กึ่งกรุปย่อยการแปลงงชิงเส้นของ $L_{R}(V, W)$ ซึ่งให้โครงสร้างของกึ่งไฮเพอร์ริงที่มีศูนย์

ศนย์วิทยทรัพยากร
วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษูาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title

By
Field of Study

LINEAR TRANSFORMATION SUBSEMIGROUPS OF $L_{R}(V, W)$ ADMITTING
THE STRUCTURE OF A SEMIHYPERRING WITH ZERO
Mr. Sarnkhan Hobuntud
Mathematies
Assistant Professor Sajee Pianskool, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree
A... Aawnonge...Dean of the Faculty of Science (Professor Supot Hannongbua, Dr.rer.nat)

THESIS COMMITTEE

(Associate Professer Amory Wasanawichit, Ph.D.)

(Assistant Professor Sajee Pianskool, Ph.D.)

(Assistant Professor Sureeporn Chaopraknoi, Ph.D.)

Q| (Assistant Professor Pattira Ruengsinsub, Ph.D.)
จุหาลงกรณ์มหาวิทยาลัย

สำคัญุ ช่อบรรทัด : กึ่งกรุปย่อยการแปลงเชิงเส้นของ $L_{R}(V, W)$ ซึ่งให้โกรงสร้างของกึ่งไฮเพอร์ริงที่มีศูนย์. (LINEAR TRANSFORMATION SUBSEMIGROUPS OF $L_{R}(V, W)$ ADMITTING THE STRUCTURE OF A SEMIHYPERRING WITH ZERO)
จ. ที่ปรีกษาวิทยานิพนธ์หลัก: ถู้ว่วยศากตราขาร์์ดร, คจี เพียรสกุล, 31 หน้า.

กี่งไชเพอร์ร่งที่มีคีนย์ คือ ระบบ $(A,+, *)$ โดยที้ ($\alpha,+$) เป็นกึ่งไชเพอร์กรุป $(A, *)$ เป็นกึ่งกรุป * แจกแจงบน + และมี $0 \in A$ (เรียกว่า ซนย์) ที่ทำให้ $x+0=0+x=\{x\}$ และ $x * 0=0 * x=0$ สึาหรับ ทุก $x \in A$ สำหรับกึ่งกรุป S ก่าหนนดไ1 S° คื่ S ถ้า S มีศูน์์และ S มีสมาชิกมากกว่าหนึ่งตัว มิเช่นนั้นกำหนดให้ S° คือกี่งกรรป S ที้นนวกด้วอศูนย ดังนั้น S^{0} เป็นกึ่งกรุปที่มีศูนย์ เรากล่าวว่ากึ่งกรุป S ให้โครงสร้างของกี่งไฮเพอร์รี่งที่มีคนย์์ ถํามี่ภารดำเนินการไรเพอร์ + บน S^{0} ที่ทำให้ $\left(S^{0},+, *\right)$ เป็น กึ่งไฮเพอร์ริงที่มีศูนย์ 0 โดยที่ * เป็นการดำเนิดการขน S° และ 0 เป็นศูนย์ของ S^{0}

กำหนดให้ V เป็นปรัภูมิเวกเมอร์ขนริจิารารทาร R, W เป็นปริภูมิ่ย่อขของ V และ $L_{R}(V, W)$
 กำหนดให้ $F(\alpha)$ ประกอบด้วยสมาชิกไนทที่ ฉัทรึงสมาชิกนั้น กำหนดให้ $O M_{R}(V, W), O E_{R}(V, W)$, $G_{R}(V, W), A I_{R}(V, \underline{W})$ และ $A I_{R}(V, W)$ เป็ชั่งท่อไปนี้

$$
O M_{R}(V, W)=\left\{d \in L_{R}(V, W) \mid \operatorname{dim}_{R} \operatorname{Ker} \alpha=\infty\right\}
$$

$$
O E_{R}(V, W)=\left\{\alpha, L_{R}\left(V, W \doteq \mid \operatorname{dim}_{R}(W / \operatorname{Im} \alpha)=\infty\right\}\right.
$$

$$
G_{R}(V, W)=\left\{\alpha \in L_{R}(V, W)|\alpha|_{W} \text { เป็นสมสัณฐาน }\right\}
$$

$$
H_{R}(V, W)=\left\{\alpha \in L_{R}(V, W) \mid \operatorname{dim}_{R}(W / F(\alpha))<\infty\right\}
$$

$$
\pi I_{k}(V, W)=\left\{\alpha \in L_{R}(V, W) \mid \operatorname{dim}_{R}(V / F(\alpha))<\infty\right\}
$$

นอกจากนี้ กำหนดให้ H, S และ T เป็นกึ่งกรุปของ $G_{R}(V, W), A I_{R}(V, \underline{W})$ และ $A I_{R}(V, W)$ ตามลำดับ เราแสดงว่า $O M_{R}(V, W), O E_{R}(V, W), O M_{R}(V, W) \cup H, O E_{R}(V, W) \cup H$, $O M_{R}(V, W) \cup S, O E_{R}(V, W) \cup S, O M_{R}(V, W) \cup T$ तละ $O E_{k}(V, W) \psi T$ เป็นกึ่งกรุป ขิ่งไปกว่านั้น เรากำหนดว่ากึ่งกรุปเหล่านั้นให้โครงสร้างของกึ่งไฮเพอร์ริงที่มีศูนย์หรือไม่

จุหาลงกรณ์มหาวิทยาลัย

ภาควิชา. \qquad คณิตศาสตร์ สาขาวิชา \qquad คณิตศาสตร์
ปีการศึกษา \qquad 2551 \qquad

\#\#4972522023 : MAJOR MATHEMATICS
KEY WORDS : SEMIHYPERRINGS / LINEAR TRANSFORMATION SEMIGROUPS

SAMKHAN HOBUNTUD: LINEAR TRANSFORMATION SUBSEMIGROUPS

OF $L_{R}(V, W)$ ADMITTING THE STRUCTURE OF A SEMIHYPERRING WITH ZERO. THESIS PRINCIPAL ADVISOR : ASST. PROF. SAJEE PIANSKOOL, Ph.D., 31 pp .

A semihyperring with zero is a triple $(A,+, *)$ such that $(A,+)$ is a semihypergroup, $(A, *)$ is a semigroup, * is distributive over + and there exists $0 \in A$ (called a zero) such that $x+0=0+x=\{x\}$ and $x * 0=0 * x=0$ for all $x \in A$. For a semigroup S, let S^{0} be S if S has a zero and S contains more than one element otherwise, let S° be the semigroup S with a zero adjoined. Then S° is a semigroup with zero. We say that a semigroup S admits the structure of a semihyperring with zero if there exists a hyperoperation + on S^{0} such that $\left(S^{0},+, *\right)$ is a semihyperring with zero 0 where * is the operationon S^{0} and 0 is the zero of S°.

Let V be a vector space over a division ring R, W a subspace of V and $L_{R}(V, W)$ the semigroup of all linear transformations from V into W under composition. For each $\alpha \in L_{R}(V, W)$, let $F(\alpha)$ consist of affelements in V fixed by α. Let $O M_{R}(V, W), O E_{R}(V, W)$, $G_{R}(V, W), A I_{R}(V, \underline{W})$ and $A I_{R}\left(\underline{V}, W^{\prime}\right)$ be as follows:

$$
O M_{n}(V, W)=\left\{\alpha \in L_{ू}(V, W Y) \mid \operatorname{dim}_{g} \operatorname{Ker} \alpha=\infty\right),
$$

$$
O E_{R}(V, W)=\left\{\alpha \in L_{R}(V, W) \mid \operatorname{dim}_{R}(W / \operatorname{Im} \alpha)=\infty\right\},
$$

$$
G_{R}(V, W)=\left\{\alpha \in L_{R}(V, W)|\alpha| W \text { is an isomorphism }\right\},
$$

$$
A I_{R}(V, W)=\left\{\alpha \in L_{R}(V, W) \mid \operatorname{dim}_{R}(W / F(\alpha))<\infty\right\},
$$

$$
A I_{R}(V, W)=\left\{\alpha \in L_{R}(V, W) \mid \operatorname{dim}_{R}(V / F(\alpha))<\infty\right\}
$$

Department :Mathematics...
Field of study :Mathematics...

Principal Advisor's Signature 6 Nioft.. Academic year : \qquad 2008 \qquad

ACKNOWLEDGEMENTS

I am greatly indepted to Assistant Professor Dr.Sajee Pianskool, my thesis advisor, for her willingness to sacrifice her time to suggest and advise me in preparing and writing this thesis. I am also sincerely grateful to Associate Professor Dr.Amorn Wasanawichit, Assistant Professor Dr.Sureeporn Chaopraknoi and Assistant Professor Dr.Pattira Ruangsinsub, my thesis committee, for their suggestion on this thesis. Moreover, I would like to thank all of my teachers and all the lecturers during my study.

In particular, thank to my dear friends for giving me good experience at Chulalongkorn University.

Finally, I would like to express my gratitude to my beloved family for their love and encouragement throughout my graduate study.

CONTENTS

FREQUENTLY USED NOTATION

Let V be a vector space over a division ring R, W a subspace of V and α a linear transformation from V into W.

จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER I INTRODUCTION

There are two sections in this chapter. In the first section, we shall give some history of hyperstructure theory and some research in hyperstructure theory that have been studied. Moreover, the main purpose of this thesis will be addressed. In the other section, we shall give basic definitions and some examples of semihypergroups, semihyperrings, hypergroups and Krasner hyperrings. Furthermore, the meaning of a semigroup admitting some certain algebraic structures will be provided. At the end of this section, we also gather some results which will be used later on in the rest of this thesis.

1.1 Motivation

Hyperstructure theory was first known in 1934 by Marty. Later, it was interested by several investigator. Now; it is important topic which has conference on Hyperstructures only (International Conference on algebraic Hyperstructures and Its Applications). Basic definition of Marty is hypergroups as a generalization of groups. However, we know that the definition of semihypergroups, hypergroups, semihyperring and Krasner hyperrings are a generalization of semigroups, groups, semiring and rings, respectively. Moreover, any Krasner hyperrings is semihyperring.

The multiplicative structure of a semihyperting with zero, hyperring and ring is a semigroup with zero. It is reasonable to study which semigroups joining zero are isomorphic to the multiplicative structure of some semihyperrings, hyperrings and rings. A semigroup (S, \cdot) with zero admits the structure of a semihyperving with zero if and only if there exists a hyperoperation on S such that (S, O) is a semihyperring with zero. A semigroup with zero admitting a hyperring or a ring
structure are defined analogously.
Semigroups admitting a ring structure have long been studied, e.g., [1], [2], [3] and [10]. If we consider linear transformation semigroups, in particular, we found that M. Siripitukdet and Y. Kemprasit [1] studied when these semigroups admit a ring structure; Y. Kemprasit and Y. Punkla [4], Y. Punkla [5] and N. Rompurk [6] investigated when these semigroups admit a hyperring structure; S. Chaopraknoi and Y. Kemprasit [7] analyzed when these semigroups admit the structure of a semihyperring with zero. The work on linear transformation semigroups inspired us to investigate some specific linear transformation semigroups. The semigroups we considered are adopted from S. Chaopraknoi's Ph.D. Thesis [8]. She studied linear transformations from a vector space into itself. Here, we generalize to linear transformations from a vector space into its subspace.

The main purpose of this research is to study various types of linear transformations which form semigroups and to explore whether or when they admit the structure of a semihyperring with zero; furthermore, to extend the result to the case of admitting hyperring and ring structures,

This thesis is divided into three chapters. In Chapter I, we shall give precise definitions, notations, basic results which will be used throughout in Chapter II and Chapter III.

We show, in Chapter II, that the target subsets, which will be given later in page 8 , are indeed subsemigroups of $L_{R}(V, W)$ containing zero.

In Chapter III, we investigate whether the aimed semigroups admit the structure of a semihyperring with zero. Also, the condition for admitting the structure of a semihyperring with zero is provided.

For a semigroup (S, \cdot), the semigroup $\left(S^{0}, *\right)$ is defined to be (S, \cdot) if S has a zero and S contains more than one element; otherwise, let S^{0} be the semigroup S with a zero 0 adjoined that is, $S^{0}=S \cup\{0\}$ where $0 \notin S$ and the operation*
is defined by $0 * x=x * 0=0$ for all $x \in S \cup\{0\}$ and $x * y=x \cdot y$ for all
$x, y \in S$. Note that if a semigroup S has only one element, then S^{0} is a semigroup (which is not a group) of two elements and $\left(S^{0}, *\right) \cong\left(\mathbb{Z}_{2}, \cdot\right)$. Also, If G is a group, then $G^{0}=G \cup\{0\}$. For a set X, let $P(X)$ denote the power set of X and $P^{*}(X)=P(X) \backslash\{\varnothing\}$ and $|X|$ be the cardinality of X.

A hyperoperation on a nonempty set H is a mapping from $H \times H$ into $P^{*}(H)$. A hypergroupoid is a system (H, o) consisting of a nonempty set H and a hyperoperation \circ on H.

Let (H, \circ) be a hypergroupoid. For nonempty subsets A and B of H and $x \in H$, let $A \circ x=A \circ\{x\}, x \circ A=\{x\} \circ A$ and

$$
\bigcup_{u \in A, b \in B} a \circ b
$$

We call (H, \circ) commutative if and only if $x \circ y=y \circ x$ for all $x, y \in H$. An element e of H is called an identity of (H, \circ) if $x \in(x \circ e) \cap(e \circ x)$ for all $x \in H$. An element e of H is called a scalar identity of $(H, 0)$ if $(x \circ e) \cap(e \circ x)=\{x\}$ for all $x \in H$. Then H has at most one scalar identity.

A semihypergroup is a hypergroupoid (H, \circ) such that $(x \circ y) \circ z=x \circ(y \circ z)$ for all $x, y, z \in H$.

Example 1.2.1. Let H be a nonempty set. Define a hyperoperation \circ on H by

Then (H, \circ) is

(ii) $(A$,$) is a semigroup and$
(iii) + is distributive over \cdot, i.e., $x \cdot(y+z)=x \cdot y+x \cdot z$ and $(y+z) \cdot x=y \cdot x+z \cdot x$ for all $x, y, z \in A$; this property is called the distributive law.

$x+y=y+x$ for all $x, y \in A$. An element 0 of a semihyperring [semiring] $(A,+, \cdot)$ is
called a zero of $(A,+, \cdot)$ if $x+0=0+x=\{x\}[x+0=0+x=x]$ and $x \cdot 0=0 \cdot x=0$ for all $x \in A$. A semihyperring [semiring] with zero is a semihyperring [semiring] containing a zero element. By the definition, a semiring and a semiring with zero is a semihyperring and a semihyperring with zero, respectively.

A hypergroup is a semihypergroup (H, \circ) such that $H \circ x=x \circ H=H$ for all $x \in H$. For x, y in a hypergroup $(H, \circ), x$ is called an inverse of y if there exists an identity e of (H, \circ) such that $e \in(x \circ y) \cap(y \circ x)$. A hypergroup H is called regular if every element of H has an inverse in H. A regular hypergroup (H, \circ) is said to be reversible if for $x, y, z \in H, x \in y \circ z$ implies $z \in u \circ x$ and $y \in x \circ v$ for some inverse u of y and some inverse v of z

A canonical hypergroup is a hypergroup (H, \circ) such that
(i) (H, \circ) is commutative,
(ii) (H, \circ) has a scalar identity,
(iii) every element of H has a unique inverse in H and
(iv) (H, \circ) is reversible.

We can see that the semihypergroup in Example 1.2.1 is a hypergroup, which is called the total hypergroup, but it is not a canonical hypergroup because inverses of each element in H may not be unique.

Example 1.2.2. Let $H=\{0, x\}$ where x and 0 are distinct. Define a hyperoperation - on H by

Then (H, \cdot) is a canonical hypergroup.
(ii) (A, \cdot) is a semigroup with zero 0 where 0 is the scalar identity of $(A,+)$ and (iii) + is distributive over \cdot.

Notice that every Krasner hyperring is a semihyperring with zero. Thus semihyperrings with zero are a generalization of Krasner hyperrings. In this research, by a hyperring we mean a Krasner hyperring.

Example 1.2.3. [7] Let G be a group. Define a hyperoperation + on G^{0} by

$$
\begin{array}{ll}
x+0=0+x=\{x\} & \text { for all } x \in G^{0}, \\
x+x=G^{0} \backslash\{x\} & \text { for all } x \in G, \\
x+y=\{x, y\} & \text { for all distinct elements } x, y \in G .
\end{array}
$$

Then $\left(G^{0},+, \cdot\right)$ is a hyperring where . is the operation on G^{0}. Note that the zero of the hyperring $\left(G^{0},+, \cdot\right)$ is 0 and the inverse in $\left(G^{0},+\right)$ of $x \in G$ is x itself. Also, $\left(G^{0},+, \cdot\right)$ is not a ring if $|G|>1$.

Example 1.2.4. [7] Let A be a set whose cardinality is at least 3 and 0 an element of A. Define a hyperoperation + and an eperation \cdot on A by

$$
\begin{aligned}
& x+0=0+x \&\{x\}=\text { for all } x \in A, \\
& x+y=A \\
& x \cdot y=0
\end{aligned}
$$

Then $(A,+, \cdot)$ is clearly a semihyperring with zero 0 but not a hyperring.
A semigroup S is said to admit the structure of a semihyperring with zero if there exists a hyperoperation + on S^{0} such that $\left(S^{0},+, \cdot\right)$ is a semihyperring with zero where is the operation on S^{0}. A semigroup S admitting a hyperring [ring] structure is given analogously. Obserye that if S admits a ring [hyperring] structure, then S admits the structure of a semihyperring with zero. Consequently, if S does not admit the structure of a semihyperring with zero, then S does not admit
a ring hyperring structure. 606

Let V be a vector space over a division ring R, W a subspace of V and $L_{R}(V, W)$ the semigroup of all linear transformations from V into W under composition. In particular, $L_{R}(V)$ is the set of all linear transformations on V. The image of $v \in V$ under $\alpha \in L_{R}(V, W)$ is written by $v \alpha$. For $\alpha \in L_{R}(V, W)$, let $\operatorname{Ker} \alpha$ and $\operatorname{Im} \alpha$ denote the kernel and the image of α, respectively. For $A \subseteq V$, let $\langle A\rangle$ stand for the subspace of V spanned by A. Moreover, $\operatorname{dim}_{R} U$ denotes the dimension of a vector space U over R. Since every linear transformation can be defined on its basis, for convenience, we write a linear transformation by using a blanket notation. For example,

means that α is a linear transformation from a vector space having B as a basis with $B_{1} \subseteq B$ and
(if $B=\varnothing$, then $v \alpha=v$ for all v, B) and

means that β is a linear transformation from a vector space having B as a basis, u and w are distinct elements of B and

The following propositions are simple facts of vectorspaces and linear transformations which are major tools of our work. The proofs are routine and elementary so they will be omitted.

Proposition 1.2.5. Let B be a basis of a vector space V. If u and w are distinct elements of B, then $\{u+w\} \cup(B \backslash\{w\})$ is also a basis of V.

Proposition 1.2.6. Let B be a basis of a vector space $V, A \subseteq B$ and $\varphi: B \backslash A \rightarrow V$ a one-to-one function such that $(B \backslash A) \varphi$ is a linearly independent subset of V. If $\alpha \in L_{R}(V)$ is defined by
then $\operatorname{Ker} \alpha=\langle A\rangle$

Proposition 1.2.7. Let B be a basis of a vector space V and $A \subseteq B$. Then
(i) $\{v+\langle A\rangle|v \in B\rangle A\}$ is a basis of the quotient space $V /\langle A\rangle$ and
(ii) $\operatorname{dim}_{R}(V /\langle A\rangle)=\mid B$

Some of linear transformation subsemigroups of $L_{R}(V)$ studied in [8] are the followings:

$$
\begin{aligned}
O M_{R}(V) & =\left\{\alpha \in L_{R}(V) \mid \operatorname{dim}_{R} \text { Ker } \alpha \text { is an infinite }\right\}, \\
O E_{R}(V) & =\left\{\alpha \in L_{R}(V) \mid \operatorname{dim}_{R}(V / \operatorname{Im} \alpha) \text { is an infinite }\right\}, \\
G_{R}(V) & =\left\{\alpha \in L_{R}(V) \mid \alpha \text { is an isomorphism }\right\}, \\
A I_{R}(V) & =\left\{\alpha \in L_{R}(V) \mid \operatorname{dim}_{R}(V / F(\alpha)) \text { is finite }\right\}
\end{aligned}
$$

where $F(\alpha)=\{v \in V \mid v \alpha=v\}$ for all $\alpha \in L_{R}(V)$. It is proved that $G_{R}(V)$ admits a ring structure if and only if $\operatorname{dim}_{R} V \leq 1$; if $\operatorname{dim}_{R} V$ is infinite, then $O M_{R}(V)$ and $O E_{R}(V)$ do not admit the structure of a semihyperring with zero; and if $\operatorname{dim}_{R} V$ is finite, then $A I_{R}(V)$ admits a ring structure $Q N \| ?$ and some linear transforma-
We are interested in $L_{R}(V, W)$ instead of $L_{R}(V)$ and somen tion subsemigroups of $L_{R}(V, W)$ where W is a subspace of a vector space V over a division ring R. The natural question arises: "does generalized linear transformation subsemigroups of $L_{R}(V, W)$ (defined analogously to $O M_{R}(V), O E_{R}(V)$, $G_{R}(V)$ and $\left.A I_{R}(V)\right)$ admit the structure of a semihyperring with zero?".

In this thesis, let V be a vector space over a division ring R and W a subspace of V. Moreover, let

$$
\begin{aligned}
O M_{R}(V, W) & =\left\{\alpha \in L_{R}(V, W) \mid \operatorname{dim}_{R} \operatorname{Ker} \alpha \text { is infinite }\right\}, \\
O E_{R}(V, W) & =\left\{\alpha \in L_{R}(V, W) \mid \operatorname{dim}_{R}(W / \operatorname{Im} \alpha) \text { is infinite }\right\}, \\
G_{R}(V, W) & =\left\{\alpha \in L_{R}(V, W) \mid \alpha \text { is an isomorphism }\right\} \\
A I_{R}(V, \underline{W}) & =\left\{\alpha \in L_{R}(V, W) \mid \operatorname{dim}_{R}(W / F(\alpha)) \text { is finite }\right\}, \\
A I_{R}(\underline{V}, W) & =\left\{\alpha \in L_{R}(V, W) \mid \operatorname{dim}_{R}(V / F(\alpha)) \text { is finite }\right\},
\end{aligned}
$$

where $F(\alpha)=\{v \in V \mid v \alpha=v\}$, the set of all elements of V fixed by α, is a subspace of V for all $\alpha \in L_{R}(V, W)$. Clearly, $A I_{R}(\underline{V}, W) \subseteq A I_{R}(V, \underline{W})$. We investigate the following target subsets of $L_{R}(V, W)$:

$$
\begin{array}{lrl}
O M_{R}(V, W), & O M_{R}(V, W) \cup H, & O M_{R}(V, W) \cup S, \\
O E_{R}(V, W), & O E_{R}(V, W) \cup H, & O E_{R}(V, W) \cup S, \\
O E_{R}(V, W) \cup T
\end{array}
$$

where H, S and T are subsemigroups of $G_{R}(V, W), A I_{R}(V, \underline{W})$ and $A I_{R}(\underline{V}, W)$, respectively.

Assume that $\operatorname{dim}_{R} V$ is finite. Then

Thus $O M_{R}(V, W)$ and $O E_{R}(V, W)$ are not semigroups, $G_{R}(V, W)$ admits a ring structure if and only if $\operatorname{dim}_{R} V \leq 1$ and both $A I_{R}(V, \underline{W})$ and $A I_{R}(\underline{V}, W)$ admit the structure of a semihyperring with zero because they admit a ring structure under the usual addition. As a result, throughout the rest of this thesis, we consider only when $\operatorname{dim}_{R} V$ is infinite.

Assume that $\operatorname{dim}_{R} W$ is finite. Then

Hence $O M_{R}(V, W)$ and $A I_{R}(V, \underline{W})$ admit the structure of a semihyperring with zero but $O E_{R}(V, W), G_{R}(V, W)$ and $A I_{R}(\underline{V}, W)$ are not semigroups. Thus we consider only when $\operatorname{dim}_{R} W$ is infinite for the remaining of this thesis.

The simple question "are $O M_{R}(V, W), O E_{R}(V, W), G_{R}(V, W), A I_{R}(V, \underline{W})$ and $A I_{R}(\underline{V}, W)$ subsemigroups of $L_{R}(V, W)$?" need to be taken into account. It is obvious that $G_{R}(V, W)$ is a subsemigroup of $L_{R}(V, W)$. Moreover, $O M_{R}(V, W)$ and $O E_{R}(V, W)$ are subsemigroups of $L_{R}(V, W)$ as follows.

Proposition 1.2.8. $O M_{R}(V, W)$ and $O E_{R}(V, \bar{W})$ are subsemigroups of $L_{R}(V, W)$ containing zero.

Proof. Note that $\operatorname{Ker} \alpha \subseteq \operatorname{Ker} \alpha \beta$ and $\operatorname{Im} \alpha \beta \subseteq \operatorname{Im} \beta$ for each $\alpha, \beta \in L_{R}(V, W)$. Then $O M_{R}(V, W)$ and $O E_{R}(V, W)$ are both subsemigroups of $L_{R}(V, W)$. Since $\operatorname{dim}_{R} V$ and $\operatorname{dim}_{R} W$ are infinite, the zero map belongs to both $O M_{R}(V, W)$ and $O E_{R}(V, W)$. In fact, the zero map is, actually, the zero of the semigroups $O M_{R}(V, W)$ and $O E_{R}(V, W)$.

Finally, we present that both $A I_{R}(V, \underline{W})$ and $A I_{R}(\underline{V}, W)$ are subsemigroups of $L_{R}(V, W)$.

Proposition 1.2.9. $A I_{R}(V, \underline{W})$ and $A I_{R}(\underline{V}, W)$ are subsemigroups of $L_{R}(V, W)$ not containing zero.
Proof. We show only that $A I_{R}(V, \underline{W})$ is a subsemigroup of $L_{R}(V, W)$ not containing zero because the proof for the case $A I_{R}(\underline{V}, W)$ is obtained similarly

Let $\alpha, \beta \in A I_{R}(V, \underline{W})$. Then $\operatorname{dim}_{R}(W / F(\alpha))$ and $\operatorname{dim}_{R}(W / F(\beta))$ are finite. We claim that $\operatorname{dim}_{R}(W / F(\alpha \beta))$ is finite. Since $F(\alpha) \cap F(\beta) \subseteq F(\alpha \beta)$, it suffices to show only that $\operatorname{dim}_{R}(W /(F(\alpha) \cap F(\beta)))$ is finite.

Let B_{1} be a basis of $F(\alpha) \cap F(\beta), B_{2} \subseteq F(\alpha)<B_{1}$ and $B_{3} \subseteq F(\beta)>B_{1}$ be such that $B_{1} \cup B_{2}$ and $B_{1} \cup B_{3}$ are bases of $F(\alpha)$ and $F(\beta)$, respectively. We will show that $B_{1} \cup B_{2} \cup B_{3}$ is linearly independent over R. Let $u_{1}, u_{2}, \ldots, u_{k} \in B_{1} \cup B_{2}$, $v_{1}, v_{2}, \ldots, v_{l} \in B_{3}$ be all distinct and $a_{1}, a_{2}, \ldots, a_{k}, b_{1}, b_{2}, \ldots, b_{l} \in R$ be such that

Then $\sum_{i=1}^{k} a_{i} u_{i}=-\sum_{j=1}^{l} b_{j} v_{j} \in F(\alpha) \cap F(\beta)=\left\langle B_{1}\right\rangle$. Hence

$$
\sum_{j=1}^{l} b_{j} v_{j} \in\left\langle B_{1}\right\rangle \cap\left\langle B_{3}\right\rangle=\{0\}
$$

Since B_{3} is linearly independent, $b_{j}=0$ for all j, so $\sum^{k} a_{i} u_{i}=0$. This implies that $a_{i}=0$ for all i because of the linearly independence of $B_{1} \cup B_{2}$. Hence $B_{1} \cup B_{2} \cup B_{3}$ is linearly independent over R. Let $B_{4} \subseteq W \vee\left(B_{1} \cup B_{2} \cup B_{3}\right)$ be such that $B_{1} \cup B_{2} \cup$ $B_{3} \cup B_{4}$ is a basis of V. Hence $\left\{v+F(\alpha) \mid v \in B_{3} \cup B_{4}\right\},\left\{v+F(\beta) \mid v \in B_{2} \cup B_{4}\right\}$ and $\left\{v+(F(\alpha) \cap F(\beta)) \mid v \in B_{2} \cup B_{3} \cup B_{4}\right\}$ are bases of $W / F(\alpha), W / F(\beta)$ and $W /(F(\alpha) \cap F(\beta))$, respectively. This implies that $\operatorname{dim}_{R}(W /(F(\alpha) \cap F(\beta)))$ is finite as desired. Therefore, $\alpha \beta \in A I_{R}(V, \underline{W})$.

Finally, we end this chapter by giving an example of a subsemigroup of $L_{R}(V, W)$ which does not admit the structure of a semihyperring with zero as follows:

Example 1.2.10. Let B and C be bases of V and W, respectively, such that $C \subseteq B$. Also, let v_{1} and v_{2} be fixed distinct elements in C. Define linear transformations α and β in $L_{R}(V, W)$ by

$$
\alpha=\left(\begin{array}{ccc}
v_{1} & B \backslash\left\{v_{1}\right\} \\
v_{2} & 0 & 0
\end{array}\right) \text { and } \beta=\left(\begin{array}{cc}
v_{2} & B \backslash\left\{v_{2}\right\} \\
v_{1} & 0
\end{array}\right) .
$$

Clearly, $\alpha^{2}=$

Let S be the semigroup generated by α and β. It is obvious that

$$
\begin{aligned}
& \text { Next, suppose that there exists a hyperoperation } \oplus \text { such that }(S, \oplus, \cdot) \text { is a semi- } \\
& \text { hyperring with zero where } \cdot \text { is the operation on } S \text {. By the distributive law, } \\
& \text { Q }
\end{aligned}
$$

Let $\lambda \in \alpha \oplus \beta$. Then we have $\lambda \beta=\alpha \beta$ and $\lambda \alpha=\beta \alpha$. Consider $v_{1} \lambda \beta=v_{1} \alpha \beta=v_{1}$ so $v_{1} \lambda=v_{2}+\sum_{i=1}^{n} a_{i} w_{i}$ for some $w_{i} \in C$ and for some $a_{i} \in R$. Since $\lambda \in S$, we obtain that $\lambda=\alpha$ only. But $v_{2} \lambda \alpha=v_{2} \beta \alpha=v_{2}$ so $v_{2} \lambda=v_{1}+\sum_{i=1}^{n} a_{i} w_{i}$ for some $w_{i} \in C$ and for some $a_{i} \in R$. This shows that $\lambda=\beta$ which is impossible.

CHAPTER II

CERTAIN SUBSEMIGROUPS OF $L_{R}(V, W)$

We know from Chapter I that $O M_{R}(V, W), O E_{R}(V, W), G_{R}(V, W), A I_{R}(V, \underline{W})$ and $A I_{R}(\underline{V}, W)$ are subsemigroups of $L_{R}(V, W)$. Let U be a subsemigroup of $L_{R}(V, W)$. Naturally, ones may ask whether $O M_{R}(V, W) \cup U$ and $O E_{R}(V, W) \cup U$ are subsemigroups of $L_{R}(V, W)$. The following examples show that this is not generally true.

Example Let $\operatorname{dim}_{R} W=\operatorname{dim}_{R} V$. Then there is a subsemigroup U of $L_{R}(V, W)$ such that $O M_{R}(V, W) \cup U$ is not a semigroup.

To see this, let B and C be basés of V and W, respectively, such that $C \subseteq B$. Since C is infinite, there are disjoint subsets G_{1} and C_{2} of C such that $C_{1} \cup C_{2}=C$ and $\left|C_{1}\right|=\left|C_{2}\right|=|C|$. Hence $|B|=\left|C_{1}\right|$ and then there are bijections $\varphi: B \rightarrow C_{1}$ and $\phi: C_{1} \rightarrow C_{2}$. Define $\alpha, \gamma \in L_{R}(V, W)$ by

$$
\left.\alpha=\binom{v}{v \varphi}_{v \in B} \frac{12}{\text { and } \gamma}=\left(\begin{array}{c}
v \\
v \phi \\
v
\end{array}\right) 0 C_{1}\right)_{v \in C_{1}} .
$$

It is obvious that a is a bijection and $\operatorname{Im} \alpha=\left\langle C_{1}\right\rangle$. Let U be the subsemigroup of $L_{R}(V, W)$ generated by α. Clearly, $\operatorname{Im} \beta=\left\langle C_{1}\right\rangle$ for all $\beta \in U$. Moreover, $\gamma \in O M_{R}(V, W)$ because $\operatorname{Ker} \gamma=\left\langle B \backslash C_{1}\right\rangle$. Consider $\alpha \gamma \neq\binom{ v}{v \varphi \phi}_{v \in B}$. Hence $\operatorname{Ker} \alpha \gamma=\{0\}$ and $\operatorname{Im} \alpha \gamma=\left\langle C_{2}\right\rangle$. Thus $\alpha \gamma \notin O M_{R}(V, W)$ and $\alpha \gamma \notin U$. Therefore, $O M_{R}(V, W) \cup U$ is not a semigroup.

Example Let $\operatorname{dim}_{R} W=\operatorname{dim}_{R} V$. Then there is a subsemigroup U of $L_{R}(V, W)$ such that $O E_{R}(V, W) \cup U$ is not a semigroup.

and $\left|C_{1}\right|=\left|C_{2}\right|=|C|$. Hence there are bijections $\varphi: C_{2} \rightarrow C$ and $\phi: C_{1} \rightarrow C_{2}$. Define $\alpha, \gamma \in L_{R}(V, W)$ by

$$
\alpha=\left(\begin{array}{cc}
v & B \backslash C_{2} \\
v \varphi & 0
\end{array}\right)_{v \in C_{2}} \quad \text { and } \quad \gamma=\left(\begin{array}{cc}
v & B \backslash C_{1} \\
v \phi & 0
\end{array}\right)_{v \in C_{1}}
$$

Let U be the subsemigroup of $L_{R}(V, W)$ generated by α. It is obvious that domain of each element in U is $\left\langle C_{2}\right\rangle$. It is clear that $\gamma \in O E_{R}(V, W)$ because $\operatorname{dim}_{R}(W / \operatorname{Im} \gamma)=\left|C_{1}\right|$. Consider

Hence $\operatorname{Im} \gamma \alpha=W$ and domain of $\gamma \alpha$ is $\left\langle C_{1}\right\rangle$. Thus $\gamma \alpha \notin O E_{R}(V, W)$ and $\gamma \alpha \notin U$. Therefore $O E_{R}(V, W) \cup U$ is not a semigroup.

Proposition 2.1.7 and Proposition 2.2.7 tell that there are subsemigroups U_{1} and U_{2} of $L_{R}(V, W)$ such that $O M_{R}(V, W) \cup U_{1}$ and $O E_{R}(V, W) \cup U_{2}$ are semigroups, respectively. In view of those, the main purpose of this chapter is to show that the following subsets of $L_{R}(V, W)$ are subsemigroups of $L_{R}(V, W)$:
(1) subsets containing $O M_{R}(V, W)$, namely, $O M_{R}(V, W) \cup H, O M_{R}(V, W) \cup S$ and $O M_{R}(V, W) \cup T$;
(2) subsets containing $O E_{R}(V, W)$, namely, $O E_{R}(V, W) \cup H, O E_{R}(V, W) \cup S$ and $O E_{R}(V, W) \cup T$,
where H, S and T are subsemigroups of $G_{R}(V, W), A I_{R}(V, W)$ and $A I_{R}(\underline{V}, W)$, respectively.

2.1 Certain Semigroups Containing $O M_{R}(V, W)$

We illustrate first that $O M_{R}(V, W)$ is, in fact, a ribht ideal of $L_{R}(V, W)$. Then $O M_{R}(V, W) \cup H$ is shown to be a semigroup

Lemma 2.1.1. $O M_{R}(V, W)$ is a right ideal of $L_{R}(V, W)$.
Proof Proposition 1.2.8 provides that $O M_{R}(V, W)$ is a subsemigroup of $L_{R}(V, W)$.
To show that $O M_{R}(V, W)$ is a right ideal of $L_{R}(V, W)$, let $\alpha \in O M_{R}(V, W)$ and
$\beta \in L_{R}(V, W)$. Then $\operatorname{dim}_{R} \operatorname{Ker} \alpha$ is infinite. Note also that $\operatorname{Ker} \alpha \subseteq \operatorname{Ker} \alpha \beta$. This leads to the conclusion that $\operatorname{dim}_{R} \operatorname{Ker} \alpha \beta$ is infinite. Thus $\alpha \beta \in O M_{R}(V, W)$.

Next example shows that $O M_{R}(V, W)$ is not a left ideal of $L_{R}(V, W)$.
Example 2.1.2. Let $\operatorname{dim}_{R} W=\operatorname{dim}_{R} V, B$ and C be bases of V and W, respectively, such that $C \subseteq B$. Since C is infinite, there are disjoint subsets C_{1} and C_{2} of C such that $\left|C_{1}\right|=\left|C_{2}\right|=|C|=|B|$. Thus there is a bijection $\phi: B \rightarrow C_{1}$. Define $\alpha, \beta \in L_{R}(V, W)$ by

Clearly, $\alpha \in O M_{R}(V, W)$ but $\beta \notin O M_{R} \overline{(V, W)}$. It is obvious that $\beta \alpha=\beta$. This shows that $O M_{R}(V, W)$ is not a left ideal of $L_{R}(V, W)$.

We have shown that $O M_{R}(V, W)$ is only a right ideal but not a left ideal of $L_{R}(V, W)$. To present that $O M_{R}(V, W) \cup H$ is a semigroup, we prove the following lemma.

Lemma 2.1.3. $G_{R}(V, W) O M_{R}(V, W)=O M_{R}(V, W)$.
Proof. Let $\alpha \in G_{R}(V, W)$ and $\beta \in O M_{R}(V, W)$. We claim that $(\operatorname{Ker} \alpha \beta) \alpha=\operatorname{Ker} \beta$. Clearly, $v \alpha \beta=0$ for all $v \in \operatorname{Ker} \alpha \beta$ whence $(\operatorname{Ker} \alpha \beta) \alpha \subseteq \operatorname{Ker} \beta$. Let $v \in \operatorname{Ker} \beta$. Note that α^{-1} exists since $\alpha \in G_{R}(V, W)$. Then $0=v \beta=\left(v \alpha{ }^{-1}\right) \alpha \beta$ so that $v \alpha^{-1} \in \operatorname{Ker} \alpha \beta$. Thus

This shows that $\operatorname{Ker} \beta \subseteq(\operatorname{Ker} \alpha \beta) \alpha$. Therefore, $(\operatorname{Ker} \alpha \beta) \alpha=\operatorname{Ker} \beta$ as claimed. Since α is ah isomorphisp and $\operatorname{dim}_{R} \operatorname{Ken} \beta$ is infinite, $\operatorname{dim}_{R}^{R} \operatorname{Ker} \alpha \beta$ is also infinite.

Proposition 2.1.4. $O M_{R}(V, W) \cup H$ is a subsemigroup of $L_{R}(V, W)$.

Next, in the same manner, we show that $O M_{R}(V, W) \cup S$ is a semigroup by proving that $A I_{R}(V, \underline{W}) O M_{R}(V, W) \subseteq O M_{R}(V, W)$. However, the following lemma is needed.

Lemma 2.1.5. Let $\alpha \in A I_{R}(V, \underline{W}), B, C$ and E be bases of V, W and $\operatorname{Ker} \alpha$, respectively, such that B contains C and E. If $B>C$ is infinite and E is finite, then there are $w \in B \backslash(C \cup E)$ and $v \in V \backslash\{E \cup\{w\}\rangle$ such that $w \alpha=v \alpha$.

Proof. Assume that $B \backslash C$ is infinite and E is finite. Let $E=\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{k}^{\prime}\right\}$. Clearly, $B \backslash(C \cup E)$ is infinite. Suppose that
for every $w \in B \backslash(C \cup E)$ for every $v \in V \backslash\langle E \cup\{w\}\rangle$, $w \alpha \neq v \alpha$.
Hence

We seperate the proof into five steps, 2.2 .12
Step 1. $\{w \alpha \mid w \in B \backslash(C \cup E)\}$ is an infinite linearly independent subset of W.
Step 2. For $w \in\langle B \backslash(C \cup E)\rangle$, if wa $\in F(a)$, then $w=0$.
Step 3. For every $w \in B>(C \mathcal{F}), w \alpha \notin F(\alpha)$.
Step 4. $\{w \alpha+F(\alpha) \mid w \in B \backslash(C \cup E)\}$ is a linearly independent subset of $W / F(\alpha)$.
Step 5. For all $v, w \in B \backslash(C \cup E)$, if $v \alpha \neq w \alpha$, then $v \alpha+F(\alpha) \neq w \alpha+F(\alpha)$.
We conclude from these steps that $\{w \alpha+F(\alpha) \mid w \in B \backslash(C \cup E)\}$ is an infinite linearly independent subset of $W / F(\alpha)$. Hence $\operatorname{dim}_{R}(W / F(\alpha))$ is infinite contradicting the fact that $\alpha \in A I_{R}(V, \underline{W})$. Therefore, the result is obtained. It remain to prove Step ${ }^{1-}$ Step 5.
Step 1. since $B \times(C \cup \bar{E})$ is infinite and (2), we obtain that the set $?$ $\{w \alpha \mid w \in B \backslash(C \cup E)\}$ is infinite. Next, we show that $\{w \alpha \mid w \in B \cup(C \cup E)\}$ is linearly independent. Let $w_{1}, w_{2}, \ldots, w_{n} \in B \backslash(C \cup E)$ be all distinct and

Then

$$
\left(a_{1} w_{1}+a_{2} w_{2}+\cdots+a_{n} w_{n}\right) \alpha=0
$$

so that $a_{1} w_{1}+a_{2} w_{2}+\cdots+a_{n} w_{n} \in \operatorname{Ker} \alpha$. Thus

$$
a_{1} w_{1}+a_{2} w_{2}+\cdots+a_{n} w_{n} \in\langle E\rangle \cap\langle B \backslash(C \cup E)\rangle=\{0\} .
$$

As a result, $a_{1} w_{1}+a_{2} w_{2}+\cdots+a_{n} w_{n}=0$ and then $a_{1}=a_{2}=\cdots=a_{n}=0$. Hence $\{w \alpha \mid w \in B \backslash(C \cup E)\}$ is a linearly independent set as claimed.

Step 2. Let $w \in\langle B \backslash(C \cup E)\rangle$. Assume that $w \alpha \in F(\alpha)$, i.e., $(w \alpha) \alpha=w \alpha$.
Then $w \alpha-w \in \operatorname{Ker} \alpha=\langle E\rangle$. Thus $w \alpha-w=\sum_{i=1}^{n} a_{i} v_{i}^{\prime}$. Hence $w=w \alpha-\sum_{i=1}^{n} a_{i} v_{i}^{\prime} \in$ $\langle C \cup E\rangle$. Therefore $w \in\langle B \backslash(C \cup E)\rangle \cap\langle C \cup E\rangle$. Thus $w=0$.
Step 3. Let $w \in B<(C \cup E)$. Suppose that $w \alpha \in F(\alpha)$. By Step 2, $w=0$ leading to a contradiction. Hence $w \alpha \notin F(\alpha)$ for all $w \in B \backslash(C \cup E)$.
Step 4. Let $w_{1}, w_{2}, \ldots, w_{n} \in B \backslash(C \cup E)$ be distinct and $a_{1}, a_{2}, \ldots, a_{n} \in R$ be such that

Hence $\sum_{i=1}^{n} a_{i} w_{i} \alpha \in F(\alpha)$. Thus $\left(\sum_{i=1}^{n} a_{i} w_{i} \alpha\right) \alpha=\sum_{i=1}^{n} a_{i} w_{i} \alpha$ so $\left(\sum_{i=1}^{n} a_{i} w_{i} \alpha-\sum_{i=1}^{n} a_{i} w_{i}\right) \alpha=$ 0, i.e., $\sum_{i=1}^{n} a_{i} w_{i} \alpha-\sum_{i=1}^{n} a_{i} w_{i} \in$ Ker $\overline{\alpha_{j} \text {. It follows that }}$

$$
\sum_{i=1}^{n} a_{i} w_{i}=\sum_{i=1}^{n} a_{i} w_{i} \alpha-\sum_{j=1}^{k} b_{j} v_{j}^{\prime} \in\langle C \cup E\rangle
$$

Thus

This implies that $\sum_{i=1}^{n} a_{i} w_{i} \in\langle B \gamma(C \cup E)\rangle \cap\langle C \cup E\rangle \in\{0\}$ so $a_{1}=a_{2}=\cdots=$ $a_{n}=0$. Hence $\{w \alpha+F(\alpha) \mid w \in B \backslash(C \cup E)\}$ is a linearly independent subset of

$w \alpha+F(\alpha)$. We obtain that $v \alpha-w \alpha \in F(\alpha)$. Hence $(v \alpha-w \alpha) \alpha=v \alpha-w \alpha$. Thus $(v \alpha-w \alpha) \alpha+w \alpha=v \alpha$. Therefore

$$
\begin{equation*}
(v \alpha-w \alpha+w) \alpha=v \alpha \tag{3}
\end{equation*}
$$

If $v \alpha-w \alpha+w \in\langle E \cup\{v\}\rangle$, then $v \alpha-w \alpha+w=b v+\sum^{k} a_{i} v_{i}^{\prime}$ where $b, a_{1}, a_{2}, \ldots, a_{k} \in$ R. It is clear that $b v-w=v \alpha-w \alpha-\sum_{i=1}^{k} a_{i} v_{i}^{\prime} \in\langle C \cup E\rangle$. Therefore $b v-w \in\langle B \subset(C \cup E)\rangle \cap\langle C \cup E\rangle=\{0\}$
so that $b v=w$ which is impossible. Hence $v \alpha-w \alpha+w \notin\langle E \cup\{v\}\rangle$. From (1), $(v \alpha-w \alpha+w) \alpha \neq v \alpha$ contradicting (3)

Lemma 2.1.6. $A I_{R}(V, \underline{W}) O M_{R}(V, W) \subseteq O M_{R}(V, W)$
Proof. Let $\alpha \in A I_{R}(V, \underline{W})$ and $\beta \in O M_{R}(V, W)$. Let B_{1} be a basis of $F(\alpha) \cap \operatorname{Ker} \beta$, $B_{2} \subseteq \operatorname{Ker} \beta \backslash B_{1}$ such that $B_{1} \cup B_{2}$ a basis of $\operatorname{Ker} \beta \cap W, B_{3} \subseteq \operatorname{Ker} \beta \backslash B_{1} \cup B_{2}$ such that $B_{1} \cup B_{2} \cup B_{3}$ a basis of Ker $\beta_{\text {. Then }} B_{1} \cup B_{2} \cup B_{3}$ is infinite because $\beta \in O M_{R}(V, W)$. Next, we claim that $\left\{v+F(\alpha) \mid v \in B_{2}\right\}$ is a finite linearly independent subset of quotient space $W \neq F(\alpha)$. Let $v_{1}, v_{2}, \ldots, v_{n}$ be distinct elements of B_{2} and let $a_{1}, a_{2}, \ldots, a_{n} \in R$ be such that $\sum_{i=1}^{n} a_{i}\left(v_{i}+F(\alpha)\right)=F(\alpha)$. Then $\sum_{i=1}^{n} a_{i} v_{i} \in F(\alpha) \cap K \operatorname{Ker} \beta$. But B_{1} is a basis of $F(\alpha) \cap \operatorname{Ker} \beta$ and $B_{1} \cup B_{2}$ is linearly independent over R, so $a_{i}=0$ for all i. This shows that $\left\{v+F(\alpha) \mid v \in B_{2}\right\}$ is a linearly independent subset of the quotient space $W / F(\alpha)$ and $u+F(\alpha) \neq$ $w+F(\alpha)$ for all distinct $u, w \in B_{2}$. Since $\operatorname{dim}_{R}(W / F(\alpha))<\infty$, we obtain that $\left\{v+F(\alpha) \mid v \in B_{2}\right\}$ is finite. But $\left|\left\{v_{v}+F(\alpha) \mid v \in B_{2}\right\}\right|=\left|B_{2}\right| \rho$ thus B_{2} is finite. Let $B_{4} \subseteq W \gamma B_{1} \cup B_{2}$ be such that $B_{1} \cup B_{2} \cup B_{4}$ is a basis of W and let $B_{1} \cup B_{2} \cup B_{4}=C$. Moreover, let $B_{5} \subseteq V \backslash C \cup B_{3}$ be such that $C \cup B_{3} \cup B_{5}$ is a basis of V and let

finite. Hence $B_{2} \cup B_{3}$ is finite. This implies that B_{1} is infinite because $B_{1} \cup B_{2} \cup B_{3}$
is infinite. Since $B_{1} \subseteq F(\alpha) \cap \operatorname{Ker} \beta$, we have $B_{1} \alpha \beta=B_{1} \beta=\{0\}$ so $B_{1} \subseteq \operatorname{Ker} \alpha \beta$. Hence $\operatorname{dim}_{R} \operatorname{Ker} \alpha \beta$ is infinite. Thus $\alpha \beta \in O M_{R}(V, W)$.
Case 2. $B \backslash C$ is infinite. We claim that $\operatorname{dim}_{R} \operatorname{Ker} \alpha$ is infinite. Suppose that $\operatorname{dim}_{R} \operatorname{Ker} \alpha$ is finite. Let E be a basis of $\operatorname{Ker} \alpha$. Lemma 2.1.5 provides that there are $w \in B \backslash(C \cup E)$ and $v \in V \backslash\langle E \cup\{w\}\rangle$ such that $w \alpha=v \alpha$. Since $v \in V=\langle B\rangle$, there are $v_{1}, v_{2}, \ldots, v_{m} \in$ B and $b_{1}, b_{2}, \ldots, b_{m} \in R$ such that $v=b_{1} v_{1}+b_{2} v_{2}+\cdots+b_{m} v_{m}$. Assume, without loss of generality, that

where $v_{l+1}, v_{l+2}, \ldots, v_{m} \in E$. We see that

$$
\begin{aligned}
w \alpha & =v \alpha \\
& =\left(b_{1} v_{1}+b_{2} v_{2}+\cdots+b_{l} v_{l}+b_{l+1} v_{l+1}+\cdots+b_{m} v_{m}\right) \alpha \\
& =\left(b_{1} v_{1}+b_{2} v_{2}+\cdots+b_{l} v_{l}\right) \alpha
\end{aligned}
$$

Hence $\left(w-b_{1} v_{1}-b_{2} v_{2}-\cdots-b_{l} v_{l}\right) \alpha=0$ so $w-b_{1} v_{1}-b_{2} v_{2}-\cdots-b_{l} v_{l} \in \operatorname{Ker} \alpha$. Thus

Therefore

$$
w-b_{1} v_{1}-b_{2} v_{2}-\cdots-b_{1} v_{l}=c_{1} v_{1}^{\prime}+c_{2} v_{2}^{\prime}+\cdots+c_{k} v_{k}^{\prime} .
$$

Subcase $2.1 w \neq v_{j}$ for all $j \in\{1,2, \ldots, l\}$. Hence w is written in a linear combination of $B \searrow\{w\}$ which is a contradiction.
Subcase $2.2 w=v_{j}$ for some $j \in\{1,2, \ldots, l\}$. Assume, without loss of generality,

Thus $0=\left(b_{1}-1\right) w+b_{2} v_{2}+\cdots+b_{l} v_{l}+c_{1} v_{1}^{\prime}+c_{2} v_{2}^{\prime}+\cdots+c_{k} v_{k}^{\prime}$. This implies that

จุหาลงกิรถเมหทาวิทยาลย

so $b_{1}=1$ and

$$
\begin{aligned}
v & =b_{1} v_{1}+b_{2} v_{2}+\cdots+b_{l} v_{l}+b_{l+1} v_{l+1}+\cdots+b_{m} v_{m} \\
& =v_{1}+b_{l+1} v_{l+1}+\cdots+b_{m} v_{m} \\
& =w+b_{l+1} v_{l+1}+\cdots+b_{m} v_{m} \\
& \in\langle E \cup\{w\}\rangle .
\end{aligned}
$$

This is a contradiction.
Hence $\operatorname{dim}_{R} \operatorname{Ker} \alpha$ is infinite. Consequently, $\operatorname{dim}_{R} \operatorname{Ker} \alpha \beta$ is infinite because of $\operatorname{Ker} \alpha \subseteq \operatorname{Ker} \alpha \beta$. Therefore $\alpha \beta \in O M_{R}(V, W)$.

Proposition 2.1.7. $O M_{R}(V, W) \cup S$ is a subsemigroup of $L_{R}(V, W)$.
Proof. The result follows from applying Lemma 2.1.1 and Lemma 2.1.6 and the fact that $O M_{R}(V, W)$ and S are subsemigroups of $L_{R}(V, W)$.

Proposition 2.1.8. $O M_{R}(V, W) \cup T$ is a subsemigroup of $L_{R}(V, W)$.
Proof. The result follows from the fact that $A I_{R}(\underline{V}, W) \subseteq A I_{R}(V, \underline{W})$ and Proposition 2.1.7.

2.2 Certain Semigroups Containing $O E_{R}(V, W)$

Likewise, we notice that $O E_{R}(V, W)$ is a left ideal but not a right ideal of $L_{R}(V, W)$.

Lemma 2.2.1. $O E_{R}(V, W)$ is a left ideal of $L_{R}(V, W)$.
Proof. Proposition 1.28 show that $O E_{R}(V, W)$ is a subsemigroup of $L_{R}(V, W)$. Next, let $\alpha \in L_{R}(V, W)$ and $\beta \in O E_{R}(V, W)$. Then $\operatorname{dim}_{R}(W / \operatorname{Im} \alpha \beta)$ is infinite because
$\operatorname{dim}_{R}(W / \operatorname{Im} \beta)$ is infinite and $\operatorname{Im} \alpha \beta \subseteq \operatorname{Im} \beta$. Thus $\alpha \beta \in O E_{R}(V, W)$.

9
 The following example assures that $O E_{R}(V, W)$ is not a right ideal of $L_{R}(V, W)$.

Example 2.2.2. Let B and C be bases of vector space V and W, respectively, such that $C \subseteq B$. Since C is infinite set. there are subsets C_{1} and C_{2} of C such that $\left|C_{1}\right|=\left|C_{2}\right|=|C|$ and $C_{1} \cap C_{2}=\varnothing$. There is a bijection $\phi: C_{1} \rightarrow C$. Defined

$$
\alpha=\left(\begin{array}{cc}
v & B \backslash C_{1} \\
v & 0
\end{array}\right)_{v \in C_{1}} \text { and } \beta=\left(\begin{array}{cc}
v & B \backslash C_{1} \\
v \phi & 0
\end{array}\right)_{v \in C_{1}}
$$

Clearly that $\alpha \in O E_{R}(V, W)$ because $\operatorname{dim}_{R}(W / \operatorname{Im} \alpha)=\left|C_{2}\right|$ and $\beta \in L_{R}(V, W)$ but $\beta \notin O E_{R}(V, W)$. It is obvious that $\alpha \beta=\beta$. This show that $O M_{R}(V, W)$ is not a left ideal of $L_{R}(V, W)$.

Lemma 2.2.3. $O E_{R}(V, W) G_{R}(V, W) \subseteq O E_{R}(V, W)$.
Proof. Let $\alpha \in O E_{R}(V, W)$ and $\beta: \in G_{R}(V, W)$. We claim that $W / \operatorname{Im} \alpha \cong$ $W / \operatorname{Im} \alpha \beta$. Thus $\operatorname{dim}_{R}(W / \operatorname{Im} \alpha \beta)=\operatorname{dim}_{R}(W / \operatorname{Im} \alpha)$ which is infinite. Hence $\alpha \beta \in O E_{R}(V, W)$. Therefore, it remains to show that $W / \operatorname{Im} \alpha \cong W / \operatorname{Im} \alpha \beta$. Define $\varphi: W / \operatorname{Im} \alpha \rightarrow W / \operatorname{Im} \alpha \beta$ by

$$
(w+\operatorname{Im} \alpha) \varphi=w \beta+\operatorname{Im} \alpha \beta \quad \text { for every } w \in W
$$

Then φ is well-defined. Moreover, φ is a bijection. Since β is a homomorphism, φ is an monomorphism. Thus β is an isomorphism, i.e.,
$W / \operatorname{Im} \alpha \cong W / \operatorname{Im} \alpha \beta$.

Next, we obtain that $O E_{R}(V, W) \cup H$ is a semigroup.
Proposition 2.2.4. $O E_{R}(V, W) \cup H$ is a subsemigroup of $L_{R}(V, W)$.
Proof. The result follows from Lemma 2.2.1. Lemmà 2.2.3 and the fact that $O E_{R}(V, W)$ and H are subsemigroups of $L_{R}(V, W)$

Similar to $O E_{R}(V, W) \cup S$, we show that $O E_{R}(V, W) A I_{R}(V, W) \subseteq O E_{R}(V, W)$ and then conclude that $O E_{R}(V, W) \cup S$ is a semigroup. Nevertheless, we first prove the following lemma.

Lemma 2.2.5. For every $\alpha \in A I_{R}(V, \underline{W}),\left.\operatorname{dim}_{R} \operatorname{Ker} \alpha\right|_{W}$ is finite.
Proof. Let $\alpha \in A I_{R}(V, \underline{W})$ and B be a basis of Ker $\left.\alpha\right|_{W}$. We claim that $\{v+F(\alpha) \mid v \in B\}$ is linearly independent over R. Let $v_{1}, v_{2}, \ldots, v_{n} \in B$ be all distinct and $a_{1}, a_{2}, \ldots, a_{n} \in R$ be such that

Then $\sum_{i=1}^{n} a_{i} v_{i}=F(\alpha)$ which implies that $\left(\sum_{i=1}^{n} a_{i} v_{i}\right) \alpha=\sum_{i=1}^{n} a_{i} v_{i}$. Since $v_{1}, v_{2}, \ldots, v_{n} \in$ $\left.\operatorname{Ker} \alpha\right|_{W}$, we have $\sum_{i=1}^{n} a_{i} v_{i}=0$. Then $a_{i}=0$ for all i because $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent over R. This proves that $\{v+F(\alpha) \mid v \in B\}$ is a linearly independent subset of $W / F(\alpha)$ as claimed. Moreover $v+F(\alpha) \neq w+F(\alpha)$ for all distinct $v, w \in B$. Since $\operatorname{dim}_{R}(W / \bar{F}(\alpha))$ is finite, $\{v+F(\alpha) \mid v \in B\}$ is finite. Therefore $\left.\operatorname{dim}_{R} \operatorname{Ker} \alpha\right|_{W}|=|B|=|:\{v+(F(\alpha) \mid v \in B\} \mid$ is finite.

Lemma 2.2.6. $O E_{R}(V, W) A I_{R}(V, W) \subset O E_{R}(V, W)$.
Proof. Let $\alpha \in O E_{R}(V, W)$ and $\beta \in A I_{R}(N, W)$. Observe that $\varphi: W /\left.\operatorname{Im} \alpha \rightarrow \operatorname{Im} \beta\right|_{W} / \operatorname{Im} \alpha \beta$ defined by

$$
(w+\operatorname{Im} \alpha) \varphi=\overline{w \beta+\operatorname{Im} \alpha \beta \quad \text { for all } w \in W}
$$

is an epimorphism. Hence

$$
\begin{equation*}
(W / \operatorname{Im} \alpha) /\left.\operatorname{Ker} \varphi \cong \operatorname{Im} \beta\right|_{W} / \operatorname{Im} \alpha \beta . \tag{1}
\end{equation*}
$$

Then

We claim that $\operatorname{dim}_{R} \operatorname{Ker} \alpha$ is finite. Thus $\operatorname{dim}_{R}((W / \operatorname{Im} \alpha) / \operatorname{Ker} \varphi)$ mustbe infinite since $\operatorname{dim}_{R}(W / \operatorname{Im} \alpha)$ is infinite but $\operatorname{dim}_{R} \operatorname{Ker} \alpha$ is finite. Together this fact and (1) we ob tain that $\left.\operatorname{dim}_{R} \operatorname{Im} \beta\right|_{W} / \operatorname{Im} \alpha \beta$ is infinite We see that $\operatorname{dim}_{R}\left(\left.\operatorname{Im} \beta\right|_{W} / \operatorname{Im} \alpha \beta\right) \leq \operatorname{dim}_{R}(\operatorname{Im} \beta / \operatorname{Im} \alpha \beta) \leq \operatorname{dim}_{R}(W / \operatorname{Im} \alpha \beta)$.

Consequently, $\operatorname{dim}_{R}(W / \operatorname{Im} \alpha)$ is infinite so $\alpha \in O E_{R}(V, W)$ To complete the proof, it remains showing that $\operatorname{dim}_{R} \operatorname{Ker} \varphi$ is finite. Let $C \subseteq W$ be such that $\{v+\operatorname{Im} \alpha \mid v \in C\}$ is a basis of $\operatorname{Ker} \varphi$ and $v+\operatorname{Im} \alpha \neq w+\operatorname{Im} \alpha$ for all distinct $v, w \in C$. We know that $v \beta+\operatorname{Im} \alpha \beta=(v+\operatorname{Im} \alpha) \varphi=\operatorname{Im} \alpha \beta$ for all $v \in C$. Thus $v \beta \in \operatorname{Im} \alpha \beta=(\operatorname{Im} \alpha) \beta$ for all $v \in C$. Hence for each $v \in C$, there exists an element $w_{v} \in \operatorname{Im} \alpha$ such that $v \beta=w_{v} \beta$. Fix such w_{v} for each $v \in C$. Consequently,

If distinct elements $v_{1}, v_{2}, \ldots, v_{n} \in B$ and $a_{1}, a_{2}, \ldots, a_{n} \in R$ are such that $\sum_{i=1}^{n} a_{i}\left(v_{i}-w_{v_{i}}\right)=0$, then
and hence $\sum_{i=1}^{n} a_{i}\left(v_{i}+\operatorname{Im} \alpha\right)=\operatorname{In} \alpha$. Thus $a_{i}=0$ for all i. This show that $\left\{v-w_{v} \mid v \in C\right\}$ is linearly independent over R and $v-w_{v} \neq u-w_{u}$ for all distinct $u, v \in C$ because $v+\operatorname{Im} \alpha \neq w+\operatorname{Im} \alpha$ all distinct $u, v \in C$. It follows that

$$
|C|=|\{v+\operatorname{Im} \alpha \mid v \in C\}| \varepsilon Z\left\{v-w_{v} \mid v \in C\right\}\left|\leq \operatorname{dim}_{R} \operatorname{Ker} \beta\right|_{W} .
$$

Since $\left.\operatorname{dim}_{R} \operatorname{Ker} \beta\right|_{W}$ is finite from Lemma 2.2.5, we conclude that C is finite. Therefore $\operatorname{dim}_{R} \operatorname{Ker} \varphi$ is finite as disired.

Proposition 2.2.7. $O E_{R}(V, W) \cup S$ is a subsemigroup of $L_{R}(V, W)$.
Proof. Apply Lemma 2.2.1, Lemma 2.2.6 and the fact that $O E_{R}(V, W)$ and S are subsemigroups of $L_{R}(V, W)$ to obtain the result.

Proposition 2.2.8.O $E_{R}(V, W) \cup T$ is a subsemigroup of $L_{R}(V, W)$.

Proof. The result follows immediately from the fact that $A I_{R}(\underline{V}, W) \subseteq A I_{R}(V, \underline{W})$ and Proposition 2.2.7.

CHAPTER III

ADMITTING THE STRUCTURE OF A SEMIHYPERRING WITH ZERO OF SEMIGROUPS

Chapter I and Chapter II illustraste that

$$
\begin{array}{llll}
O M_{R}(V, W), & O M_{R}(V, W) \cup H, & O M_{R}(V, W) \cup S, & O M_{R}(V, W) \cup T, \\
O E_{R}(V, W), & O E_{R}(V, W) \cup H, & O E_{R}(V, W) \cup S, & O E_{R}(V, W) \cup T
\end{array}
$$

are subsemigroups of $L_{R}(V, W)$ where H, S and T are subsemigroups of $G_{R}(V, W)$, $A I_{R}(V, \underline{W})$ and $A I_{R}(\underline{V}, W)$, respectively. In this chapter, we investigate whether or when each of them admits the structure of a semihyperring with zero.

3.1 Semigroups Containing $O M_{R}(V, W)$

It can be shown that $O M_{R}(V, W)$ and $L_{R}(V, W)$ are identical if W is a proper subspace of V with $\operatorname{dim}_{R} W<\operatorname{dim}_{R} T$

Lemma 3.1.1. If $\operatorname{dim}_{R} W<\operatorname{dim}_{R} V$, then $O M_{R}(V, W)=L_{R}(V, W)$.
Proof. Assume that $\operatorname{dim}_{R} W<\operatorname{dim}_{R} V$. Note that $O M_{R}(V, W) \subseteq L_{R}(V, W)$. It suffices to show that $L_{R}(V, W) \subseteq O M_{R}(V, W)$. Let $\alpha \in L_{R}(V, W)$. Suppose that $\alpha \notin O M_{R}(V, W)$. Then $\operatorname{dim}_{R} \operatorname{Ker} \alpha$ is finite. Since $\operatorname{dim}_{R} V=\operatorname{dim}_{R} \operatorname{Ker} \alpha+$ $\operatorname{dim}_{R} \operatorname{Im} \alpha$ and $\operatorname{dim}_{R} V$ is infinite, we obtain that $\operatorname{dim}_{R} \operatorname{Im} \alpha$ is infinite and

$$
\operatorname{dim}_{R} V=\operatorname{dim}_{R} \operatorname{Ker} \alpha+\operatorname{dim}_{R} \operatorname{Im} \alpha=\operatorname{dim}_{R} \operatorname{Im} \alpha \leq \operatorname{dim}_{R} W
$$

Proposition 3.1.2. If $\operatorname{dim}_{R} W<\operatorname{dim}_{R} V$, then $O M_{R}(V, W), O M_{R}(V, W) \cup H$, $\bigcirc M_{R}(V, W) \cup S$ and $O M_{R}(V W) U T$ admit the structure of semihyperring with zero.

Proof. The result is obtained immediately from Lemma 3.1.1.
In order the prove the main theorem, we need the follow lemma.
Lemma 3.1.3. Let W be a proper subspace of V such that $\operatorname{dim}_{R} W=\operatorname{dim}_{R} V$, $\mathcal{P}_{R}(V, W)$ a subsemigroup of $L_{R}(V, W)$ containing $O M_{R}(V, W)$ and \oplus a hyperoperation on $\mathcal{P}_{R}(V, W)$ such that $\left(\mathcal{P}_{R}(V, W), \oplus,\right)$ is a semihyperring. Then there are $\alpha, \beta \in O M_{R}(V, W)$ and $\lambda \in L_{R}(V, W)$ such that $\lambda \in \alpha \oplus \beta$ but $\lambda \notin O M_{R}(V, W) \cup$ $G_{R}(V, W) \cup A I_{R}(V, \underline{W})$. Moreover, $\lambda \notin A I_{R}(\underline{V}, W)$.

Proof. Let C and B be bases of W and V, respectively, such that $C \subseteq B$. Since W is a proper subspace of V, it follows that $B \backslash C \neq \varnothing$. Let $u \in B \backslash C$ be a fixed element. Moreover, let $D=B \backslash(C \cup\{u\})$ and D_{1}, D_{2} be disjoint subsets of D such that $D_{1} \cup D_{2}=D$. Since $\{B|=|C|$ and C is infinite, there are disjoint subsets C_{1} and C_{2} of C such that $C_{1} \cup C_{2}=C$ and $\left|C_{1}\right|=\left|C_{2}\right|=|C|=|B|$. Since $C_{1} \subseteq C_{1} \cup D_{1} \subseteq B$, we have $\left|C_{2}\right| \Rightarrow\left|C_{1}\right| \leqslant\left|C_{1} \cup D_{1}\right|$. Similarly, $\left|C_{1}\right|=\left|C_{2} \cup D_{2}\right|$. [Note that $B=C_{1} \cup D_{1} \cup C_{2} \cup D_{2} \cup\{u\}$]/As a result, there are bijections φ : $C_{1} \cup D_{1} \rightarrow C_{2}$ and $\gamma: C_{2} \cup D_{2} \rightarrow C_{1}$. Define $\alpha, \beta \in L_{R}(V, W)$ by

$$
\alpha=\left(\begin{array}{cc}
v & C_{2} \cup D_{2} \cup\{u\} \\
v \varphi & 0
\end{array}\right)_{v \in C_{1} \cup D_{1}} \quad\left(\begin{array}{cc}
C_{1} \cup D_{1} \cup\{u\} & v \\
0 & v \gamma
\end{array}\right)_{v \in C_{2} \cup D_{2}}
$$

Observe that α and β are well-defined because $C_{1} \cup D_{1} \cup C_{2} \cup D_{2} \cup\{u\}$ is a partition of B. Hence $\operatorname{Ker} \alpha=\left\langle C_{2} \cup D_{2} \cup\{u\}\right\rangle$ and $\operatorname{Ker} \beta=\left\langle C_{1} \cup D_{1} \cup\{u\}\right\rangle$. Thus $\alpha, \beta \in O M_{R}(V, W) \subseteq \mathcal{P}_{R}(V, W)$. Moreover, $\alpha^{2}=\beta^{2}=0$ and by the distributive law,

$$
\begin{equation*}
\alpha(\alpha \oplus \beta)=\alpha^{2} \oplus \alpha \beta=0 \oplus \alpha \beta=\{\alpha \beta\}=\alpha \beta \oplus 0=\alpha \beta \oplus \beta^{2}=(\alpha \oplus \beta) \beta \tag{1}
\end{equation*}
$$

Now, we would like to determine the linear transformation λ. Let $v \in B$. Then $v \in C_{1} \cup D_{1}$ or $v \in C_{2} \cup D_{2}$ orv val Clearly, v $\lambda \in W=\left\langle C_{f} \cup C_{2}\right\rangle$ and thes $a_{1} w_{1}+a_{2} w_{2}+. \cdots+a_{n} w_{n}+b_{1} w_{1}^{\prime}+b_{2} w_{2}^{\prime}+\cdots+b_{m} w_{m}^{\prime}$
for some distinct elements $w_{1}, w_{2}, \ldots, w_{n} \in C_{1}, w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{m}^{\prime} \in C_{2}$ and for some $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{m} \in R$. First, assume that $v \in C_{1} \cup D_{1}$. Then

$$
\begin{aligned}
0=0 \alpha & =(v \beta) \alpha \\
& =v(\beta \alpha) \\
& =v(\lambda \alpha) \\
& =(v \lambda) \alpha \\
& =\left(a_{1} w_{1}+a_{2} w_{2}\right. \\
& =\sum_{i=1}^{n} a_{i}\left(w_{i} \alpha\right)+\sum_{j=1}^{m} \psi_{j}\left(w_{j}^{\prime} \alpha\right) \\
& =\sum_{i=1}^{n} a_{i}\left(w_{i} \varphi\right)
\end{aligned}
$$

Since φ is one-to-one and w_{i} 's are all-distinct, $w_{i} \varphi^{\prime}$'s are all distinct elements in C_{2}. Hence $a_{i}=0$ for all i because of the tinearly independence of C_{2}. It follows that $v \lambda \in\left\langle C_{2}\right\rangle$. We see futhe that $v \nless \beta=v \alpha \beta=(v \alpha) \beta=(v \varphi) \beta$. Since $\left.\beta\right|_{C_{2}}$ is one-to-one, $\left.\beta\right|_{\left\langle C_{2}\right\rangle}$ is also one-to-one. Thtus $v \lambda=v \varphi$. This shows that $\left.\lambda\right|_{C_{1} \cup D_{1}}=\varphi$.

Similarly, if $v \in C_{2} \cup D_{2}$, then $x \epsilon_{2} \cup D_{2}=4$. Hence

Consequentely, $\lambda \notin O M_{R}(V, W) \cup G_{R}(V, W)$ because $\operatorname{dim}_{R} \operatorname{Ker} \lambda=0$ and $\left.\lambda\right|_{W}$ is not onto since $\left.\operatorname{Im} \bar{\lambda}=\left\langle\left(C_{1} \cup C_{2}\right)\right\rangle\{u\}\right\rangle$. Moreover, $\lambda \notin A I_{R}(V, \underline{W})$ because $F(\lambda)$ is the zero space so that $\operatorname{dim}_{R}(W / F(\lambda))=\operatorname{dim}_{R} W$ which is infinite. Furthermore,

We are ready to give the condition for our target semigroups containing $O M_{R}(V, W)$ to admit the structure of a semihyperning with zero.
 $O M_{R}(V, W) \cup S$ or $O M_{R}(V, W) \cup T$. Then $\mathcal{P}_{R}(V, W)$ does not admit the structure of a semihyperring with zero if and only if $\operatorname{dim}_{R} V=\operatorname{dim}_{R} W$.

Proof. First, we assume that $\operatorname{dim}_{R} W<\operatorname{dim}_{R} V$. By Proposition 3.1.2, $\mathcal{P}_{R}(V, W)$ admits the structure of a semihyperring with zero.

Conversely, assume that $\operatorname{dim}_{R} V=\operatorname{dim}_{R} W$. There are two cases to be considered.
Case 1. $W=V$. Then $\mathcal{P}_{R}(V, W)=\mathcal{P}_{R}(V, V)$. Then $\mathcal{P}_{R}(V, V)$ does not admit the structure of a semihyperring with zero from 11 .

Case 2. $W \neq V$. Suppose that there exists a hyperoperation \oplus such that $\left(\mathcal{P}_{R}(V, W)^{0}, \oplus, \cdot\right)$ is a semihyperring with zero where \cdot is the operation on $\mathcal{P}_{R}(V, W)$. Note that $\mathcal{P}_{R}(V, W)^{0}=\mathcal{P}_{R}(V W)$ because $0 \in O M_{R}(V, W)$ where 0 is the zero map. Lemma 3.1.3 provides that there are $\alpha, \beta \in O M_{R}(V, W) \subseteq \mathcal{P}_{R}(V, W)$ and $\lambda \in L_{R}(V, W)$ such that $\lambda \in \alpha \oplus \beta: \subseteq \mathcal{P}_{R}(V, W)$ but $\lambda \notin \mathcal{P}_{R}(V, W)$. This leads to a contradiction. Hence $\mathcal{P}_{R}(V, W)$ does not admit the structure of a semihyperring with zero.

The following corollary is the immediate result from Theorem 3.1.4.

Corollary 3.1.5. Let $\mathcal{P}_{R}(V, W)$ ebe one of $O M_{R}(V, W), O M_{R}(V, W) \cup H$, $O M_{R}(V, W) \cup S$ or $O M_{R}(V, W) \cup \mathcal{T}$ Then $P_{R}(V, W)$ does not admit a hyperring [ring] structure if and only if $\operatorname{dim}_{R} V=\operatorname{dim}_{R} W$.

3.2 Semigroups Containing $O E_{R}(V, W)$

Unlike semigroups containing $O M_{R}(V, W)$, we find thatour desired subsemigroups of $L_{R}(V, W)$ containing $O E_{R}(V, W)$ does not admit the structure of a semihyperringwith zer\%, Nonetheless, we need the following lemma to prove the main result.

that $\left(\mathcal{Q}_{R}(V, W), \oplus, \cdot\right)$ is a semihyperring. Then there are $\alpha, \beta \in O E_{R}(V, W)$ and $\lambda \in L_{R}(V, W)$ such that $\lambda \in \alpha \oplus \beta$ but $\lambda \notin O E_{R}(V, W) \cup G_{R}(V, W)$.

Proof. The proof is done by choosing α, β and λ defined in the proof of Lemma 3.1.3

Next theorem provides that the semigroups $O E_{R}(V, W)$ and $O E_{R}(V, W) \cup H$ cannot admit the structure of a semihypering with zero.

Theorem 3.2.2. Let $Q_{R}(V, W)$ be either $O E_{R}(V, W)$ or $O E_{R}(V, W) \cup H$. Then $\mathcal{Q}_{R}(V, W)$ does not admit the smucture of a semihyperring with zero.

Proof. We separate the proof into two cases.
Case 1. $W=V$. We observe that $\mathcal{Q}_{R}(V, W)=\mathcal{Q}_{R}(V, V)$. Then $\mathcal{Q}_{R}(V, V)$ does not admit the structure of a semihyperring with zero from [1].
Case 2. $W \neq V$. Suppose that there exists a hyperoperation \oplus such that $\left(\mathcal{Q}_{R}(V, W)^{0}, \oplus, \cdot\right)$ is a semihyperring with zero where is the operation on $\mathcal{Q}_{R}(V, W)$. Note that $\mathcal{Q}_{R}(V, W)^{0}=\mathcal{Q}_{R}(V, W)$ decause $0 \in O E_{R}(V, W)$ where 0 is the zero map. By Lemma 3.2.1, there are $\alpha, \beta, \in O E_{R}(V, W) \subseteq Q_{R}(V, W)$ and $\lambda \in L_{R}(V, W)$ such that $\lambda \in \propto \mathscr{\rho} \mathcal{Q}_{R}(V, W)$ but $\lambda \notin \mathcal{Q}_{R}(V, W)$. This is absurd. Hence $\mathcal{Q}(V, W)$ does not admit the structure of a semihyperring with zero.

The following corollary is the direct result from Theorem 3.2.2.

Corollary 3.2.3. Let $\mathcal{Q}_{R}(V, W)$ be either $O E_{R}(V, W)$ or $\theta E_{R}(V, W) \cup H$. Then $\mathcal{Q}_{R}(V, W)$ does not admit a hyperring[ring] structure.

Proof. We divide the argument into two cases.
Case 1. $W=V$. We note that $O E_{R}(V, W)=O E_{R}(V, V)$ and $A I_{R}(V, \underline{W})=$ $A I_{R}(V, V)$. Then $O E_{R}(V, V) \cup S$ does not admit the structure of a semihyperring with zero from [1].
Case 2. $W \neq V$. Let C and B be bases of $W /$ and V, respectively, such that $C \subseteq B$. To show that $O E_{R}(V, W) \cup S$ does not admit the structure of a semihyperring with zero, suppose that there exists a hyperoperation \oplus such that $\left(O E_{R}(V, W) \cup S, \oplus, \cdot\right)$ is a semihyperring with zero whore is the operation on $O E_{R}(V, W) \cup S$. Since $\operatorname{dim}_{R} W$ is infinite, there are distingt/subsets C_{1} and C_{2} of C such that $C_{1} \cup C_{2}=C$ and $\left|C_{1}\right|=\left|C_{2}\right|=|C|$. Then there is a bijection $\varphi: C_{1} \rightarrow C_{2}$. Let $D=B \backslash C$ which is not empty. Then $B=C_{1} \cup, C_{2} \cup D$ Define $\alpha, \beta \in L_{R}(V, W)$ by

$$
\alpha=\left(\begin{array}{cc}
v & C_{2} \cup D \tag{1}\\
v \varphi & 0
\end{array}\right){ }_{v \in C_{1}} \overline{\text { and }} \beta=\left(\begin{array}{cc}
C_{1} \cup D & v \\
0 & v \varphi^{-1}
\end{array}\right)_{v \in C_{2}} .
$$

Observe that α and β are vell-defimea because $C_{1} \cup C_{2} \cup D$ is a partition of B. Clearly, $\operatorname{dim}_{R}(W / \operatorname{Im} \alpha)=\left|C \backslash C_{2}\right|$ 亿 $|C|$ and $\operatorname{dim}_{R}(W / \operatorname{Im} \beta)=\left|C \backslash C_{1}\right|=\left|C_{2}\right|$. Hence $\alpha, \beta \in O E_{R}(V, W) \subseteq O E x(V, W) \cup S$, From (1), we see that $\alpha^{2}=\beta^{2}=0$. The distributive law provides that

$$
\begin{align*}
& \alpha(\alpha \oplus \beta)=\alpha^{2} \oplus \alpha \beta=0 \oplus \alpha \beta=\{\alpha \beta\}=\alpha \beta \oplus 0=\alpha \beta \oplus \beta^{2}=(\alpha \oplus \beta) \beta \tag{2}\\
& \beta(\alpha \oplus \beta)=\beta \propto \oplus \beta^{2}=\beta \alpha \oplus 0=\{\beta \alpha\}=0 \oplus \beta \alpha=\alpha^{2} \oplus \beta 9 \Rightarrow(\alpha \oplus \beta) \alpha
\end{align*}
$$

Since $\alpha \oplus \beta \neq \varnothing$, let $\lambda \in \alpha \oplus \beta$, we have $\alpha \lambda=\alpha \beta=\lambda \beta$ and $\beta \lambda=\beta \alpha=\lambda \alpha$.
Now, we determine the linear transformation λ. Let $v \in B=C_{1} \cup C_{2} \cup D$. Then $v \lambda \in W$ so
for some distinct elements $w_{1}, w_{2}, \ldots, w_{n} \in \mathcal{B}_{1}, w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{m}^{\prime} \in C_{2}^{\prime}$ and for some $a_{1}, a_{2} \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{m} \in R$. First, assume that $v \in C_{1} \cup D$. Then
$Q_{0}=p \beta \alpha=v \Omega \alpha=(v \lambda) \alpha=\sum_{i=1}^{n} q_{i}\left(w_{j} \alpha\right)+\sum_{j=1}^{Q} p_{j}\left(w_{i} \alpha\right)=\sum_{i=1}^{n} a_{i}\left(w_{j} \alpha\right)=\sum_{i=1}^{\bigcap} a_{i}\left(\omega_{j} \varphi\right)$.
Since φ is one-to-one and w_{i} are all distinct, $w_{i} \varphi$ are all distinct elements in C_{2}.
Hence $a_{i}=0$ for all i. We have shown that if $v \in C_{1} \cup D$, then $v \lambda \in\left\langle C_{2}\right\rangle$. Similarly,
if $v \in C_{2} \cup D$, then $v \lambda \in\left\langle C_{1}\right\rangle$. Thus, if $v \in D$, then $v \lambda \in\left\langle C_{1}\right\rangle \cap\left\langle C_{2}\right\rangle=\{0\}$ so that $v \lambda=\{0\}$. Furthermore,

$$
\begin{array}{ll}
v \lambda \beta=v \alpha \beta=(v \alpha) \beta=(v \varphi) \beta & \text { for all } v \in C_{1}, \\
v \lambda \alpha=v \beta \alpha=(v \beta) \alpha=(v \varphi-1) \alpha & \text { for all } v \in C_{2} .
\end{array}
$$

Since $\left.\beta\right|_{C_{2}}$ and $\left.\alpha\right|_{C_{1}}$ are one-to-one, $\left.\beta\right|_{\left\langle C_{2}\right\rangle}$ and $\alpha_{\left(C_{1}\right)}$ are one-to-one. Consequently,

$$
\left.v \varphi, w \varphi_{5}^{-1}, 0\right)_{v \in C_{1}, w \in C_{2}}
$$

Consequently, $\lambda \notin O E_{R}(V, W)$, because $\operatorname{dim}_{R}(W / \operatorname{In} \lambda)=|C \backslash C|=0$. Moreover, $\lambda \notin A I_{R}(V, \underline{W})$ because $F(\lambda)$ is the zero space so that $\operatorname{dim}_{R}(W / F(\lambda))=$ $\operatorname{dim}_{R} W$ which is infinite. Then $A \notin S, \therefore B / A$

So far, we have proved that $\lambda \in a \oplus \beta \subseteq O E_{R}(V, W) \cup S$ and $\lambda \notin O E_{R}(V, W) \cup S$ which is impossible.

The following corollary is the immediate resulit from Theorren 3.2.4.

Corollary 3.2.5. $O E_{R}(V, W) \cup S$ does not admit a hyperring/ring] structure.
The fact that $A I_{R}(\underline{\underline{K}}, W) \nsubseteq A I_{R}(V W)$ sields the following eoraliaries.
Corollary 3.2.6. $O E_{R}(V, W) \cup T$ does not admit the structure of a semihyperring จุฬาลาลกกณณมหาวิทยาล้ย

Corollary 3.2.7. $O E_{R}(V, W) \cup T$ does not admit a hyperring[ring] structure.

REFERENCES

[1] Chaopraknoi, S.: Linear Transformation Semigroups Admitting the Structure of a Semihyperring with Zero, Ph.D. Thesis, Department of Mathematics, Graduate School, Chulalongkorn University, 2003.
[2] Chaopraknoi, S. and Kemprasit, Y.: Some linear transformation semigroups which do not admit the structure of a semihyperring with zero, Proc. ICAA 2002, Chulalongkorn University, 149-158 (2002).
[3] Corsini, P.: Prolegomenc of Hypergroup Theory, Aviani Editore, Udine, 1993.
[4] Kemprasit, Y. and Punkla, Transformation semigroups admitting hyperring structure, Italian Journal of Pure and Appl. Math., 213-218 (2001).
[5] Punkla, Y.: Hyperring and Transformation Semigroups Admitting Hyperring Structure, Master Thesis, Department of Mathematics, Graduate School, Chulalongkorn University, 1991.
[6] Rompurk, N.: Generalized Tratisformation Semigroups Admitting Hyperring Structure, Master Thesis, Department of Mathematics, Graduate School, Chulalongkorn University, 20012
[7] Satyanarayana, M: On 0 simple semigroups admitting ring structure, Semigroup Forum 19, 307-313(1980).
[8] Satyanarayana, M.: On semproups admitting ring structure, Semigroup Forum 3, 43-50 (1971).
[9] Satyanarayana, M.: On semigroups admitting ring structure II. Semigroup Forum 6, 189-197 (1973).
[10] Siripitukdet, M. and Kemprasit, Y.: Linear transformation semigroups admitting ring structure, Pqoc. LqAAA/2002, Chulalongkorn University, 235-243
(2002). จุหาลงกรณ์มหาวิทยาลัย

VITA

Mr. Samkhan Hobuntud was born on July 3, 1983 in Bureerum, Thailand. He got a Bachelor of Science Degreein Mathematics in 2006 from Khonkaen University and then be furthered his study for the Master of Science in Mathematics at Chulalongkorn University.

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

