Chapter II

Historical

I. Alkaloids Isolated from Lauraceous Plants

Greshoff, in 1890, isolated laurotetanine, the first Lauraceous alkaloids, from Actinodaphne procera Nees and Litsea chrysocoma Blume. In 1978, Ralph and coworkers summarized the Lauraceous alkaloids in nature which isolated from 103 species of 19 genera. There are about 105 alkaloids of 15 structural types. Most of Lauraceous alkaloids are isoquinoline type. (Greshoff, 1890; Ralph, Bick and Sinchai, 1978).

The occurrence of alkaloids found in the various species of the Lauraceae is summarized in Table 1.

์ ศูนย์วิทยทรัพยากร เหาลงกรณ์มหาวิทยาลัย

Table 1. Distribution of the Lauraceous alkaloids.

Alkaloid	Reference
laurolitsine	Lu, Wang and Lin,
actinodaphnine	Krishna and Ghose,
	Krishna and Schlittler, 1934
boldine laurolitsine	Johns, Lamberton and Sioumis, 1969
actinodaphnine laurotetanine	Uprety, Bhakuni and Dhar, 1972
N-methyllauro- tetanine	
laurotetanine	Ralph, Bick and Sinchai, 1978
(+), (-)-coclau- rine (-)-N-norarmepa- vine	Johns, Lamberton and Sioumis, 1967
	laurolitsine actinodaphnine laurolitsine actinodaphnine laurotetanine N-methyllauro- tetanine laurotetanine (+), (-)-coclau- rine (-)-N-norarmepa-

Table 1. (cont.)

Plant species	Alkaloid	Reference
Alseodaphne semicar- pifolia Nees	srilankine	Smolnycki, Moniot, Hindenlang, Miana
		and Shamma, 1978
Aniba coto (Rusby) Kosterm.	anabasine	Mors and Gottlieb,
A. duckei Kosterm.	anibine	Mors, Gottlieb and
	duckein	Djerassi, 1957;
	// 3 G A ()	Correa and Gottlieb
		1975
A. rosaeodora Ducke	anibine	Mors, Gottlieb and Djerassi, 1957
Beilschmiedia ellip-	isoboldine	Clezy, Gellert, Lau
Francis	laurelliptine	and Nichol, 1966
B. oreophila Schlechter	6-epioreobeline isoboldine	Tillequin and Koch,
ลหาลงเ	oreobeline	
	thaliporphine	
	wilsonirine	
	and the important	

Table 1. (cont.)

	ansaid T	14/2
Plant species	Alkaloid	Reference
Beilschmiedia podagrica Kostermans	(+)-2, 11-dihydroxy -1, 10-dimethoxy-	Johns, Lamberton,
NOS COT MAILS	aporphine	Tweeddale, 1969
	glaucine	Tweeddale, 1909
	(+)-2, hydroxy-1	
	9,10-trimethoxy-	
	noraporphine	
	isoboldine .	
	isocorydine	
×.	laurelliptine	
	norpredicentrine	
	predicentrine	
	predicentime	NO.
B. tawa Benth. & Hook. (The valid name should be Nesodaphne tawa Nees)	isoboldine	Russell and Fraser,
Cassytha americana	actinodaphnine	Cava, Rao, Douglas
Nees (The valid name should be	bulbocapnine	and Weisbach, 1968
Cassytha fili- formis L.)	cassamedine	ID 191D
	cassameridine	
	cassyfiline	
	(cassythine)	
	cassythicine	

Table 1. (cont.)

Plant species	Alkaloid	Reference
Cassytha americana	cassythidine	
Nees (The valid name should be	dicentrine	
Cassytha fili- formis L.)	launobine	
	N-methylactino-	•
	daphnine	
` * _*	0-methylcassyfi-	
	line	
	neolitsine	
	nuciferine	
C. filiformis L.	cassyfiline	Webb, 1948; Tomita,
	(cassythine)	Lu and Wang, 1965;
	cassythidine	Johns and
	laurotetanine	Lamberton, 1966;
	nantenine	Merchant and Desai,
	ocoteine (0, N-di-	1973
	methylcassyfiline)	ากร
C. glabella R. Br.	cassythicine	Johns, Lamberton
จหาลงา	ารณมหาวิเ	and Sioumis, 1966
C. melantha R. Br.	actinodaphnine	Johns, Lamberton
	cassythicine	and Sioumis, 1966
	(N-methylactino-	
	daphnine)	

Table 1. (cont.)

Plant species	Alkaloid	Reference
Cassytha pubescens	domesticine	Johns, Lamberton
R. Br.	isoboldine	and Sioumis, 1966
×	laurelliptine	
	nantenine	
	nordomesticine	
	sinoacutine	
C. racemosa Nees	(+)-coclaurine	Johns, Lamberton
	1,2-dimethoxy-9,	and Sioumis, 1967
	10-methylenedioxy-	
	-7-oxodibenzo-	
	-quinoline	4.5
	isoboldine	
Q.	laurelliptine	A
	laurotetanine	
	N-methyllauro-	
สาเย็	tetanine	ากร
LI RO	nantenine	III q
จุฬาลงก	nornantenine	ายาลัย
Cinnamomum camphora	laurolitsine	Tomita and Kozuka,
(Linn.) Sieb.	reticuline	1964
C. laubattii F. Muell	(+)-reticuline	Ellis, Gellert and
		Summons, 1972

Table 1. (cont.)

Plant species	Alkaloid	Reference
Cinnamomum sp.	cinnamolaurine	Gellert and Summon,
	(-)-cinnamolaurine	1969; 1970
*	(+)-corydine	100
· ·	norcinnamolaurine	
	(+)-reticuline	
Cryptocarya alba	(+)-reticuline	Urzua, Torres and
		Cassels, 1975
C. amygdalina Nees	(+)-reticuline	Manandhar, Shoeb,
	9.4440mb 4*\\\	Kapil and Popli,
		1979
C. angulata C.T. White	3,4-dimethoxy-1-	Cooke and Haynes,
wnite	dimethylamino-	1954; Bick and
	ethylphenanthrene	Douglas, 1965
	(atherosperminine)	
คนย	N-methylisocory-	ากร -
Q.	dine	
จุฬาลง	roemerine	ทยาลย
C. archboldiana C.K.	(-)-armepavine	Johns, Lamberton
		and Tweeddale,
		1969

Table 1. (cont.)

Plant species	Alkaloid	Reference
Cryptocarya bowiei (Hook.) Druce (The valid name should be Lawrus bowiei Hook.)	cryptaustoline cryptowoline	Ewings, Hughes, Ritchie and Taylor, 1953
C. chinensis Hems1.	<pre>(±), (-)-caryachine crychine (+)-0-methylcarya- chine (+)-eschsholitzi- dine</pre>	Chen, Lee, Lai, Wu and Beal, 1979
C. foveolata C.T. White & Francis	reticuline	Lamberton and Vashist, 1972
C. konishii Hayata	armepavine (±)-coclaurine crykonisine (±)-N-norarmepavine (-)-N-norarmepavine	Lu, 1967 a,
C. laevigata Elmer	cryptopleurine	Hoffmann, Luzbatak, Torrance and Cole, 1978

Table 1. (cont.)

Plant species	Alkaloid	Reference
Cryptocarya longifo- lia Kostermans	bisnorargemonine	Ralph, Bick,
	coclaurine	Sevenet, Sinchai,
	isoboldine	Skelton and White,
	laurolitsine	1981
	laurotetanine	
	longifolidine	
	longifolonine	
	N-methylcoclaurine	
	N-methyllauroteta-	
* * * * * * * * * * * * * * * * * * *	nine	
	norargemonine	μ
	norisocarydine	
Q.	reticuline	6
	scoulerine	
	thalifoline	
6916	กิจกอเลกรัฐมอเ	1.0.5
C. odorata (Panch & Seb.) Guillaum.	cryptodorine	Bick, Preston and
	isocorydine	Potier, 1972
4 M 19 11	laurotetanine	18,195
	N-methyllauroteta-	
	nine	
	(+)-reticuline	

Table 1. (cont.)

	* 9	
Plant species	Alkaloid	References
Cryptocarya phylloste	- antofine	Bick, Sinchai,
mon Kostermans	dehydroantofine	/ Sevenet, Ranaivo,
	5000.	Nieto and Cave,
		1980
C. pleurosperma	cryptopleuridine	de la Lande, 1948;
Francis	cryptopleurine	Gellert, 1959;
	cryptopleurosper-	Johns, Lamberton,
	mine	Sioumis and
	pleurospermine	Willing, 1970
C. tomentosa Blume	laurotetanine	Wehmer, 1935
C. triplinervis	N-methylisocorydine	Cooke and Haynes,
R. Br.	(menisperine)	1954
Cryptocarya sp.	crykonisine	Lu, 1967
Dehaasia sp.	isocorydine	Guinaudeau, 1983
Laurus nobilis L.	actinodaphnine	Tomita, Kozuka,
4 W 161 V (boldine	Nakagawa and
	cryptodorine	Mitsunori, 1963;
	isodomesticine	Pech and Bruneton,
	launobine	1982
	N-methylactino-	
	daphnine	

Table 1. (cont.)

Plant species	Alkaloid	Reference
Laurus nobilis L.	nandigerine	
. "	norisodomesticine	E E
Lindera benzoin (L.) Blume	laurotetanine	Babcock and
		Segalman, 1974
L. citriodora (Sieb. & Zucc.) Hemsl	laurotetanine	Kozuka, Shibakawa,
		Yoshimura,
		Yokoyama, Fugiwara,
		Miyaji and Sawada,
		1984
L. erythrocarya Makino	laurotetanine	Kozuka et al., 1984
	N-methyllauroteta-	
8	nine	
L. glauca (Sieb. & Zucc.) Blume	laurotetanine	Kozuka et al., 1984
Zucc.) Brune	(+)-norcinnamolau-	
- คุนยา	rine	
ละสาลงร	(+)-reticuline	
L. oldhamii Hemsl	(+)-dicentrine	Lu, Wang, Lai, Lin
	dicentrinone	and Lin, 1972; Lu
	lindoldhanine	and Chen, 1976;
	L-(+)-magnocurarine	Chen, 1977

	ANSUNS IN	
Plant species	Alkaloid	Reference
Lindera oldhamii Hems1.	N-methylhernan-	
	(N-methylnandi-	
	gerine)	
	N-methylhernovine	
	(N-methylovigerine)	
	O-methylbulbocap-	
	nine	
	N-nordicentrine	
L. pipericarpa Boerl. (The valid name	laurotetanine	Burkill, 1935;
should be Polyadenia pipericarpa Miq.)	lindcarpine	Kiang and Sim, 1967
L. sericea Blume	boldine	Kozuka, Miyazawa,
์ สาย์วิ	launobine	Yokoyama, Odani and
	laurolitsine	Kubo, 1985
L. sericea var. glabrata	boldine	Kozuka et al., 1985
1	launobine	
	laurolitsine	

Table 1. (cont)

Plant species	Alkaloid	Reference
Lindera strychniso	boldine	Tomita, Sawada,
lía (Sieb. & Zucc.) F. Vill.	laurolitsine	Kozuka, Hamano and
	reticuline	Yoshimura, 1969;
		Kozuka, Yoshikawa
		and Sawada, 1984
L. umbellata Thunb	boldine	Tomita et al., 1969;
	launobine	Kozuka et al., 1985
	laurolitsine	
	laurotetanine	
L. umbellata Thunb.	boldine	Kozuka et al., 1985
var. lancea Momiyama	launobine	
	laurolitsine	
Litsea akoensis Hayata	laurolitsine	Lu, Su and Duh, 1979
L. amara Blume	laurotetanine	Wehmer, 1935
L. chrysocoma Blume	laurotetanine	Greshoff, 1890
L. citrata Blume	laurotetanine	Spath and Suominen,
	N-methyllauroteta-	1933
	nine	
L. cubeba Pers.	isocorydine	Tomita, Lu, Lan and
	laurotetanine	Lin, 1965; Lu and
	(+)-magnocurarine	Lin, 1967

Table 1. (cont.)

Plant species	Alkaloid	Reference
Litsea cubeba Pers.	N-methyllauroteta-	
L. deccanensis Gamble	actinodaphnine	Desai, 1 966
L. glutinosa (Lour.) C.B. Rob	isoboldine	Hart, Johns,
C.D. ROD	laurelliptine laurolitsine	Lamberton, Lodder,
	laurotetanine liriodenine	Moorhouse, Sioumis and Smith, 1969
L. glutinosa var. glabraria Hook	actinodaphnine	Tewari, Bhakuni and Dhar, 1972
	laurolitsine (norboldine)	
Ū,	laurotetanine N-methylactinodaph-	
- ดูนย์วิ	nine	กร
จุฬาลงก	N-methyllauroteta-	เยาลัย
L. hayatae Kanehira (The valid name should be L. obovata	laurolitsine liriodenine	Lu, Wang and Lin,
Hayata)	(oxoushinsunine) ushinsunine	
L. intermedia Boerl	laurotetanine	Wehmer, 1935

Table 1. (cont.)

Plant species	Alkaloid	Reference
Litsea japonica Mirb.	laurolitsine	Kozuka, 1962
L. javanica Blume	laurotetanine	Wehmer, 1935
L. kawakamii Hayata	cassameridine	Lu, Su and Duh,
	laurolitsine	1979
	N-methylactinodaph-	
	nine	
L. laeta Benth & Hook	dicentrinone	Borthakur and
	glaucine	Rastogi, 1979;
	laetanine	Rastogi and
	(2,10-dihydroxy-	Borthakur, 1980
	-1, 9-dimethoxy-	
0	noraporphine)	A
	laetine	
U.	nordicentrinone	
L. latifolia Blume	laurotetanine	Ralph, Bick and
Q)		Sinchai, 1978
จหาลงา	ารณมหาวฯ	
L. lawifolia (Jacq.) Cordemoy	actinodaphnine	Leboeuf, Cave,
	boldine	Provost and
	glaziovine	Forgaes, 1979;
	isoboldine	Guinaudeau et al.,
	laurelliptine	1983
	laurolitsine	

Table 1. (cont.)

Plant species	Alkaloid	Reference
Litsea lawrifolia	laurotetanine	2
(Jacq.) Cordemoy	N-methylactinodaph-	
	nine	
	N-methylhernan-	31
	gerine	
	N-methyllauroteta-	
	nine	
	nandigerine	
	reticuline	
L. lecardii Guillaum	(+)-actinodaphnine	Weber, Bruneton and
	(+)-boldine	Pusset, 1986
	(+)-cassythicine	
	(+)-coclaurine	
	(+)-isoboldine	
	(+)-laurolitsine	
ଗ୍ରୀଧା	(+)-litserferine	
a la lo	(+)-norisocorydine	
ลหาลง	(-)-pallidine	
	(+)-reticuline	
L. leefeana Merr.	boldine	Lamberton and
	laurolitsine	Vashist, 1972
	(+)-reticuline	
L. Lucida Blume	laurotetanine	Wehmer, 1935

Table 1. (cont.)

Plant species	Alkaloid	Reference
Litsea nitida Roxb	actinodaphnine	Patnaik and
	dicentrine litsedine	Gopinath, 1975
L. polyantha Juss.	actinodaphnine	Dutta, 1968
L. salicifolia Hook.) (The valid name	dicentrinone	Rastogi and
should be Tetranthera salicifolia Roxb.)	glaucine	Borthakur, 1980
	laetine	
	nordicentrine N, 0-dimethylherno-	
	vine	× × ×
L. sebifera Pers.	actinodaphnine	Uprety, Bhakuni and
	boldine	Dhar, 1972;
	laurotetanine	Sivakumaran and
annia.	litseferine	Gopinath, 1976
la l	N-methyllauroteta- nine	
จหาลงก	sebiferine	ายาลัย
L. solomensis Allen	laurolitsine	Hart, Johns,
	reticuline	Lamberton, Lodder,
		Moorhouse, Sioumis
		and Smith, 1969

Table 1. (cont.)

Plant species	Alkaloid	Reference
Litsea triflora	actinodaphnine	Castredo, Saa, Suau,
Guillaumin	(+)-boldine	Villaverde and
	(+)-coclaurine	Potier, 1980
	(+)-corydine	
	glaucine	
	(+)-isoboldine	
	(+)-isocorydine	
	laurelliptine	
	(-)-N-methylco-	
	claurine	
	N-methyllauroteta-	
	nine	
	(+)-norboldine	
	(+)-norisoboldine	
	predicentrine	
	(+)-predicentrinone	
	(+)-reticuline	กร
L. turfosa Blume	boldine	Holloway and
	laurolitsine	Scheimann, 1973
	(norboldine)	
L. wightiana	boldine	Uprety, Bhakuni and
Benth & Hook. f.	glaucine	Dhar, 1972; Bhakuni
	isoboldine	and Gupta, 1983

Table 1. (cont.)

		1
Plant species	Alkaloid	Reference
Litsea wightiana Benth & Hook. f.	laurolitsine (norboldine) laurotetanine	
	norboldine norcorydine	
L. zeylanica (C & T.) Nees	(+)-isoboldine	Kametani, Satoh,
	(+)-N-norisobol-	Fukumoto and Pai,
	dine	1971
	(+)-reticuline	
Litsea sp.	actinodaphnine	Kozuka, 1962; Tomita,
	(+)-coclaurine	Lu, Fu and Lin, 1965;
	(+)-isocorydine	Tomita, Lu and Lan,
	laurolitsine	1965; Desai, 1966;
	laurotetanine	Lu and Lin, 1967;
	(-)-magnocurarine	Hart et al., 1969
ศบย์วิ	reticuline	185
Machilus acuminatissi-	(+)-coclaurine	Lu, 1967 a
mus (Hay) Kanehira	(machiline)	ายาลัย - เ
1 11 101 111	crykonisine	
	(±)-N-norarmepavine	
	(-)-N-norarmepavine	
M. arisanensis Hayata	(+)-laudanidine	Tomita, Lu and Lan,
	(±)-(-)-N-norarme-	1965 a
	pavine	

Table 1. (cont)

Plant species	Alkaloid	Reference
Machilus arisanensis Hayata	(-)-N-norarmepa-	
M. duthei King & Hook	boldine isoboldine	Hussain, Amin and Shamma, 1980
	laurotetanine norboldine	
M. glaucescens Wight	(+)-reticuline machigline	Talapatra, Goswarmi
		Ghosh and Talapatra
M. kusanoi Hayata	coclaurine (-)-N-norarmepa- vine	Tomita, Yang and Lu
M. macrantha Nees	(±)-coclaurine	Tomita, Yang, Gaind and Baveja, 1963
M. obovatifolia (Hayata) Kanehira & Sasaki	<pre>(+)-laudanidine (±)-N-norarmepa- vine (-)-N-norarmepa- vine</pre>	Tomita, Lu and Lan,

Table 1. (cont.)

Plant species	Alkaloid	Reference
Machilus pseudolongi-	(±)-N-norarmepavine	Lu, 1963
folia Hayata	(-)-N-norarmepavine	A ** * *
M. thunbergii	(±)-N-norarmepavine	Tomita and Kozuka,
	(-)-N-norarmepavine	1964; Tomita, Lu
	reticuline	and Lan, 1965 b
M. zuihoensis Hayata	(±)-N-norarmepavine	Tomita, Lu and Lan,
	(-)-N-norarmepavine	1965 в
Machilus sp.	(±)-N-norarmepavine	Lu, 1963; Tomita,
	(-)-N-norarmepavine	Lu and Lan 1965 b
	reticuline	
Mezilawrus synandra (Mez.) Kosterm.	coclaurine	Silva, Nagem,
(IEZ.) ROSLEIM.	corytuberine	Mesquita and
I)	norcinnamolaurine	Gottlieb, 1983
Nectandra pichwrim (H.B.K.) Mez.(The valid name should be Ocotea pichwrim	isoboldine	Ferrari, Fervidi and Ferrari, 1971
H.B.K.)		
N. rigida Nees	laurelliptine	Le Quesne,
		Larrahondo and
		Raffauf, 1980

Table 1. (cont.)

Plant species	Alkaloid	Reference
Nectandra rodiei	ocoteine	Grundon and Garvey,
R. Schomb.	rodiasine	1960
	sepeerine	
N. saligna (Nees &	dehydroocoteine	Baralle, Busch,
Mart) Nees	isoboldine	Vernengo and Kuck,
	ocoteine	1972
Neolitsea (Table 2)		
		10.
Notaphoebe konishii Hayata	(±)-N-norarmepavine	Lu, 1967 b
	(-)-N-norarmepavine	
	(-)-laudanine	
N. umbelliflora Blume	laurotetanine	Ralph, Bick and Sinchai, 1978
Notaphoebe sp.	actinodaphnine	Ghose, Krishna and
		Schlittler, 1934
Ocotea acutangula Mez.	S-(-)-0-methy1-	Vecchietti,
	pallidine	Casagrande, Ferrari,
	S-(-)-0-methyl-	Danieli and
	pallidinine	Palmisano, 1981
	S-(-)-pallidine	
	S-(-)-pallidinine	
0. brachybotra (Meiss.)	cassythicine	Vecchietti,
Mez.	dicentrine	Casagrande and

Table 1. (cont.)

Plant species	Alkaloid	Reference
Ocotea brachybotra (Meiss.) Mez	14-episinomenine	Ferrari, 1976; 1977
(He155.) He2	(+)-glaziovine	
*	leucoxine	× 1
	ocobotrine	
	ocopodine	
	pallidine	
	predicentrine	
	sinoacutine	
O. bucherii Roij & Acuna	3-hydroxyglaucine	Hasso, Alfred, Klau
	1 9 42 Comp 4 \ \\	and Hilda, 1983
0. caparrapí (Sandino-	reticuline	Suarez and Enrique,
Grott & Nates) Dugand		1980
O. glaziovii Mez.	(±)-apoglaziovine	Gilbert, Gilbert,
	asimilobine	De Oliveira,
	caaverine	Ribeiro, Wenkert,
คนย1	(±)-crotsparine	Wickberg, Hollstein
g.	1,10-dihydroxy-	and Rapoport, 1964;
จหาลงก	2-methoxyaporphine	Ferrari and
1	(±)-glaziovine	Casagrande, 1967;
	(±)-1-hydroxy-2-	Casagrande and
	-methoxyaporphine	Ferrari, 1975
	isoboldine	
	liridenine	

Table 1. (cont.)

	Plant species	Alkaloid	Reference
Oc	otea glaziovii Mez.	(-)-pronuciferine	
0.	Leucoxylon Benth. & Hook.	dicentrine leucoxine	Ahmad and Cava, 1977
		leucoxylonine ocoteine ocoxylonine	
0.	macrophylla Mez. (The valid name should be Nectandra macrophylla Nees)	dehydroantenine (+)-glaucine (+)-isocorydine l-(p-methoxyben- zyl)-6, 7 dimetho- xyisoquinoline l-(p-methoxyben- zyl)-6, 7 methy- lenedioxyisoqui- noline (+)-nantenine	Franca, Giesbrecht, Gottlieb, Magalhães, Magalhães and Maia, 1975
0.	macropoda Mez.	dihydrodicentrine dihydroocopodine dicentrine dicentrinone nordicentrine ocopodine	Cava, Watanabe, Bessho, Mitchell, da Rocha, Hwang, Douglas and Weisbach, 1968; Charubala, Pai, Govindachari

Table 1. (cont.)

Plant species	Alkaloid	Reference
Ocotea macropoda Mez.	predicentrine	and Viswanathan,
		1968; Cava and
	SMIMA.	Venkateswarlu,
		1971
O. minarum Nees (Mez.)	dicentrine	Vecchietti,
	dicentrinone	Casagrande, Ferrari
	4-hydroxydicentrine	and Severini, 1979
	isooconovine	
	leucoxine	
	leucoxylonine	
	nor-leucoxylonine	
	ocominarine	
	ocominarone	
	ocopodine	
	ocoteine	
	ocotominarine	
	predicentrine	
จุฬาลงก	thalicminine	2002
0. puberula Nees	dehydroocoteine	Vernengo, 1963;
	didehydroocoteine	Baralle, Schvarzberg,
	ocoteine	Vernengo and Comin,
	thalicmine	1972; Baralle,
	thalicminine	Schvarzberg,

Table 1. (cont.)

Plant species	Alkaloid	Reference
Ocotea puberula Nees	*	Vernengo, Moltrasio
4		and Giacopello, 1973
O. rodiocí Mez	demerarine	Mckennis, Hearst,
	norrodiasine	Drisko, Roe and
	2-(+)-norte-	Alumbaugh, 1956;
	trændrine	Hearst, 1964; Chan,
	ocoteamine	Evans, Hassall and
	(sepeerine)	Sangster, 1967
	ocotiene	
	ocotosine	
	radiasine	
0. variabilis Mart	(+)-apoglaziovine	Cava, Behforouz and
	(+)-glaziovine	Mitchell, 1972
	(+)-nantenine	
	variabiline	
- คนุย	วทยทรพย	1.75
0. venenosa Gleason	bebeerine	Kostermans, Pinkley
	dimethylrodiasine	and Stern, 1970
	rodiasine	1016
Ocotea sp.	isocorydine	Cava, Watanabe,
	l-(p-methoxyben-	Bessho, Mitchell,
	zy1)-6, 7-dimetho-	da Rocha, Hwang,
	xyisoquinoline	Douglas and Weisbach,

Table 1. (cont.)

Plant species	Alkaloid	Reference
Ocotea sp.	l-(p-methoxyben-	1968; Franca,
	zy1)-6,7-methylene-	Giesbrecht, Gottlieb,
	dioxyisoquinoline	Magalhães, and Maia,
	ocokryptine	1975
	oconovine	44
Parabenzoin praecox	nandigerine	Kozuka, Inada,
(Sieb & Zacc.) Nakai	praecoxine	Konoshima and Sawada,
	(N-methylhernagine)	1984
Persea gratissima	dopamine	Udenfriend, Lovenberg
Gaertn. f.	(hydroxytyramine)	and Sjoerdsma, 1959
	serotonine	
	(5-hydroxytrypta-	
	mine)	
Persea sp.	dopamine	Udenfriend, Lovenberg
คนยว	serotonine	and Sjoerdsma, 1959
9	tyramine	
Phoebe clemensii	2, -11-dihydroxy-	Johns and Lamberton,
C.K. Allen	1,10-dimethoxy-	1967
	aporphine	
	10-hydroxy-1, 2-	
	methylenedioxyapor-	
	phine	

Table 1. (cont.)

Plant species	Alkaloid	Reference
Phoebe clemensii C.K. Allen	N-methyllindcarpine isocorydine laurolitsine (-)-mecambroline	
P. formosana Hay.	lauformine laurolitsine	Lu and Su, 1973 b; Lu and Tsai, 1984
	lirio denine (oxoushinsumine) litsericine N-methylauformine N-methyllitseri- cine roemerine	
P. molicella Blake	norpreocoteine norpurpureine preocoteine purpureine	Stermitz and Castro,
P. pittieri Mez.	1, 2, 9-trimethoxy- 10-hydroxynorapor- phine (norlirioferine)	Castro, Lopez and Vergara, 1985

Table 1. (cont.)

Plant species	Alkaloid	Reference	
Phoebe pittieri Mez.	1,2,3-trimethoxy-9,		
	10,methylenedioxy-		
. *	norporphine		
	norpurpureine		
	reticuline		
	·		
P. porfiria (Gris.)	Ocoteine	Baralle, Busch,	
		Vernengo and Kuck,	
		1972	
Ravensara aromatica	N-methylisocory-	Groebel, Lenoir and	
J.F. Gmel	dine	Pernet, 1969	
	(menisperine)	B.	
	The state of the s	10	
Sassafras albidum (Nutt.) Nees	boldine	Chowdhury, Sethi,	
(The valid name	cinnamolaurine	Lloyd and Kapadia,	
should be Sassafras officinale Nees & Eberm)	isoboldine	1976	
	norboldine	1113	
9	norcinnamolaurine		
9 W 7 8 V 1	reticuline	กยาลย	

II. Alkaloids Isolated from Neolitsea Species

Members of the genus Neolitsea are found to contain a wide range of chemical constituents such as alkaloids, monoterpenes, sesquiterpenes, triterpenes, lignans and fatty acids.

Aporphines and benzylisoquinolines frequently occur in Neolitsea species. Boldine, isolated from Neolitsea sericea (Blume) Koidzumi by Nakasato and Nomura in 1957 was the first alkaloid isolated in this genus.

The occurrence of alkaloids found in the various species reported as *Neolitsea* is summarized in Table 2.

ศูนย์วิทยทรัพยากร หาลงกรณ์มหาวิทยาลัย

Table 2. Distribution of the alkaloids in genus Neolitsea

Plant species	Part used	Alkaloid	Reference
Veolitsea aciculata Koidz. (The valid name should be Laurus aciculata Teschn.)	root	boldine laurolitsine (+)-laurotetanine	Kozaku, Takeuchi and Sawada, 1984
ages.		(+)-reticuline	
N. acuminatissima Kanehira & Sasaki (The valid name should be Tetradenia acumina- tissima Hayata)	bark	(+)-laurotetanine	Kataoku, 1965; Tomita, Lu, Fu and Lin, 1965
N. awrata (Hay.) Koidz. (The valid name should be Tetradenia awrata Hayata)		(+)-anonaine laurolitsine litsericine N-methyllitsericine	Lu, Su and Wang, 1975
		(-)-roemerine	
N. buisanensis Yamamoto & Kamikoti		laurolitsine litsericine	Lu, Su and Wang 1975
N. daibuensis Kamikoti	root	(+)-reticuline	Lu and Homg, 1977
N. fuscata (Thwait) Alston. (The valid name should be Litsea fuscata Thwait)	bark	isoboldine	Gunatilaka, Sotheeswaran, Sriyan, and Balasubramaniam,
9118	13918	มทรพยาก	1981
N. pubescens (Teschn.) Merrill. (The valid name should be Tetradenía pubescens Teschn.)	bark	boldine laurolitsine N-methyllaurotetanine roemerine	Johns, Lamberton and Sioumis, 1969
N. pulchella (Meiss.) Merr (The valid name should be Litsea pulchella Meissn.)	leaves	neolitsine neolitsinine isomeric pulchelline	Hui, Loo and Arthur,

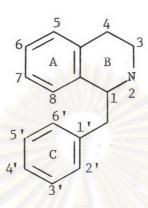
Table 2. (cont.)

Plant species	Part used	Alkaloid	Reference
Neolitsea sericea (Blume) Koidzumi (The valid	trunk	actinodaphnine	Nakasato and Nomura,
name should be Laurus sericea Blume)	bark	anonaine	1957; 1958; 1959;
		boldine	Nakasato and Asada,
	~ *-	laurolitsine	1966; Nakasato, Asada
4		laurotetanine	and Kozuka, 1966
1.051		liriodenine	* ·
*		litsericine	
6		N-methylactinodaphnine	
X X		N-methyllaurotetanine	
7.50		nuciferine	
	leaves	roemerine	
	/////	(-)-roemerine	in the second
V. variabillima Kanehira &	bark	(-)-hernovine	Lu and Su, 1973 a
Sasaki (The valid name Should be Tetradenia variabillium Hayata)		(-)-N-methylhernovine	
viccus (ayata)		(-)-nandigerine	

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

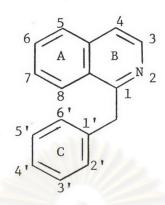
III. Chemistry of the Alkaloids in Lauraceous Plants

The Lauraceae plants also contained other types of alkaloid arising from phenylalanine or tyrosine. Most of the Lauraceous alkaloids are isoquinoline types; benzylisoquinolines, proaporphines, aporphines, dehydroaporphines, oxoaporphines, phenanthrenes, pavines, dibenzopyrrocolines, morphinans, bisbenzylisoquinolines, phenanthroquinolizidines, cryptopleurospermines. The biggest group is the aporphines. Apart from isoquinolines alkaloids, other alkaloids are pyridines, sedamine and indole types (Ralph, Bick and Sinchai, 1978).


The numbering and structure of these alkaloids are as follows:-

1. Benzylisoquinolines

The benzylisoquinolines occupy a paramount position in alkaloid chemistry because they act in vivo as precursor to so many of the other naturally occurring isoquinoline alkaloids. Ring A in the benzylisoquinoline alkaloids may possess two or three oxygenated substituents, while ring C has one or two substituents (Shamma, 1972 b). They are fundamentally two types of benzylisoquinoline, a 1, 2, 3, 4-tetrahydro type such as (+)-reticuline and a complete aromatic type such as papaverine (Cordell, 1981 b).


Lauraceous plants contain both benzylisoquinoline and tetrahydrobenzylisoquinoline types. In genus Neolitsea, it was found only one tetrahydrobenzylisoquinoline, reticuline, isolated from the root of Japanese plant, Neolitsea aciculata Koidz. (The valid name should be Laurus aciculata Teschn.) (Kozuka, Takeuchi and Sawada, 1984).

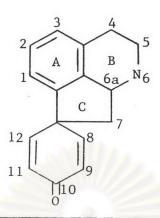
1.1 <u>Tetrahydrobenzylisoquinolines</u>

Alkaloid	Substituent positions				
Alkalolu	2	6	7	3'	4 *
(-)-armepavine	CH ₃	осн 3	осн ₃	ОН	_
cinnamolaurine	CH ₃	-0сн ₂ 0-		-	ОН
coclaurine (machiline)	-	OCH ₃	ОН	-	ОН
laudanidine	CH ₃	OCH 3	OCH ₃	ОН	OCH ₃
longifolidine	CH ₃	ทรัท	OCH ₃	ОН	(OCH ₃ group at 8)
magnocurarine	СН ₃ , СН ₃	OCH ₃	ОН	50	ОН
N-methylcoclaurine	CH ₃	осн ₃	ОН	<u> 1</u> 61	ט_
N-norarmepavine	_	OCH ₃	осн ₃	-	ОН
norcinnamolaurine	<u>-</u>	-0CH	2 ⁰⁻	_	ОН
reticuline	CH ₃	OCH ₃	ОН	ОН	OCH ₃

1.2 Benzylisoquinolines

Substituent positions		
6	7	4'
	r.	
OCH ₃	OCH ₃	ОН
0 CH 3	OCH ₃	OCH ₃
-oc	H ₂ 0-	OCH 3
		J
	6 OCH ₃	6 7 OCH 3 OCH 3

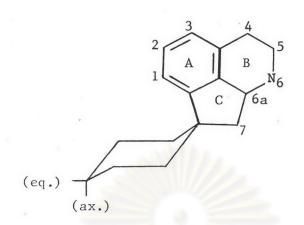
ศูนย์วิทยทรัพยากร จหาลงกรณ์มหาวิทยาลัย


2. Proaporphines

The proaporphine alkaloids occur in a variety of oxidation states. (+)-Pronuciferine possesses a cyclohexadienone system which is present in many other proaporphines such as (+)-crotonosine and (-)-orientalinone. The proaporphine numbering system is as indicated for (+)-pronuciferine. Because of the asymmetry at C-6a, one side of the dienone system is not equivalent to the other. The lower numbers (C-8 and C-9) are assigned to the side of the dienone above the mean plane of the molecule, and the higher number (C-11 and C-12) to the side below, as shown for (+)-linearisine (Shamma, 1972 c).

There are four proaporphine alkaloids occurring in the Lauraceae family. In genus Neolitsea, they were found two proaporphines, litsericine, isolated from Neolitsea aurata (Hay.) Koidz. (The valid name should be Tetradenia aurata Hayata);

N. buisanensis Yamamoto & Kamikoti and N. sericea (Blume) Koidzumi (The valid name should be Laurus sericea Blume) (Nakasato and Nomura, 1959; Nakasato, Asada and Koezuka, 1966; Nakasato and Asada, 1966; Lu, Su and Wang, 1975) and N-methyllitsericine, isolated from Neolitsea aurata (Hay.) Koidz. (Lu, Su and Wang. 1975).


2.1 Cyclohexadienone group

Alkaloid	Subs	ns	
AIRAIUIU	1	2	6
crotosparine	Н	OCH 3	Н
glaziovine	ОН	OCH ₃	CH ₃
pronuciferine	CH ₃	OCH 3	CH ₃

ศูนย์วิทยทรัพยากร งหาลงกรณ์มหาวิทยาลัย

2.2 Hexahydroproaporphine group

	Substituent positions							
Alkaloid	1 2	6	eq.	ax.				
	/J 3 (6) /A\							
lauformine	-0CH ₂ 0-	Н	ОН	Н				
litsericine	-0CH ₂ 0-	Н	Н	OH				
N-methyllauformine	-0 CH ₂ 0-	CH ₃	OH	Н				
N-methyllitsericine	-0 CH ₂ 0-	CH ₃	Н	ОН				

ศูนย์วิทยทรัพยากร งหาลงกรณ์มหาวิทยาลัย

3. Aporphines

The aporphines are the largest group of isoquinoline alkaloids (Cordell, 1981 c). They are derivable from the benzylisoquinolines by the abstraction of two hydrogens in such a manner that the two benzene nuclei now form part of a 4,5-dihydrophenanthrene. Since the biosynthesis of these alkaloids almost certainly proceeds from the benzylisoquinolines and since the latter are derived from precursors in which the oxygen substituents are in the 10- and 11-positions (i.e., thevanillin positions) it follows that aporphines can have the substituents only in the 2-, 3-, 4-, 5-, or 6-positions (Manske, 1954). A methyl group is usually attached to the nitrogen and found tertiary nitrogen atom. If the nitrogen is secondary, the alkaloid is called noraporphines.

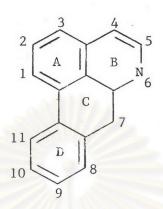
Position 1 and 2 are always substituted with hydroxyl, methoxyl or methylenedioxyl. Other substitution may be found on the position 9, 10 and 11 and less often 3 and 8. In a few case, a hydroxyl may locate at position 7 (Shamma, 1972 d).

Aporphine type is the majority of alkaloids occurring in the Lauraceae and Neolitsea species. The structures of this alkaloid group are summerized and shown as the following:

Alkaloid			Subst	ituent	posit	ions		
AIRAIOIU	1	2	3	6	8	9	10	11
actinodaphnine	-OCH ₂	0-	_	-	_	ОН	OCH ₃	-
anona ine	-OCH ₂		_	_			3	
	~			-	_	_	-	_
apoglaziovine	ОН	OCH ₃	-	CH3		-	ОН	-
asimilobine	OCH ₃	ОН	-	-	-	-	-	-
boldine	OCH ₃	ОН	-	CH3	-	OH	OCH ₃	-
bulbocapnine	-OCH ₂		-	CH ₃		-	OCH3	ОН
caaverine	ОН	OCH 3	-	-	-	-	-	-
cassyfiline (cassythine)	-OCH ₂	0-	OCH ₃	-,	-	ОН	OCH ₃	-
cassythicine	-OCH ₂	0-	-	СН3	-	ОН	OCH ₃	-
cassythidine	-OCH ₂	0-	осн ₃	-	-	-0CII	20-	-
corydine	ОН	OCH ₃	-	CH ₃	-	-	OCH ₃	OCH 3
cryptodorine (normeolitsine)	-OCH ₂	0-	-	_		-	-0CH	20-
dicentrine	-OCH ₂	0-	-	CH ₃	-	OCH 3	OCH ₃	-
2, 11-dihydroxy-1, 10-dimethoxyaporphine	OCH ₃	ОН	_	CH ₃	_	-	OCH ₃	ОН
l, 10-dihydroxy-2-methoxyaporphine	ОН	осн 3	_	CH ₃	-	-	ОН	-
domesticine	ОН	осн 3	-	CH ₃		-OCH	120-	-
glaucine (0-methylthalicmidine)	OCH ₃	осн 3	-	CH ₃	-	осн3	OCH ₃	-
hernovine	осн3	ОН	-	-	-	-	ОН	ОСН
4-hydroxydicentrine	-OCH ₂	0-	-	CH ₃	_	OCH ₃	OCH ₃	-
				<u></u>		(OH g	group a	t 3a')
3-hydroxyglaucine	OCH ₃	OCH ₃	ОН	CH ₃	_	OCH ₃	OCH ₃	_
(±)-1-hydroxy-2-methoxyaporphine	ОН	OCH ₃	1210	CH ₃	5-	-	-	_
10-hydroxy-1, 2-methylenedioxyaporphine	-OCH ₂	0-		CH ₃	0_	-	ОН	-
2-hydroxy-1, 9, 10-trimethoxynoraporphine	OCH ₃	ОН	9	-	-0	OCII 3	осн 3	_
1, 2, 9-trimethoxy-10-hydroxynoraporphine	OCH ₃	OCH ₃	_ //	[X].		OCH ₃	OH	_
(norlirioferine)	3	3				3		
1, 2, 3-trimethoxy-9, 10-methylenedioxy-	OCH ₃	осн ₃	OCH ₃		_	-0CI	1,0-	_
noraporphine	3	3	-3				2	
isoboldine	ОН	OCH ₃	_	CH ₃	_	ОН	OCH ₃	
		3				JII		011
(+)-isocorydine	OCH ₃	OCH 3	0.071	CH ₃	-		OCH ₃	ОН
isooconovine	OCH ₃	осн ₃	OCH 3	CH ₃	-	осн _з	OCH 3	ОСН

			Subst	tituent p	osition	3		
Alkaloid	1	2	3	6	8	9	10	11
Laetine	OCH ₃	ОН	-	-	-	OC) – .
Launobine	-OCH ₂ ()-	-	-	-	-	OCH ₃	ОН
Laurelliptine (norisoboldine)	ОН	OCH ₃	-	-	-	ОН	OCH ₃	-
Laurolitsine (norboldine)	OCH ₃	ОН	-	-	-	ОН	осн3	-
laurotetanine	OCH ₃	OCH ₃	-	-	-	ОН	OCH ₃	-
eucoxine	-OCH ₂	0-	1-	CH ₃	ОН	OCH ₃	OCH ₃	-
Leucoxylonine	-OCH ₂	0-	осн ₃	CH ₃	осн ₃	OCH ₃	OCH ₃	-
Lindcarpine	осн ₃	ОН	-	-	-	-	OCH ₃	ОН
lirinidine	OCH ₃	ОН	OCH ₃	CH ₃	-	-	-	-
litsedine	-OCH ₂	0-	-	-	-	-	OCH 3	0 CH
litseferine	-OCII ₂	0-	-	-	_	OCH ₃	ОН	-
(-)-mecambroline	-OCH ₂	0-	-	CH ₃	-	-	ОН	-
N-methylactinodaphnine	-OCH ₂	0-	-	CH ₃	-	ОН	OCH ₃	-
D-methylbulbocapnine	-OCH ₂		-	CH ₃	-	-	OCH ₃	O CH
O-methylcassyfiline	-0CH ₂	0-	OCH ₃	-	_	OCH ₃	OCH ₃	
(O-methylcassythine)			5574					
N-methylhernangerine	-OCH ₂	0-	-	CH ₃	-	-	ОН	OCH
(N-methylnandigerine)								
N, O-dimethylhernovine	OCH ₃	OH	-	CH ₃	4_	-	OCH ₃	OCH
N-methylhernovine	-OCH	0-	-	CH ₃	-	-	-OCH ₂	0-
(N-methylovigerine)				3				
N-methylisocorydine	OCH ₃	OCH ₃	Q./=	CH ₃ ; CH ₃	-	-	OCH 3	ОН
N-methyllaurotetanine	OCH ₃	OCH ₃	5 9/1 9	CH ₃	15	ОН	OCH ₃	_
N-methyllindcarpine	OCH ₃	OH OH	0 / I I	CH ₃	-0	-	OCH ₃	ОН
nandigerine	-OCH,	0-		-	. A. S	ν	ОН	O CI
nantenine		OCH ₃	11.	CH ₃	1-16	-OCH	20-	-
neolitsine	-осн		_	CH ₃	_	-осн	_	-
norcorydine	ОН	OCH ₃	-	Н	_	_	OCH ₃	oc
nordicentrine	-осн	3	-	Н	_	- 7	OCH ₃	oa
nordomesticine	ОН	OCH ₃	_	_	_	-OCH		_
norleucoxylonine	-осн		OCH ₃	CH ₃	OCH ₃	OCH ₃	OCH ₃	_
nornantenine	OCH ₃	OCH ₃	_	_	_	-0CH		_

			Subs	stituent	positio	ns		
Alkaloid	1	2	3	6	8	9	10	11
norpredicentrine	OCH ₃	ОН	-	-	-	осн ₃	OCH ₃	-
norpreocoteine	ОН	OCH ₃	осн 3	-	-	OCH ₃	OCH ₃	~
ncrpurpureine	OCH ₃	OCH ₃	och ₃	-	-	OCH ₃	OCH 3	-
nuciferine	OCH ₃	OCH ₃	-	CH ₃	-	-		-
ocokryptine	осн 3	-OCH	20-	CH ₃	-	-	осн ₃	ОН
ocominarine	-OCH ₂	0-	-	CH ₃	-oc	H ₂ 0-	OCH ₃	-
oconovine	осн 3	осн 3	осн 3	CH ₃	-	-	OCH ₃	ОН
ocopodine	-OCH ₂	0-	-	CH ₃	OCH ₃	OCH ₃	OCH ₃	-
ocoteine (0, N-dimethylcassy-	-OCH ₂	0-	OCH ₃	CH ₃	-	осн ₃	OCH 3	-
filine, thalic mine)								
ocotominarine	-OCH	20-	-	CH ₃	-OC	H ₂ 0-	OCH ₃	-
ocoxylopine	-OCH ₂	20-	OCH ₃	CH ₃	ОН	OCH ₃	och ₃	-
praecoxine ((+)-1, 2, 11-	OCH ₃	осн 3	-	CH ₃	CH ₃	-	ОН	OCI
trimethoxy-10-hydroxyaporphine,								
N-methylhernagine)								
predicentrine	OCH ₃	ОН	34)	CH ₃	-	OCH ₃	OCH ₃	-
preocoteine	ОН	OCH ₃	осн ₃	CH ₃	- "	OCH ₃	осн 3	-
pulchine (N-methylzenkerine)	ОН	OCH ₃	-	CH ₃	-	OCH ₃	<u>*</u> *	-
purpureine (thaliçsmidine)	OCH ₃	OCH ₃	осн 3	CH ₃	–	OCH ₃	OCH ₃	-
roemerine	-0CH	20-	-	CH ₃	-	-	-	-
thalicmine	-0CH ₂	0-	OCH ₃	CH ₃	-	OCH ₃	OCH ₃	_
thaliporphine (0-methylisoboldine)	ОН	осн ₃	0110	CH ₃	ā	OCH ₃	OCH 3	-
srilankine	осн ₃	ОН	7/12	CH ₃	3	OCH ₃	OCH ₃	-
9						(OH 8	group at 4)
ushinsunine	-0 CH	20-	97	CH ₃	เคล่	12	-	-
7 1 101 11						(OH §	group at 7)
variabiline	OCH ₃	OCH ₃	-	CH ₃	-	-N(CH	Ph) 2-	-
wilsonirine	ОН	-0CH ₂	0-	_		OCH ₃	OCH ₃	_


4. Dehydroaporphines

The dehydroaporphines are optically inactive and classified as a subgroup of the aporphine alkaloid (Shamma, 1972e). From the basic structure, there are two types of this subgroup.

4.1 <u>6a,7-Dehydroaporphine</u> The unsaturation is on the C-6a,7. In this subgroup, dehydrodicentrine was first reported to be isolated from natural sources. In Lauraceous plants, they are obtained in Ocotea sp. The details of their structures are shown below:-

Alkaloid	Substituent positions							
AIRAIOIG	1	2	3	8	9	10		
dehydrodicentrine	-OCH	120-	1113°	ทยา	осн 3	осн ₃		
dehydronantenine	осн ₃	OCH ₃	-	-	-OCH	20-		
dehydroocopodine	-0CH	20-	-	OCH ₃	OCH ₃	осн 3		
dehydroocoteine	-0 СН	20-	осн3	-	осн3	осн 3		

4.2 4,5-Dehydroaporphines The unsaturation is on C 4, 5. Only one alkaloid of this subgroup in Lauraceous plants is didehydroocoteine.

Allealadd	Substituent positions						
Alkaloid	1	2	3	6	9	10	
didehydroocoteine	-0 CI	H ₂ 0-	OCH ₃	CH ₃	OCH 3	осн ₃	

ศูนย์วิทยทรัพยากร งุฬาลงกรณ์มหาวิทยาลัย

5. Oxoaporphines

Oxoaporphine alkaloids are probably derived in plant by oxidation of the corresponding aporphine alkaloids (Shamma, 1972 f). They are widely distributed (at least nine plant families) and commonly co-occur with aporphine alkaloids. Oxoaporphine like the aporphines, beyond the perennial 1, 2-dioxygenation, they exhibit a variety of oxygen substitution patterns. In the series, however, there is a tendency toward 3-substitution but not 11-substitution (Cordell, 1981d).

The first oxoaporphine to be isolated (1960) was liriodenine a bright yellow constituent of the heartwood of the tulip tree Liriodendron tulipifera L. (Magnoliaceae) (Cordell, 1981d).

The occurrence of oxoaporphine alkaloids in Lauraceous plants are summerized and shown below. For Neolitsea sp.; this group of alkaloid was only isolated from N. sericea (Blume)

Koidzumi as liriodenine (Nakasato, Asada and Kaezuka, 1966).

Alkaloid		Sub	stituen	t posit	ions	
minaro i	1	2	3	9	10	. 11
cassamedine	-0 CH ₂ () –	CCH ₃	-0 CH	0-	_
cassameridine	-0 CH ₂ (-	-0 CH	-	_
dicentrinone	-0 CH ₂ (-		OCH ₃	-
1, 2-dimethoxy-9, 10-	0 CH ₃	OCH ₃	_	-0 CH	•	-
methylenedioxy-7-	43)					
oxodibenzoquinoline						
hernandenine	-0CH ₂ C)-	-		-OCH 2	20-
liriodenine	-OCH ₂ ()-	1481°	1717	-	-
(oxoushinsunine)	6.					
machigline	-OCH ₂ ()–	1-37	ОН	осн 3	
ocominarone	-0CH ₂ C)–	-	OCH ₃	OCH ₃	
				(000	7	0)
				(OCH	3 group	at 8)
oxonantenine	OCH ₃	OCH ₃	-	-OCH 2	20-	_
thalicminine	-OCH ₂ 0)_	OCH ₃	осн ₃	осн 3	_

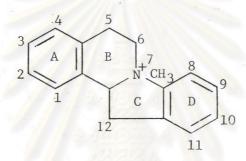
6. Phenanthrenes

The phenanthrene alkaloids are a small group of optically inactive tertiary bases probably derived biogenetically from the Hoffmann elimination of quarternary aporphine salts. They are always substituted at C-3, 4 since their precusor, the aporphines, are found with substitutions at these two positions corresponding to C-1, 2 of the aporphine skeleton (Shamma, 1972g).

In Lauraceous family, it was found only one phenanthrene alkaloid, atherosperminine, isolated from *Cryptocarya angulata* C.T. White (Cooke and Haynes, 1954; Bick and Douglas, 1965). There are no reports on phenanthrenes occurring in *Neolitsea* spp.

Atherosperminine (3, 4-dimethoxy-1-dimethylaminoethylphenanthrene)

7. Pavines

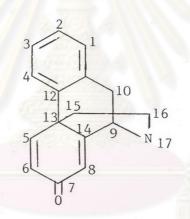

Pavines alkaloids are derived biogenetically from benzylisoquinoline. But several pavines are derived from tetrahydrobenzylisoquinoline, (+)-reticuline (Gozler, Melinda, Lantz and Shamma, 1983). (-)-Argemonine was first isolated in 1962 from Argemone mexicana L. and has subsequently been found in several Argemone species of the Papaveraceae (Cordell, 1981e).

Among the Lauraceae genera, the genus *Cryptocarya* is known to possess pavines (Gozler et al., 1983). There is no report of pavine alkaloids in *Neolitsea* sp.

Alkaloid	Sı	ubstituen	t positi	ons
AIRAIOIU	2	3	8	9
bisnorargemonine	ОН	0 CH 3	OCH 3	ОН
(+)-caryachine	-och ₂ 0-		ОН	OCH ₃
(-)-caryachine	-0CH ₂ 0-		ОН	осн 3
(+)-eschscholitzidine	-0CH	H ₂ 0-	OCH ₃	OCH ₃
((+)-0-methylcaryachine)				
(-)-eschscholtzine	-0 CF	H ₂ 0-	-00	H ₂ 0-
((-)-crychine, (-)-californine)				
norargemonine	ОН	OCH ₃	OCH 3	OCH 3

8. Dibenzopyrrocolines

The dibenzopyrrocolines have so far been found only in the Lauraceae (Ralph, Bick and Sinchai, 1978). The only two natural dibenzopyrrocolines known are (-) cryptaustoline and (-)-cryptowoline from the bark of Cryptocarya bowiei (Hook.) Druce. (Lauraceae) (Cordell, 1981e). The only difference between cryptaustoline and cryptowoline is the latter has a methylenedioxy group in place of two methoxyls in ring D (Shamma, 1972h).



Alkaloid	Sul	Substituent positions							
Alkalold	2	3	9	10					
cryptaustoline	ОН	OCH 3	OCH 3	OCH ₃					
cryptowoline	ОН	OCH 3	-OCH	20-					

9. Morphinandienone and Morphinane Alkaloids

The morphinandienone alkaloids and related alkaloids are more limited in number and distribution. There are fewer than a dozen of them distributed in Family Papaveraceae, the genus Papaver and several genera of Menispermaceae (Robinson, 1981).

In family Lauraceae, the morphinandienone and morphinane alkaloids have been obtained from Beilschmiedia, Cassytha, Litsea and Ocotea sp. The basic structure of these alkaloids are occurred in four formulae; A, B, C and D. The summerization of the structures and their substitutions are shown in the following tables.

Formula A

Alkaloid	Substituent positions						
Alkalolu	2	3	4	6	17		
(S)-pallidine	ОН	OCH ₃	_	OCH 3	CH ₃		
(S)-(-)-0-methylpallidine	OCH ₃	OCH ₃	-	OCH 3	CH ₃		
sebiferine	OCH ₃	OCH 3	-	OCH 3	CH ₃		
sinoacutine		OCH ₃	ОН	OCH 3	CH ₃		

Formula B

Alkaloid		Substit	uent p	ositions	
Alkalold	2	3.	4	7	17
14-episinomenine		осн 3	ОН	OCH ₃	CH ₃

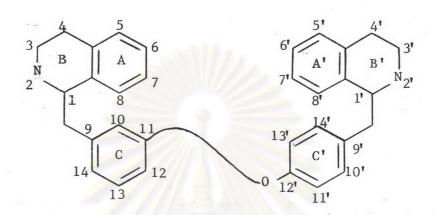
Formula C

Alkaloid	Substituent positions							
Alkalolu	2	3	4	6	17			
ocobotrine	-	осн ₃	ОН	OCH 3	CH ₃			
S-(-)-pallidinine	ОН	OCH ₃	-	OCH ₃	CH ₃			
S-(-)-0-methylpallidinine	0CH ₃	осн 3	-	осн ₃	CH ₃			

Formula D

.11. 1 . 1	12 6 4	Substitu	uent po	sitions	
Alkaloid	2	3	6	7	17
oreobeiline	ОН	OCH ₃	OCH ₃	ОН	CH ₃
				(OCH 3 III.	at 6
6-epioreobeiline	ОН	OCH ₃	0 CH 3	ОН	CH ₃
				(OCH ₃ ▶	at 6

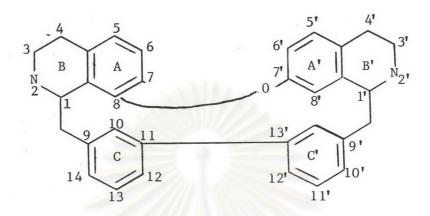
์ ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย


10. Bisbenzylisoquinolines

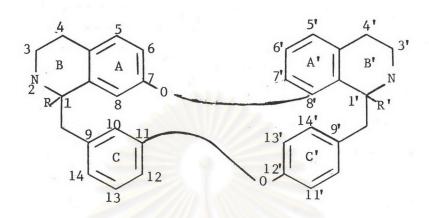
The bisbenzylisoquinolines are the largest of isoquinoline alkaloid (Shamma, 1972 i). They occurred in nature, formed by the linkage of two molecules of a simple benzylisoquinoline alkaloid, the junction being an ether linkage between aromatic nuclei (Bentley, 1957). The aromatic substituents may be hydroxyl, methoxyl or methylenedioxy (Cordell, 1981 f).

Bisbenzylisoquinolines alkaloids have been classified into 28 types. An asterisk (*) or dagger (†) symbol on the upper right of numbers indicated the diarylether terminals. Numbers in parentheses are used to indicated aryl-aryl bonds. Square brackets are used to indicate the terminals of methylenedioxy bridge (Shamma and Moniot, 1978 b).

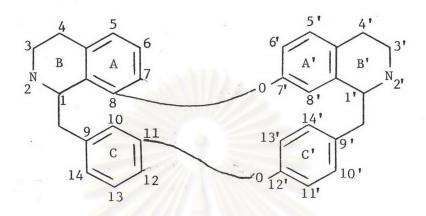
In the Lauraceous plants, the bisbenzylisoquinoline alkaloids are confined to *Nectandra* and *Ocotea* sp. and 5 types in 28 types of these bases which distributed in Lauraceous plants are shown below (Guha and Mukherjee, 1979).


10.1 Bisbenzylisoquinolines; Thalibrine type 6, 7, 11*, 12-6, 7, 12*

Alkaloid		S	ubstit	uent po	osition		
Alkalold	2	6.	7.	12	2'	6'	7'
Lindoldhamine	Н	OCH ₃	ОН	ОН	Н	OCH ₃	ОН

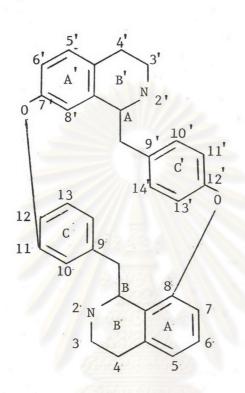

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

10.2 Bisbenzylisoquinolines; Rodiasine type 6, 7, 8*, 12-6, 7*, 12(11-11)


Alkaloid		Substitue	nt positions		
AIRAIOIU	2	12	2'	12'	
	<u> </u>				
norrodiasine	H(CH ₃)	OCH ₃	CH ₃ (H)	ОН	
ocoteine	CH ₃	OCH 3	Н	OH	
ocotosine	CH ₃	OCH ₃		OH	
rodiasine	CH ₃	0 CH 3	CH ₃	ОН	

10.3 Bisbenzylisoquinolines; Oxycanthine type; 6, 7*, 11+, 12-6, 7, 8*, 12+

		Subst	ituen	t posi	tions	
Alkaloid	2	6	12	2'	6'	7'
demerarine (Epimer of sepeerine; (R ₁ = R' ₁ = H ii')	_	OCH 3	ОН	CH ₃	осн 3	OCH ₃
sepecrine $(R_1 = H)$, $R'_1 = H $	-	OCH ₃	ОН	CH ₃	осн3	осн 3


ศูนย์วิทยทรัพยากร จหาลงกรณ์มหาวิทยาลัย 10.4 Bisbenzylisoquinolines; Berberine type, 6, 7, 8*, 11^{+} , 12^{-6} , 7^{*} , 12^{+}

Alkaloid		Subs	tituen	t posit	ions	
Alkalolu	2	6	7	12	2 7	6'
2-nor-(+)-tetrandrine	- 1	OCH 3	осн 3	OCH 3	CH ₃	OCH ₃

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

10.5 Bisbenzylisoquinolines, curine type; 6, 7, 8*, 11†, 12-6, 7†, 12*

Alkaloid		5	Substit	uent pos	sitions	
Alkalolu	2	6	7	2 *	6'	13'
(+)-curine	CH ₃	och ₃	ОН	CH ₃	OCH ₃	ОН

11. Cryptopleurospermines

Cryptopleurospermines is the sole representative of a type with fewer rings, and it would seem to have been formed by oxidative ring opening of a tetrahydroisoquinoline structure (Ralph, Bick and Sinchai, 1978).

In Lauraceous plants, cryptopleurospermine was isolated from *Cryptocarya plewrosperma* White & Francis (Johns, Lamberton, Sioumis and Willing, 1970).

Cryptopleurospermine

12. Protoberberines

Most of protoberberine alkaloids exist in nature as tetrahydroprotoberberine and quarternary protoberberine salts, but some dihydroprotoberberines are also known. Substitution are usually present at C-2 and C-3, C-9 and C-10 or C-10 and C-11. In some instances a hydroxyl or methoxyl substitution may be present at C-1 (Shamma, 1972 j).

Scoulerine is the first protoberberine alkaloid isolated from Lauraceous plants, Cryptocarya longifolia Kosterms. (Ralph et al., 1981).

Scoulerine

13. Isoquinolones

The isoquinolone alkaloids are a small group of alkaloids present in plants only in minor amounts. They can be subdivided into two categories: those with a totally aromatic nucleus such as doryanine, thalactamine and those which incorporate a C-3, 4 single bond (Shamma, 1972 k).

In Lauraceous plants, it was found only one isoquinolone, thalifoline, from *Cryptocarya longifolia* Kostermans (Ralph et al., 1981).

Subs	stituent positi	ons
2	6	7
CH ₃	och ₃	ОН
	2	Substituent position of the state of the sta

14. Miscellaneous Alkaloids

14.1 Pyridines

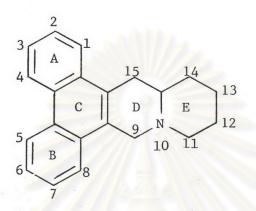
For the Lauraceous plants, the pyridine group was only isolated from genus Aniba such as anibine, anabasine and duckeine (Ralph, Bick and Sinchai, 1978).

Alkaloid	Substituent groups
anabasine	$R = \bigcup_{\substack{N \\ H}}$
anibine	R =
ศูน	OH J
duckeine	R = HO OCH ₃

14.2 Sedamine type

Pleurospermine is an alkaloid of sedamine type which isolated from the leaves of Cryptocarya pleurosperma C.T. White & Francis (Lauraceae). It is considered to be derived from condensation of two equivalents of dihydroxyphenylalanine and one equivalent of lysine (Johns et al., 1969). The structure of the alkaloid is shown below.

Pleurospermine


Phenanthroquinolizidines and Phenanthroindolizidine alkaloids

The phenanthroquinolizidine and the phenanthroindolizidine alkaloids are basic pentacyclic compounds and found in members of the Lauraceae, Asclepiadaceae and Moraceae (Pelletier, 1970).

14.3.1 Phenanthroquinolizidine alkaloids

Cryptopleurine, a phenanthroquinolizidine alkaloid, was first obtained from Cryptocarya pleurosperma White & Francis (family Lauraceae) (Cordell, 1981g). Cryptopleurine was biosynthetically related to pleurospermine (sedamine type).

In Lauraceous plants, cryptopleurine and cryptopleuridine are confined to the genus *Cryptocarya* (Ralphs, Bick and Sinchai, 1978). Their substitution are shown as follows.

Alkaloid	Substituent positions					
Alkalolu	2	3	6	12		
cryptopleuridine	-0Œ	1 ₂ 0–	осн ₃	ОН		
cryptopleurine	OCH ₃	OCH ₃	OCH 3	- "		

ศูนย์วิทยทรัพยากร หาลงกรณ์มหาวิทยาลัย

14.3.2 Phenanthroindolizidine alkaloids

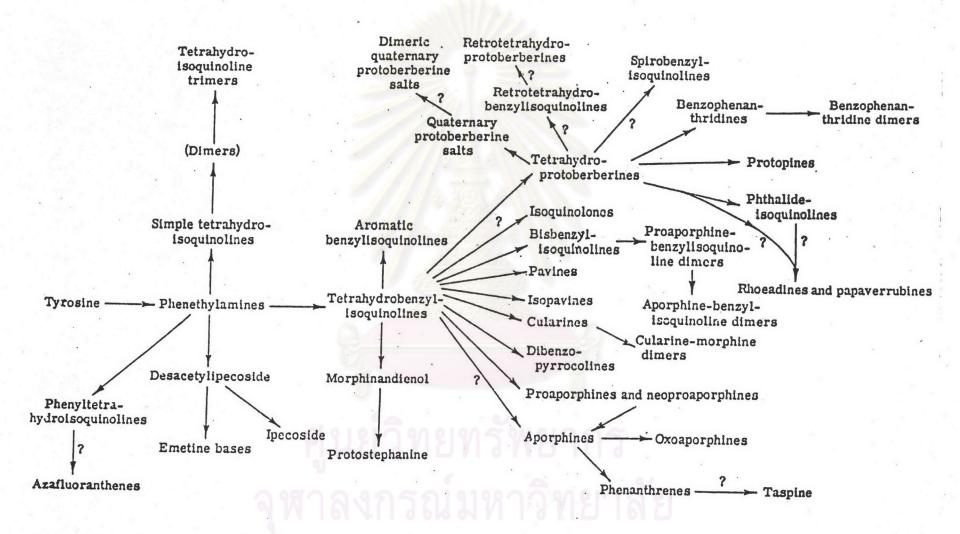
In Lauraceous plants, antofine and dehydroantofine are obtained in *Cryptocarya phyllostemon* Kostermans (Bick et al., 1980).

antofine

dehydroantofine

14.4 Indole alkaloid

Serotonin (5-hydroxytryptamine), an indole alkaloid is reported in the Lauraceae, Persea spp.


(Ralph, Bick and Sinchai, 1979).

Serotonin (5-hydroxytryptamine)

IV. Biosynthesis

The biosynthetic routes of isoquinoline alkaloid which generally accepted are started from the essential amino acid, tyrosine as shown in Scheme 1 (Shamma, 1972e). It is conveniently treated in two parts, starting with the generation of the isoquinoline structures, then elaborating to more complicated structure (Staunton, 1979).

The formation of the simple tetrahydroisoquinoline alkaloids involves the hydroxylation of the aromatic ring of L-tyrosine followed by decarboxylation and then ring closure with another compound, which provides an additional one or two carbon units, occurs. A typical example of this producer is seen in the formation of anhalonidine by the peyote cactus (Scheme 2). It is assumed that 3, 4-dihydroxy-phenylalanine (DOPA), formed by 3hydroxylation of L-tyrosine, is converted into 3-hydroxy-4, 5dimethoxyphenylethylamine, known to be present in the peyote cactus, Lophophora williamsii (Lam.) Coulter, by a series of steps (B, C, D and E). The 3-hydroxy 4, 5-dimethoxyphenylethylamine then undergoes ring closure (Step F) with pyruvate to form peyoruvic acid which is then decarboxylated (Step G) to anhalonidine. The proposed intermediate, peyoruvic acid, has been isolated from L. williamsii (Lam.) Coulter. The analogue of peyoruvic acid, peyoxylic acid, is formed by the condensation of the precursor amine with glyoxylic acid (Step H), peyoxylic acid can also be incorporated into peyote alkaloids (Step I). The N-methylated

Scheme 1 Proven or Probable Biogenetic Loci for the Formation of the Isoquinoline Alkaloids

Scheme 2 The formation of peyote alkaloids from L-tyrosine

isoquinoline alkaloids are formed by N-methylation of a precursor amine (Step J, K) (Goodwin and Mercer, 1983).

The benzylisoquinoline alkaloids are the precursors of a large array of polynuclear structures including simple benzylisoquinolines, bisbenzylisoquinolines, proaporphines, aporphines, aporphine-benzylisoquinoline dimers, oxoaporphines, protoberberines, benzophenanthridines, protopines, phthalide isoquinolines and hasubanan derivatives. Some biogenetic relationships of these alkaloid groups are shown in Scheme 3. (Cordell, 1981h).

The benzylisoquinolines are biosynthesised from L-tyrosine by way of DOPA. From Scheme 4 the first step (Step A) involves the conversion of two molecules of L-tyrosine into two molecules of DOPA. One molecule of DOPA is converted into dopamine (Step B) whilst the other is converted into 3, 4-dihydroxyphenylpyruvate (Step C). These two compounds then combine with the elimination of water and carbon dioxide in a Mannich-type reaction to yield a molecule of norlaudanosoline (Step D) 0-and N-methylation (Step E) and lead to (-)-reticuline (sometimes called protothebaine) (Goodwin and Mercer, 1983).

The biogenesis of reticuline is of importance because it is regarded as the key intermediate in the biosynthesis of many alkaloids based on the benzylisoquinoline nucleus (Cordell, 1981h). For example, reticuline is the precursor for isoboldine

Scheme 3 Biogenetic relationships of the major alkaloid groups derived from a tetrahydrobenzylisoquinoline precursor

Scheme 4 The formation of 1-benzyl-1,2,3,4-tetrahydroisoquinolines

^{*}SAM = S-adenosylmethionine

and the isomer, boldine (aporphine alkaloids) in Papaver

somniferum Linn. (Scheme 5) by a straight forward intramolecular oxidation coupling between the two aryl rings of reticuline. The sites of coupling both bear a hydrogen and therefore the two ring can rearomatised to give the biphenyl system characteristic of the aporphine alkaloids (Staunton, 1979).

महिरा बारा में देश

Several of the pavines and isopavines are probably derived biogenetically from the tetrahydroisoquinoline (Gozler, Lantz and Shamma, 1983). It has always been supposed that the pavine alkaloids such as argemonine, are biosynthesised from reticuline (Scheme 6). Reticuline is dehydrogenated to form 3, 4-dihydroisoquinoline which could isomerize and undergo cyclization to the pavine system (Dyke, 1977).

Scheme 6