RESULTS

3.1.3 Thermal Characteristics \propto
 at atmosphere of nitrogen gas 20 ml .1 min . with a heating rate of
 thermogram of the yeast extract powder heated from room temperature to $300{ }^{\circ} \mathrm{C}$ is shown in Figure 3-3.

3.1.4 Moisture Adsorption Isotherm

The moisture adsorption isotherm of the yeast extract powder is shown in Figure 3-4.

Figure 3-1 Photomicr an andar As.att t Powder

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Figure 3-4 Mosst Adnichain ilhern of reast Extract Powder

ศูนย์วิทยทรัพยากร
จุฬาลงกรณ์มหาวิทยาลัย
3.1.5 Moisture Content, Flowability, Solubility, Bulk Density, Tapped Density, Percent Compressibility, and True Density The results of moisture content, flowability, solubility, bulk density, tapped density, percent compressibility, and true density of the yeast extract presented in Table 3-1.

Before proce $/ \mathrm{c} /$,, t , ta process, preliminary investigation of suit 1 Ta s was carried out by the trial and errorm 15 क. $(\sqrt{3})$, 4 the proper granulation process, the genera thegemp appearance of tablet chaialan as for further decision making. The results of the table 3-2 and Figure 3-5

The formula $]$ on for sumber stactes of factorial experiment was concluded to consdes of ingrediegts as follow : adsorbent (f Pa
 binder (factor B) - corn starch paste at level of 6.8 and 3.4 mg . disintegrant (factor C) - dried corn starch at level of 24 and 14.5 mg . glidant \quad - $\mathrm{Cab}-0-\mathrm{Sil}^{\circledR}$
lubricant (factor D) - magnesium stearate at level of 3.0 and 1.6 mg .

Table 3-1 Physical Properties of Yeast Extract Powder

Table 3-2 Preliminary Investigation Results

Table 3-2 (cont.)

Table 3-2 (cont.)

Method	Excipient	Result
	F. magnesium corn corn dried talo magn 0	tablet quickly absorb moisture
	G. magnes मानाल calcium dr bscurdiveryh corn starch \qquad d 2 jd \qquad sium	wet mass was stickier than F
\mathbf{a}_{9}	 corn starch 620\% corn starch paste 5% dried corn starch 5\% talcum 3% magnesium stearate 1%	Inacdeptable weight variated, white surface

Table 3-2 (cont.)

Method	Excipient \quad Result
	acceptable appearance

Figure 3-5

3.3 Physical Properties of Yeast Extract Granules

3.3.1 Morphology

The photomicrograph of selected yeast extract granule (formula No. 5) is illustrated in Figure 3-6.
 formulations are nof aignificant aथ 95 percent confidential level

 3.4.1 Weight Variation

The average weight, standard deviation, and percent of coefficient of variation of yeast extract tablets are listed in Table 3-4. Each formulation of yeast extract tablet possessed the weight variation within the requirement of the USP XXII standard except for formula No. 1.

Figure 3-6
Photomicrograthabrevisw
Yeast Extract Granule

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Figure 3-7 Ilistogram for Particle Size Distrilution of 16 Granule Formulations

Table 3-3 Physical Properties of Yeast Extract Granules

Formula No.	Moisture Content \pm S.D. (\%)	Bulk Density \pm S.D.(g./ml.)	Tapped Density $\pm \text { S.D. (g./ml.) }$	True Density \pm S. D. (g./ml.)	Compressibility \pm S.D.(\%)	$\begin{gathered} \text { Flow Rate } \\ \pm \text { S.D.(g./sec.) } \end{gathered}$	Median Diameter (吅.)
1 (abcd)	4.26 ± 0.32	0.54 ± 0.02	$0.66 \pm$	$\bigcirc 072$	17.22 ± 1.61	40.11 ± 2.63	520
2 (bcd)	3.33 ± 0.10	0.58 ± 0.02	$0.69=$	-	15.46 ± 2.22	42.15 ± 1.08	600
3 (acd)	3.30 ± 0.29	0.58 ± 0.02	0.		16.22 ± 1.23	38.33 ± 3.77	550
4 (cd)	3.23 ± 0.09	0.59 ± 0.02			13.16 ± 1.23	39.83 ± 5.40	530
5 (abd)	4.73 ± 0.53	0.60 ± 0.02	0.74		6.33 ± 1.09	39.43 ± 1.90	540
6 (bd)	3.98 ± 0.48	0.59 ± 0.02	$0.7 /$		18.06 ± 0.43	41.12 ± 1.19	530
7 (ad)	4.54 ± 0.33	0.56 ± 0.01			18.72 ± 2.48	41.33 ± 3.93	500
8 (d)	4.17 ± 0.31	0.57 ± 0.03	0.67 ± 0.0		15.44 ± 2.31	43.45 ± 7.22	490
9 (abc)	3.73 ± 0.16	0.56 ± 0.02			7. 83 ± 2.34	44.65 ± 0.70	485
10 (bc)	3.47 ± 0.07	0.57 ± 0.01			7.85 ± 1.78	41.42 ± 2.45	550
11 (ac)	3.58 ± 0.03	0.56 ± 0.00	0.67 ¢tap 02	$.399 e=0.06$	15.93 ± 2.97	42.74 ± 0.62	510
12 (c)	3.70 ± 0.07	0.55 ± 0.02	0.65 ± 0.01	13150 ± 0.407	18.8 ± 2.42	42.55 ± 1.89	550
13 (ab)	3.50 ± 0.06	0.56 各988	6595	$2 \sqrt{29} 96$	g°	43.77 ± 1.51	550
14 (b)	3.61 ± 0.22	$0.57 \pm{ }^{9} 0.01$	0.68 ± 0.01	1.401 ± 0.090	16.59 ± 0.93	44.40 ± 1.20	520
15 (a)	3.37 ± 0.07	0.56 ± 0.02	0.66 ± 0.04	1.397 ± 0.003	15.49 ± 2.32	43.12 ± 1.12	580
16 (1)	3.69 ± 0.19	0.57 ± 0.01	0.68 ± 0.01	1.482 ± 0.067	15.77 ± 0.93	45.52 ± 2.07	530

Bulk Density (g./ml.)

Formula No.

Figure 3-9 Histogram for Tapped Density of 16 Granule Formulations

True Density (g./ml.)

Figure 3-10 Histogram for furabions

Figure 3-11 Histogram for Percent Compressibility of 16 Granule
Formulations

Flow Rate (g./sec.)

Table 3-4 Physical Properties of Freshly Prepared Yeast Extract Tablets

The percent coefficient of variation of tablet weight was statistically analyzed (Appendix C-1). The results show that the effects of magnesium carbonate light, corn starch paste, dried corn starch, and magnesium stearate on the percent coefficient of variation of tablet weight are not 3.4 .2 Hardness
The mean in Table $3-\Delta$
results indicate th
significant effect.
 3.4 .2 Hardness
The mean in Table $3-\Delta$
results indicate th
significant effect. percent confidential level.

3.4.3 Percent Fri 1 B6.

 statistical
 magnesium carbonade ed corn starch, and magnesium stearate the percent friability ψ the yeast extract
 formulation of the yeast extract lablet possessed the percent
 standard adopted in pharmaceutical industry.

3.4.4 Thickness

The average, standard deviation, and percent coefficient of variation of tablet thickness are given in Table 3-4. The percent coefficient of variation was statistically analyzed (Appendix C-4).

The result shows that factor BC interactive effect, high concentration of corn starch paste together with high amount of dried corn starch, on percent coefficient of variation of thickness at 95 percent confidential level is significant. The percent coefficient of variation of most of thickness except for formula No. 12 are within ± 5 percent which is the standard adopter) butical industry.
3.4.5 Disintegra

The means
time were presented
as shown in Appendix stearate, and factor high-level magnesium
 disintegration time requirement for
3.5 Salmonella Tes selected yeast extract tablets wece termated at thed presumptive

3.6 Aging Studies

3.6.1 Aging in Closed Containers

3.6.1.1 Weight Variation

The resultis extion of the yeast extract tablet after storage in contar three months under various conditions arn if Ar comparing the result within each formulat $1 / 10$, weight change except
 standard.

The re 1 \& changes of formulation N riscrish affected by the aging perisy periods effected
 formula No. 1 and

No. 14 at 30% RH o. 10 at 50% RH, and formula No. 12 and No. 16 at all three conditions $(x=0.05)$.

คูนย์มิทยทรัพยากร

 They all showed apparently no change in hardness during the aging periods.

The statistical results showed that hardness of formula No.2-4, and No.12-15 were not significantly affected by aging periods at all conditions ($\alpha=0.05$). The aging periods were the
significant effects on hardness of formula No. 1 at 50% RH condition, formula No. 3, 7, 9, and 16 at 30% RH, formula No. 5 at all aging conditions formula No. 6 and No. 11 at 70% RH, formula No. 8 at 50% RH and $70 \% \mathrm{RH}$, and formula No. 10 at 30% and $70 \% \mathrm{RH}$ conditions ($\alpha=0.05$).

The statistical results at 95% confidential level showed that disintegration time of formula No.2, 4, 7 , and 12 were not significantly affected at every conditions by the aging periods. The aging periods effected on disintegration time of formula No. 1 and No. 15 at every storage conditions, formula No. 3, 5, and 9 at $30 \% \mathrm{RH}$,
formula No. 6 and No. 13 at 50% RH, formula No. 8 at 70% RH, formula No. 10, 14, and 16 at $30 \% \mathrm{RH}$ and $50 \% \mathrm{RH}$, and formula No. 11 at $30 \% \mathrm{RH}$ and $70 \% \mathrm{RH}$ conditions ($\alpha=0.05$).

Changesein weight occelred in all formulations (Figure
 showed larger increases in weight. The tablets storedCat the 70%

The results of statistical analysis showed that the aging periods did not significantly effect on tablet weight variation of formula No.4, 7, 8, 12, 14 and 15 at the 30% RH condition ($\alpha=0.05$). The formula No. 14 tablet had no significant weight change during aging at $50 \% \mathrm{RH}(\alpha=0.05)$.

Figure 3-14 Photograph Extract Tablet After Sto Solative Humidity,
(1) Freshly prepared yeast extractablet

ศูนย์่วิขขยทตรรัพยากร จุหาสงการสม์มหาวิทยาลัย

Figure 3-15 Photograph
Extract Tablet After

Relative Hu*idity, Yeast Extract Tablet:
(1) 1 eshly preparea yeast extrad tablet

Figure 3-16 Effect of Aging Periods on (a) Weight, (b) Hardness, (c) Thickness, and (d) Disintegration Time of Yeast Extract Tablet Formula No. 1 After Storing in Opened Container under Different Conditions.

Figure 3-17 Effect of Aging Periods on (a) Weight, (b) Hardness, (c) Thickness, and (d) Disintegration Time of Yeast Extract Tablet Formula No. 2 After Storing in Opened Container under Different Conditions.

Figure 3-18 Effect of Aging Periods on (a) Weight, (b) Hardness, (c) Thickness, and (d) Disintegration Time of Yeast Extract Tablet Formula No. 3 After Storing in Opened Container under Different Conditions.

Figure 3-19 Effect of Aging Periods on (a) Weight, (b) Hardness, (c) Thickness, and (d) Disintegration Time of Yeast Extract Tablet Formula No. 4 After Storing in Opened Container under Different Conditions.

Figure 3-20 Effect of Aging Periods on (a) Weight, (b) Hardness, (c) Thickness, and (d) Disintegration Time of Yeast Extract Tablet Formula No. 5 After Storing in Opened Container under Different Conditions.

Figure 3-21 Effect of Aging Periods on (a) Weight, (b) Hardness, (c) Thickness, and (d) Disintegration Time of Yeast Extract Tablet Formula No. 6 After Storing in Opened Container under Different Conditions.

Figure 3-22 Effect of Aging Periods on (a) Weight, (b) Hardness, (c) Thickness, and (d) Disintegration Time of Yeast Extract Tablet Formula No. 7 After Storing in Opened Container under Different Conditions.

Figure 3-23 Effect of Aging Periods on (a) Weight, (b) Hardness, (c) Thickness, and (d) Disintegration Time of Yeast Extract Tablet Formula No. 8 After Storing in Opened Container under Different Conditions.

Figure 3-24 Effect of Aging Periods on (a) Weight, (b) Hardness, (c) Thickness, and (d) Disintegration Time of Yeast

Extract Tablet Formula No. 9 After Storing in Opened Container under Different Conditions.

Figure 3-25 Effect of Aging Periods on (a) Weight, (b) Hardness, (c) Thickness, and (d) Disintegration Time of Yeast Extract Tablet Formula No. 10 After Storing in Opened Container under Different Conditions.

Figure 3-26 Effect of Aging Periods on (a) Weight, (b) Hardness, (c) Thickness, and (d) Disintegration Time of Yeast Extract Tablet Formula No. 11 After Storing in Opened Container under Different Conditions.

Figure 3-27 Effect of Aging Periods on (a) Weight, (b) Hardness, (c) Thickness, and (d) Disintegration Time of Yeast Extract Tablet Formula No. 12 After Storing in Opened Container under Different Conditions.

Figure 3-28 Effect of Aging Periods on (a) Weight, (b) Hardness, (c) Thickness, and (d) Disintegration Time of Yeast Extract Tablet Formula No. 13 After Storing in Opened Container under Different Conditions.

Figure 3-29 Effect of Aging Periods on (a) Weight, (b) Hardness, (c) Thickness, and (d) Disintegration Time of Yeast Extract Tablet Formula No. 14 After Storing in Opened Container under Different Conditions.

Figure 3-30 Effect of Aging Periods on (a) Weight, (b) Hardness, (c) Thickness, and (d) Disintegration Time of Yeast Extract Tablet Formula No. 15 After Storing in Opened Container under Different Conditions.

Figure 3-31 Effect of Aging Periods on (a) Weight, (b) Hardness, (c) Thickness, and (d) Disintegration Time of Yeast Extract Tablet Formula No. 16 After Storing in Opened Container under Different Conditions.

3.6.2.3 Hardness

Hardness changes of yeast extract tablets are plotted and shown in Figure $3-16$ b to $3-31 b$. Most of stored tablets softened with time. Comparing with the initi ${ }^{7}$ hardness, tablets of formulation No. $5,6,15$, and 16 from showed apparently decrea whereas tablets of hardness during the
 were shown increasin \quad a \quad win or wh ther that the tablet hardness was decrease H ess 1 indidise \quad y within one week for every formulation table $\quad 0$

hardness of tablet
 not significantly af cted by the aging periods confidential level.

$$
\begin{aligned}
& \text { level. } \\
& \text { variation of yeast extract tablets during aging. At } 30 \text { percent relative } \\
& \text { humidity and } 50 \text { percent relative humidity condition, thickness of } \\
& \text { tablet was slightly changed comparing with the initial thickness. At } \\
& 70 \text { percent relative humidity, thickness was slowly increased. }
\end{aligned}
$$

The statistical results at 95% confidential level of each formula showed that thickness of every formulation tablets were significantly affected by the aging periods at 70% RH. The aging periods nonsignificantly effected at 95% confidential level on thickness of formula No.2, and 15 at 50% RH condition. At $30 \% \mathrm{RH}$, thickness a \quad No $8,9,11,12,14$, and 15 were not significantly af 95 nomential level.
3.6.2.5 Disi 6
complex changes over e As (c) 13 to 3-31d). At 70
 within the first week. th rishala No. 1 and 2 tablets showed increases in disinter two weeks later whereas formula Nof contrary results. After one week,
 $0.6,8,12$, and 16 were decreased wher- the adversed results occured for formula No. 7 and 11. All forgulat on show incriases din disintegration time at the 50 percent of relative humjity disintegration tine almo shoyed no \%inge.

The results of statistical analysis show that the aging periods did not significantly effect on disintegration time of tablets except for formula No. 7 and $12-14$ at $30 \% \mathrm{RH}$ condition ($\alpha=0.05$). At $50 \% \mathrm{RH}$, disintegration time of tablets was significantly affected at 95% confidential level except for formula No. 1 and 2.

Disintegration time of almost all formulations at $70 \% \mathrm{RH}$ condition was significantly affected at 95% confidential level except for formula No. 9 .

> ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

