linear space.

Let X be a Banach space, and let $T: X \rightarrow \mathbb{R}$ be a linear functional, that is, $T(\alpha x+\beta y)=\alpha T(x)+\beta T(y)$ for all $x, y \in X$ and $\alpha, \beta \in \mathbb{R}$. In addition, T is called bounded if there exists a real number $K \geq 0$ with the property that $|T(x)| \leq K\|x\|$ for all $x \in X$. It is not difficult to see that if T is continuous then T is bounded but the converse is not true. If T is a linear functional, then the following conditions on T are all equivalent to the other.

1. T is continuous;
2. T is bounded;
3. T is continuous at the origin

We now denote the set of all bounded (or continuous) linear functionals of X by X^{*}. For $x \in X$ and $f \in X^{*}$ defined $i(x)(f)=f(x)$. It is easily seen that $i(x) \in X^{* *}$ and that, in fact, the map $i: X \rightarrow X^{* *}$ is an isometric isomorphism, called the canonical embedding of X into $X^{* *}$. If $i(X)=X^{* *}$, then X is said to be reflexive. The weak topology on X is the smallest topology such that each bounded linear functional on X is continuous. We say that a sequence $\left\{x_{n}\right\}$ in converges weakly to x if $\left\{x_{n}\right\}$ converges to x in the weak topology, that is $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(x)$ for all $f \in X^{*}$, and denoted by $x_{n} \rightharpoonup x$. A subset C of X is weakly closed if it is closed in the weak topology. The weakly open sets are now taken as those sets whose complements are weakly closed. Sets which are compact in this topology are said to be weakly compact.
Theorem 2.9. Let C be convex subset of a Banach space X. Then C is closed in the

Theorem 2.10. Let $\left\{x_{n}\right\}$ be a sequence in a Banach space X. If $x_{n} \rightharpoonup x_{0}$, then $\left\{x_{n}\right\}$ is a bounded set.

Theorem 2.11. Let $\left\{x_{n}\right\}$ be a sequence in a Banach space X. If $x_{n} \rightharpoonup x_{0}$, then $\left\|x_{0}\right\| \leq \lim \inf \left\|x_{n}\right\|$.

Theorem 2.12. Let X be a Banach space. Then X is reflexive if and only if every bounded closed convex subset of X is weakly compact.

Convexity of Banach Spaces : Let X be a Banach space. Then X is strictly convex if for all $x, y, p \in X$ and $R>0$,

$$
\|x-p\| \leq R,\|y-p\| \leq R, x \neq y \Rightarrow\left\|\frac{x+y}{2}\right\|<R .
$$

This condition is equivalent to the following:

$$
\|x\|=\|y\|=1, x \neq y \Rightarrow\|x+y\|<2 .
$$

A Banach space X is uniformly convex if for any two sequence $\left\{x_{n}\right\},\left\{y_{n}\right\}$ in X such that

$$
\| \widehat{x_{n}\|=\| y_{n} \|}=1 \text { and } \lim _{n \rightarrow \infty}\left\|x_{n}+y_{n}\right\|=2,
$$

then $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0$. We first have the following:
Theorem 2.13. Let X be a Banach späce, Then the following conditions are equivalent:

1. X is uniformly convex;
2. if for any two sequences $\left\|x_{n}\right\|_{2} d y_{n} \|_{\text {in }} X$,

$$
\lim _{n \rightarrow \infty}\left\|x_{n}\right\|=\frac{\lim _{n}\left\|y_{n}\right\| \leq 1}{} \text { and } \lim _{n \rightarrow \infty}\left\|x_{n}+y_{n}\right\|=2 \text {, }
$$

then $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0 ;$
3. for any ϵ with $0<\epsilon \leq 2$, there exists $\delta>0$ depending only on ϵ such that

for any $x, y \in X$ withe $\|x\|=\|y\|=1$ and $\|x-y\| \geq \epsilon$.
As a direct consequence of the previous theorem, we have the following:

Remark 2.15. The converse of Theorem 2.14 is not true (see [21] in page 451).
Let X be a Banach space. Then we define a function $\delta:[0,2] \rightarrow[0,1]$ called the modulus of convexity of X as follows:

$$
\delta(\epsilon)=\inf \left\{1-\frac{\|x+y\|}{2}:\|x\| \leq 1,\|y\| \leq 1,\|x-y\| \geq \epsilon\right\} .
$$

It is obvious that δ is a nondecreasing function. That is, if $\epsilon_{1} \leq \epsilon_{2}$, then $\delta\left(\epsilon_{1}\right) \leq \delta\left(\epsilon_{2}\right)$. We also have the following:

Theorem 2.16. Let X be a Banach space. Then E is uniformly convex if and only if $\delta(\epsilon)>0$ for all $\epsilon>0$.

The following theorem is really useful.

Theorem 2.17. Let X be a uniformly convex Banach space. Then, for any r and ϵ with $0<\epsilon \leq r$, the inequalities $\|x\| \leq r,\|y\| \leq r$ and $\|x-y\| \geq \epsilon$ imply $\delta\left(\frac{\epsilon}{r}\right)>0$ and
where δ is the modulus of convexity of X.
Theorem 2.18. If a Banach space X is uniformly convex, then X is reflexive.

ศูนย์วิทยทรัพยากร
จุหาลงกรณ์มหาวิทยาลัย

CHAPTER III

CYCLIC φ-CONTRACTION MAPPING

In this chapter, we study theorems on al cyclic φ-contraction mapping. Let A and B be nonempty subsets of a metric space (x,d). A mapping $T: A \cup B \rightarrow X$ is said to be a cyclic mapping if $T(A) \subseteq B$ and $T(B) \subseteq A$.
In 2003, Kirk, Srinivasan, and Veeramani [17] extended the Banach contraction theorem for self map to a map T defined on the union of two subsets A and B of a metric space and satisfying the cyclic condition. The result ensure that $A \cap B \neq \varnothing$.

Theorem 3.1. 17] Let A and B be nonempty closed subsets of a complete metric space (X, d) and let $T: A \cup B \rightarrow A \cup B$ be a cyclic mapping. If there exists $k \in(0,1)$ such that

$$
\begin{equation*}
d(T x, T y) \leq k d(x, y) \quad \text { for all } x \in A \text { and } y \in B . \tag{3.1}
\end{equation*}
$$

Then $A \cap B \neq \varnothing$ and T has a unique fixed point in $A \cap B$.
In 2006, Eldred and Veeramani [13] extended this result to the case where $A \cap B=\varnothing$ and T is a cyclic contraction mapping by using the concept of a best proximity point. A mapping $T: A \cup B \rightarrow A \ominus B$ is said to beld cyclic contraction if T is a cyclic and there exists $k \in(0,1)$ such that $\% 9 \% M E \cap T \delta$

$$
\begin{equation*}
\text { Q } d(T, T, T) \leq\left(x d(x, y)+\left(1-(k) d(A, B) \text { for all } x \in A\left|\frac{\text { and }}{6} y\right| \in B\right.\right. \tag{3.2}
\end{equation*}
$$

A point x in $A \cup B$ is called a best proximity point of T if $d(x, T x)=d(A, B)$, where $d(A, B)=\inf \{d(x, y): x \in A, y \in B\}$. Obvious that in case of $A \cap B \neq \varnothing$, (3.1) and (3.2) are equivalent and a best proximity point of T is a fixed point of T. Theorem 3.2 is an extension of Theorem 3.1.

Theorem 3.2. [13] Let A and B be nonempty closed and convex subsets of a uniformly convex Banach space X and $T: A \cup B \rightarrow A \cup B$ be a cyclic contraction mapping. Then
for every $x_{0} \in A$, there exists a unique $z \in A$ such that z is a best proximity point and $x_{2 n} \rightarrow z$ where $x_{n+1}=T x_{n}$.

Question 1: In their paper, Eldred and Veeramani raised the problem that the conclusion of Theorem 3.2 still hold or not if X is a reflexive Banach space.

In 2009, Suzuki, Kikkawa and Vetro 31] prove the existence of best proximity points for a special map which contains the cyclic contraction mappings as a subclass on a metric space with the property UC. Let A and B be nonempty subsets of a metric space (X, d). (A, B) is said to satisfy the property $\boldsymbol{U C}$ if the following holds:

If $\left\{x_{n}\right\}$ and $\left\{x_{n}^{\prime}\right\}$ are sequences in A and $\left\{y_{n}\right\}$ is a sequence in B such that
$\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=d(A, B)$ and $\lim _{n \rightarrow \infty} d\left(x_{n}^{\prime}, y_{n}\right)=d(A, B)$, then $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n}^{\prime}\right)=0$.
Example 3.3. [31] Let A and B be nonempty subsets of a metric space (X, d).

1. Let $d(A, B)=0$. Then (A, B) satisfies the property $U C$.
2. Let A^{\prime} and B^{\prime} be nonempty subsets $A \subseteq A^{\prime}, B \subseteq B^{\prime}$ and $d(A, B)=d\left(A^{\prime}, B^{\prime}\right)$. If $\left(A^{\prime}, B^{\prime}\right)$ satisfies the property $U C$, then (A, B) also satisfies the property $U C$.
3. Let X be a uniformly convex Banach space. Assume that A is convex. Then (A, B) has theproperty UC.
4. Let X be a strictly convex Banach space X. Assume that A is convex and relatively compact, and the closure of B is weakly compact. Then (A, B) has the property

Theorem 3.4 is ${ }^{2} \mid$ result of [31].
 of X such that (A, B) satisfies the property $U C$. Let T be a cyclic mapping on $A \cup B$ and there exists $r \in[0,1)$ such that

$$
\begin{equation*}
d(T x, T y) \leq r \max \{d(x, y), d(x, T x), d(y, T y)\}+(1-r) d(A, B) \tag{3.3}
\end{equation*}
$$

for all $x \in A$ and $y \in B$. Fixed $x_{0} \in A$ and define $x_{n+1}=T x_{n}$ for each $n \geq 0$. If A is complete, then there exists a unique $z \in A$ such that $x_{2 n} \rightarrow z, T^{2} z=z$ and z is a best proximity point.

Al-Thagafi and Shahzad[1] provided a positive answer of question 1 by adding some conditions.

Theorem 3.5. [1] Let A and B be nonempty closed convex subsets of a reflexive strictly convex Banach space X, and $T: A \cup B \rightarrow A \cup B$ be a cyclic contraction mapping. If $(A-A) \cap(B-B)=\{0\}$, then there exists a unique $z \in A$ such that z is a best proximity point and $T^{2} z=z$.

Theorem 3.6. [1] Let A and B be nonempty subsets of a reflexive Banach space X such that A is closed convex and let $T: A \cup B \rightarrow A \cup B$ be a cyclic contraction mapping. Then there exists a best proximity point z in A if one of the following conditions is satisfied:
(a) T is weakly continuous on A.
(b) T satisfies the proximal property, i.e.,
if $x_{n} \rightharpoonup x \in A \cup B$ and $\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=d(A, B)$, then $\|x-T x\|=d(A, B)$.
Furthermore, this point is unique if X is strictly convex.

Moreover, Al-Thagafi and Shahzad-introduced a new class of maps, called cyclic φ contraction, which contains the cyclic contraction mapping as a subclass.

Definition 3.7. Let A and B be nonempty subsets of a metric space (X, d). Let T : $A \cup B \rightarrow A \cup B$ be cyclic and $\varphi:[0, \infty) \rightarrow[0, \infty)$ be strictly increasing. The mapping T is said to be cyclic φ-contraction if

Since φ is strictly increasing and T is cyclic, we have the Proposition 3.8.

Proposition 3.8. Let A and B be nonempty subsets of a metric space (X, d). If T : $A \cup B \rightarrow A \cup B$ is a cyclic φ-contraction mapping, then $d\left(T^{2} x, T x\right) \leq d(T x, x)$ for all $x \in A \cup B$. Furthermore, $d(T x, T y) \leq d(x, y)$ for all $x \in A$ and $y \in B$.

Convergence and existence criterion of best proximity point for cyclic φ-contraction mappings are obtained in Theorem 3.9.

Theorem 3.9. [1] Let A and B be nonempty subsets of a uniformly convex Banach space X such that A is closed and convex and let $T: A \cup B \rightarrow A \cup B$ be a cyclic φ contraction mapping. Let $x_{0} \in A$ and $x_{n+1}=T x_{n}$. Then there exists a unique $z \in A$ such that $x_{2 n} \rightarrow z, T^{2} z=z$ and z is a best proximity point of T.

Al-Thagafi and Shahzad[1] also raised the following question:
Question 2. Do the Theorem 3.5 and 3.6 still hold for the case of a cyclic φ-contraction mapping ?

In this chapter, we extend Theorem 3.9 to a metric space with the property UC in the Theorem 3.13. In addition, we give an existence of a best proximity point in a reflexive Banach space in Theorem 3.19 and/Theorem 3.22. This implies a positive answer of Question 2.

3.1 Cyclic φ-contraction naps with property UC

In this section, we extend Theorem 3.9 to a metric space with the property UC in the Theorem 3.13 . We begin with some lemmas which are related to the context of our results.

Lemma 3.10. Let A and B be nonempty subsets of a metric space (X, d) such that (A, B) satisfies the property $U C$ and let $T: A \cup B \rightarrow A \cup B$ be a cyclic φ-contraction map. Let $z \in A$. Then the followings are equivalent:

In this case, $T z$ is a best proximity point of T in B.

Proof. We first show that (i) implies (ii). Assume that z is a best proximity point of T. Since φ is strictly increasing and T is cyclic, by Proposition 3.8, we have

$$
\begin{aligned}
d(A, B) & \leq d\left(T^{2} z, T z\right) \\
& \leq d(T z, z) \\
& =d(A, B)
\end{aligned}
$$

Thus, $d\left(T^{2} z, T z\right)=d(A, B)=d(T z, z)$. This implies that $T z$ is a best proximity point of T in B and by the property UC, we have $d\left(T^{2} z, z\right)=0$. Hence $T^{2} z=z$, that is z is a fixed point of T^{2}.
To prove (ii) implies (i), we assume that z is a fixed point of T^{2} and z is not a best proximity point of T. Hence

$$
\begin{equation*}
d(A, B)<d(z, T z) . \tag{3.4}
\end{equation*}
$$

By (3.4) and the facts that φ is strictly increasing and T is φ-contraction, we have

$$
d(z, T z)=d\left(T^{2} z, T z\right)
$$

$$
d(T z, z)-\varphi(d(T z, z))+\varphi(d(A, B))
$$

$$
d(T z, z),
$$

which is a contradiction. Hence z is a best proximity point of T.

Lemma 3.11. [1] Let A and B be nonempty subsets of a metric space (X, d) and let $T: A \cup B \rightarrow A \cup B$ be a cyclic φ-contraction map. Then, for any fixed $x_{0} \in A \cup B$ and $x_{n+1}=T x_{n}$, we have $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=d(A, B)$.

Lemma 3.12. Let A and B be nomempty subsets of a metric space (X, d) such that (A, B) satisfies the property $U C$ and let $T: A \cup B \rightarrow A \cup B$ be a cyclic φ-contraction map. Then, for any fixed $x_{0} \in A \cup B$ and $x_{n+1}=T x_{n}$, we have $\left\{x_{2 n}\right\}$ is a Cauchy sequence.
 suppose the contrary. Then there exists $\epsilon_{0}>0$ such that for each $k \geq 1$, there is $m_{k}>n_{k} \geq k$ satisfying $d\left(x_{2 n_{k}} x_{2 m_{k}}\{)^{\epsilon_{0}} 98 \cap \cap\right.$
By Lemma 3.11, we have $\lim _{n \rightarrow \infty} d\left(x_{2 n+2}, x_{2 n+1}\right)=d(A, B), \lim _{n \rightarrow \infty} d\left(x_{2 n}, x_{2 n+1}\right)=d(A, B)$ and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{2 n_{k}}, x_{2 n_{k}+1}\right)=d(A, B) . \tag{3.5}
\end{equation*}
$$

From the property UC of (A, B), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{2 n+2}, x_{2 n}\right)=0 . \tag{3.6}
\end{equation*}
$$

From (3.5), (3.6) and the fact that

$$
\begin{aligned}
d(A, B) \leq & d\left(x_{2 n_{k}+1}, x_{2 m_{k}}\right) \\
\leq & d\left(x_{2 n_{k}+1}, x_{2 n_{k}+2}\right)+d\left(x_{2 n_{k}+2}, x_{2 n_{k}+4}\right)+\cdots \\
& \cdots+d\left(x_{2 m_{k}-4}, x_{2 m_{k}-2}\right)+d\left(x_{2 m_{k}-2}, x_{2 m_{k}}\right) .
\end{aligned}
$$

Thus

$$
\begin{equation*}
d(A, B) \leq \lim _{k \rightarrow \infty} d\left(x_{2 m_{k}}, x_{2 n_{k}+1}\right) \leq d(A, B) . \tag{3.7}
\end{equation*}
$$

Hence $\lim _{k \rightarrow \infty} d\left(x_{2 m_{k}}, x_{2 n_{k}+1}\right)=d(A, B)$.
From this fact, the equality (3.5) and the UC-property of (A, B), we have

$$
\lim _{k \rightarrow} d\left(x_{2 n_{k}}, x_{2 m_{k}}\right)=0
$$

This contradicts the assumption that $d\left(x_{2 n_{k}}, x_{2 m_{k}}\right)>\epsilon_{0}$. Therefore $\left\{x_{2 n}\right\}$ is Cauchy.

Theorem 3.13. Let A and B be nonempty subsets of a metric space (X, d) such that (A, B) satisfies the property $U C$ and A is complete. Let $T: A \cup B \rightarrow A \cup B$ be a cyclic φ-contraction map. Then the followings hold:
(i) T has a unique best proximity point z in A.
(ii) z is a unique fixed point of T^{2} in A.
(iii) T has at least one best proximity point in B.

Proof. (i) Fix $x_{0} \mathrm{~J} \in A$ and let $x_{n+1}=T x_{n}$. By Lemma 3.12, $\left\{x_{2 n}\right\}$ is a Cauchy sequence in A. Since A is complete there existsfzad such that $\lim _{n \rightarrow \infty} d\left(z_{6}^{2 n}\right)$ 여 0 .
Hence, by Lemma 3.11 and the fact that

$$
d(A, B) \leq d\left(z, x_{2 n-1}\right) \leq d\left(z, x_{2 n}\right)+d\left(x_{2 n}, x_{2 n-1}\right),
$$

we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(z, x_{2 n-1}\right)=d(A, B) . \tag{3.8}
\end{equation*}
$$

Since $\left\{x_{2 n}\right\}$ belongs to $A, T z \in B$ and Proposition 3.8, we have

$$
\begin{align*}
d(A, B) & \leq d\left(x_{2 n}, T z\right) \\
& =d\left(T x_{2 n-1}, T z\right) \tag{3.9}\\
& \leq d\left(x_{2 n-1}, z\right) .
\end{align*}
$$

Therefore, letting $n \rightarrow \infty$ in (3.9) and (3.8), we have

$$
\begin{equation*}
d(z, T z)=d(A, B), \tag{3.10}
\end{equation*}
$$

i.e., z is a best proximity point of T in A.

In order to show the uniqueness, wo let z^{\prime} be another best proximity point of T in A.
By Lemma 3.10, we have $z^{\prime}=T^{2} z^{\prime}$. From this fact and Proposition 3.8, we have

Next we will show that

Suppose that $d\left(z^{\prime}, T z\right)>d(A, B)$. Then

$$
\begin{aligned}
& \leq d\left(z^{\prime}, T z\right)-\varphi\left(d\left(z^{\prime}, T z\right)\right)+\varphi(d(A, B)) \\
& <d\left(z^{\prime}, T z\right) \text {, }
\end{aligned}
$$

which contradictions to (3.11). Hence (3.12) holds. It follows from (3.10), (3.12) and the property UC of (A, B) that $d\left(z, z^{\prime}\right)=0$. Thus $z=z^{\prime}$.

The conditions (ii) and (iii) follow from (i) and Lemma 3.10.
(iv) is obtained in the proof of (i).

Remark 3.14. In case of $d(A, B)=0$, we know that (A, B) satisfies the property $U C$. Hence we obtain the existence and uniqueness of the fixed point of a cyclic φ-contraction map.

Remark 3.15. For nonempty subsets A and B of a uniformly convex Banach space X, we know that (A, B) has the property $U C$ if A is convex. By this fact, it is obvious that Theorem 3.9 is a consequence of Theorem 3.13. But the converse is not true (see [21] in page 451).

The following examples show that there exist cyclic φ-contraction maps which do not satisfy (3.3).

Example 3.16.

1. Let $X:=\mathbb{R}$ with the usual metric. For $A=B=[0,1]$, define $T: A \cup B \rightarrow A \cup B$
 ([1]). We see that T does not satisfy (3.3). Indeed, suppose there exists $r \in[0,1)$ such that

$$
d(T x, T y) \leq r \max \{d(x, y), d(x, T x), d(y, T y)\}+(1-r) d(A, B)
$$

If $y=T x$, then we have

$d\left(T x, T^{2} x\right) \leq r \max \left\{d(x, T x), d(x, T x), d\left(T x, T^{2} x\right)\right\}+(1-r) d(A, B)$.

Thus

i.e.,

$$
\left|\frac{x}{1+x}-\frac{x}{1+2 x}\right| \leq r\left|x-\frac{x}{1+x}\right|+(1-r) \cdot 0
$$

This implies $\frac{1}{1+2 x} \leq r$ for every $x \in(0,1]$.
Hence, as $x \rightarrow 0, r \geq 1$ which is a contradiction.
2. Let $X:=\mathbb{R}$ with the usual metric. For $A=[0,1]$ and $B=[-1,0]$, define $T: A \cup B \rightarrow A \cup B$ by $T x:=\frac{-x}{1+x}$ if $x \in A$ and $T x:=\frac{-x}{1-x}$ if $x \in B$. If $\varphi(t):=\frac{t^{2}}{1+t}$ for $t \geq 0$, then T is a cyclic φ-contraction map ([$\left.\left.\mathbb{1}\right]\right)$ and by the same argument of the above example, we see that T does not satisfy (3.3).

It follows from the above examples that, there exist pairs of (A, B) with the property UC such that the existence of a best proximity point cannot be obtained from Theorem 3.4.

3.2 Best proximity point on reflexive Banach spaces

In this section, we give the existence of a best proximity point for a map on a reflexive Banach space in Theorem 3.19 and Theorem 3.22. This implies a positive answer of Question 2. To do this, we begin with the following lemmas.

Lemma 3.17. Let A and B be nonempty subsets of a strictly convex Banach space X and let $T: A \cup B \rightarrow A \cup B$ be a cyclic map such that
$\left\|T^{2} x-T x\right\| \leq 4 x-x \|$ for all $x \in A \cup B$.
Assume that A is convex and $d(A, B)>0$. If x is a best proximity point of T in A, then $x=T^{2} x$.

$$
62
$$

Proof. Let x isha best proximitypoint of T in $C A i . e,\|x-T x\|=d(A, B)$.
Since $d(A, B) \leq\left\|T^{2} x-T x\right\| \leq\|x-T x\|=d(A, B)$, then $\left\|T^{2} x-T x\right\|=d(A, B)$.

$$
\begin{aligned}
d(A, B) & \leq\left\|\frac{T^{2} x+x}{2}-T x\right\| \\
& =\left\|\frac{T^{2} x-T x}{2}+\frac{x-T x}{2}\right\| \\
& <d(A, B),
\end{aligned}
$$

which is a contradiction. Thus $T^{2} x=x$.

Lemma 3.18. Suppose that A and B are nonempty subsets of a strictly convex Banach space X such that A is convex and $d(A, B)>0$. Let $T: A \cup B \rightarrow A \cup B$ be a cyclic φ-contraction map, $x \in A$. Then the followings are equivalent:
(i) x is a proximity point of T.
(ii) x is a fixed point of T^{2}.

Moreover, such point x is unique.

Proof. By Lemma 3.17, (i) implies (ii). To prove (ii) implies (i), we can use the same argument of Lemma 3.10.

To show the uniqueness, let x^{\prime} be another best proximity point of T in A i.e., $\left\|x^{\prime}-T x^{\prime}\right\|=$ $d(A, B)$. Then by Lemma 3.17, we have $x=T^{2} x$ and $x^{\prime}=T^{2} x^{\prime}$.

From this, we have

Thus

$$
\begin{aligned}
\left\|T x^{\prime}-x\right\| & =\left\|T x^{\prime}-T^{2} x\right\| \\
& \leq\left\|x^{\prime}-T x\right\|-\varphi\left(\|\left(x^{\prime}, T x \|\right)+\varphi(d(A, B))\right. \\
& <\left\|x^{\prime}-T x\right\|,
\end{aligned}
$$

which contradiction to (3.13). Hence (3.14) holds. Since A is convex, $\frac{x+x^{\prime}}{2} \in A$. It follows from the strict convexity of X that

$$
\begin{aligned}
d(A, B) & \leq\left\|\frac{x+x^{\prime}}{2}-T x\right\| \\
& =\left\|\frac{x-T x}{2}+\frac{x^{\prime}-T x}{2}\right\| \\
& <d(A, B)
\end{aligned}
$$

which is a contradiction. Hence $x^{\prime}=x$.

Theorem 3.19. Let A and B be nonempty closed convex subsets of a reflexive Banach space X such that A is bounded, $d(A, B)>\overline{0}$. And let $T: A \cup B \rightarrow A \cup B$ be a cyclic φ-contraction map. Then T has a best proximity point in A if one of the following conditions is satisfied:
(i) T is weakly continuous on A.
(ii) T satisfies the proximal property.

Furthermore, the best proximity point of T is unique if X is strictly convex.

Proof. For $x_{0} \in A$, let $x_{n+1}=T x_{n}$ for each $n \geq 0$. Since A is bounded, the sequence $\left\{x_{2 n}\right\}$ also bounded. As X is reffexive and A is closed convex, we have $\left\{x_{2 n}\right\}$ has a subsequence $\left\{x_{2 n_{i}}\right\}$ converges weakly to $x \in A$.
(i) Since T is weakly continuous on A and $T(A) \subseteq \underline{B},\left\{x_{2 n_{i}+1}\right\}$ converges weakly to $T x \in B$. Therefore $x_{2 n_{i}}-x_{2 n_{i}+1}$ converge weakly to $x-T x$. Hence $\|x-T x\| \leq$ $\liminf \left\|x_{2 n_{i}}-x_{2 n_{i}+1}\right\|=d(A, B)$, so $\| x-T x_{\|}=d(A, B)$.
(ii) Since $x_{2 n_{i}} \rightarrow x$ and by Remark 3.11, we have $\lim _{n_{i} \rightarrow \infty} d\left(x_{2 n_{i}}, x_{2 n_{i}+1}\right)=d(A, B)$. Hence by the the proximal property, we get that $\|x-T x\|=d(A, B)$.
When X is strictlyconvex. The uniqueness follows from Lemma 3.18.
Remark 3.20. In case $d(A, B)=0$, the result of Theorem 3.19 follows from Theorem 3.13.

To prove the Theorem 3.22 we need the following lemma.

Lemma 3.21. [18] Let A and B be nonempty closed convex subsets of a reflexive Banach space X. If A is bounded, then there exists $(x, y) \in A \times B$ such that $\|x-y\|=d(A, B)$.

Theorem 3.22. Let A and B be nonempty closed convex subsets of a reflexive strictly convex Banach space X such that A is bounded, $d(A, B)>0$ and let $T: A \cup B \rightarrow A \cup B$ be a cyclic and

$$
\begin{equation*}
\|T x-T y\| \leq\|x-y\| \text { for all } x \in A \text { and } y \in B . \tag{3.15}
\end{equation*}
$$

If $(A-A) \cap(B-B)=\{0\}$, then T has a unique best proximity point $x \in A$. Furthermore x is a fixed point of T^{2}.

Proof. By Lemma 3.21, there exists $(x, y) \in A \times B$ such that $\|x-y\|=d(A, B)$. Hence

$$
\begin{equation*}
\|T x<T y\|=d(A, B) . \tag{3.16}
\end{equation*}
$$

Suppose that there exists $\left(x^{\prime}, y^{\prime}\right) \in^{\perp} A \times B$ such that $\left(x^{\prime}, y^{\prime}\right) \neq(x, y)$ and $\left\|x^{\prime}-y^{\prime}\right\|=$ $d(A, B)$.

Case I. $x-y=x^{\prime}-y^{\prime}$. Then we have $x-x^{\prime}=y-y^{\prime} \in(A \subseteq A) \cap(B-B)=\{0\}$. This show that $x-x^{\prime}=y \breve{y} y^{\prime}=0$. Hence $x=x^{\prime}$ and $y=y^{\prime}$, e.e. $(x, y)=\left(x^{\prime}, y^{\prime}\right)$ which is a contradiction.
Case II. $x-y \neq x^{\prime}-y^{\prime}$. Since A and B are convex, $\frac{x+x^{\prime}}{2} \in A$ and $\frac{y+y^{\prime}}{2} \in B$. It

$$
\begin{aligned}
& <d(A, B),
\end{aligned}
$$

which is a contradiction.
Thus there exists a unique order pair $(x, y) \in A \times B$ such that $\|x-y\|=d(A, B)$. By this fact and (3.16), we have $x=T y$ and $y=T x$. Hence $\|x-T x\|=d(A, B)$ and $T^{2} x=x$.

Corollary 3.23. Let A and B be nonempty closed convex subsets of a reflexive strictly convex Banach space X such that A is bounded, $d(A, B)>0$ and let $T: A \cup B \rightarrow A \cup B$ be a cyclic φ-contraction map. If $(A-A) \cap(B-B)=\{0\}$, then T has a unique best proximity point $x \in A$. Furthermore x is a fixed point of T^{2}.

Remark 3.24. In case $d(A, B)=0$, the result of Corollary 3.23 follows from Theorem 3.13.

Remark 3.25. In case of A and B are unbounded, the following example shows that the conclusion of Theorem 3.22 may be not true. Let
$A=\left\{(x, y): 1 \leq x<\infty, 1+\frac{1}{x}<y \leq 2\right\}$ and
$B=\left\{(x, y): 1 \leq x<\infty,-1 \leq y \leq-\frac{1}{x}\right\}$. We can see that $d(A, B)=1$ and there exist no points $a \in A, b \in B$ such that $\|a-b\|=d(A, B)$.

Theorem 3.26. Let A and B be nonempty closed convex subsets of a reflexive Banach space X, and let $T: A \cup B \rightarrow A \cup B$ abe a cyclic map. Assume that for fixed $x_{0} \in A, a$ sequence $\left\{x_{n}\right\}$ defined by $x_{n+1}:=$ Tx Tras the following properties :
(1) $\left\{x_{2 n}\right\}$ has a weakly convergent subsequence,
(2) $\lim _{n \rightarrow \infty} \| x_{n+1}$

Then there exists $(x, y) \in A \times B$ such that $\|x-y\|=d(A, B)$.
 converges weakly to $x \in A$ and $\lim _{n_{i} \rightarrow \infty}\left\|x_{2 n_{i}}-x_{2 n_{i}+1}\right\|=d(A, B)$. From this fact and the

we obtain that $\left\{x_{2 n_{i}+1}\right\}$ is bounded. Thus there exists subsequence $\left\{x_{2 n_{i_{j}+1}}\right\}$ converges weakly to $y \in B$. Therefore $x_{2 n_{i_{j}}}-x_{2 n_{i_{j}+1}}$ converge weakly to $x-y$. Hence $\|x-y\| \leq$ $\liminf \left\|x_{2 n_{i_{j}}}-x_{2 n_{i_{j}+1}}\right\|=d(A, B)$, so $\|x-y\|=d(A, B)$.

CHAPTER IV
 MULTI-VALUED WEAK CONTRACTION MAPPING

Let $\mathcal{P}(X)$ be the family of all nonempty subsets of X and let T be a multi-valued mapping, i.e., $T: X \rightarrow \mathcal{P}(X)$. An element $x \in X$ such that $x \in T x$ is called a fixed point of T. We denote by $\mathcal{C B}(X)$ the family of all nonempty closed bounded subsets of $X, \mathcal{K}(X)$ the class of all nonempty compact subsets of X and F_{T} the set of all fixed points of T, i.e., $F_{T}=\{x \in X: x \in T x\}$. Let (X, d) be a metric space. If x_{0} is a point of X and A, B are nonempty subsets of X, the distance between x and A defined by
$d(x, A)=\inf \{d(x, a): a \in A\}$,
the distance between A and B defined by

$$
d(A, B)=\inf \{d(a, b): a \in A, b \in B\} .
$$

Let $h(A, B)=\sup \{d(a, B): a \in A\}$, the Hausdorff-Pompeiu generalized function on $\mathcal{P}(X)$ induced by defined by

$$
\psi H(A, B)=\max \{h(A, B), h(B, A)\} .
$$

1. if $A \subset B$ then $d(A, C) \geq d(B, C)$ and $h(A, C) \leq h(B, C)$ and $h(C, A) \geq h(C, B)$,
2. $d(x, A) \leq d(x, y)+d(y, A)$,
3. $d(x, A) \leq d(x, y)+d(y, B)+h(B, A)$,
4. $d(x, A) \leq d(x, B)+h(B, A)$,
5. if $x \in A$, then $d(x, B) \leq H(A, B)$.

The following property of the functional H are well-known.

Lemma 4.1. Let (X, d) be a metric space, $A, B \in \mathcal{P}(X)$ and $q \in \mathbb{R}, q>1$ be given. Then for every $a \in A$ there exists $b \in B$ such that $d(a, b) \leq q H(A, B)$.

Theorem 4.2. Let X be a metric space, then H is a metric on $\mathcal{C B}(X)$.

Theorem 4.3 extends the Banach Contraction Theorem from single-valued maps to multi-valued maps.

A multi-valued mapping $T: X \rightarrow P(X)$ is called a c-contraction mapping if there exists a constant $c \in(0,1)$ such that

$$
H(T x, T y) \leq c d(x, y) \text { for all } x, y \in X
$$

Theorem 4.3. [23](Nadler Theorem) Let (X, d) be a complete metric space and T : $X \rightarrow \mathcal{C B}(X)$ be a multi-valued c-contraction map. Then T has at least one fixed point.

Given a point $x \in X$ and a compact set $A \subset X$ we know that there exist $a^{*} \in A$ such that $d\left(x, a^{*}\right)=d(x, A)$. We call a^{*} the metric projection of the point x on the set A and denote it by $a^{*}=P_{x} A$. Obviously $P_{x} A$ is not unique but we choose one of it.

Let $T: X \rightarrow \mathcal{P}(X)$ be a multi-valued such that $T x$ is nonempty and compact for all $x \in X$. We define the projection associated with a multi-valued T by $P x=P_{x} T x$. For $x_{0} \in X$, we define $x_{n+1}=P x_{n}, n=0,1,2, \ldots$ and we call the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ a Picard projection iteration sequence of T at a point x_{0}.

In 2007, Kunze, La Torre and Vrscay 19, extended Theorem 2.3-Theorem 2.5 to a compact multi-valued c-contraction mapping.
Theorem 4.4-Theorem 4.6 are results of [19.: $9 / 4\} \cap ?$
Theorem 4.4. [19] Let (X, d) be a complete metric space and $T: X \rightarrow \mathcal{K}(X)$ be a multi-valued c-contraction mapping. Then for any $x_{0} \in X$, the Picard projection iteration sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges to some $x^{*} \in F_{T}$.

Theorem 4.5. [19] Let (X, d) be a complete metric space and $T: X \rightarrow \mathcal{K}(X)$ be a multi-valued c-contraction mapping. Then

$$
d\left(x_{0}, F_{T}\right) \leq \frac{1}{1-c} d\left(x_{0}, T x_{0}\right)
$$

for all $x_{0} \in X$.

Theorem 4.6. [19] Let (X, d) be a complete metric space and $T_{1}, T_{2}: X \rightarrow \mathcal{K}(X)$ be multi-valued contraction mappings with contraction factors c_{1} and c_{2}, respectively. If $F_{T_{1}}$ and $F_{T_{2}}$ are compact, then

$$
H\left(F_{T_{1}}, F_{T_{2}}\right) \leq \frac{d_{\infty}\left(T_{1}, T_{2}\right)}{1-\min \left\{c_{1}, c_{2}\right\}}
$$

where $d_{\infty}\left(T_{1}, T_{2}\right)=\sup _{x \in X} H\left(T_{1} x, T_{2} x\right)$.

4.1 Multi-Valued Zamfirescu Mapping

In 1972, Zamfirescu [33] introduced a class of mappings need not continuous called Zamfirescu mapping. We give here the definition.

Definition 4.7. [33] Let (X, d) be a metric space, $T: X \rightarrow X$ is called Zamfirescu mapping if there exist positive real numbers a, b and c satisfying $a<1, b<\frac{1}{2}$ and $c<\frac{1}{2}$, such that, for each $x, y \in X$ at least one of the followings is true:

$$
\begin{aligned}
& \left(z_{1}\right) d(T x, T y) \leq a d(x, y), \\
& \left(z_{2}\right) d(T x, T y) \leq b[d(x, T x)+d(y, T y), \\
& \left(z_{3}\right) d(T x, T y) \leq c[d(x, T y)+d(y, T x)] .
\end{aligned}
$$

Theorem 4.8 is the main result of $\lfloor 33\rfloor$.

Theorem 4.8. [33] Let (X, d) be a complete metric space and T be a self map on X. If T is a Zamfirescu mapping, then T has a unique fixed point. .
Zamfirescu' theorem (Theorem 4.8) is a generalization of Banach's theorem (Theorem 2.3), Kannan' s theorem (Theorem 2.6) and Chatterjea's theorem (Theorem 2.7).

In this section, we extend the definition of Zamfirescu mappings for multi-valued mappings.

Definition 4.9. Let (X, d) be a metric space and $T: X \rightarrow \mathcal{C B}(X)$ be a multi-valued mapping. T is said to be a multi-valued Zamfirescu mapping if there exist positive real numbers a, b and c satisfying $a<1, b<\frac{1}{2}$ and $c<\frac{1}{2}$, such that, for each $x, y \in X$ at least one of the followings is true:
$\left(\tilde{z}_{1}\right) H(T x, T y) \leq a d(x, y)$,
$\left(\tilde{z}_{2}\right) H(T x, T y) \leq b[d(x, T x)+d(y, T y)]$,
$\left(\tilde{z}_{3}\right) H(T x, T y) \leq c[d(x, T y)+d(y, T x)]$.

Theorem 4.12 and Theorem 4.13 are main results of this section. It basically shows that any multi-valued Zamfirescu mapping has a fixed point. To do this, we begin with the following lemmas.

Lemma 4.10. Let (X, d) be a complete metric space and $\left\{x_{n}\right\}$ be a sequence in X. If there exists a positive number $\alpha<1$ such that $d\left(x_{n}, x_{n+1}\right) \leq \alpha d\left(x_{n-1}, x_{n}\right)$ for all $n \in \mathbb{N}$, then $\left\{x_{n}\right\}$ converges to some $u \in X /$ which the following estimates
(1) $d\left(x_{n}, u\right) \leq \frac{\alpha^{n}}{1-\alpha} d\left(x_{0}, x_{1}\right), \quad, \quad n=0,1,2$.
(2) $d\left(x_{n}, u\right) \leq \frac{\alpha}{1-\alpha} d\left(x_{n-1}, x_{n}\right), \quad(\square=1,2,3,$.
hold.

Proof. Let $\left\{x_{n}\right\}$ be a sequence in X such that there exists a positive number $\alpha<1$ such that $d\left(x_{n}, x_{n+1}\right) \leq \alpha d\left(x_{n-1}, x_{n}\right)$ for all $n \in \mathbb{N}$.
By mathematical induction, we have

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq \alpha^{n} d\left(x_{0}, x_{1}\right), \quad n \in \mathbb{N} \tag{4.1}
\end{equation*}
$$

So, for any $n, p \in \mathbb{N}$, by (4.1), we obtain $99 \cap$?

$$
\begin{align*}
d\left(x_{n}, x_{n+p}\right) & \leq \sum_{\substack{k=n \\
n+p-1}} d\left(x_{k}, x_{k+1}\right) \\
& \leq \sum_{\substack{k=n \\
n+p-1}} \alpha^{k} d\left(x_{0}, x_{1}\right) \\
& =\frac{\alpha^{n}\left(1-\alpha^{p}\right)}{1-\alpha} d\left(x_{0}, x_{1}\right) \tag{4.3}\\
& \leq \frac{\alpha^{n}}{1-\alpha} d\left(x_{0}, x_{1}\right)
\end{align*}
$$

Since $0<\alpha<1$, it yields that $\alpha^{n} \rightarrow 0$ (as $n \rightarrow \infty$), which together with (4.3) implies that $\left\{x_{n}\right\}_{n=0}^{\infty}$ is a Cauchy sequence. Since (X, d) is complete, $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges to some $u \in X$.

By (4.2), we have

$$
\begin{align*}
d\left(x_{n}, x_{n+p}\right) & \leq \sum_{k=1}^{p} d\left(x_{n+k-1}, x_{n+k},\right) \\
& \leq \begin{array}{l}
\sum_{k=1}^{p} \alpha^{k} d\left(x_{n-1}, x_{n}\right) \\
\left.k=1-\alpha^{p}\right) \\
\left.\alpha(1) x_{n-1}, x_{n}\right)
\end{array} \tag{4.4}\\
& \leq \frac{\alpha-\alpha\left(x_{n-1}, x_{n}\right)}{1-\alpha}
\end{align*}
$$

From (4.3) and (4.4), by letting $p-\infty$, we have the estimations (1) and (2).
Lemma 4.11. Let (X, d) be a complete metric space, $T: X \rightarrow \mathcal{C B}(X)$ be a multi-valued Zamfirescu mapping and let $\left\{x_{n}\right\}$ be a sequence in X such that for all $n=0,1,2, \ldots$, $x_{n+1} \in T x_{n}$. If $\lim _{n \rightarrow \infty} x_{n}=u$, then u is a fixed point of T.

Proof. Let $\lim _{n \rightarrow \infty} x_{n}=u$. We have

$$
d(u, T u) \leq d\left(u, x_{n+1}\right)+d\left(x_{n+1}, T u\right)
$$

In case x_{n}, u satisfy $\left(\tilde{z}_{1}\right)$, we have

$$
\begin{equation*}
d(u, T u) \leq d\left(u, x_{n+1}\right)+a d\left(x_{n}, u\right) . \tag{4.5}
\end{equation*}
$$

$$
d(u, T u) \leq d\left(u, \boldsymbol{x}_{n+1}\right)+b\left[d\left(x_{n-T} T x_{n}\right)+d(u, T u)\right]
$$

Suppose that x_{n}, u satisfy $\left(\tilde{z}_{3}\right)$. Then

$$
\begin{align*}
d(u, T u) & \leq d\left(u, x_{n+1}\right)+c\left[d\left(x_{n}, T u\right)+d\left(u, T x_{n}\right)\right] \\
& \leq d\left(u, x_{n+1}\right)+c\left[d\left(x_{n}, T u\right)+d\left(u, x_{n+1}\right)\right] . \tag{4.7}
\end{align*}
$$

Therefore, letting $n \rightarrow \infty$ in (4.5), (4.6, (4.7), we get $d(u, T u)=0$.
Since $T u$ is closed, $u \in T u$. Hence u is a fixed point of T.

Theorem 4.12. Let (X, d) be a complete metric space and $T: X \rightarrow \mathcal{C B}(X)$ be a multi-valued Zamfirescu mapping. Then T has at least one fixed point.

Proof. Choose q be such that $1<q<\min \left\{\frac{1}{a}, \frac{1}{2 b}, \frac{1}{2 c}\right\}$ and $\alpha=\max \left\{q a, \frac{q b}{1-q b}, \frac{q c}{1-q c}\right\}$. Note that $0<\alpha<1$. Let $x_{0} \in X$ and $x_{1} \in T x_{0}$.

If $H\left(T x_{0}, T x_{1}\right)=0$ then $T x_{0}=T x_{1}$, i.e., $x_{1} \in T x_{1}$. This means that $F_{T} \neq \varnothing$.
Suppose that $H\left(T x_{0}, T x_{1}\right)>0$. By Lemma 4.1 there exists $x_{2} \in T x_{1}$ such that

$d\left(x_{1}, x_{2}\right) \leq q H\left(F_{x_{0}}, T x_{1}\right)$.

For x_{1} and x_{2}, if $H\left(T x_{1}, T x_{2}\right)=0$ then $T x_{1}=T x_{2}$, i.e., $x_{2} \in T x_{2}$. Hence T has a fixed point. Let $H\left(T x_{1}, T x_{2}\right)>0$. Again py Lemma 4.1 there exists $x_{3} \in T x_{2}$ such that
$d\left(x_{2}, x_{3}\right) \leq q H\left(T x_{1}, T x_{2}\right)$.
By this procedure, we have two cases \longrightarrow
Firstly, if there is $k^{\text {th }}$ procedure such that $H\left(T x_{k-1}, T x_{k}\right)=0$, then x_{k} is a fixed point.
Secondly, we obtain a sequence $\left\{x_{n}\right\}$ such that $x_{n+1} \in T x_{n}$ and

$$
d\left(x_{n}, x_{n+1}\right) \ll \boldsymbol{H}\left(T x_{n}-1, T x_{n}\right) \text { for all } n \in \mathbb{N} .
$$

If x_{n-1}, x_{n} satisfy $\left(\tilde{z}_{1}\right)$, then we have

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq \operatorname{qad}\left(x_{n-1}, x_{n}\right) \tag{4.8}
\end{equation*}
$$

If x_{n-1}, x_{n} satisfy $\left(z_{2}\right)$, then

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq\left(\frac{q b}{1-q b}\right) d\left(x_{n-1}, x_{n}\right) \tag{4.9}
\end{equation*}
$$

For the last case, if x_{n-1}, x_{n} satisfy $\left(\tilde{z}_{3}\right)$, then

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right) & \leq q c\left[d\left(x_{n-1}, T x_{n}\right)+d\left(x_{n}, T x_{n-1}\right)\right] \\
& =q c d\left(x_{n-1}, T x_{n}\right) \\
& \leq q c d\left(x_{n-1}, x_{n+1}\right) \\
& \leq q c\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right] .
\end{aligned}
$$

Thus

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq\left(\frac{q c}{1-q c}\right) d\left(x_{n-1}, x_{n}\right) . \tag{4.10}
\end{equation*}
$$

From (4.8), (4.9), (4.10), we have

$$
d\left(x_{n}, x_{n+1}\right) \leq \alpha d\left(x_{n-1}, x_{n}\right), \quad n=1,2,, 3, \ldots
$$

Hence by this fact and Lemma 4.10, $\left\{x_{n}\right\}$ converges to some $u \in X$. By Lemma 4.11, u is a fixed point of T.

The next theorem shows that the Picard projection iteration sequence of a multi-valued Zamfirescu mapping with compact valued converges to its fixed point.

Theorem 4.13. Let (X, d) be a complete metric space and $T: X \rightarrow \mathcal{K}(X)$ be a multivalued Zamfirescu mapping. Then Fs EAA
(1) for any $x_{0} \in X$, the Picard projection iteration sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges to some $x^{*} \in F_{T}$;
(2) The following estimates

Proof. Let T be a multi-valued Zamfirescu mapping, i.e., for each $x, y \in X$ satisfying at least one condition $\left(\tilde{z}_{\mathcal{P}}\right),\left(\tilde{z}_{2}\right)$ or $\left(\tilde{z}_{3}\right)$, and $T x$ is compact for all $x \in X$.
(1) Let x_{0} ©ि x be arbitrary and let $\left\{\mathfrak{c}_{n}\right\}_{n \rightarrow 0}^{\infty}$ boe the Picard projection iteration
sequence.

$$
\begin{aligned}
& d\left(x_{1}, x_{2}\right)=d\left(x_{1}, P x_{1}\right)=d\left(x_{1}, T x_{1}\right) \leq h\left(T x_{0}, T x_{1}\right) \leq H\left(T x_{0}, T x_{1}\right) .
\end{aligned}
$$

If x_{0}, x_{1} satisfy $\left(\tilde{z}_{1}\right)$, then $d\left(x_{1}, x_{2}\right) \leq \operatorname{ad}\left(x_{0}, x_{1}\right)$.
In case that x_{0}, x_{1} satisfy $\left(\tilde{z}_{2}\right)$, then

$$
\begin{aligned}
d\left(x_{1}, x_{2}\right) & \leq b\left[d\left(x_{0}, T x_{0}\right)+d\left(x_{1}, T x_{1}\right)\right] \\
& =b\left[d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{2}\right)\right] .
\end{aligned}
$$

Hence

$$
d\left(x_{1}, x_{2}\right) \leq \frac{b}{1-b} d\left(x_{0}, x_{1}\right)
$$

Suppose that x_{0}, x_{1} satisfy $\left(\tilde{z}_{3}\right)$. Thus

$$
\begin{aligned}
d\left(x_{1}, x_{2}\right) & \leq c\left[d\left(x_{0}, T x_{1}\right)+d\left(x_{1}, T x_{0}\right)\right] \\
& =c d\left(x_{0}, T x_{1}\right) \\
& \leq c\left[d\left(x_{0}, x_{1}\right)+d\left(x_{1}, T x_{1}\right)\right] \\
& =c\left[d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{2}\right)\right] .
\end{aligned}
$$

This implies
Therefore, in all cases, we have

$$
d\left(x_{1}, x_{2}\right) \leq \alpha d\left(x_{0}, x_{1}\right) \cdot \text { where } \alpha=\max \left\{a, \frac{b}{1-b}, \frac{c}{1-c}\right\}
$$

Consequently, for each $n \in \mathbb{N}$ we have $\leqslant \Rightarrow A$
$d\left(x_{n}, x_{n+1}\right) \leqslant \alpha d\left(x_{n-1}, x_{n}\right)$
Hence by this fact and Lemma $4.10,\left\{x_{n}\right\}$ converges to some $u \in X$. Thus by Lemma 4.11, we have u is a fixed point of T. The condition (2) holds from Lemma 4.10.

In example 4.14, we give a mapping T such that Nadler's fixed point theorem can not be applied while we can use Theorem 4.12 to assure that T has a fixed point.

Example 4.14. Let $X=[0,1]$ and $T: X \rightarrow \mathcal{C B}(X)$ be defined by

Then Tsatisfies $\left(\tilde{z}_{3}\right)$ by choosing o $\frac{1}{3}$. To show this, it suffices to show in case $x=1$ and $y \in[0,1)$. Note that $T x=\left[0, \frac{1}{2}\right]$ and Ty $=\left[0, \frac{1}{4}\right]$. Thus $d(x, T y)=d\left(1,\left[0, \frac{1}{4}\right]\right)=\frac{3}{4}$ and $H(T x, T y)=H\left(\left[0, \frac{1}{2}\right],\left[0, \frac{1}{4}\right]\right)=\frac{1}{4}$.

Hence

$$
\begin{aligned}
H(T x, T y) & =\frac{1}{4} \\
& =\frac{1}{3}\left[\frac{3}{4}\right] \\
& \leq \frac{1}{3}[d(x, T y)+d(y, T x)] .
\end{aligned}
$$

Therefore T is a a multi-valued Zamfirescu mapping. By Theorem 4.12, T has a fixed point. For $y=1, x \in\left[\frac{3}{4}, 1\right)$, we observe that $H(T x, T y)=\frac{1}{4} \geq|x-y|$. This implies that T is not a multi-valued c-contraction for any $c \in(0,1)$. Then we can not apply Nadler's theorem with this example.

Proposition 4.15. Let (X, d) be a complete metric space. If T is a multi-valued Zamfirescu mapping then F_{T} is complete.

Proof. Let $\left\{x_{n}\right\}_{n=0}^{\infty}$ be a Cauchy sequence in F_{I}. Since X is complete then there exist $u \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=u$. Hence by Lemma 4.11, u is a fixed point of T. Therefore we have the theorem.

4.2 Multi-valued Weak Contraction

In 2007, one of interesting generalization of the Nadler's fixed point theorem was given by Berinde [7].

Definition 4.16. [7] Let (X, d) be a metric space and $T: X \rightarrow \mathcal{C B}(X)$ be a multivalued mapping. T is said to be multi-valued weak contraction or multi-valued (θ, L)-weak contraction if there exist constants $\theta \in(0,1)$ and $L \geq 0$ such that

$$
H(T \bar{x}, T y) \leq \theta d(x, y)+L d(x, T y), \text { for } \text { all } x, y \in X
$$

Remark 4.17. It is known that a c-contraction mapping is a weak contraction.

Theorem 4.18, /7/ Let (X, d) be a metric space and $T: X \rightarrow \mathcal{C B}(X)$ be a multi-valued weak contraction mappêng Then 7 has àtoleast ong fixped point. 6 हI
In this section, we prove that the Picard projection iteration sequence converges to a fixed point, give a rate of convergence and generalize Collage Theorem (Theorem 2.4 and Theorem 4.5) for the case of multi-valued weak contraction.

Lemma 4.19. Let (X, d) be a complete metric space, $T: X \rightarrow \mathcal{C B}(X)$ be a multivalued (θ, L)-weak contraction mapping and let $\left\{x_{n}\right\}$ be a sequence in X such that for all $n=0,1,2, \ldots, x_{n+1} \in T x_{n}$. If $\lim _{n \rightarrow \infty} x_{n}=x^{*}$, then x^{*} is a fixed point of T.

Proof. Assume that $\lim _{n \rightarrow \infty} x_{n}=x^{*}$. Thus we have

$$
\begin{aligned}
d\left(x^{*}, T x^{*}\right) & \leq d\left(x^{*}, x_{n+1}\right)+d\left(x_{n+1}, T x^{*}\right) \\
& \leq d\left(x^{*}, x_{n+1}\right)+H\left(T x_{n}, T x^{*}\right) \\
& \leq d\left(x^{*}, x_{n+1}\right)+\theta d\left(x_{n}, x^{*}\right)+L d\left(x^{*}, T x_{n}\right) \\
& \leq d\left(x^{*}, x_{n+1}\right)+\theta d\left(x_{n}, x^{*}\right)+L\left[d\left(x^{*}, x_{n+1}\right)+d\left(x_{n+1}, T x_{n}\right)\right] \\
& =d\left(x^{*}, x_{n+1}\right)+\theta d\left(x_{n}, x^{*}\right)+L d\left(x^{*}, x_{n+1}\right),
\end{aligned}
$$

for all $n=0,1,2, \ldots$
Hence we have $d\left(x^{*}, T x^{*}\right)=0$ by letting $n \rightarrow \infty$. Since $T x^{*}$ is closed, $x^{*} \in T x^{*}$. Therefore x^{*} is a fixed point of T

The next Proposition is immediately obtained from Lemma 4.19,

Proposition 4.20. Let (X, d) be a complete metric space. If T is a multi-valued weak contraction mapping then F_{T} is complete.is

Theorem 4.21. Let (X, d) be a complete metric space and $T: X \rightarrow \mathcal{K}(X)$ be a multivalued (θ, L)-weak contraction. Then
(1) for any $x_{0} \in X$, the Picard projection iteration sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges to some $x^{*} \in F_{T}$,
(2) the following estimates

Proof. Fix $x_{0} \in X$ and $\left\{x_{n}\right\}_{n=0}^{\infty}$ the Picard projection iteration.

For each $n \in \mathbb{N}$ we see that,

$$
\begin{align*}
d\left(x_{n}, x_{n+1}\right) & =d\left(x_{n}, P x_{n}\right) \\
& =d\left(x_{n}, T x_{n}\right) \\
& \leq H\left(T x_{n-1}, T x_{n}\right) \\
& \leq \theta d\left(x_{n-1}, x_{n}\right)+\operatorname{Ld}\left(x_{n}, T x_{n-1}\right) \\
& =\theta d\left(x_{n-1}, x_{n}^{\prime}\right) . \tag{4.11}
\end{align*}
$$

By this fact and Lemma 4.10, $\left\{x_{n}\right\}$ converges to some $x^{*} \in X$. Thus by Lemma 4.19, u is a fixed point of T and (2) holes by Lemma 4.10.

Corollary 4.22. (Generalized Collage Theorem) Let (X, d) be a complete metric space and $T: X \rightarrow \mathcal{K}(X)$ be a multi-valued (θ, L)-weak contraction mapping. Then
for all $x_{0} \in X$.
Proof. Let $x_{0} \in X$ By Theorem 4.21(1), there exists a point $x^{*} \in F_{T}$ such that the Picard projection iteration $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges to x^{*}. Hence, by Theorem 4.21(2), we have

Theorem 4.23. Let (X, d) be a complete metric space and $T_{1}, T_{2}: X \rightarrow \mathcal{K}(X)$ be multivalued weak contractions with parameters $\left(\theta_{1}, L_{1}\right)$ and $\left(\theta_{2}, L_{2}\right)$, respectively. If $F_{T_{1}}$ and $F_{T_{2}}$ are closed and bounded, then

$$
H\left(F_{T_{1}}, F_{T_{2}}\right) \leq \frac{d_{\infty}\left(T_{1}, T_{2}\right)}{1-\max \left\{\theta_{1}, \theta_{2}\right\}},
$$

where $d_{\infty}\left(T_{1}, T_{2}\right)=\sup _{x \in X} H\left(T_{1} x, T_{2} x\right)$.

Proof. Let $x \in F_{T_{1}}$. By Corollary 4.22, we have

$$
\left(1-\theta_{2}\right) d\left(x, F_{T_{2}}\right) \leq d\left(x, T_{2} x\right) \leq H\left(T_{1} x, T_{2} x\right) \leq d_{\infty}\left(T_{1}, T_{2}\right) .
$$

Take the supremum with respect to $x \in F_{T_{1}}$, we get

$$
\left(1-\theta_{2}\right) h\left(F_{T_{1}}, F_{T_{2}}\right) \leq d_{\infty}\left(T_{1}, T_{2}\right) .
$$

Next, upon interchanging $F_{T_{1}}$ with $F_{T_{2}}$ we obtain
. Hence

Remark 4.24. Since a c-contraction is, a $(\theta, 0)$-weak contraction, Theorem 4.4 can be deduced from Theorem 4.21 and Theorem 4.5 can be deduced from Corollary 4.22.

The next corollary is immediate using Theorem 4.23.

Corollary 4.25. Let (X, d) be a complete metric space and $T_{n}: X \rightarrow \mathcal{K}(X)$ be a sequence of multi-valued weak contractions with weak contractivity constants θ_{n} such that $\sup _{n} \theta_{n}=\theta<1$. Suppose that $T_{n} \rightarrow T$ with the metric d_{∞} and T is a compact multi-valued weak contraction. Then $F_{T_{n}} \rightarrow F_{T}$ in the Hausdorff metric.

Corollary 4.25 impties the following corollary. MN \& ? P

Corollary 4.26. [19] Let (X, d) be a complete metric space and $T_{n}: X \rightarrow \mathcal{K}(X)$ be a sequence of mutivvalued contractionsp with contractivity constants a_{n} such that $\sup _{n} a_{n}=a<1$. Suppose that $T_{n} \rightarrow T$ with the metric d_{∞} and T is a compact multi-valued contraction. Then $F_{T_{n}} \rightarrow F_{T}$ in the Hausdorff metric.

The next theorem shows that a multi-valued Zamfirescu mapping is a multi-valued weak contraction. Hence Theorem 4.13 follows immediately from Theorem 4.21.

Theorem 4.27. Let (X, d) be a metric space and $T: X \rightarrow \mathcal{C B}(X)$ be a multi-valued Zamfirescu mapping. Then T is a multi-valued weak contraction.

Proof. Let T be a multi-valued Zamfirescu mapping and $x, y \in X$. Then at least one of $\left(\tilde{z_{1}}\right),\left(\tilde{z_{2}}\right)$ or $\left(\tilde{z_{3}}\right)$ is true with parameters a, b and c, respectively.

If x and y satisfy $\left(\tilde{z_{1}}\right)$, then $H(T x, T y) \leq a d(x, y)$.
In case that x and y satisfy $\left(\tilde{z_{2}}\right)$ we see that

$$
\begin{aligned}
H(T x, T y) & \leq b[d(x, T x)+d(y, T y)] \\
& \leq b[[d(x, T y)+H(T x, T y)]+[d(y, x)+d(x, T y)]] \\
& =b d(x, y)+2 b d(x, T y)+b H(T x, T y) .
\end{aligned}
$$

Hence $H(T x, T y) \leq \frac{b}{1-b} d(x, y)+\frac{2 b}{1-b} d(x, T y)$.
If x and y satisfy $\left(\tilde{z}_{3}\right)$, then we have

$$
\begin{aligned}
H(T x, T y) & \leq c[d(x, T y)+d(y, T x)] \\
& \leq c[d(x, T y)+1 d(y, x)+d(x, T y)+H(T x, T y)]] \\
& =c d(x, y)+2 c d(x, T y)+c H(T x, T y) .
\end{aligned}
$$

Thus $H(T x, T y) \leq \frac{c}{1-c} d(x, y)+\frac{2 c}{1-c} d(x, T y)$.
Let

$$
\theta=\max \left\{a, \frac{b}{1-b}, \frac{c}{1-c}\right\} \text {. }
$$

Then we have $0<\theta<1$ and for all $x, y \in X$,

Hence T is a multi-valued $(\theta, 2 \theta)$-weak contraction.

The following example shows that a multi-valued weak contraction may not be a Zam-

Proof. Recall that, for all $x, y \in X$,

$$
\begin{aligned}
H(T x, T y) & =H(\{x\},\{y\}) \\
& =d(x, y) \\
& =\theta d(x, y)+(1-\theta) d(x, y)
\end{aligned}
$$

for $\theta \in(0,1)$. Then T is a $(\theta, 1-\theta)$-weak contraction for all $\theta \in(0,1)$. If T is a multivalued Zamfirescu mapping, Then there exist positive real numbers a, b and c satisfying $a<1, b<\frac{1}{2}$ and $c<\frac{1}{2}$, such that, for each $x, y \in X$ at least one of the followings is true:
$\left(\tilde{z}_{1}\right) H(T x, T y) \leq a d(x, y)$,
$\left(\tilde{z}_{2}\right) H(T x, T y) \leq b[d(x, T x)+d(y, T y)]$,
$\left(\tilde{z}_{3}\right) H(T x, T y) \leq c[d(x, T y)+d(y, T x)]$.
Let $\theta=\max \{a, 2 b, 2 c\}$. Observe that $0<\theta<1$. Thus for all $x, y \in X$, we have
$H(T x, T y) \leq \theta \max \{d(x, y), d(x, T x), d(x, T y), d(y, T y), d(y, T x)\}$

This is impossible, since $H(T x, T y)=|x+y|$. Hence T is not a multi-valued Zamfirescu mapping.

CHAPTER V
 CYCLIC MULTI-VALUED MAPPING

In this chapter, we extend the cyclic property of single-valued mapping to multivalued mapping and investigate the existence of its fixed point and the existence of a best proximity point.

To establish our results, we introduce the following class of multi-valued mappings. Definition 5.1. Let A and B be nonempty subsets of a metric space (X, d). A multivalued mapping T is said to be cyclicfon A and B) if $T: A \cup B \rightarrow \mathcal{P}(X)$ such that $T x \subseteq B$, for all $x \in A$ and $T y \subseteq A$ for all $y \in B$.

5.1 Fixed point of cyclic multi-valued mapping

The next theorem is the main result of this section. It basically shows that any cyclic multi-valued mappings which satisfy a contractive condition has at least one fixed point.

Theorem 5.2. Let A and B be nonempty closed subsets-of a metric space (X, d). Suppose T is a cyclic(on A and B) multi-valued mapping with nonempty closed bounded

Proof. Let $\alpha>1$ be such that $\alpha k<1$. Let $x_{0} \in A$ and $x_{1} \in T x_{0} \subseteq B$.
If $H\left(T x_{0}, T x_{1}\right)=0$, then $T x_{0}=T x_{1}$, i.e., $x_{1} \in T x_{1}$ which actually means that $F_{T} \neq \varnothing$. Assume that $H\left(T x_{0}, T x_{1}\right)>0$. By Lemma 4.1, there exists $x_{2} \in T x_{1} \subseteq A$ such that $d\left(x_{1}, x_{2}\right) \leq \alpha H\left(T x_{0}, T x_{1}\right)$. By the definition of T, we have $d\left(x_{1}, x_{2}\right) \leq \alpha k d\left(x_{0}, x_{1}\right)$. Next, if $H\left(T x_{1}, T x_{2}\right)=0$, then $T x_{1}=T x_{2}$, i.e., $x_{2} \in T x_{2}$. This means that $F_{T} \neq \varnothing$. If $H\left(T x_{1}, T x_{2}\right)>0$, by Lemma 4.1, there exists $x_{3} \in T x_{2} \subseteq B$ such that $d\left(x_{2}, x_{3}\right) \leq$
$\alpha k d\left(x_{1}, x_{2}\right)$.
Continue this procedure, we have two cases.
Case I. There is $k^{\text {th }}$ procedure such that $H\left(T x_{k-1}, T x_{k}\right)=0$. Then x_{k} is a fixed point.
Case II. There exists a sequence $\left\{x_{n}\right\}$ such that $x_{2 n} \in A, x_{2 n+1} \in B$ and for all $n \in \mathbb{N}$,

$$
d\left(x_{n}, x_{n+1}\right) \leq \alpha k d\left(x_{n-1}, x_{n}\right) .
$$

Since $0<\alpha k<1$, by Lemma 4.10, $\left\{x_{n}\right\}$ converges. Let $x:=\lim x_{n}$. Note that

$$
d(x, T x) \leq d\left(x, x_{n+1}\right)+d\left(x_{n+1}, T x\right)
$$

$$
d\left(x, x_{n+1}\right)+H\left(T x_{n}, T x\right)
$$

$$
\int d\left(x, x_{n+1}\right)+k d\left(x_{n}, x\right)
$$

By letting $n \rightarrow \infty$, we obtain $d(x, T x)=0$. Since $T x$ is closed, $x \in T x$. Therefore x is a fixed point of T. To show $x \in A \cap B$, we note that $x_{2 n} \rightarrow x, x_{2 n+1} \rightarrow x$. Since A and B are closed, $x \in A \cap B$.

Theorem 5.2 can be extended to a finite chain of nonempty closed subsets of X.

Theorem 5.3. Let $\left\{A_{i}\right\}_{i=1}^{n}$ be a finite family of nonempty closed subsets of complete metric space. Suppose $T: \bigcup_{i=1}^{n} A_{i} \rightarrow \mathcal{P}(X)$ with closed bounded valued satisfying the following conditions where $A_{n+1}=A_{1}$)
(a) $T a_{i} \subseteq A_{i+1}$, for $a_{i} \in A_{i}$ and $1 \leq i \leq n$;
(b) $\exists k \in(0,1)$ such that $H(T x, T y) \leq k d(x, y)$ for all $x \in A_{i}$ and $y \in A_{i+1}$, for

Then T has at lest one fixed point in $\bigcap_{i=1}^{n} A_{i}$.

Similarly, the proof of Theorem [5.2 we can extend to next theorem.

Theorem 5.4. Let A and B be nonempty closed subsets of a complete metric space (X, d). Suppose T is a cyclic(on A and B) multi-valued mapping. If there exist two constants $\theta \in(0,1)$ and $L \geq 0$ such that

$$
H(T x, T y) \leq \theta d(x, y)+L d(y, T x)
$$

and

$$
H(T x, T y) \leq \theta d(x, y)+L d(x, T y\}
$$

for all $x \in A$ and $y \in B$, with closed bounded valued. Then T has at lest one fixed point in $A \cap B$ and F_{T} is complete.

Proof. The proof of existence of a fixed point are essentially similar to those of Theorem 5.2 and, therefore, are omitted here.

To show that F_{T} is complete, it suffice to prove that F_{T} is closed. Let $\left\{x_{n}\right\}_{n=0}^{\infty}$ be a sequence in F_{T}, which $\overline{x_{n} \rightarrow u}$. Since $F_{T} \subseteq A \cap B$ and $A \cap B$ is closed, we have $u \in A \cap B$.

Note that

$$
\begin{aligned}
d(u, T u) & \leq d\left(u, x_{n}\right)+d\left(x_{n}, T x_{n}\right)+H\left(T x_{n}, T u\right) \\
& =d\left(u, x_{n}\right)+H\left(T x_{n}, T u\right) \\
& \lesseqgtr d\left(u, x_{n}\right)+\theta d\left(x_{n}, u\right)+L d\left(u, T x_{n}\right) \\
& \leq d\left(u, x_{n}\right)+\theta d\left(x_{n}, u\right)+L\left(d\left(u, x_{n}\right)+d\left(x_{n}, T x_{n}\right)\right) \\
& =d\left(u, x_{n}\right)+\theta d\left(x_{n}, u\right)+L d\left(u, x_{n}\right) .
\end{aligned}
$$

Therefore, letting $n \rightarrow \infty$, we get $\bar{d}(u, T u)=0$. Since $T u$ is closed, $u \in T u$. Hence F_{T} is closed.

The next Corollary [5.5 is immediately obtained from Theorem [5.4.
Corollary 5.5. Let A and B be nonempty closed subsets of a complete metric space (X, d). Suppose T is ancyclic multi-valued mapping. If there exist two constants $\theta \in$ $(0,1)$ and $L \geq 0$ such that $H(T x, T y) \leq \theta d(x, y)+L \min \{d(y, T x), d(x, T y)\}$ for all $x \in A$ and $\bar{\mu} \in \beta$ with closed bounded valued. ThenT hal at Est One fixed point in $A \cap B$. 9

Remark 5.6. Theorem 4.18 is a consequence of Corollary 5.5.

5.2 Best proximity point of cyclical multi-valued mapping

In this section, we extend the results of the Theorem [5.2] to the case of disjoint sets with property UC.

Definition 5.7. Let A and B be nonempty subsets of a metric space (X, d), and T a multi-valued mapping cyclic on A and B. Then T is said to be k-contraction if there exists a constant $k \in(0,1)$ such that

$$
H(T x, T y) \leq k d(x, y)+(1-k) d(A, B) \quad \text { for all } x \in A \text { and } y \in B
$$

To prove the main result of this section, we shall need a lemma.

Lemma 5.8. Let A and B be nonempty subsets of a metric space (X, d) with the property $U C$ and let $\left\{x_{n}\right\}$ be a sequence in A. If there exists a sequence $\left\{y_{n}\right\}$ in B such that $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=d(A, B)$ and $\lim _{n \rightarrow \infty} d\left(x_{n+1}, y_{n}\right)=d(A, B)$, then $\left\{x_{n}\right\}$ is a Cauchy sequence.

Proof. By the property UC, we have $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0$.
Suppose that $\left\{x_{n}\right\}$ is not a Cauchy sequence. Hence, there is $\epsilon>0$ such that for each $k \in \mathbb{N}, \exists m_{k}>n_{k}>k$ such that

By the assumption, we have

Note that

$$
\begin{aligned}
& \text { Letting } k \rightarrow \infty \text {, we have } \\
& \text { ค9คค ค) } \\
& \leq \lim _{k \rightarrow \infty} d\left(y_{n_{k}}, x_{n_{k}}\right) \\
& =d(A, B) \text {. }
\end{aligned}
$$

Hence

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(y_{n_{k}}, x_{m_{k}}\right)=d(A, B) \tag{5.3}
\end{equation*}
$$

From (5.2), (5.3) and property UC, we have $\lim _{k \rightarrow \infty} d\left(x_{n_{k}}, x_{m_{k}}\right)=0$. This contradicts to (5.1).

Theorem 5.9. Let A and B be nonempty subsets of a metric space (X, d) such that (A, B) satisfies the property $U C$ and A is complete. Let T be a cyclic(on A and B) k-contraction multi-valued mapping, with closed bounded valued. Then T has a best proximity point z in A.

Proof. Fix $x_{0} \in A$. Let $x_{1} \in T x_{0} \subseteq B$. There exists $x_{2} \in T x_{1} \subseteq A$ such that

$$
\begin{aligned}
d\left(x_{1}, x_{2}\right) & \leq \| d\left(x_{1}, T x_{1}\right)+k \\
& \leq H\left(T x_{0}, T x_{1}\right)+k .
\end{aligned}
$$

Similarly, there exists $x_{3} \in T x_{2} \subseteq B$ such that
$d\left(x_{2}, x_{3}\right) \leq H\left(T x_{1}, T x_{2}\right)+k^{2}$.

Continue this process, we have a sequence $\left\{x_{n}\right\}$ such that $\left\{x_{2 n}\right\} \subseteq A,\left\{x_{2 n+1}\right\} \subseteq B$,
$x_{n+1} \in T x_{n}$ and

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right) & \leq H\left(T x_{n-1}, T x_{n}\right)+k^{n} \\
& \leq k d\left(x_{n-1}, x_{n}\right)+(1-k) d(A, B)+k^{n}
\end{aligned}
$$

$$
\leq k\left[H\left(T x_{n}+T_{x_{n-1}}\right)+k^{n}-1\right]+(1-k) d(A, B)+k^{n}
$$

$$
=k\left[k d\left(x_{n-2}, x_{n-1}\right)+(1-k) d(A, B)+k^{n-1}\right]+(1-k) d(A, B)+k^{n}
$$

$=k^{2} d\left(x_{n-2}, x_{n-1}\right)+\left(1-k^{2}\right) d(A, B)+2 k^{n}$.
Inductively, we haye

$$
d\left(x_{n}, x_{n+1}\right) \leq k^{n} d\left(x_{0}, x_{1}\right)+\left(1-k^{n}\right) d(A, B)+n k^{n} .
$$

$$
\text { Q } 9 \lim _{n \rightarrow \infty} d\left(x_{2 n} x_{2 n+1}\right)=d(A, B), \lim _{n}-d\left(\widehat{x_{2 n} n+2 \eta^{\infty}} x_{2 n}+\frac{1}{n}\right)=d(A, B) .
$$

Since $\left\{x_{2 n}\right\} \subseteq A,\left\{x_{2 n+2}\right\} \subseteq A$ and $\left\{x_{2 n+1}\right\} \subseteq B$, by Lemma 5.8 we have $\left\{x_{2 n}\right\}$ is a
Cauchy sequence.
Since A is complete, there exists $z \in A$ such that $\lim _{n \rightarrow \infty} d\left(z, x_{2 n}\right)=0$.
From this fact and the fact that

$$
\begin{aligned}
d(A, B) & \leq d\left(z, x_{2 n-1}\right) \\
& \leq d\left(z, x_{2 n}\right)+d\left(x_{2 n}, x_{2 n-1}\right)
\end{aligned}
$$

we have $\lim _{n \rightarrow \infty} d\left(z, x_{2 n-1}\right)=d(A, B)$.
Since

$$
\begin{aligned}
d(A, B) & \leq d\left(x_{2 n}, T z\right) \\
& \leq H\left(T x_{2 n-1}, T z\right) \\
& \leq k d\left(x_{2 n-1}, z\right)+(1-k) d(A, B) \\
& \leq k d\left(x_{2 n-1}, z\right)+(1-k) d\left(x_{2 n-1}, z\right) \\
& =d\left(x_{2 n-1}, z\right),
\end{aligned}
$$

we have $d(z, T z)=d(A, B)$, i.e. z is a best proximity point of T in A.
Remark 5.10. In view of the Example 3.3,

1. In case of $d(A, B)=0$, (A, B) satisfies the property UC. By this fact we see that Theorem 5.9 is an extension of Theorem 5.2.
2. For nonempty subsets A and B of a uniformly convex Banach space X, we know that (A, B) has the property $U C$ if A is convex. So Theorem 3.2 is a consequence of Theorem 5.9.

CHAPTER VI

DATA DEPENDENCE

In this chapter, we study a problent of data dependence for a special class of multi-valued mappings. The following data dependence problem is well known

Problem : Let (X, d) be a metric space and T_{1}, T_{2} be two multi-valued maps such that $F_{T_{1}}$ and $F_{T_{2}}$ are nonempty and there exists $\eta>0$ with the property $H\left(T_{1} x, T_{2} x\right) \leq \eta$ for all $x \in X$. Data dependence problem is a problem of finding an upper bound of $H\left(F_{T_{1}}, F_{T_{2}}\right)$.

In 2003, Rus, Petruşel and Sintămărian 30 gave an important abstract notions as follows.

Definition 6.1. Let (X, d) be a metric space and $T: X \rightarrow \mathcal{P}(X)$ be a multi-valued mapping. T is said to be a multi-vahied weakly Picard (briefly MWP) mapping if for each $x \in X$ and any $y \in T x$, there exists a sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ such that
(i) $x_{0}=x, x_{1}=y ;$
(ii) $x_{n+1} \in T x_{n}$ for all $n=0,1,2 \ldots$ and

Remark 6.2. A sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ बatisfying conditions (i) and (ii) in Definition 6.1] is also called a sequence of successive approximations of T-starting from (x, y).
Definition 6.3. Let (X, d) be a metric space and $T: X \rightarrow \mathcal{P}(X)$ be a MWP mapping. Then we define the multi-valued mapping $T^{\infty}: G(T) \rightarrow \mathcal{P}\left(F_{T}\right)$ where $G(T)=\{(x, y)$: $x \in X, y \in T x\}$, by the formula;
$T^{\infty}(x, y):=\left\{z \in F_{T} \mid\right.$ there exists a sequence of successive approximations of T starting from (x, y) which converges to $z\}$.

Definition 6.4. Let (X, d) be a metric space, $T: X \rightarrow \mathcal{P}(X)$ be a MWP mapping and $c>0$. Then T is a $c-$ multi-valued weakly Picard (briefly $c-M W P$) mapping if for every $(x, y) \in G(T)$ there exists a selection $t^{\infty}(x, y)$ in $T^{\infty}(x, y)$ such that $d\left(x, t^{\infty}(x, y)\right) \leq$ $c d(x, y)$.

We shall present some examples of $c-M W P$ mappings given in [30]. (See more details in ([11], [23]-[28]).

Example 6.5. Let (X, d) be a metric space

1. Let $T: X \rightarrow \mathcal{C B}(X)$ be a multi-valued a-contraction $(0<a<1)$. Then T is a $c-M W P$ mapping with $c=(1-f a)$
2. Let $T: X \rightarrow \mathcal{C B}(X)$ be a multi-valued mapping for which there exist positive real numbers α, β and γ such that $\alpha \overline{+\beta}+\gamma<1$ and

$$
H(T x, T y) \leq \alpha d(x, y)+\beta d(x, T x)+\gamma d(y, T y)
$$

for all $x, y \in X$. Then T is $a c-M W P$ mapping with $c=(1-\gamma)[1-(\alpha+\beta+\gamma)]^{-1}$.
3. Let $T: X \rightarrow \mathcal{C B}(X)$ be a closed multi-valued mapping for which there exist positive real numbers $\bar{\alpha}$ and β such that $\alpha+\beta<1$ and

$$
\therefore H(T x, T y) \leq \alpha d(x, y)+\beta d(y, T y)
$$

for all $x \in X$ 人and $y \in T x$. Then T is a c-MWP mapping with $c=(1-\beta)[1-$ $(\alpha+\beta)]^{-1}$
4. Let $x_{0} \in X$ and $r>0$. Let $T: \tilde{B}\left(x_{0}, r\right) \rightarrow \mathcal{C} \mathcal{B}(X)$, where $\tilde{B}\left(x_{0}, r\right)=\{x \in X:$ $\left.d\left(x_{0}, x\right) \leq r\right\}$ be a multi-valued mapping for which there exist $\alpha, \beta, \gamma \in \mathbb{R}_{+}$and $\alpha+\beta+\gamma<1$ such that
(i) $H(T x, T y) \leq \alpha d(x, y)+\beta d(x, T x)+\gamma d(y, T y), \forall x, y \in \tilde{B}\left(x_{0}, r\right)$
(ii) $\delta\left(x_{0}, T x_{0}\right)<[1-(\alpha+\beta+\gamma)](1-\gamma)^{-1} r$.

Then T is a $c-M W P$ mapping with $c=(1-\gamma)[1-(\alpha+\beta+\gamma)]^{-1}$.

Now we introduce an important abstract notion of Collage mapping as follow.

Definition 6.6. Let (X, d) be a metric space, $T: X \rightarrow \mathcal{P}(X), F_{T} \neq \varnothing$. Then T is a Collage multi-valued mapping if there exists $c>0$ such that $d\left(x, F_{T}\right) \leq c d(x, T x)$ for all $x \in X$.

Remark 6.7. It is obvious that a c-MWP mapping(in Definition 6.1) is a Collage multi-valued mapping.

The following example shows that a Collage multi-valued mapping may not be a c-MWP mapping.

Example 6.8. Let $T:\{1,2,3\} \rightarrow\{1,2,3\}$ be such that $T(1)=3, T(2)=2$ and $T(3)=1$. It obvious that T is not MWP mapping. We see that $F_{T}=\{2\}, d(x, T x)=2$ and $d\left(x, F_{T}\right)=1$ where $x \neq 2$ and hence we can choose $c>0$ with satisfying $d\left(x, F_{T}\right) \leq$ $c d(x, T x)$ for all $x \in\{1,2,3\}$. Therefore T is a Collage multi-valued mapping.

Our main results are the followings.

Theorem 6.9. Let (X, d) be a metrie space and $T_{1}, T_{2}: X \rightarrow \mathcal{P}(X)$ be two multi-valued mappings. Suppose that:
(i) T_{i} is a c_{i}-Collage multi-valued mapping, for $i \in\{1,2\}$ and
(ii) there exists $\eta>0$ such that $H\left(T_{1} x, T_{2} x\right) \leq \eta$, for all $x \in X$.

Since T_{i} is a c_{i}-Collage multi-valued mappings, for $i \in\{1,2\}$,

$$
H\left(F_{T_{1}}, F_{T_{2}}\right) \leq \max \left\{\sup _{a \in F_{T_{2}}} c_{1} d\left(a, T_{1} a\right), \sup _{b \in F_{T_{1}}} c_{2} d\left(b, T_{2} b\right)\right\}
$$

that is

$$
H\left(F_{T_{1}}, F_{T_{2}}\right) \leq \max \left\{c_{1}, c_{2}\right\} \max \left\{\sup _{a \in F_{T_{2}}} d\left(a, T_{1} a\right), \sup _{b \in F_{T_{1}}} d\left(b, T_{2} b\right)\right\}
$$

Since $a \in T_{2} a$ and $b \in T_{2} b$,

$$
H\left(F_{T_{1}}, F_{T_{2}}\right) \leq \max \left\{c_{1}, c_{2}\right\} \max \left\{\sup _{a \in F_{T_{2}}} H\left(T_{2} a, T_{1} a\right), \sup _{b \in F_{T_{1}}} H\left(T_{1} b, T_{2} b\right)\right\}
$$

Therefore, by assumption we have $H\left(F_{T_{1}}, F_{T_{2}}\right) \leq \eta \max \left\{c_{1}, c_{2}\right\}$. Then we complete the proof.

Corollary 6.10. Let (X, d) be a complete metric space and $T_{n}: X \rightarrow \mathcal{C B}(X)$ be a sequence of Collage multi-valued with Collage constants c_{n} such that $\sup _{n} c_{n}<\infty$. Suppose that $T_{n} \rightarrow T$ with the metric d_{∞} and T is a Collage multi-valued mapping. Then $F_{T_{n}} \rightarrow F_{T}$ with the Hausdorff metric.

Proof. This is obvious by Theorem 6.9.

Let us consider several consequences of this result which follow by Example 6.5, Remark 6.7 and Theorem 6.9.

Corollary 6.11. Let (X, d) be a metric space and $T_{1}, T_{2}: X \rightarrow \mathcal{C B}(X)$ be two multivalued mappings for which there pexist positive real numbers α_{i}, β_{i} and $\gamma_{i}, \alpha_{i}+\beta_{i}+\gamma_{i}<1$ such that
for all $x, y \in X$ and $i \in\{1,2\}$. Suppose that the remexists $\eta \subset 0$ such that $H\left(T_{1} x, T_{2} x\right) \leq \eta$ for all $x \in X$.
Then

Corollary 6.12. Let (X, d) be a metric space and $T_{1}, T_{2}: X \rightarrow \mathcal{C B}(X)$ be two multivalued mappings for which there exist positive real numbers α_{i} and $\beta_{i}, \alpha_{i}+\beta_{i}+<1$ such that

$$
H\left(T_{i} x, T_{i} y\right) \leq \alpha_{i} d(x, y)+\beta_{i} d(y, T y)
$$

for all $x \in X, y \in T x$ and $i \in\{1,2\}$.
Suppose that there exists $\eta>0$ such that $H\left(T_{1} x, T_{2} x\right) \leq \eta$ for all $x \in X$.
Then $H\left(F_{T_{1}}, F_{T_{2}}\right) \leq \eta \max \left\{c_{1}, c_{2}\right\}$, with $c_{i}=\left(1-\beta_{i}\right)\left[1-\left(\alpha_{i}+\beta_{i}\right)\right]^{-1}, i \in\{1,2\}$.
Corollary 6.13. Let $x_{0} \in X$ and $r>0$. Let $T: \tilde{B}\left(x_{0}, r\right) \rightarrow \mathcal{C B}(X)$, where $\tilde{B}\left(x_{0}, r\right)=$ $\left\{x \in X: d\left(x_{0}, x\right) \leq r\right\}$ be a multi-valued mapping for which there exist $\alpha, \beta, \gamma \in \mathbb{R}_{+}$and $\alpha+\beta+\gamma<1$ such that
(i) $H(T x, T y) \leq \alpha d(x, y)+\beta d(x, T x)+\gamma d(y, \vec{T} y), \forall x, y \in \tilde{B}\left(x_{0}, r\right)$
(ii) $\delta\left(x_{0}, T x_{0}\right)<\left[1-\overline{\alpha+\beta+\gamma)}(1-\gamma)^{-1}\right.$

Suppose that there exists $\eta>0$ such that $H\left(T_{1} x, T_{2} x\right) \leq \eta$ for all $x \in X$.
Then $H\left(F_{T_{1}}, F_{T_{2}}\right) \leq \eta \max \left\{c_{1}, c_{2}\right\}$, with with $c=(1-\gamma)[1-(\alpha+\beta+\gamma)]^{-1}$.

REFERENCES

[1] Al-Thangafi, M.A. and Shahzad, N., Convergence and existence results for best proximity points, Nonlinear Analysis. 70, 3665-3671 (2009).
[2] Assad, N.A., Fixed point theorems for set valued transformations on compact set, Boll. Un. Mat. Ital. 4, 1-7 (1973).
[3] Assad, N.A. and Kirk, W.A., Fixed point theorems for set-valued mapping of contractive type, Pacific J.Math. 43, 553-562 (1972).
[4] Banach, S., Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund, Math. 3, 133-181 (1922).
[5] Barnsley, M.F., Fractals Everywhere, Academic Press, New York, 1989.
[6] Barnsley, M.F., Ervin, V., Hardin, D.\& Lancaster, J., Solution of an inverse problem for fractals and other sets, Proc. Natl. Acad. Sci. 83, 1975-1977 (1985).
[7] Berinde, M. and Berinde, V., On general class of multi-valued weakly Picard mapping, J. Math. Anal. Appl. 326, 772-782 (2007).
[8] Centore, P., Vrscay, E.R., Coñtinuity of fixed points for attractors and invariant measures for iterated function systems, Canad. Math. Bull. 37, 315-329 (1994).
[9] Chatterjea, S.K., Fixed-point theorems, C.R. Acad. Bulgare Sci. 25, 727-730 (1972).
[10] Ciric, L.B., Fixed Point Theory. Contraction Mapping Principle, FME Press, Beograd, 2003.
[11] Covitz, H. and Nadler Jr., S.B., Multi-valued contraction mappings in generalized metric spaces, Isr. J. Math. 8, 5-11 (1970).
[12] Di Bari, C., Suzuki, T., Vetro, C., Best proximity points for cyclic Meir-Keeler contractions, Nontinear Anal. 69, 3790-3794,(2008) \bumpeq
[13] Eldred, A.A, and Veeramani, P., Existence and convergence of best proximity points, J. Math. Anal. Appl. 323, 1001-1006 (2006).
[14] Kannan, R., Some results on fixed points, Bull. Calcutta Math. Soc. 10, 71-76
Q (1968).
[15] Khamsi, M.A., and Kirk, W.A., An In troduction to Metric Spaces and Fixed Point Theory, John Wiley \& Sons, Inc., New York, 2001.
[16] Kirk, W.A., Contraction mappings and extensions, in: W.A. Kirk, B. Sims (Eds.), Handbook of Metric Fixed Point Theory, Kluwer Academic Publishers, Dordrecht, 2001, pp. 1-34.
[17] Kirk, W.A., Srinivasan, P.S., Veeramani, P., Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory. 4, 79-89 (2003).
[18] Kirk, W.A., Reich, S., Veeramani, P., Proximinal retracts and best proximity pair theorems, Numer. Funct. Anal. Optim. 24, 851-862 (2003).
[19] Kunze, H.E., La Torre D., \& Vrscay, E.R., Contractive multifunctions, fixed point inclusions and iterated multifunction systems, J. Math. Anal. Appl. 330, 159173 (2007).
[20] Markin, J.T., A fixed point theorem for set-valued mappings, Bull. Amer. Math. Soc. 74, 639-640 (1968).
[21] Megginson, R.E., An Introduction to Banach Space Theory, Springer, New York, 1998.
[22] Mizoguchi, N. and Takahashi, W., Fixed point theorems for multi-valued mappings on complete metric spaces, J.Math.- Anal. Appl. 141, 177-188 (1989).
[23] Nadler, S.B., Multi-valued contraction mappings, Pac. J. Math. 30, 475-488 (1969).
[24] Petruşel, A., On Frigon-Grans-type multifunctions, Nonlinear Anal. Forum. 7, 113121 (2002).
[25] Reich, S., Kannan's fixed point theorem, Boll. Un. Mat. Ital. 4, 1-11 (1971).
[26] Reich, S., A fixed point theorem for locally contractive multi-valued functions, Rev. Roum. Math. Pures. Appl. 17, 569-572 (1972).
[27] Reich, S., Fixed point of contractive functions, Boll. Un. Mat. Ital. 5, 26-42 (1972).
[28] Rus, I.A., Basic Problems the metric fixed point theory revisited(II), Stud. Univ. Babes-Bolyai. 36, 81-99 (1991).
[29] Rus, I.A., Generalized Contractions, Cluj University Press, Cluj-Napoca, 2001.
[30] Rus, I.A., Petruşel, A., Sîntămărian, A., Data dependence of the fixed point set of some multi-valued weakly Picard operators, Nonlinear Anal. 52, 1947-1959 (2003).
[31] Suzuki, T Kikkawa, M, Vetro, Cone The existence of best proximity points in metric spaces with the property UC/ Nonlinear (Analysis. 71, 2918-2926 (2009).
[32] Takahashi, W Nonlimear Functional cAnalysis : Fixed Point Theory and it Applications, XPkohama Publishers, Inc., Japan, 2000.
[33] Zamfirescu, T., Fix point theorems in metric spaces, Arch. Math. (Basel) 23, 292298 (1972).

VITA

Mister Annop Kaewkhao was born on December 14, 1978 in Chonburi, Thailand. He got a Bachelor of Education in Mathematics in 2003 from Burapha University and got a Master of Science in Mathematics in 2005 from Chulalongkorn University. After two years, he furthered study for the Ph.D. program at Chulalongkorn University.

