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FREQUENTLY USED NOTATION

Let V be a vector space over a division ring R, W a subspace of V and α a

linear transformation from V into W .

dimR U the dimension of a vector space U over R

Ker α the kernel of α

Im α the image of α

vα the image of v ∈ V under α

〈A〉 the subspace of V spaned by a subset A of V

LR(V ) the set of all linear transformations on V

LR(V,W ) the set of all linear transformations from V into W

F (α) = {v ∈ V | vα = v}
OMR(V,W ) = {α ∈ LR(V,W ) | dimR Ker α is infinite}
OER(V,W ) = {α ∈ LR(V,W ) | dimR(W/ Im α) is infinite}
GR(V,W ) = {α ∈ LR(V,W ) | α is an isomorphism}
AIR(V,W ) = {α ∈ LR(V,W ) | dimR(W/F (α)) is finite}
AIR(V ,W ) = {α ∈ LR(V,W ) | dimR(V/F (α)) is finite}
H a subsemigroup of GR(V,W )

S a subsemigroup of AIR(V,W )

T a subsemigroup of AIR(V ,W )

|B| the cardinality of a set B

α =

⎛
⎝B1 v

0 v

⎞
⎠

v∈B�B1

the linear transformation defined on a basis B of V

containing a set B1 such that

vα =

⎧⎪⎨
⎪⎩

0 if v ∈ B1,

v if v ∈ B � B1



CHAPTER I

INTRODUCTION

There are two sections in this chapter. In the first section, we shall give some

history of hyperstructure theory and some research in hyperstructure theory that

have been studied. Moreover, the main purpose of this thesis will be addressed.

In the other section, we shall give basic definitions and some examples of semi-

hypergroups, semihyperrings, hypergroups and Krasner hyperrings. Furthermore,

the meaning of a semigroup admitting some certain algebraic structures will be

provided. At the end of this section, we also gather some results which will be

used later on in the rest of this thesis.

1.1 Motivation

Hyperstructure theory was first known in 1934 by Marty. Later, it was inter-

ested by several investigator. Now, it is important topic which has conference on

Hyperstructures only (International Conference on algebraic Hyperstructures and

Its Applications). Basic definition of Marty is hypergroups as a generalization of

groups. However, we know that the definition of semihypergroups, hypergroups,

semihyperring and Krasner hyperrings are a generalization of semigroups, groups,

semiring and rings, respectively. Moreover, any Krasner hyperrings is semihyper-

ring.

The multiplicative structure of a semihyperring with zero, hyperring and ring

is a semigroup with zero. It is reasonable to study which semigroups joining zero

are isomorphic to the multiplicative structure of some semihyperrings, hyperrings

and rings. A semigroup (S, ·) with zero admits the structure of a semihyperring

with zero if and only if there exists a hyperoperation ◦ on S such that (S, ◦, ·) is a

semihyperring with zero. A semigroup with zero admitting a hyperring or a ring
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structure are defined analogously.

Semigroups admitting a ring structure have long been studied, e.g., [1], [2], [3]

and [10]. If we consider linear transformation semigroups, in particular, we found

that M. Siripitukdet and Y. Kemprasit [1] studied when these semigroups admit a

ring structure; Y. Kemprasit and Y. Punkla [4], Y. Punkla [5] and N. Rompurk [6]

investigated when these semigroups admit a hyperring structure; S. Chaopraknoi

and Y. Kemprasit [7] analyzed when these semigroups admit the structure of a

semihyperring with zero. The work on linear transformation semigroups inspired

us to investigate some specific linear transformation semigroups. The semigroups

we considered are adopted from S. Chaopraknoi’s Ph.D. Thesis [8]. She studied

linear transformations from a vector space into itself. Here, we generalize to linear

transformations from a vector space into its subspace.

The main purpose of this research is to study various types of linear transfor-

mations which form semigroups and to explore whether or when they admit the

structure of a semihyperring with zero; furthermore, to extend the result to the

case of admitting hyperring and ring structures.

This thesis is divided into three chapters. In Chapter I, we shall give precise

definitions, notations, basic results which will be used throughout in Chapter II

and Chapter III.

We show, in Chapter II, that the target subsets, which will be given later in

page 8, are indeed subsemigroups of LR(V,W ) containing zero.

In Chapter III, we investigate whether the aimed semigroups admit the struc-

ture of a semihyperring with zero. Also, the condition for admitting the structure

of a semihyperring with zero is provided.

1.2 Preliminaries

For a semigroup (S, ·), the semigroup (S0, ∗) is defined to be (S, ·) if S has a

zero and S contains more than one element; otherwise, let S0 be the semigroup S

with a zero 0 adjoined, that is, S0 = S ∪ {0} where 0 /∈ S and the operation ∗
is defined by 0 ∗ x = x ∗ 0 = 0 for all x ∈ S ∪ {0} and x ∗ y = x · y for all
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x, y ∈ S. Note that if a semigroup S has only one element, then S0 is a semi-

group (which is not a group) of two elements and (S0, ∗) ∼= (Z2, ·). Also, If G is a

group, then G0 = G ∪ {0}. For a set X, let P (X) denote the power set of X and

P ∗(X) = P (X) � {∅} and |X| be the cardinality of X.

A hyperoperation on a nonempty set H is a mapping from H ×H into P ∗(H).

A hypergroupoid is a system (H, ◦) consisting of a nonempty set H and a hyper-

operation ◦ on H.

Let (H, ◦) be a hypergroupoid. For nonempty subsets A and B of H and x ∈ H,

let A ◦ x = A ◦ {x}, x ◦ A = {x} ◦ A and

A ◦ B =
⋃

a∈A,b∈B

a ◦ b.

We call (H, ◦) commutative if and only if x◦y = y◦x for all x, y ∈ H. An element e

of H is called an identity of (H, ◦) if x ∈ (x◦e)∩(e◦x) for all x ∈ H. An element e

of H is called a scalar identity of (H, ◦) if (x ◦ e) ∩ (e ◦ x) = {x} for all x ∈ H.

Then H has at most one scalar identity.

A semihypergroup is a hypergroupoid (H, ◦) such that (x ◦ y) ◦ z = x ◦ (y ◦ z)

for all x, y, z ∈ H.

Example 1.2.1. Let H be a nonempty set. Define a hyperoperation ◦ on H by

x ◦ y = H for all x, y ∈ H.

Then (H, ◦) is a semihypergroup.

A tripple (A, +, ·) is called a semihyperring [semiring ] if

(i) (A, +) is a semihypergroup [semigroup],

(ii) (A, ·) is a semigroup and

(iii) + is distributive over ·, i.e., x ·(y+z) = x ·y+x ·z and (y+z) ·x = y ·x+z ·x
for all x, y, z ∈ A; this property is called the distributive law.

A semihyperring [semiring] (A, +, ·) is said to be additively commutative if

x+y = y+x for all x, y ∈ A. An element 0 of a semihyperring [semiring] (A, +, ·) is
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called a zero of (A, +, ·) if x+0 = 0+x = {x} [x+0 = 0+x = x] and x·0 = 0·x = 0

for all x ∈ A. A semihyperring [semiring] with zero is a semihyperring [semiring]

containing a zero element. By the definition, a semiring and a semiring with zero

is a semihyperring and a semihyperring with zero, respectively.

A hypergroup is a semihypergroup (H, ◦) such that H ◦ x = x ◦ H = H for all

x ∈ H. For x, y in a hypergroup (H, ◦), x is called an inverse of y if there exists

an identity e of (H, ◦) such that e ∈ (x ◦ y) ∩ (y ◦ x). A hypergroup H is called

regular if every element of H has an inverse in H. A regular hypergroup (H, ◦) is

said to be reversible if for x, y, z ∈ H, x ∈ y ◦ z implies z ∈ u ◦ x and y ∈ x ◦ v for

some inverse u of y and some inverse v of z.

A canonical hypergroup is a hypergroup (H, ◦) such that

(i) (H, ◦) is commutative,

(ii) (H, ◦) has a scalar identity,

(iii) every element of H has a unique inverse in H and

(iv) (H, ◦) is reversible.

We can see that the semihypergroup in Example 1.2.1 is a hypergroup, which

is called the total hypergroup, but it is not a canonical hypergroup because inverses

of each element in H may not be unique.

Example 1.2.2. Let H = {0, x} where x and 0 are distinct. Define a hyperoper-

ation · on H by

· 0 x

0 {0} {x}
x {x} H

Then (H, ·) is a canonical hypergroup.

A Krasner hyperring is a system (A, +, ·) where

(i) (A, +) is a canonical hypergroup,
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(ii) (A, ·) is a semigroup with zero 0 where 0 is the scalar identity of (A, +) and

(iii) + is distributive over ·.

Notice that every Krasner hyperring is a semihyperring with zero. Thus semi-

hyperrings with zero are a generalization of Krasner hyperrings. In this research,

by a hyperring we mean a Krasner hyperring.

Example 1.2.3. [7] Let G be a group. Define a hyperoperation + on G0 by

x + 0 = 0 + x = {x} for all x ∈ G0,

x + x = G0
� {x} for all x ∈ G,

x + y = {x, y} for all distinct elements x, y ∈ G.

Then (G0, +, ·) is a hyperring where · is the operation on G0. Note that the zero

of the hyperring (G0, +, ·) is 0 and the inverse in (G0, +) of x ∈ G is x itself. Also,

(G0, +, ·) is not a ring if |G| > 1.

Example 1.2.4. [7] Let A be a set whose cardinality is at least 3 and 0 an element

of A. Define a hyperoperation + and an operation · on A by

x + 0 = 0 + x = {x} for all x ∈ A,

x + y = A for all x, y ∈ A � {0} ,

x · y = 0 for all x, y ∈ A.

Then (A, +, ·) is clearly a semihyperring with zero 0 but not a hyperring.

A semigroup S is said to admit the structure of a semihyperring with zero if

there exists a hyperoperation + on S0 such that (S0, +, ·) is a semihyperring with

zero where · is the operation on S0. A semigroup S admitting a hyperring [ring]

structure is given analogously. Observe that if S admits a ring [hyperring] struc-

ture, then S admits the structure of a semihyperring with zero. Consequently, if S

does not admit the structure of a semihyperring with zero, then S does not admit

a ring [hyperring] structure.
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Let V be a vector space over a division ring R, W a subspace of V and LR(V,W )

the semigroup of all linear transformations from V into W under composition. In

particular, LR(V ) is the set of all linear transformations on V . The image of v ∈ V

under α ∈ LR(V,W ) is written by vα. For α ∈ LR(V,W ), let Ker α and Im α

denote the kernel and the image of α, respectively. For A ⊆ V , let 〈A〉 stand

for the subspace of V spanned by A. Moreover, dimR U denotes the dimension

of a vector space U over R. Since every linear transformation can be defined on

its basis, for convenience, we write a linear transformation by using a blanket

notation. For example,

α =

⎛
⎝B1 v

0 v

⎞
⎠

v∈B�B1

means that α is a linear transformation from a vector space having B as a basis

with B1 ⊆ B and

vα =

⎧⎪⎨
⎪⎩

0 if v ∈ B1,

v if v ∈ B � B1,

(if B = ∅, then vα = v for all v ∈ B) and

β =

⎛
⎝u w v

w 0 v

⎞
⎠

v∈B�{u, w}

means that β is a linear transformation from a vector space having B as a basis,

u and w are distinct elements of B and

vβ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w if v = u,

0 if v = w,

v if v ∈ B � {u, w} .

The following propositions are simple facts of vector spaces and linear transfor-

mations which are major tools of our work. The proofs are routine and elementary

so they will be omitted.



7

Proposition 1.2.5. Let B be a basis of a vector space V . If u and w are distinct

elements of B, then {u + w} ∪ (B � {w}) is also a basis of V .

Proposition 1.2.6. Let B be a basis of a vector space V , A ⊆ B and ϕ : B � A → V

a one-to-one function such that (B � A)ϕ is a linearly independent subset of V . If

α ∈ LR(V ) is defined by

α =

⎛
⎝A v

0 vϕ

⎞
⎠

v∈B�A

,

then Ker α = 〈A〉 and Im α = 〈(B � A)ϕ〉.

Proposition 1.2.7. Let B be a basis of a vector space V and A ⊆ B. Then

(i) {v + 〈A〉 | v ∈ B � A} is a basis of the quotient space V/ 〈A〉 and

(ii) dimR(V/ 〈A〉) = |B � A|.

Some of linear transformation subsemigroups of LR(V ) studied in [8] are the

followings:

OMR(V ) = {α ∈ LR(V ) | dimR Ker α is an infinite} ,

OER(V ) = {α ∈ LR(V ) | dimR(V/ Im α) is an infinite} ,

GR(V ) = {α ∈ LR(V ) | α is an isomorphism} ,

AIR(V ) = {α ∈ LR(V ) | dimR(V/F (α)) is finite} ,

where F (α) = {v ∈ V | vα = v} for all α ∈ LR(V ). It is proved that GR(V ) admits

a ring structure if and only if dimR V ≤ 1; if dimR V is infinite, then OMR(V ) and

OER(V ) do not admit the structure of a semihyperring with zero; and if dimR V

is finite, thenAIR(V ) admits a ring structure.

We are interested in LR(V,W ) instead of LR(V ) and some linear transforma-

tion subsemigroups of LR(V,W ) where W is a subspace of a vector space V over

a division ring R. The natural question arises: “does generalized linear transfor-

mation subsemigroups of LR(V,W ) (defined analogously to OMR(V ), OER(V ),

GR(V ) and AIR(V )) admit the structure of a semihyperring with zero?”.
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In this thesis, let V be a vector space over a division ring R and W a subspace

of V . Moreover, let

OMR(V,W ) = {α ∈ LR(V,W ) | dimR Ker α is infinite} ,

OER(V,W ) = {α ∈ LR(V,W ) | dimR(W/ Im α) is infinite} ,

GR(V,W ) = {α ∈ LR(V,W ) | α is an isomorphism} ,

AIR(V,W ) = {α ∈ LR(V,W ) | dimR(W/F (α)) is finite} ,

AIR(V ,W ) = {α ∈ LR(V,W ) | dimR(V/F (α)) is finite} ,

where F (α) = {v ∈ V | vα = v}, the set of all elements of V fixed by α, is a

subspace of V for all α ∈ LR(V,W ). Clearly, AIR(V ,W ) ⊆ AIR(V,W ). We

investigate the following target subsets of LR(V,W ):

OMR(V,W ), OMR(V,W ) ∪ H, OMR(V,W ) ∪ S, OMR(V,W ) ∪ T ,

OER(V,W ), OER(V,W ) ∪ H, OER(V,W ) ∪ S, OER(V,W ) ∪ T

where H, S and T are subsemigroups of GR(V,W ), AIR(V,W ) and AIR(V ,W ),

respectively.

Assume that dimR V is finite. Then

OMR(V,W ) = OER(V,W ) = ∅,

GR(V,W ) = GR(V ),

AIR(V,W ) = AIR(V ,W ) = LR(V,W ).

Thus OMR(V,W ) and OER(V,W ) are not semigroups, GR(V,W ) admits a ring

structure if and only if dimR V ≤ 1 and both AIR(V,W ) and AIR(V ,W ) admit the

structure of a semihyperring with zero because they admit a ring structure under

the usual addition. As a result, throughout the rest of this thesis, we consider only

when dimR V is infinite.

Assume that dimR W is finite. Then

OMR(V,W ) = AIR(V,W ) = LR(V,W ) and

OER(V,W ) = GR(V,W ) = AIR(V ,W ) = ∅.
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Hence OMR(V,W ) and AIR(V,W ) admit the structure of a semihyperring with

zero but OER(V,W ), GR(V,W ) and AIR(V ,W ) are not semigroups. Thus we

consider only when dimR W is infinite for the remaining of this thesis.

The simple question “are OMR(V,W ), OER(V,W ), GR(V,W ), AIR(V,W ) and

AIR(V ,W ) subsemigroups of LR(V,W )?” need to be taken into account. It is

obvious that GR(V,W ) is a subsemigroup of LR(V,W ). Moreover, OMR(V,W )

and OER(V,W ) are subsemigroups of LR(V,W ) as follows.

Proposition 1.2.8. OMR(V,W ) and OER(V,W ) are subsemigroups of LR(V,W )

containing zero.

Proof. Note that Ker α ⊆ Ker αβ and Im αβ ⊆ Im β for each α, β ∈ LR(V,W ).

Then OMR(V,W ) and OER(V,W ) are both subsemigroups of LR(V,W ). Since

dimR V and dimR W are infinite, the zero map belongs to both OMR(V,W ) and

OER(V,W ). In fact, the zero map is, actually, the zero of the semigroups OMR(V,W )

and OER(V,W ).

Finally, we present that both AIR(V,W ) and AIR(V ,W ) are subsemigroups

of LR(V,W ).

Proposition 1.2.9. AIR(V,W ) and AIR(V ,W ) are subsemigroups of LR(V,W )

not containing zero.

Proof. We show only that AIR(V,W ) is a subsemigroup of LR(V,W ) not containing

zero because the proof for the case AIR(V ,W ) is obtained similarly.

Let α, β ∈ AIR(V,W ). Then dimR(W/F (α)) and dimR(W/F (β)) are finite.

We claim that dimR(W/F (αβ)) is finite. Since F (α) ∩ F (β) ⊆ F (αβ), it suffices

to show only that dimR

(
W

/(
F (α) ∩ F (β)

))
is finite.

Let B1 be a basis of F (α)∩F (β), B2 ⊆ F (α)�B1 and B3 ⊆ F (β)�B1 be such

that B1 ∪B2 and B1 ∪B3 are bases of F (α) and F (β), respectively. We will show

that B1 ∪ B2 ∪ B3 is linearly independent over R. Let u1, u2, . . . , uk ∈ B1 ∪ B2,

v1, v2, . . . , vl ∈ B3 be all distinct and a1, a2, . . . , ak, b1, b2, . . . , bl ∈ R be such that

k∑
i=1

aiui +
l∑

j=1

bjvj = 0.
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Then
k∑

i=1

aiui = −
l∑

j=1

bjvj ∈ F (α) ∩ F (β) = 〈B1〉. Hence

l∑
j=1

bjvj ∈ 〈B1〉 ∩ 〈B3〉 = {0}.

Since B3 is linearly independent, bj = 0 for all j, so
k∑

i=1

aiui = 0. This implies that

ai = 0 for all i because of the linearly independence of B1∪B2. Hence B1∪B2∪B3 is

linearly independent over R. Let B4 ⊆ W � (B1 ∪ B2 ∪ B3) be such that B1∪B2∪
B3∪B4 is a basis of V . Hence {v + F (α) | v ∈ B3 ∪ B4}, {v + F (β) | v ∈ B2 ∪ B4}
and

{
v +

(
F (α) ∩ F (β)

) | v ∈ B2 ∪ B3 ∪ B4

}
are bases of W/F (α), W/F (β) and

W/
(
F (α) ∩ F (β)

)
, respectively. This implies that dimR

(
W/

(
F (α) ∩ F (β)

))
is

finite as desired. Therefore, αβ ∈ AIR(V,W ).

Finally, we end this chapter by giving an example of a subsemigroup of LR(V,W )

which does not admit the structure of a semihyperring with zero as follows:

Example 1.2.10. Let B and C be bases of V and W , respectively, such that

C ⊆ B. Also, let v1 and v2 be fixed distinct elements in C. Define linear transfor-

mations α and β in LR(V,W ) by

α =

⎛
⎝v1 B � {v1}

v2 0

⎞
⎠ and β =

⎛
⎝v2 B � {v2}

v1 0

⎞
⎠ .

Clearly, α2 = β2 = 0 and

αβ =

⎛
⎝v1 B � {v1}

v1 0

⎞
⎠ and βα =

⎛
⎝v2 B � {v2}

v2 0

⎞
⎠ .

Let S be the semigroup generated by α and β. It is obvious that

S = {0, α, β, αβ, βα} .

Next, suppose that there exists a hyperoperation ⊕ such that (S,⊕, ·) is a semi-

hyperring with zero where · is the operation on S. By the distributive law,

(α ⊕ β)β = αβ ⊕ β2 = αβ ⊕ 0 = {αβ}
(α ⊕ β)α = α2 ⊕ βα = 0 ⊕ βα = {βα} .
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Let λ ∈ α⊕ β. Then we have λβ = αβ and λα = βα. Consider v1λβ = v1αβ = v1

so v1λ = v2 +
n∑

i=1

aiwi for some wi ∈ C and for some ai ∈ R. Since λ ∈ S, we

obtain that λ = α only. But v2λα = v2βα = v2 so v2λ = v1 +
n∑

i=1

aiwi for some

wi ∈ C and for some ai ∈ R. This shows that λ = β which is impossible.



CHAPTER II

CERTAIN SUBSEMIGROUPS OF LR(V, W )

We know from Chapter I that OMR(V,W ), OER(V,W ), GR(V,W ), AIR(V,W )

and AIR(V ,W ) are subsemigroups of LR(V,W ). Let U be a subsemigroup of

LR(V,W ). Naturally, ones may ask whether OMR(V,W ) ∪ U and OER(V,W ) ∪ U

are subsemigroups of LR(V,W ). The following examples show that this is not

generally true.

Example Let dimR W = dimR V . Then there is a subsemigroup U of LR(V,W )

such that OMR(V,W ) ∪ U is not a semigroup.

To see this, let B and C be bases of V and W , respectively, such that C ⊆ B.

Since C is infinite, there are disjoint subsets C1 and C2 of C such that C1∪C2 = C

and |C1| = |C2| = |C|. Hence |B| = |C1| and then there are bijections ϕ : B → C1

and φ : C1 → C2. Define α, γ ∈ LR(V,W ) by

α =

⎛
⎝ v

vϕ

⎞
⎠

v∈B

and γ =

⎛
⎝ v B � C1

vφ 0

⎞
⎠

v∈C1

.

It is obvious that α is a bijection and Im α = 〈C1〉. Let U be the subsemigroup

of LR(V,W ) generated by α. Clearly, Im β = 〈C1〉 for all β ∈ U . Moreover,

γ ∈ OMR(V,W ) because Ker γ = 〈B � C1〉. Consider αγ =
(

v
vϕφ

)
v∈B

. Hence

Ker αγ = {0} and Im αγ = 〈C2〉. Thus αγ /∈ OMR(V,W ) and αγ /∈ U . Therefore,

OMR(V,W ) ∪ U is not a semigroup.

Example Let dimR W = dimR V . Then there is a subsemigroup U of LR(V,W )

such that OER(V,W ) ∪ U is not a semigroup.

To show this, let B and C be bases of V and W , respectively, such that C ⊆ B.

Since C is infinite, there are disjoint subsets C1 and C2 of C such that C1∪C2 = C
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and |C1| = |C2| = |C|. Hence there are bijections ϕ : C2 → C and φ : C1 → C2.

Define α, γ ∈ LR(V,W ) by

α =

⎛
⎝ v B � C2

vϕ 0

⎞
⎠

v∈C2

and γ =

⎛
⎝ v B � C1

vφ 0

⎞
⎠

v∈C1

.

Let U be the subsemigroup of LR(V,W ) generated by α. It is obvious that do-

main of each element in U is 〈C2〉. It is clear that γ ∈ OER(V,W ) because

dimR

(
W/ Im γ

)
= |C1|. Consider

γα =

⎛
⎝ v B � C1

vφϕ 0

⎞
⎠

v∈C1

.

Hence Im γα = W and domain of γα is 〈C1〉. Thus γα /∈ OER(V,W ) and γα /∈ U .

Therefore OER(V,W ) ∪ U is not a semigroup.

Proposition 2.1.7 and Proposition 2.2.7 tell that there are subsemigroups U1

and U2 of LR(V,W ) such that OMR(V,W )∪U1 and OER(V,W )∪U2 are semigroups,

respectively. In view of those, the main purpose of this chapter is to show that the

following subsets of LR(V,W ) are subsemigroups of LR(V,W ):

(1) subsets containing OMR(V,W ), namely, OMR(V,W )∪H, OMR(V,W )∪S

and OMR(V,W ) ∪ T ;

(2) subsets containing OER(V,W ), namely, OER(V,W ) ∪ H, OER(V,W ) ∪ S

and OER(V,W ) ∪ T ,

where H, S and T are subsemigroups of GR(V,W ), AIR(V,W ) and AIR(V ,W ),

respectively.

2.1 Certain Semigroups Containing OMR(V, W )

We illustrate first that OMR(V,W ) is, in fact, a right ideal of LR(V,W ). Then

OMR(V,W ) ∪ H is shown to be a semigroup.

Lemma 2.1.1. OMR(V,W ) is a right ideal of LR(V,W ).

Proof. Proposition 1.2.8 provides that OMR(V,W ) is a subsemigroup of LR(V,W ).

To show that OMR(V,W ) is a right ideal of LR(V,W ), let α ∈ OMR(V,W ) and
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β ∈ LR(V,W ). Then dimR Ker α is infinite. Note also that Ker α ⊆ Ker αβ. This

leads to the conclusion that dimR Ker αβ is infinite. Thus αβ ∈ OMR(V,W ).

Next example shows that OMR(V,W ) is not a left ideal of LR(V,W ).

Example 2.1.2. Let dimR W = dimR V , B and C be bases of V and W , respec-

tively, such that C ⊆ B. Since C is infinite, there are disjoint subsets C1 and C2

of C such that |C1| = |C2| = |C| = |B|. Thus there is a bijection φ : B → C1.

Define α, β ∈ LR(V,W ) by

α =

⎛
⎝v B � C1

v 0

⎞
⎠

v∈C1

and β = φ.

Clearly, α ∈ OMR(V,W ) but β /∈ OMR(V,W ). It is obvious that βα = β. This

shows that OMR(V,W ) is not a left ideal of LR(V,W ).

We have shown that OMR(V,W ) is only a right ideal but not a left ideal of

LR(V,W ). To present that OMR(V,W )∪H is a semigroup, we prove the following

lemma.

Lemma 2.1.3. GR(V,W )OMR(V,W ) ⊆ OMR(V,W ).

Proof. Let α ∈ GR(V,W ) and β ∈ OMR(V,W ). We claim that (Ker αβ)α = Ker β.

Clearly, vαβ = 0 for all v ∈ Ker αβ whence (Ker αβ)α ⊆ Ker β. Let v ∈ Ker β.

Note that α−1 exists since α ∈ GR(V,W ). Then 0 = vβ = (vα−1)αβ so that

vα−1 ∈ Ker αβ. Thus

v = (vα−1)α ∈ (Ker αβ)α.

This shows that Ker β ⊆ (Ker αβ)α. Therefore (Ker αβ)α = Ker β as claimed.

Since α is an isomorphism and dimR Ker β is infinite, dimR Ker αβ is also infinite.

Hence αβ ∈ OMR(V,W ).

Proposition 2.1.4. OMR(V,W ) ∪ H is a subsemigroup of LR(V,W ).

Proof. The result follows from Lemma 2.1.1, Lemma 2.1.3 and the fact that OMR(V,W )

and H are subsemigroups of LR(V,W ).
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Next, in the same manner, we show that OMR(V,W )∪S is a semigroup by prov-

ing that AIR(V,W )OMR(V,W ) ⊆ OMR(V,W ). However, the following lemma is

needed.

Lemma 2.1.5. Let α ∈ AIR(V,W ), B, C and E be bases of V , W and Ker α,

respectively, such that B contains C and E. If B � C is infinite and E is finite,

then there are w ∈ B � (C ∪ E) and v ∈ V � 〈E ∪ {w}〉 such that wα = vα.

Proof. Assume that B � C is infinite and E is finite. Let E = {v′
1, v′

2, . . . , v′
k}.

Clearly, B � (C ∪ E) is infinite. Suppose that

for every w ∈ B � (C ∪ E) for every v ∈ V � 〈E ∪ {w}〉 , wα �= vα. (1)

Hence

w1α �= w2α for every distinct w1, w2 ∈ B � (C ∪ E). (2)

We seperate the proof into five steps.

Step 1.
{
wα |w ∈ B � (C ∪ E)

}
is an infinite linearly independent subset of W .

Step 2. For w ∈ 〈B � (C ∪ E)〉, if wα ∈ F (α), then w = 0.

Step 3. For every w ∈ B � (C ∪ E), wα /∈ F (α).

Step 4.
{
wα + F (α) |w ∈ B � (C ∪ E)

}
is a linearly independent subset

of W/F (α).

Step 5. For all v, w ∈ B � (C ∪ E), if vα �= wα, then vα + F (α) �= wα + F (α).

We conclude from these steps that {wα + F (α) |w ∈ B � (C ∪ E)} is an in-

finite linearly independent subset of W/F (α). Hence dimR

(
W/F (α)

)
is infinite

contradicting the fact that α ∈ AIR(V,W ). Therefore, the result is obtained. It

remain to prove Step 1-Step 5.

Step 1. Since B � (C ∪ E) is infinite and (2), we obtain that the set

{wα |w ∈ B � (C ∪ E)} is infinite. Next, we show that {wα |w ∈ B � (C ∪ E)}
is linearly independent. Let w1, w2, . . . , wn ∈ B � (C ∪ E) be all distinct and

a1, a2, . . . , an ∈ R be such that.

a1w1α + a2w2α + · · · + anwnα = 0.
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Then

(a1w1 + a2w2 + · · · + anwn)α = 0

so that a1w1 + a2w2 + · · · + anwn ∈ Ker α. Thus

a1w1 + a2w2 + · · · + anwn ∈ 〈E〉 ∩ 〈B � (C ∪ E)〉 = {0}.

As a result, a1w1 + a2w2 + · · ·+ anwn = 0 and then a1 = a2 = · · · = an = 0. Hence

{wα |w ∈ B � (C ∪ E)} is a linearly independent set as claimed.

Step 2. Let w ∈ 〈B � (C ∪ E)〉. Assume that wα ∈ F (α), i.e., (wα)α = wα.

Then wα−w ∈ Ker α = 〈E〉. Thus wα−w =
n∑

i=1

aiv
′
i. Hence w = wα−

n∑
i=1

aiv
′
i ∈

〈C ∪ E〉. Therefore w ∈ 〈B � (C ∪ E)〉 ∩ 〈C ∪ E〉. Thus w = 0.

Step 3. Let w ∈ B � (C ∪ E). Suppose that wα ∈ F (α). By Step 2, w = 0

leading to a contradiction. Hence wα /∈ F (α) for all w ∈ B � (C ∪ E).

Step 4. Let w1, w2, . . . , wn ∈ B � (C ∪E) be distinct and a1, a2, . . . , an ∈ R be

such that
n∑

i=1

ai

(
wiα + F (α)

)
= F (α).

Hence
n∑

i=1

aiwiα ∈ F (α). Thus (
n∑

i=1

aiwiα)α =
n∑

i=1

aiwiα so
( n∑

i=1

aiwiα−
n∑

i=1

aiwi

)
α =

0, i.e.,
n∑

i=1

aiwiα −
n∑

i=1

aiwi ∈ Ker α. It follows that

n∑
i=1

aiwiα −
n∑

i=1

aiwi =
k∑

j=1

bjv
′
j.

Thus
n∑

i=1

aiwi =
n∑

i=1

aiwiα −
k∑

j=1

bjv
′
j ∈ 〈C ∪ E〉.

This implies that
n∑

i=1

aiwi ∈
〈
B � (C ∪ E)

〉 ∩ 〈C ∪ E〉 = {0} so a1 = a2 = · · · =

an = 0. Hence
{
wα + F (α) |w ∈ B � (C ∪E)

}
is a linearly independent subset of

W/F (α) as desired.

Step 5. Let v, w ∈ B�(C∪E) be such that vα �= wα. Suppose that vα+F (α) =
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wα + F (α). We obtain that vα − wα ∈ F (α). Hence (vα − wα)α = vα − wα.

Thus (vα − wα)α + wα = vα. Therefore

(vα − wα + w)α = vα. (3)

If vα−wα+w ∈ 〈E ∪ {v}〉, then vα−wα+w = bv+

k∑
i=1

aiv
′
i where b, a1, a2, . . . , ak ∈

R. It is clear that bv − w = vα − wα −
k∑

i=1

aiv
′
i ∈ 〈C ∪ E〉. Therefore

bv − w ∈ 〈B � (C ∪ E)〉 ∩ 〈C ∪ E〉 = {0}

so that bv = w which is impossible. Hence vα − wα + w /∈ 〈E ∪ {v}〉. From (1),

(vα − wα + w)α �= vα contradicting (3).

Lemma 2.1.6. AIR(V,W )OMR(V,W ) ⊆ OMR(V,W ).

Proof. Let α ∈ AIR(V,W ) and β ∈ OMR(V,W ). Let B1 be a basis of F (α)∩Ker β,

B2 ⊆ Ker β � B1 such that B1 ∪ B2 a basis of Ker β ∩ W, B3 ⊆ Ker β � B1 ∪ B2

such that B1 ∪ B2 ∪ B3 a basis of Ker β. Then B1 ∪ B2 ∪ B3 is infinite because

β ∈ OMR(V,W ). Next, we claim that {v + F (α) | v ∈ B2} is a finite linearly inde-

pendent subset of quotient space W/F (α). Let v1, v2, . . . , vn be distinct elements

of B2 and let a1, a2, . . . , an ∈ R be such that
n∑

i=1

ai

(
vi + F (α)

)
= F (α). Then

n∑
i=1

aivi ∈ F (α) ∩ Ker β. But B1 is a basis of F (α) ∩ Ker β and B1 ∪ B2 is lin-

early independent over R, so ai = 0 for all i. This shows that {v + F (α)|v ∈ B2}
is a linearly independent subset of the quotient space W/F (α) and u + F (α) �=
w + F (α) for all distinct u,w ∈ B2. Since dimR

(
W/F (α)

)
< ∞, we obtain that

{v + F (α)|v ∈ B2} is finite. But | {v + F (α)|v ∈ B2} | = |B2|, thus B2 is finite. Let

B4 ⊆ W �B1∪B2 be such that B1∪B2∪B4 is a basis of W and let B1∪B2∪B4 = C.

Moreover, let B5 ⊆ V � C ∪ B3 be such that C ∪ B3 ∪ B5 is a basis of V and let

B = C ∪ B3 ∪ B5.

Case 1. B � C is finite. Since B3 ⊆ B � C, we have |B3| ≤ |B � C|. Thus B3 is

finite. Hence B2∪B3 is finite. This implies that B1 is infinite because B1∪B2∪B3
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is infinite. Since B1 ⊆ F (α)∩Ker β, we have B1αβ = B1β = {0} so B1 ⊆ Ker αβ.

Hence dimR Ker αβ is infinite. Thus αβ ∈ OMR(V,W ).

Case 2. B � C is infinite. We claim that dimR Ker α is infinite. Suppose that

dimR Ker α is finite. Let E be a basis of Ker α. Lemma 2.1.5 provides that there

are w ∈ B � (C ∪ E) and

v ∈ V �〈E ∪ {w}〉 such that wα = vα. Since v ∈ V = 〈B〉, there are v1, v2, . . . , vm ∈
B and b1, b2, . . . , bm ∈ R such that v = b1v1 + b2v2 + · · ·+ bmvm. Assume, without

loss of generality, that

v = b1v1 + b2v2 + · · · + blvl + bl+1vl+1 + · · · + bmvm

where vl+1, vl+2, . . . , vm ∈ E. We see that

wα = vα

= (b1v1 + b2v2 + · · · + blvl + bl+1vl+1 + · · · + bmvm)α

= (b1v1 + b2v2 + · · · + blvl)α

Hence (w − b1v1 − b2v2 − · · · − blvl)α = 0 so w − b1v1 − b2v2 − · · · − blvl ∈ Ker α.

Thus

w − b1v1 − b2v2 − · · · − blvl = c1v
′
1 + c2v

′
2 + · · · + ckv

′
k.

Therefore

w = b1v1 + b2v2 + · · · + blvl + c1v
′
1 + c2v

′
2 + · · · + ckv

′
k.

Subcase 2.1 w �= vj for all j ∈ {1, 2, . . . , l}. Hence w is written in a linear

combination of B � {w} which is a contradiction.

Subcase 2.2 w = vj for some j ∈ {1, 2, . . . , l}. Assume, without loss of generality,

that w = v1. Hence

w = b1w + b2v2 + · · · + blvl + c1v
′
1 + c2v

′
2 + · · · + ckv

′
k.

Thus 0 = (b1 − 1)w + b2v2 + · · ·+ blvl + c1v
′
1 + c2v

′
2 + · · ·+ ckv

′
k. This implies that

b1 − 1 = b2 = · · · = bl = c1 = · · · = ck = 0,
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so b1 = 1 and

v = b1v1 + b2v2 + · · · + blvl + bl+1vl+1 + · · · + bmvm

= v1 + bl+1vl+1 + · · · + bmvm

= w + bl+1vl+1 + · · · + bmvm

∈ 〈E ∪ {w}〉 .

This is a contradiction.

Hence dimR Ker α is infinite. Consequently, dimR Ker αβ is infinite because of

Ker α ⊆ Ker αβ. Therefore αβ ∈ OMR(V,W ).

Proposition 2.1.7. OMR(V,W ) ∪ S is a subsemigroup of LR(V,W ).

Proof. The result follows from applying Lemma 2.1.1 and Lemma 2.1.6 and the

fact that OMR(V,W ) and S are subsemigroups of LR(V,W ).

Proposition 2.1.8. OMR(V,W ) ∪ T is a subsemigroup of LR(V,W ).

Proof. The result follows from the fact that AIR(V ,W ) ⊆ AIR(V,W ) and Propo-

sition 2.1.7.

2.2 Certain Semigroups Containing OER(V, W )

Likewise, we notice that OER(V,W ) is a left ideal but not a right ideal of

LR(V,W ).

Lemma 2.2.1. OER(V,W ) is a left ideal of LR(V,W ).

Proof. Proposition 1.2.8 show that OER(V,W ) is a subsemigroup of LR(V,W ).

Next, let α ∈ LR(V,W ) and β ∈ OER(V,W ). Then dimR(W/ Im αβ) is infinite

because

dimR(W/ Im β) is infinite and Im αβ ⊆ Im β. Thus αβ ∈ OER(V,W ).

The following example assures that OER(V,W ) is not a right ideal of LR(V,W ).
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Example 2.2.2. Let B and C be bases of vector space V and W , respectively,

such that C ⊆ B. Since C is infinite set. there are subsets C1 and C2 of C such

that |C1| = |C2| = |C| and C1 ∩C2 = ∅. There is a bijection φ : C1 → C. Defined

α =

⎛
⎝v B � C1

v 0

⎞
⎠

v∈C1

and β =

⎛
⎝ v B � C1

vφ 0

⎞
⎠

v∈C1

.

Clearly that α ∈ OER(V,W ) because dimR

(
W/ Im α

)
= |C2| and β ∈ LR(V,W )

but β /∈ OER(V,W ). It is obvious that αβ = β. This show that OMR(V,W ) is

not a left ideal of LR(V,W ).

Lemma 2.2.3. OER(V,W )GR(V,W ) ⊆ OER(V,W ).

Proof. Let α ∈ OER(V,W ) and β ∈ GR(V,W ). We claim that W/ Im α ∼=
W/ Im αβ. Thus dimR(W/ Im αβ) = dimR(W/ Im α) which is infinite. Hence

αβ ∈ OER(V,W ). Therefore, it remains to show that W/ Im α ∼= W/ Im αβ.

Define ϕ : W/ Im α → W/ Im αβ by

(w + Im α)ϕ = wβ + Im αβ for every w ∈ W.

Then ϕ is well-defined. Moreover, ϕ is a bijection. Since β is a homomorphism, ϕ

is an monomorphism. Thus β is an isomorphism, i.e.,

W/ Im α ∼= W/ Im αβ.

Next, we obtain that OER(V,W ) ∪ H is a semigroup.

Proposition 2.2.4. OER(V,W ) ∪ H is a subsemigroup of LR(V,W ).

Proof. The result follows from Lemma 2.2.1, Lemma 2.2.3 and the fact that OER(V,W )

and H are subsemigroups of LR(V,W )

Similar to OER(V,W )∪S, we show that OER(V,W )AIR(V,W ) ⊆ OER(V,W )

and then conclude that OER(V,W )∪S is a semigroup. Nevertheless, we first prove

the following lemma.
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Lemma 2.2.5. For every α ∈ AIR(V,W ), dimR Ker α|W is finite.

Proof. Let α ∈ AIR(V,W ) and B be a basis of Ker α|W . We claim that

{v + F (α) | v ∈ B} is linearly independent over R. Let v1, v2, . . . , vn ∈ B be all

distinct and a1, a2, . . . , an ∈ R be such that

n∑
i=1

ai

(
vi + F (α)

)
= F (α).

Then
n∑

i=1

aivi = F (α) which implies that (
n∑

i=1

aivi)α =
n∑

i=1

aivi. Since v1, v2, . . . , vn ∈

Ker α|W , we have
n∑

i=1

aivi = 0. Then ai = 0 for all i because v1, v2, . . . , vn are

linearly independent over R. This proves that {v + F (α)|v ∈ B} is a linearly in-

dependent subset of W/F (α) as claimed. Moreover v + F (α) �= w + F (α) for

all distinct v, w ∈ B. Since dimR

(
W/F (α)

)
is finite, {v + F (α)|v ∈ B} is finite.

Therefore dimR Ker α|W | = |B| = | {v + F (α)|v ∈ B} | is finite.

Lemma 2.2.6. OER(V,W )AIR(V,W ) ⊆ OER(V,W ).

Proof. Let α ∈ OER(V,W ) and β ∈ AIR(V,W ). Observe that

ϕ : W/ Im α → Im β|W
/
Im αβ defined by

(w + Im α)ϕ = wβ + Im αβ for all w ∈ W

is an epimorphism. Hence

(W/ Im α)
/
Ker ϕ ∼= Im β|W

/
Im αβ. (1)

Then

dimR(W/ Im α) = dimR

(
(W/ Im α)

/
Ker ϕ

)
+ dimR Ker ϕ.

We claim that dimR Ker α is finite. Thus dimR

(
(W/ Im α)

/
Ker ϕ

)
must be infinite

since dimR(W/ Im α) is infinite but dimR Ker α is finite. Together this fact and (1)

we ob tain that dimR Im β|W
/
Im αβ is infinite. We see that

dimR(Im β|W / Im αβ) ≤ dimR(Im β/ Im αβ) ≤ dimR(W/ Im αβ).
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Consequently, dimR(W/ Im α) is infinite so α ∈ OER(V,W ) To complete the

proof, it remains showing that dimR Ker ϕ is finite. Let C ⊆ W be such that

{v + Im α|v ∈ C} is a basis of Ker ϕ and v + Im α �= w + Im α for all distinct

v, w ∈ C. We know that vβ + Im αβ = (v + Im α)ϕ = Im αβ for all v ∈ C. Thus

vβ ∈ Im αβ = (Im α)β for all v ∈ C. Hence for each v ∈ C, there exists an element

wv ∈ Im α such that vβ = wvβ. Fix such wv for each v ∈ C. Consequently,

{v − wv|v ∈ C} ⊆ Ker β|W .

If distinct elements v1, v2, . . . , vn ∈ B and a1, a2, . . . , an ∈ R are such that
n∑

i=1

ai(vi − wvi
) = 0, then

n∑
i=1

aivi =
n∑

i=1

aiwvi
∈ Im α

and hence
n∑

i=1

ai(vi + Im α) = Im α. Thus ai = 0 for all i. This show that

{v − wv|v ∈ C} is linearly independent over R and v−wv �= u−wu for all distinct

u, v ∈ C because v + Im α �= w + Im α all distinct u, v ∈ C. It follows that

|C| = | {v + Im α|v ∈ C} | = | {v − wv|v ∈ C} | ≤ dimR Ker β|W .

Since dimR Ker β|W is finite from Lemma 2.2.5, we conclude that C is finite. There-

fore dimR Ker ϕ is finite as disired.

Proposition 2.2.7. OER(V,W ) ∪ S is a subsemigroup of LR(V,W ).

Proof. Apply Lemma 2.2.1, Lemma 2.2.6 and the fact that OER(V,W ) and S are

subsemigroups of LR(V,W ) to obtain the result.

Proposition 2.2.8. OER(V,W ) ∪ T is a subsemigroup of LR(V,W ).

Proof. The result follows immediately from the fact that AIR(V ,W ) ⊆ AIR(V,W )

and Proposition 2.2.7.



CHAPTER III

ADMITTING THE STRUCTURE OF A

SEMIHYPERRING WITH ZERO OF SEMIGROUPS

Chapter I and Chapter II illustraste that

OMR(V,W ), OMR(V,W ) ∪ H, OMR(V,W ) ∪ S, OMR(V,W ) ∪ T ,

OER(V,W ), OER(V,W ) ∪ H, OER(V,W ) ∪ S, OER(V,W ) ∪ T

are subsemigroups of LR(V,W ) where H, S and T are subsemigroups of GR(V,W ),

AIR(V,W ) and AIR(V ,W ), respectively. In this chapter, we investigate whether

or when each of them admits the structure of a semihyperring with zero.

3.1 Semigroups Containing OMR(V, W )

It can be shown that OMR(V,W ) and LR(V,W ) are identical if W is a proper

subspace of V with dimR W < dimR V .

Lemma 3.1.1. If dimR W < dimR V , then OMR(V,W ) = LR(V,W ).

Proof. Assume that dimR W < dimR V . Note that OMR(V,W ) ⊆ LR(V,W ). It

suffices to show that LR(V,W ) ⊆ OMR(V,W ). Let α ∈ LR(V,W ). Suppose

that α /∈ OMR(V,W ). Then dimR Ker α is finite. Since dimR V = dimR Ker α +

dimR Im α and dimR V is infinite, we obtain that dimR Im α is infinite and

dimR V = dimR Ker α + dimR Im α = dimR Im α ≤ dimR W

which absurd. Hence α ∈ OMR(V,W ).

Therefore, LR(V,W ) = OMR(V,W ).

Proposition 3.1.2. If dimR W < dimR V , then OMR(V,W ), OMR(V,W ) ∪ H,

OMR(V,W ) ∪ S and OMR(V,W ) ∪ T admit the structure of semihyperring with

zero.
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Proof. The result is obtained immediately from Lemma 3.1.1.

In order the prove the main theorem, we need the follow lemma.

Lemma 3.1.3. Let W be a proper subspace of V such that dimR W = dimR V ,

PR(V,W ) a subsemigroup of LR(V,W ) containing OMR(V,W ) and ⊕ a hyperop-

eration on PR(V,W ) such that (PR(V,W ),⊕, ·) is a semihyperring. Then there are

α, β ∈ OMR(V,W ) and λ ∈ LR(V,W ) such that λ ∈ α⊕ β but λ /∈ OMR(V,W )∪
GR(V,W ) ∪ AIR(V,W ). Moreover, λ /∈ AIR(V ,W ).

Proof. Let C and B be bases of W and V , respectively, such that C ⊆ B. Since

W is a proper subspace of V , it follows that B � C �= ∅. Let u ∈ B � C be a

fixed element. Moreover, let D = B � (C ∪ {u}) and D1, D2 be disjoint subsets

of D such that D1 ∪ D2 = D. Since |B| = |C| and C is infinite, there are disjoint

subsets C1 and C2 of C such that C1 ∪C2 = C and |C1| = |C2| = |C| = |B|. Since

C1 ⊆ C1 ∪ D1 ⊆ B, we have |C2| = |C1| = |C1 ∪ D1|. Similarly, |C1| = |C2 ∪ D2|.
[Note that B = C1 ∪ D1 ∪ C2 ∪ D2 ∪ {u}] As a result, there are bijections ϕ :

C1 ∪ D1 → C2 and γ : C2 ∪ D2 → C1. Define α, β ∈ LR(V,W ) by

α =

⎛
⎝ v C2 ∪ D2 ∪ {u}

vϕ 0

⎞
⎠

v∈C1∪D1

and β =

⎛
⎝C1 ∪ D1 ∪ {u} v

0 vγ

⎞
⎠

v∈C2∪D2

.

Observe that α and β are well-defined because C1 ∪ D1 ∪ C2 ∪ D2 ∪ {u} is a

partition of B. Hence Ker α = 〈C2 ∪ D2 ∪ {u}〉 and Ker β = 〈C1 ∪ D1 ∪ {u}〉.
Thus α, β ∈ OMR(V,W ) ⊆ PR(V,W ). Moreover, α2 = β2 = 0 and by the

distributive law,

α(α ⊕ β) = α2 ⊕ αβ = 0 ⊕ αβ = {αβ} = αβ ⊕ 0 = αβ ⊕ β2 = (α ⊕ β)β

β(α ⊕ β) = βα ⊕ β2 = βα ⊕ 0 = {βα} = 0 ⊕ βα = α2 ⊕ βα = (α ⊕ β)α.
(1)

Since α ⊕ β �= ∅, let λ ∈ α ⊕ β. Then αλ = αβ = λβ and βλ = βα = λα.

Now, we would like to determine the linear transformation λ. Let v ∈ B. Then

v ∈ C1 ∪ D1 or v ∈ C2 ∪ D2 or v = u. Clearly, vλ ∈ W = 〈C1 ∪ C2〉 and thus

vλ = a1w1 + a2w2 + · · · + anwn + b1w
′
1 + b2w

′
2 + · · · + bmw′

m
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