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FREQUENTLY USED NOTATION

Let V be a vector space over a division ring R, W a subspace of V and «a a

linear transformation from V into W.

|

dimgp U . vector space U over R

Ker a ‘

Im o

(e’ :

(A) ibset A of V
Lr(V) bions on V/

Lr(V, W) tions from V into W
F(a) N

OMg(V, W) N .\.H;_ inite}

OEn(V, W) e W finite)
Gr(V,W) "L“;-.' ism}

Alp(V, W) )) i finite}
Alg(V, W) o)) is finite}

H :

T 56 : gT O [

a= (B;)I 17 ,nrd sis B of V

contaming a

1fv€B

ﬂ‘L!EI’J : ﬂ%ﬁwmﬂ‘i
QWWNﬂ‘iWﬂJW]'JﬂmﬁH



CHAPTER I
INTRODUCTION

There are two sections | tion, we shall give some

history of hyperstruct ( tructure theory that
have been studied. eover, the laain purpos esis will be addressed.
In the other section, wesshall give ) le i\‘n\ . "'*-. examples of semi-
hypergroups, semihyperrings, hiyvpergue | yperrings. Furthermore,

yebrai uctures will be

provided. At the en df thi§ sgetion, we-also gath \' \ ults which will be

Hyperstructure theory was . in 4 by M . Later, it was inter-
ested by several investigator. N pi vhich has conference on
Hyperstructures only (Internati gebraic Hyperstructures and

Its Applications). Basic definition of Marty | ips-as a generalization of

groups. However, we know that the definition-of semihypersroupsy hypergroups,
semihyperring a ‘-F: Jroups, groups,
semiring and ringsESpec 1ve 7 : ] - ype@\gs is semihyper-
ring. ‘ '

The multlphcatlve'gtﬂure of a semlhypeug Wlth zero, hyperring and ring

is a semi Ei He{n];rﬂs Jamng Zero
are isomorphic to the mul iplicative structure of some semihyperrings, hyperrings

and rings. A semigroup (S,-) with gero admits the structure of a semihyperring

SR ARAARETRS



structure are defined analogously.

Semigroups admitting a ring structure have long been studied, e.g., [1], [2], [3]
and [10]. If we consider linear transformation semigroups, in particular, we found
that M. Siripitukdet and Y. Kemprasit [1] studied when these semigroups admit a
ring structure; Y. Kemprasit and Y. Punk Punkla [5] and N. Rompurk [6]
investigated when these semigroups ad ﬁ structure; S. Chaopraknoi

4 admlt the structure of a

i Lk : on lis semlgroups inspired
us to investigate some speeific i A g - The semigroups
we considered are adopied fr ‘ praknoi’s. >h. D! Thesis [8]. She studied

linear transformations from 1 space tsel re, we generalize to linear

The main purpose of thi oge is“tosstud 18 types of linear transfor-
mations which forz ig s and to exp vhether or wl en they admit the

structure of a semihyperring wi o tthermore, to extend the result to the

This thesis is divided i ,chapters In Chapte e shall give precise
definitions, notations, ba' resul : ‘ ‘loughout in Chapter II
and Chapter III. :

We show, in Chapter II, that f ) vhich will be given later in
page 8, are indeed subs roups of Ln(V. W) 0.

In Chapter II : admit the struc-

-

ture of a semihypérring (iflg the structure

)

1.2 P T [l ? 1,1 5 /]bfl
For a sﬂugrou il he semigroup (S°; ) is defined to be if S has a

zero and S contains more than one eﬁment otherwisegdet SY be the semigfoup S

RIRNIUNRTINHIRY

of a semihyperring IJ h zero is provided.



x,y € S. Note that if a semigroup S has only one element, then S° is a semi-
group (which is not a group) of two elements and (S°, ) & (Zy, ). Also, If G is a
group, then G° = G U {0}. For a set X, let P(X) denote the power set of X and
P*(X) = P(X)~ {9} and |X] be the cardinality of X.

i§ 2 mapping from H x H into P*(H).

empty set H and a hyper-
operation o on H. /

Let (H, o) be a hypeig B of Handz € H,

let Aoz = Ao {z}, zowd=r o Aand | ,

‘a‘ v g\ "-.\"-ﬁ E . An element e
= " ﬁ,\\%\\\ _H. An element e

\ Lforallz € H.

A hyperoperation on a nonempty S

A hypergroupoid is a system

We call (H, o) commu
of H is called an ide

A semihypergroup is atoupoid (H th

gtoupoid at (Loy)oz=wzo0(yoz)
for all z,y,z € H. 4 '-f‘.’ ' \

Example 1.2.1. Let H

Then H has at most on ‘ ,ﬁf_‘ ‘ \ \
hyperoperation o on H by

Then (H,o) is

A tripple “‘-T L
i)
)

ypergroup semlgroup]

(A, +) is a sen

TN N3..

for all z, y, z € A; this property is called the dz butive law.

FEIRIATUNRIINREAY El

vy =y+zforalz,y € A Anelement 0 of a semihyperring [semiring] (A, +, -



called a zero of (A, +,-)if x40 =0+2 = {z} [t+0 =042z =z]and -0 =0-2 =0
for all x € A. A semihyperring [semiring] with zero is a semihyperring [semiring]
containing a zero element. By the definition, a semiring and a semiring with zero

is a semihyperring and a semihyperring with zero, respectively.

reqular if every element, of A L 1 inverde i egular hypergroup (H, o) is

said to be reversible i o and y € zowv for

some inverse u of y and

A canonical hypergro ,
(i) (H,o) is co t
(i) (H,o) has a s

(iii) every element @

(iv) (H,o) is reversible:

We can see that the semih Jﬁa‘t:{}ﬁ r“;' 6, 1. _7 is a hypergroup, which
is called the total hypergroup, bu L“ al hypergroup because inverses

of each element in H me

Example 1 2 .r ‘ !_l—ll—“m-l"m“—- :- E ‘ a hyperoper_
Y

v

ation - on H by
I
iy

J N

X

0| {0} {x

L AUEANININNS
WAl Ingn 4




(ii) (A,-) is a semigroup with zero 0 where 0 is the scalar identity of (A, +) and
(iii) + is distributive over -.

Notice that every Krasner hyperring is a semihyperring with zero. Thus semi-

Then (G°,+,) is a hyp i vy Jo ‘ oper : 7 ‘ 0. Note that the zero

of the hyperring (G4, - )is t VeTse 0y ) € G is z itself. Also,
(G° +,) is not a ring i Gl . \

Example 1.2.4. [7] Let ‘ ';‘._.' e- ' bl i l\ and 0 an element
of A. Define a hyperopeératic

v +0 =0 o Sy

r+y=A4A ﬁ;: ,,a_
|-'I ‘ ring.

; ring with zero if

Then (A, +, ) 5"_
.. 7
A semigroup S is said to aa ueture of a semihyp

there exists a hyperopﬁration + on SY such that (S°, +,-) is a semihyperring with

zero wheress igyt n 2 i b it perring [ring]
structumﬂi aﬂgo ly. r ﬂﬁ' dmits g y eig] struc-

ture, then madmits the structure of a semihyperring with zero. Consequently, if S

T T



Let V be a vector space over a division ring R, W a subspace of V and Lg(V, W)
the semigroup of all linear transformations from V' into W under composition. In
particular, Lr(V') is the set of all linear transformations on V. The image of v € V/
under o € Lg(V,W) is written by va. For a € Lg(V,W), let Keraw and Im «
denote the kernel and the image of @, réspegtively. For A €V, let (A) stand

for the subspace of V' span by i | cover iy U denotes the dimension
tion can be defined on
its basis, for convenience, w by using a blanket

notation. For example,

means that « is a line

with B; C B and +

having B as a basis

(if B =@, then va = v fo

-
AN uf B as a basis,

w and w are dlstln le ‘ i

means that 3 i .@r".

i
if v = u, _
ﬁ W "
ﬂ ‘L!El ﬂmmmm
The followmg propositions are smﬁle facts of vectorspaces and linear transf

AR N ARIT RS




Proposition 1.2.5. Let B be a basis of a vector space V. If u and w are distinct

elements of B, then {u+w} U (B~ {w}) is also a basis of V.

Proposition 1.2.6. Let B be a basis of a vector space V, AC Bandy : BN A —V
a one-to-one function such that (B~ A)g is

a € Lr(V) is defined by

mearly independent subset of V. If

then Kera = (A) and

Proposition 1.2.7.4 B. Then
(i) {fv+(A) |veB ) and
(i) dimp(V/(A))
Some of linear trai sfo io SCULIGLON] r(V studied in [8] are the
followings: )
OMR(V) : ‘p ‘ P . . .iir.ii-: an | nite} ,
OER(V) = :t"‘ s V) is an infinite}
177 X
where F'(a) = {v* ed that Gr(V) admits

a ring structure if and only if dimpz V"< 17 i dim; V' is infinite J;j en OMpg(V) and

OFER(V) do not admlt.;he structure of a semlhyperrlng with zero; and if dimgp V'

ROV N0 S

tion subse%roups of Lg(V,W) where W is a subspace of a vector space V over

pRaar AT

) and AIg(V)) admit the structure of a semihyperring with zero?”.



In this thesis, let V' be a vector space over a division ring R and W a subspace

of V. Moreover, let

where F(a) = _ f all elen -V fixed by a, is a
subspace of V fo V4V ) carly, Alp(V; T AIR(V,IWW). We
investigate the follo U f '
OMp(V, W), R UE, ot (V. w)u's COMg(V,W)UT,
OEr(V,W), FOER(V. V) ‘
where H, S and T a ; - $I0 _ﬂ‘ ATR(} 7 and Alg(V, W),

respectively.

Assume that dimp V' i

Thus OMg(V, Pyand V;. admits a ring

H | e
structure if and only E\ dimp V <1 and be R(V, W) and Al 'k V., W) admit the

structure of a semlhy rlng with zero because they admit a rlng structure under

g ey

Assum at dimp W is finite. Then

Ch ASNIINAANYAY



Hence OMg(V, W) and AIg(V,W) admit the structure of a semihyperring with
zero but OER(V,W), Gr(V,W) and AIr(V,W) are not semigroups. Thus we
consider only when dimg W is infinite for the remaining of this thesis.

The simple question “are OMg(V, W), OERr(V,W), Gr(V,W), Alg(V,W) and
Alr(V, W) subsemigroups of Lg(V, W ‘ ed to be taken into account. It is
obvious that Gg(V, W) is a su ' eImigroup. o F . Moreover, OMg(V, W)

118Trourt C ! S i S.

Proposition 1.2.8. OM(V, WY and 0Ly (V, wmups i
containing zero. . N _—

Proof. Note that = g foreach'@; 3 € Lp(V,W).
Then OMg(V, W) r(V,W). Since

dimp V and dimp W a el7¢io map helongs t0 both OMg(V, W) and
OEgR(V,W). In fac ‘ is, actually zero of the nigroups OMg(V, W)

and OEr(V, W) O

Finally, we present the ,»u 1) sandiA I/} are subsemigroups
of Lr(V,W). ’
Proposition 1.2.9. Alg(V, ,iﬁfﬂ R '_ wbsemigroups of Lr(V, W)
not containing zero. '
Proof. We show only th (V) V, Vi) not containing
zero because thes #,y—:m;:._"-“;m Iy

‘ ; i\, |

Let o, € Al -:7 TW/F((3)) are finite.

We claim that dimg(W/F(af)) is ) N F(B) @T(aﬁ), it suffices

to show only that dim W /(F(a)N F(B))) is finite.
Let B T

E 5 C » 1 be such
that By : We will show

that B Uq U B3 is linearly independent over R. Let uq, uQ, o, up € BpU
V1, Vg, ..., v € Bs be all distinct andﬁl, as, . . , by € Rbe suMlat

Qﬁﬁﬁﬂﬂiﬁmgﬁﬂﬂﬁﬂﬁﬂ
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k l
Then Zaiui =— ijvj € F(a) N F(B) = (By). Hence

ijvj € (B) N (Bs) = {0}.

Since Bs is linearly independent \ a;u; = 0. This implies that

J Bs. Hence BlLJBQUBg is
be such that B; U By U
/8) | veE ByU B4}

a; = 0 for all 7 because o th
linearly independent ove
BsU B, is a basis of ¥
and {v+ (F(a) N F(3) I W/E (o), W/F(B) and
W/ (F(a) N F(B)), re ) F(a) N F(ﬂ))) is

finite as desired. Fherefoue ; j_._ 29 4 AN N | (Il

Finally, we end tl chs v givi ,':_., Dk olko migroup of Lg(V, W)

which does not admit , yero as follows:

Example 1.2.10. Let 3 an ¢ V' and espectively, such that
C C B. Also, let v; andiv, ec distine ", Define linear transfor-

mations o and 3 in Lg(V,

(%1 7 ,V — — U B\{Uz}
Bri =g 0

Clearly, o = ﬁ,

| Af‘" ,“ ‘
. 0
J ! i

Let S be the semlgroup generated by a and ﬁ It is obvious that

- Suednenineons..

hyperring with zero where - is the opgration on 5. By e distributive laW

A AYRTSIBAANEA Y
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Let A € a® (. Then we have A\ = af and Aa = fa. Consider v1\f = viaf3 = v;

SO V1A = vy + E a;w; for some w; € C and for some a; € R. Since A € S, we
i=1
n

obtain that A = « only. But vs\a = ’112/804 = ¥y SO Vs \ = V1 + Zazwz for some

=1

w; € C' and for some a; € R. Thi ( which is impossible.

ﬂummmwmm
QWW\‘IﬂﬁUNWYJmﬂﬁH



CHAPTER 11
CERTAIN SUBSEMIGROUPS OF Ly(V,W)

We know from Chapte SF hat O ; ‘ Gr(V.W), AIx(V, W)
; B 2 : a subsemigroup of

Lr(V, W). Naturally, Gesamiay s e OMp(ViWsehland O Ex(V, W) UU

show that this is not

Example Let dimg W, £ '_,‘;‘ én thetg 1 ' roup U of Lr(V,W)

To see this, let B ax [ C pe | ey “ espe such that C' C B.
Since C' is infinite, théfe aié ‘ G sudh that G, UC, = C
and |Cy| = |Cy| = |C|. He ‘
and ¢ : C7 — Cy. Defin

are bijections ¢ : B — C}

It is obvious t _:_f_ﬁ;;i_-;z-_;;:— -------- Lhe subsemigroup
of L(V,W) gotert e
v € OMg(V,W) hecause Ker ler ay = (,%,) . Hence
Ker ay = {0} and = (Cy). Thus ay ¢ OMR(V W) and ;

¢ U. Therefore
OMgp(V,W)UU is no‘@group

Exampﬂ U ATRNINGIN T

such that r(V,W)UU is not a se 1gr0up

A sHSwTInedy

Moreover,
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and |Cy| = |Cy| = |C|. Hence there are bijections ¢ : Cy — C and ¢ : C; — Cs.
Define a, v € Lr(V, W) by

( v B~ 02) ( v B~ C’l)
o= and v = .
vy 0 veCs | \ | ,U¢ 0 veCy

: _ «. It is obvious that do-

main of each element in I Tar i etugtha '_ € OEgR(V,W) because

Hence Imya = W and'c ©1). Thus \ ™ W) and ya ¢ U.

Proposition 2.1.77¢ POSi =2 11 the ore ar ubsemigroups U

U2 are semigroups,

respectively. In viewyof these, ghe mair " "POSe _ l\!s is to show that the
following subsets of Lg( are stbseini ., S ' )
(1) subsets containing OdM p(V,MA4), 1 nelsy O r(V1 H, OMg(V,W)US

and OMg(V,W)UT; 7
(2) subsets containing O Er (V. W)
and OER(V,W)
where H, S
respectively. vi

2.1 Certain Q

migroups Containing OMp(V, W)

ot ﬂﬂﬂfi”i‘[ HNINEINT ™

Lemma 2.1.1. OMg(V,W) is a right ideal of Lr(V, W4).

AR TR IR B

show that OMg(V, W) is a right ideal of Lg(V,W), let a € OMg(V,W) and

.(V,W)U H, OER(V,W)U S
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B € Lr(V,W). Then dimg Ker « is infinite. Note also that Ker o« C Ker af. This
leads to the conclusion that dimg Ker a3 is infinite. Thus a5 € OMg(V,W). O

Next example shows that OMg(V, W) is not a left ideal of Lg(V,W).

of C' such that |Cl| = | g TH ‘ bijection ¢ : B — C4.

Define a, B € Lg(V, W

Clearly, a« € OMp
shows that OMg(V, W

We have showfl tha _ i K) i : 1y ht ide t ot a left ideal of
Lr(V,W). To presentt! at O M LUt group, we prove the following
lemma. - F \ -

4 AR
Lemma 2.1.3. Gr(V,W)OMp(Val) € O

_!, A

Proof. Let a € Gg(V, W) and [J “:"_":‘5 iR (1,05 aim that (Ker af)a = Ker (.
Clearly, vap = 0 for all v €_ ﬁr!,_, i : o C Ker 3. Let v € Ker .
Note that a~! exist “ Daf so that
va~t € Keraf3. g

%

This shows that Ker @C (Ker af3)a. Therefo e (Keraf)a = Ker 3 as claimed.

zmﬁﬂﬂ?Wﬂﬂ?WﬂWﬁ?mw

Pr0p0s1t10n 2.1.4. OMR(V,W)UH is a subsengr% of Lr(V,W).

o Dl b -4 1 %%H@f&w

afid H are subsemigroups of L r(V,W).
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Next, in the same manner, we show that O Mg(V, W)US is a semigroup by prov-
ing that AIR(V,W)OMg(V,W) C OMg(V,W). However, the following lemma is

needed.

Proof. Assume that
Clearly, B\ (C'U E) i

for every w

Hence

‘edent subset of W.

Step 4. {wa + F(a)|w € B\ #—--’E:L'% arly independent subset
: Ll Y

of W/F(a).
Step 5. For all 3
We conclude 1;;

al) # wa + F(a).

e PP B~

"ud E)} is an in-

finite linearly 1nde‘md r(7 e F(a)) is infinite
contradicting the that o E AIr(V,W). Therefore, the J It is obtained. It
remain to prove Step I'S

- AN .,

is linearly ﬂdependent Let wq, wz,‘ , W, € BN C’ U E) be all dlstln t and

QW?ﬁﬂﬂi%NﬂllﬂmﬂH
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Then
(aywy + agwg + -+ - + a,w,)a =0

so that ajw; + agwy + - - - + a,w, € Kera. Thus

< (CU E)) = {o}.

A W1 + QW2 + *+ + + AWy €

As a result, aywy + asws + - - o @pwy, = 0 nd g ay =+ =a, = 0. Hence

{wa|w e B\ (CUE)}
Step 2. Let w € (B~H(€ '

Then wa —w € Kera ) ‘ =2 2 =wa—zaiv§€
; F 1 \ " : i=1

(C'U E). Therefore ; 7)) U} BWIN G ST

Step 3. Let w € B 'E). Suppose that wao 5 >' Step 2, w =0

leading to a contradiction. ‘¢ (&) *for all w E).

Step 4. Let wy, w , an € R be

such that

n
Hence Zaiwia € F(a). Thus

i=1
n

n
0, i.e., E a;w;oe — g a;w; €
i=1 =1

Thus

a;w; = Za,w, va E(C’UE

el um NUNINYIDI--

= 0. He e {wa + F(a)|we B \éC’ UE)}isa hnearly independent subset of

Q/WW NASNUBITNLIAY
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wa + F(a). We obtain that vae — wa € F(a). Hence (va — wa)a = va — wa.

Thus (va — wa)a + wa = va. Therefore

(v — wa + w)a = va. (3)

If va—wa+w € (E U {v}), then uc ~wa / a;v; where b, ay, as, ..., a €

so that bv = w which is_im; ) ‘ — wa+ wé(EU {v}). From (1),
(va — wa + w)a # ' - O
Lemma 2.1.6. Al

Proof. Let a € AIr(V, a basis of F'(a)NKer 3,

By CKerf~ B; s
such that By U By, U B
B € OMg(V,W). Next, we elaim thif JES v € \e is aﬁnlte linearly inde-

pendent subset of quotie cet , ..., U, be distinct elements

v + F())

\ \l _Kerﬂ\BluBz

g is infinite because

of By and let ay,ao,... = F(a). Then

Zaﬂh € Fla ~a_basis of e KCer—5 = 31 U By is lin-
\, ‘

early 1ndependen
is a linearly indep

0 {0+ F(a)v € By}
Eent subset of the quotient space W/F Ll and u + F(a) #
w + F(a) for all distinet u,w € Bs. Since dimg(W/F(a)) < oo, we obtain that

Ly e Db e

Moreover u Bs; CV ~CUB;be such that C U BsU B5 is a basis of V and let

SR AN IR Y

ﬁ‘te Hence By U Bs is finite. This implies that Bj is infinite because B; U By U B3
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is infinite. Since By C F(«) NKer 3, we have Biaf3 = B3 = {0} so B; C Keragf.
Hence dimpg Ker af is infinite. Thus o € OMg(V,W).

Case 2. B ~ (' is infinite. We claim that dimg Ker « is infinite. Suppose that
dimp Ker « is finite. Let E be a basis of Ker . Lemma 2.1.5 provides that there
are w € B~ (CUE) and ¥\
v € VN(E U {w}) such that wa
Band by, by, ..., b, € Rsucht

loss of generality, that. .

Hence (w — byvy — bavy -« — by, € Kera.

Thus
Therefore

Subcase 2.1 w4 v. ten in a linear

Ll : ; I
‘ﬂ } which'is'a il

Subcase 2.2 w = v; or some j € {1, 2, l} Assume, without loss of generality,

ﬁ‘ﬁm UNSNYINT

Thus 0 = (by — 1)w + byvg + -+ - + bwfl— V] + covh + + cxvy,. This 1mpl1

QWW AIATIHRTINY 18

combination of B
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so b =1and

v =bvy + bovo + - - + by + bp1vipr + -0+ b,

= v + bvigr + -+ DU

=W+ b1 0

e (FU{w}).

Hence dimp Ker o is 1 m seq Ie ntly dimpSer o3 is infinite because of

i

Ker o C Ker af3. There orce@B OV N NG —— o
Proposition 2.1.7. O Mp( py e bse: of Lg(V,W).

Proof. The result follows from ap; Lenttna 2.1.1 2 d Lemma 2.1.6 and the

fact that OMg(V, O
Proposition 2.1.8. C

Proof. The result follows frox ot ¢ (V, [r(V,W) and Propo-
sition 2.1.7. | ‘ ' O

2.2 Certain Semigro

Likewise, we 1.
_—

Le(V,W). L

.“ a right ideal of

Lemma 2.2.1. ."! ) 95 ale ' o f;
dF |

Proof. Proposition 1.2:8 ﬂ)w that OER(V ' a subsemigroup of Lg(V, W)

f:f;sfﬂ PEalen | ﬂfm“?‘l M I

dimpg W/I () is infinite and Im aﬂ@ Im 3. Thus oaﬂ € OER(V,W).

Qﬁ@ﬁﬁ“ﬁifﬂ%%ﬁ@%ﬂﬁfﬁ 3
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Example 2.2.2. Let B and C' be bases of vector space V' and W, respectively,
such that C' C B. Since C' is infinite set. there are subsets €'y and Cy of C' such
that |Cy| = |Cy| = |C| and Cy N Cy = @. There is a bijection ¢ : C; — C'. Defined

Clearly that o € OEg(V. W)hecanse dimy (W Tua)™ |Cy| and 8 € Lp(V, W)
but 3 ¢ OE(V,W). T “that ¢ show that OMz(V, W) is
not a left ideal of L

Lemma 2.2.3. O

Proof. Let a € Ca » ‘ ‘ R Vi | that W/Ima =
W/ImapB. Thus di [m & dimp (T v) wh ‘. infinite. Hence
af € OEr(V, W) ef Temaing £o s that W/ITma = W/Imag.
Define ¢ : W/ Im o — W/ v i '

Then ¢ is well-defined. More 2 .J' A “‘ i is a homomorphism, ¢

is an monomorphism. Thus [ s an isomorph

LT

Next, we obtai :il O I
X i

Proposition 2.2.4. %EA/ WYUH isa subsengroup of Lr(V,W).

= UHRNNIRYARG
i M

the following lemma.
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Lemma 2.2.5. For every a € AIr(V,W), dimg Ker a|w is finite.

Proof. Let o € AIRx(V,WW) and B be a basis of Ker a|y,. We claim that
{v+ F(«a) | v € B} is linearly independent over R. Let vy, vq, ..., v, € B be all

distinct and aq, ao, ..., a, € R be such

n - = . a
Then E a;v; = F(a) ‘ plics.that (2 ai@ince V1, U2, ..., Up €
=1 . o =1 -

Ker a|w, we have = 9F ey, .. all i because vy, v, ..., U, are
linearly independen’; ONer This s : -‘"'-f is a linearly in-
' ) (o w + F(a) for
: i*\;\ )|v € B} is finite.
U]

dependent subset ‘@

all distinct v,w € B
Therefore dimp Ke

Lemma 2.2.6. O

is an epimorphisn

Then

er ¢) + dimpg Ker ¢.

::mﬁ“ mmz

since d1mRﬂ// Im «) is infinite but di ?R Ker « is finite. Together this fact and
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Consequently, dimg(W/Im«) is infinite so « € OFEgr(V,W) To complete the
proof, it remains showing that dimp Ker ¢ is finite. Let €' C W be such that
{v+Imalv e C} is a basis of Kerp and v + Ima # w + Ima for all distinct

v,w € C. We know that v +Imaf = (v+ Ima)p = Imap for all v € C. Thus
vl € Imaf = (Ima)s for all v € { leag
w, € Ima such that v8 = w3 I

v € C, there exists an element

. cac € C. Consequently:.

T —
If distinct elements( . B anc ﬁ R are such that
Zaz(vz—wvi) =0 '

=1

1. This show that

— w, for all distinct

t follows that
< imR Ker ﬁ’W

Since dimpg Ker 3|y is finite frox ﬁ"""} o1 lude that C'is finite. There-

fore dimpg Ker go nit O
Proposition 2_ "}f:, Irﬂ .
Proof. Apply Lem " 2.2.1, Lemma a2 at O ' (V, W) and S are
subsemigroups of L r( V W to obtain the result O
) ﬁﬁ“ﬂ ‘VI“USVT‘WW”TT'I 9

Proof. Th*sult follows 1mmed1ately from the fact that AIx(V, W) r(V,W)
and Proposition 2.2.7. QS O

49 AINTUNAIINYIS



CHAPTER III
ADMITTING THE STRUCTURE OF A

SEMIHYPERRING , \\ ’ /)F SEMIGROUPS
| ,_/;

R ‘ _‘
Chapter I and Chay straste that d

OMp(V, W),
OFER(V, W),

(A4

OFE

[r(V,W)UT,
Er(V,W)UT

are subsemigroups of i ‘ i esul groups of Gg(V, W),
AlIr(V,WW) and A V. P, 1¢ e T thi hapter 1 stigate whether

or when each of themgadmits

3.1 Semigroup

'O

It can be shown that O TV e plV, W) are ical if W is a proper

subspace of V with dimpg

Lemma 3.1.1. Ifdimzp W < di . _,_........-' ) =
_' A f‘r 1"'I‘ S

o

8 t d Mo & AT .‘u' W)

Le(V,W).

Proof. Assume Ler(V,W). It

suffices to showithat Lpf “—'"—f—f"‘1"—"‘_:1:*—: AV AV).  Suppose
that o ¢ OMpg(? y_ , ‘ dimp Ker a +

dimp Im o and di !I is in o I v is ijl nite and
A |

dimgpV = ?m Kera 4+ dimgp Ima = dlmR Ima < dimp W

e SUHARHNINEINT
TRTANTS ST AR
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Proof. The result is obtained immediately from Lemma 3.1.1. O
In order the prove the main theorem, we need the follow lemma.

Lemma 3.1.3. Let W be a proper subspace of V' such that dimgr W = dimgV,

W is a proper sub ollow t et € B~C bea

fixed element. Moreoyer, | BA. (CU {u d L " "nﬁw disjoint subsets

of D such that D; D #Sidc Bl - JCand (inite, there are disjoint

subsets C1 and Cy 0l |C| = | B|. Since
01§C'1UD1 ) - | ‘ 1|:|02UD2|
[Note that B = C; W [ SRENI-T sult, there are bijections ¢ :

v CyUDyU{u v
o =
/USD ’UGCl [ — ,U,y veCUD3o
= -"Jl" .
Observe that a and § are Well-defined bece U Cy U Dy UA{u} is a

partition of B.. He
Thus «, g € 0-'%"'_._-

distributive law,

(€1 U Dy U {u}).
1" ‘!l and by the

nl

ala® p) =a? @a =0@af = {aﬁ}—aﬁ@O—aﬂ@ﬁz (a® B)3

s FPUE Anemswgans

Now, w ould like to determine gie linear transformatlon M. Let v € B. Then

q maﬁﬂmmm NN
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for some distinct elements wy, wy, ..., w, € Cy, wy, w,..., w;, € C; and for some
ay, @2y ..., Qn, by, by ..., by, € R. First, assume that v € Cy U D,. Then

0 =0a = (vB)a
= v(Ba)
=v(Aa)
= (vA) e
= (a

Since  is one-to-one : stiné wevall distinct elements in
Cy. Hence a; = 0 jor al ause , e Hnearl -I pe : nce of Cy. It follows
that vA € (C,). We s thiat vrf
one-to-one, f(c,) is also gie-to-¢

Similarly, if v € Cy U'D,, Alien e,

, fE%FE}?,E& A

= (vp)B. Since fc, is
. This shows that A|e,up, = ¢.

]
i -

'_" B = 000d My s
((CTOE: er, ¢A | , W) because F())
is the zero space so that dimp(W/F())) = dimg W which is mﬁmte Furthermore,

“”“?ﬁ‘ Ysheng

We a‘re&d:.r to give the condition for our target semigroups containing
r(V, W} to a.dmlt the structur@of a se

RSN TEa

GMH{V W} US or OM R(V, W)UT. Then Pr(V,W) does not admit the structure
of a semihyperring with zero if and only if dimg V = dimg W.

Consequents ﬁ"f _

not onto since Im l
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Proof. First, we assume that dimg W < dimg V. By Proposition 3.1.2, Pr(V, W)
admits the structure of a semihyperring with zero.

Conversely, assume that dimg V' = dimg W. There are two cases to be consid-
Case 1. W = V. Then Pg(lf PrY, " en Pg(V,V) does not admit
the structure of a semihyp fforf,

Case 2. W # V. Suppesesth
(Pr(V, W), &,-) isa
Note that Pr(V, W)2
map. Lemma 3.1.3 §*
A € Lr(V,W) su

a contradiction. Heug

yeration @ such that

eration on Pg(V, W).
¥ where 0 is the zero
} C Pg(V,W) and
'W). This leads to

> of a semihyperring

with zero. O
The following corolldiry if th infmédiat t frem Theorem 3.1.4.
Corollary 3.1.5. Let PR(V.JF) bt onc. ofi M OMg(V,W)UH,

P DMH{V éﬁi;:._ fen W) does not admit a hyperring
[ring] structure t and o =

3.2 SemigsiuDs A

- !
Unlike semigroubs containing OMg(V, W), we find that-our desired subsemi-
groups of Lg(V, W) dn&ning OEg(V, W) dges not admit the structure of a semi-

o1 %H nInEInT -
TSI

at (Qr(V,W),®,) is a semihyperring. Then there are a, § € OER(V,W) and
A€ Lp(V,W) such that A € a® 8 but A ¢ OER(V,W)UGg(V,W).
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Proof. The proof is done by choosing a, # and A defined in the proof of Lemma
313 O

Theorem 3.2.2. LePORIV, Wb OEZVWYBFOER(V, W)U H. Then
Qr(V, W) does not"admil : '

erTing with zero.

Proof. We separate the
Case 1. W = Vil opferyé that Ox(V, W) = Q:(¥, Veilhen Qr(V,V) does
not admit the structufé of# ‘perr ).
Case 2. W # V. #Suppése h: & such that

(Qr(V,W)°, @, ) is affemiliy ' 1"«. peration on Qg(V, W).
Note that Qg(V, W)" 0V, ) because ) & OF; " where 0 is the zero
map. By Lemma 3.2 : )
A € Lg(V,W) such that : 2 Qr(V,W). This is absurd.
Hence Q(V, W) does not adrhi the s : semihyperring with zero. o

The followinglee e direct res :

ui
1 g

; Y

Corollary 3.2.3- ket Q; or G#in(V,W)U H. Then

Qr(V,W) does nod admit a herﬁng ring/ structure. -
¢ o o/ ,
No '- ? .ﬂwm ﬂ ﬁvj admit the
structu rperring wit 0 either.

AGRINTAHAIIRE AR
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Proof. We divide the argument into two cases.

Case 1. W = V. We note that OEg(V,W) = OEg(V,V) and Alz(V,W) =
AIg(V,V). Then OEg(V,V)U S does not admit the structure of a semihyperring
with zero from [1]. \
Case 2. W # V. Let C and i be bases.
To show that OEg(V, | S do
zero, suppose that thereses

espectively, such that C C B.
ure of a semihyperring with

at (OEg(V,W)US,®,-)
#(V,W)U 8. Since
such that C,UC; =C
). Let D=B~C

) W
vely

[)'is a partition of B.
- iC-‘ it Cll = IG_:!.

wesaethatu‘zﬁz-—-ﬂ

is a semihyperring
dimp W is infinite,
and |Cy| = |Cs| = |C
which is not empt¥" Thei" B & {

=
vy |

Observe that & and 3 g

Clearly, dimg(W/ Im @} =
Hence a, ﬁ € DER{V WK
The distributive law provides

ala® f) = o’ ®af. af @ f* = (a® p)p

(2)

Blas B) '{“@ﬂ)‘*
Sincea$ﬁ?‘5 IEJ fa = la.
Now, we dete !- the linear tra : T Let v B CiuC;uD.

Then vA € W so

m@ﬂmw ‘i’m mﬁ;

1 oy Oy by, b, .. meR W assume thﬂ e ChuD. Then

o bttt FUUPID BN

Smce @ is one-to-one and w; are all distinct, w;y are all distinct elements in Cy.
Hence a; = 0 for all i. We have shown that if v € C;UD, then vA € (Cy). Similarly,
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if v € C3 U D, then v\ € (Cy). Thus, if v € D, then vA € (Cy) N (C,) = {0} so
that vA = {0}. Furthermore,

vAf = vaf = (va)B =5(va)f for allv € €,
ula—vﬁa-' , frf/ for all v € C,.

Since B¢, and a|c, are oneto-on te, (C;) ANl Are one-to-one. Consequently,

Hence

Consequently, M OB W) Bedass (W T )2 |C ~ C| = 0. More-
over, A ¢ Alp(V,W) F o'\ghat dimg(W/F())) =
So far, we have proved t US and A € OEgR(V,W)US
which is impossible. _ f-:'f-?: '.- O

The followirearallancis tha tamadiata sasatr feamrtotnd 3 9 4.

F.' |"' i

ing/ring| structure.

“f P18k (43 (eh L MR

Gnrallar .2.6. OEg(V,W)uT *ms not admit the stmctuﬂ: of a semi y

‘-TWWNT]‘?WNWI’W]EJ'I&EI

Curullary 3.2.7. OEg(V,W)UT does not admit a hyperring[ring| structure.

Corullary:izs. VER(V, W)U'S does ot admil a hype
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