EXAMPLES AND CONCLUSION

Abstract

The computer sour (8) has been modified to include example of input dat computation perfo by combination or to concentrated moment or combinati the solution of Time anl element method.

In the square plate is selected to be لilysed. In cuis example nounly the accuracy of line supports is examed by compal the results with solution of Timoshenko P(o) investigated by results of point supporterthe second edmple presents the ad aithge © sNof results are compared with that of point supports in the former study by Yuthana (8). The last example is the typically plate problem with mixed of column and line supports. This example show the practical application of the method.

The boundary integral method create the system of simultaneous equations with the non-symmetric and fully populated influence matrix which requires a large incore memory to store all matrix coefficients. Computation has been performed on a mainframe computer IBM 3090/120E using double precision arithmatic but the program can run also on Tl) ittle modification on I/O unit specifier.

Example
plate $8.0 \times 8.0 \mathrm{~m} . \mathrm{xm}$.
subjected to unif Fig. 8 show the divided into 64 divided into 16 and $2 \boldsymbol{\gamma}$
 at the nodal points of ond line support and the problem is repla 1 cion along line of symmetry and
 $00 \mathrm{~kg} / \mathrm{m}^{2}$ is examined. ties. Loading area is and line support are

It can be lazrly seen fres both figures that, using only 3 elements with the solutions solved ry Timosheny (9). When oyeplacing line suppottan in ? the distribution of reaction are considerably different. Thus, in the case of lengthly continuous supported plate, the stress solutions obtained by using line supports would represent more accurate characteristic of the problem than using point supports with the same element number.

Example 2 : A square plate 8.0×8.0 m.x m. with four interior supports loaded by a concentrated force at it center is shown in Fig. 11. This problem has been calculated by Yuthana and resolved here again to show the advantage of short line support. All point supports are replaced with short line supports, 0.1 m . in length, which its align or x-axis. Each side of plate boundary is divided, inc line supports are not subdivided. The twisting moment mal bending moment and ig. 14.

It is evi this study show can be concluded replace point
 point supports. this e support can be used to a's study axes of point
 can be aligned in any a this advantage of short line support, plate (a) a

Example 4. A typicar + save plate 4 ructure subjected to uniformly distribute eload of $1,50 \mathrm{~kg} / \mathrm{m}^{2}$ is supported by 12 columns
 in axial deformation and free in rotatenal deformate: n except for
 Results of this example are compared with those of finite element program, SAP-IV. In SAP-IV program, a quadrilateral of arbitrary geometry formed from four compatible triangles is the element type used in modelling the plate element. Fig. 15 show the plate geometry and material properties together with the details of finite element
model prepared for the program SAP-IV. Each side of boundary and line support is subdivided into 14 and 6 intervals respectively and loading area is divided into 56 strips. Fig. 16 and Fig. 17 show the transverse deflection and normal bending moment respectively. good harmony with t.
these stress resul)
are provided and boundary integra $\quad e^{\prime} \quad \mathrm{a} \in \mathrm{d}$ optional approach in analization the pl $1 /$ N

From the ey ה method presented has ledinchaids an vse wider scope of problems with satisfactory result ium condition which has been examined by tayin applied loads into account are al ement method, only the boundary of he promem $=$ nencretzed. ${ }^{\text {nsequently, the data }}$ preparation efforto obviously Clduced. However, there are some
 9
when boundary of ©late and eine support elre subdivided

- subdivision of boundary and line supports has to be made in a suitable range to obtain the fairly results and to keep the computation effort within a reasonable limit,
- boundary, line supports and solution lines should not be coincident so that singularity due to $r=0$ may not be occured.

Furthermore, the method presented can be extended the capability to analyse others type of boundary conditions and make use of this for the symmetrical problems.

