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The presence of both multiple-access interference (MAI) and intersymbol interference (ISI) 

constitutes a major impediment to reliable communications in multipath code-division multiple- 

access (CDMA) channels. Many multiuser detectors in the past have been developed based 

on novel linear and nonlinear interference suppression technique , which make use of both soft 

interference cancellation and instantaneous linear minimum mean-square error filtering. All of 

them are required knowledge of the spreading sequences , the initial delays and multipath channels 

of the desired users. therefore, the knowledge of channel parameters are essential to achieve an 

efficient detection of the transmitted signal. 

The main purpose of this dissertation is to propose an advance novel solution to the problem 

of joint multiuser detection, channel estimation and data detection for the uplink of a multiuser 

DS-CDMA system exploiting. The devised algorithm from the application of Variational Bayes 

Methods and Minimum Kullback-Leibler (MKL) techniques. Minimum Kullback-Leibler 

(MKL) methods allow to efficiently numerical conditional distributional probability and parameter 

approximation of all the unknown parameters (i.e., data symbols, channel response of each users) 

from their conditional posterior distributions and then to compute their estimates by condition 

mean estimator. In addition, they are insensitive, unlike the Expectation maximization (EM) 

technique, to the choice of initial conditions and consequently perform robustly in quickly 

changing communication scenarios. The proposed MKL Bayesian multiuser dectector, being 

soft-input soft-output in its nature, can be exploited for iterative processing in a coded system. 

The simulation results have demonstrated relevant merit of the optimum Minimum Kullback- 

Leibler (MKL) multiuser detector over multipath code-division multiple-access (CDMA) channels 

in the system with the unknown the initial delays and multipath channels of the desired users. 

A few pilot symbols are used by any users for channel parameters at initial. The simulation 

results confirm performance properties of proposed Minimum Kullback-Leibler (MKL) multiuser 

detector and show the advantages of the novel design over others. 
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CHAPTER I 

INTRODUCTION 

OVER THE PAST decade, a significant amount of research has addressed various 

multiuser detection methods for interference suppression in code-division multipleaccess 

(CDMA) communication systems [I]. Various detection methods have been reported 

in litefitures for uncoded CDMA system, such as maximum-likelihood (ML) detector, 

sphere decoding algorithm, zero-forcing detector (ZF), minimum-mean-square-error detector 

(MMSE) detector, and successive cancellation detector. Most of the previous work on 

multiuser detection focused on uncoded CDMA systems, i.e., on the demodulation of 

multiuser signals. Since in practice, most CDMA systems employ error control coding 

and interleaving, recent work in this area has addressed multiuser detection for coded 

CDMA systems. In [2], [9] and [21], it is shown that the optimal decoding scheme 
for an asynchronous convolutionally coded CDMA system combines the trellises of both 

the asynchronous multiuser detector and the convolutional code, resulting in a prohibitive 

computational complexity 0(2K"), where K is the number of users in the channel, and v 

is the code constraint length. For coded systems, an iterative turbo multiuser receiver can 

approach the optimal performance with an affordable receiver complexity [2]. Like turbo 

codes, the iterative turbo multiuser detector module exchanges the extrinsic information 

of transmitted symbols between individual channel decoders and its module [2]- [13]. 

Several papers have recently been devoted to an iterative turbo processing of the knowledge 

channel-state information (CSI) [13]- [24]. A good knowledge of channel parameter is 

essential to achieve an efficient detection of the transmitted signal. An iterative ("Turbo") 

processing techniques have received considerable attention followed by the discovery of the 

powerful Turbo codes [2-31. The so-called Turbo-principle can be successfully applied to 

many detection/decoding problems such as serial concatenated decoding, equalization, coded 

modulation, multiuser detection and joint source and channel decoding [9]. In particular, a 

Turbo equalization scheme is proposed in [4] for convolutionally coded digital transmission 

over intersymbol interference channel. More recently, in [l 11 an optimal iterative multiuser 

detector for synchronous coded CDMA system is derived, based on iterative techniques for 

cross-entropy minimization. A practical suboptimal implementation is also presented. The 

computational complexity of this method, however,.is 0 (2K + 2"). which is still prohibitive 

for channels with medium to large number of users. A similar work has also appeared in 

[161. 
Among of iterative turbo multiuser detectors, there are two well known difference 

extrinsic information calculation. First, linear minimum mean square error (LMMSE) and 

soft interference cancellation computes the extrinsic information feeding to individual channel 



decoders by iterative manner [ 131, [17]. Second, the Sequential Monte Carlo (SMC) algorithm 

(also referred to the particle filtering method) computes the extrinsic information feeding to 

individual channel decoders [18]- [23]. The sequential Monte Carlo methodology original 

emerged in the field of statistics and engineering has provided a promising new paradigm for 

design of signal processing algorithms with performance approaching the theoretical optimum 

for fast and reliable communication in highly severe wireless environments. All of the SMC 

techniques are aimed at building a recursive Bayesian filter, which estimates the extrinsic 

probability density function (pdf) based on Monte Carlo simulations. The high computational 

complexity of the optimal multiuser detectors ( which is exponential in terms of the number 

of users in the channel ) has motivated the study of a number of low-complexity suboptimal 

multiuser detectors. These low-complexity methods fall largely into two categories: linear 

detectors and nonlinear detectors. A linear detector is comprised of a linear filter applied 

to the received signal, followed by a scalar quantizer. The nonlinear detectors are based 

primarily on various techniques for successive cancellation of interference. In [7], some 

low-complexity receivers which perform multiuser symbol detection and decoding either 

separately or jointly are studied. 

The theme of this dissertation is on the design of a iterative multiuser receiver for an 

uplink asynchronous coded CDMA system employing spreading sequences. It is assumed 

that the receiver has only the knowledge of the spreading sequences and the initial delays of 

the desired users within the cell. The multipath channels are unknown to the receiver. A few 

pilot symbols are used by any users. Some recentworks have addressed channel estimation 

in long CDMA systems [2], [3]. In these approaches, channel parameters are first estimated 

and receivers are then constructed based on the estimated channels. This is suboptimal due 

to the separation of channel estimation and data detection (as opposed to joint estimation of 

both channels and data). Moreover, these methods are primarily targeted at uncoded systems 

'and they do not attempt to exploit the signal structures induced by channel coding existing in 

most communication systems. On the other hand, iterative processing has recently attracted 

vast attention. In [4]-[6], turbo multiuser detection schemes for coded CDMA systems are 

developed, which iterate between multiuser detection and channel decoding to successively 

improve the receiver performance. In these works, the user channels are assumed perfectly 

known at the receiver. In this dissertation, we address the problem of turbo multiuser 

detection in unknown multipath channels for asynchronous coded CDMA systems employing 

spreading sequences. A novel Bayesian multiuser detector is proposed, which computes 

the MAP estimates of the channel coded multiuser symbols, that are encoded before being 

sent to the channel. This technique is based on the Gibbs sampler [7], a Markov chain 

Monte Carlo (MCMC) technique for Bayesian computation. Although originated in the field 

of statistics, the Gibbs sampler and Minimum Kullback-Leibler (MKL) have recently been 

investigated for the optimal receiver design in various communication systems [8]-[lo]. 

Another issue addressed in this dissertation is Minimum Kullback-Leibler (MKL) Bayesian 

multiuser detection in the presence of unknown multiple-access interference (MAI) and 



narrow-band interference (NBI), a scenario that occurs in CDMA overlay systems. Various 

techniques for interference suppression in CDMA overlay systems are reviewed in [ll]. 

Existing methods include frequency-domain techniques [12], predictive techniques [13], [14], 

the linear MMS E estimation technique [ 151, [ 161 and the maximum-likelihood technique 

[17]. In this dissertation, we propose a approach to interference suppression. The Minimum 

Kullback-Leibler (MKL) is then used to calculate the Bayesian estimates of all unknowns. 

In this dissertation, we propose a new technique for the channel estimation and the 

calculation of the extrinsic information, which is based on the Minimum Kullback-Leibler 

(MKL) algorithm for numerical Bayesian distributional approximation. To implement 

extrinsic probability by using the BCJR algorithm [25] without encoding, the measurement 

vector signals are decomposed into a signal components. Virtual trellis diagram, representing 

the IS1 channels for each separation signal user, is designed to compute the extrinsic 

information by using the BCJR algorithm. Computer simulations are employed to assess 

the performance of the proposed schemes compare with iterative LMMSE turbo multiuser 

method [13]. 

L1 Objectives 

The primary objective of dissertation is on design a novel mathematical closed form 

joint iterative Minimum Kullback-Leibler (MKL) multiuser receiver and channel estimations 

for an uplink multipath asynchronous coded CDMA system employing spreading sequences. 

It is assumed that the receiver has only the knowledge of the spreading sequences and the 

initial delays of the desired users within the cell. The multipath channels are unknown 

to the receiver. A few pilot symbols are used by any users. In this approaches, channel 

parameters are first estimated and MKL multiuser receivers are then constructed based 

on the estimated channels. The Minimum Kullback-Leibler (MKL) multiuser receiver 

mitigate multiple-access interference (MAI) and intersymbol interference (ISI). Moreover, 

the implementation of the proposed Minimum Kullback-Leibler algorithm essentially designs 

virtual trellis corresponding to each user's symbols channel delay for generating extrinsic 

probability of the proposed optimization Minimum Kullback-Leibler algorithm. Simulation 

results making use of Minimum Kullback-Leibler algorithm can be considered. 



12 Scope 

As the Minimum Kullback-Leibler Multiuser detector for DS-CDMA systems under the 

presence of multiple-access interference (MAI) and intersymbol interference (ISI) investigated 

in the dissertation, the scope of the research works can be limited to the following: 

1. Effects Bit error rate (BER), Channel estimation error and analyze computational results 

of proposed algorithm. 

2. A novel MKL multiuser detector technique that is jointly considers both iterative 

decoding and channel estimation. 

3. Parameters Estimation of the proposed optimization algorithm. 

4. the limitation of proposed detector. 

5. Performance of the proposed Minimum Kullback-Leibler detector and a comparative 

study of other techniques in the past. The concerned issue includes bit error rate 

performance of channel estimation error. 



13 Outline 

For the rest of this dissertation, chapter I1 reviews, the basic background and related 

Topics of iterative multiuser detector literatures including CDMA channel model, transmitters, 

receivers. Chapter I11 presents the proposed Minimum Kullback-Leibler Multiuser detector 

and its mathematical closed form channel estimations and iterative decoding will be proposed. 

In chapter IV, the effects of Bit error rate (BER), Channel estimation error and analyze 

computational results are demonstrated. Finally, chapter 5 will conclude this dissertation. 

The results and contributions will be summarized.. 



CHAPTER I1 

BASIC BACKGROUND AND RELATED TOPICS 

Communication channels that involve both error-control coding and multiple-access 

signaling are of increasing interest in applications such as cellular telephony, wireless computer 

networks, and broadband local access. Optimal data detection and decoding in such channels 

generally requires a level of computational complexity that is prohibitive for these types of 

applications. Turbo multiuser detection (MUD) addresses this problem by applying the turbo 

principle of iteration among constituent decision algorithms, with intennediate exchanges of 

soft information (i.e., posterior probabilities) about tentative decisions. Here this principle 

is applied by considering MUD (which exploits the multiple-access signaling structure) and 

error-control decoding as the two consituent decision algorithms. 

In this chapter reviews this area, outlining both the basic principles involved channel 

modeling and the basis for turbo multiuser detectors that require minimal increased complexity 

over that of the standard channel decoder. 

2.1 System Description and Channel Model 

Let us consider an asynchronous multipath DS-CDMA system that has IC active users, 

employing normalized pseudorandom spreading sequences and signaling through multipath 

channels with additive white Gaussian noise (AWGN). The transmitted signal due to the kth 
user is given by 

where M denotes the length of the data frame, N is the processing gain, T denotes the 

symbol interval. { ~ k , i b ] ) L - , ~  is a signature sequence assigned to the kth user for the it" 

symbol, the c tk ,  { b k [ i ] )  and dk{O 5 dk 5 T )  denote, respectively, the amplitude, the symbol 

stream, and the delay of the kth user's signal, cp is a normalized chip waveform of duration 

T, = T I N .  The kth user's signal propagates through a multipath channel whose impulse 

response is given by 
L 

where L is the total number of resolvable paths in the channel, ,akl t  and r k , l  are, respectively, 

the complex path gain and the delay of the kth user's It" path. The received continuous-time 



signal at the receiver is given by 

k=l 
K M-1 L N-I 

where denotes * ~onvolution,,6~,~ = ~ l ~ $ ' ~ , ~  and v( t )  is the ambient noise. At the receiver, 

the received signal r ( t )  is filtered by a chipmatched filter and sampled at the chip-rate. Let 

be the maximum delay spread among the users in terms of symbol intervals. The signal 

sample at the matched filter output at time t = iT + qT, 

. - 
where v,(i)= f v(t)+(i: - iT - qTc)dt. Since the chip waveform has a duration T,, 

~T&T, 

hk(1) is nonzero only for [ ( d k  + 7k.l)/Tc] 5 e 2 [(dk + ' ~ i c , ~ ) / T ~ ]  For convenience,define 
A Lk = [(dk + T ~ , J ) / T ~ ]  - 1 as the initial delay in terms of number of chips for the kth user's 

A 
signal; define P = maxk [(rkSL - T ~ , ~ ) / T ~ ]  as the maximum channel delay among all users; 

and define I L ~ )  = hr(ex + I). ..hfF') = hk(& + L) .  as the channel response for the kth 

user. Throughout the dissertation,assume that both the maximum initial delay maxk(lk) and 

P are less than N . Hence, the maximum symbol delay satisfies ek 5 2. It is convenient to 



express the signal model (2.5) in a vector form as 

K 

= (bk [t] h r )  + . . . + bk [t - L + 1) hf- 'I)  + w [t] 
k=l  

where user k = 1,2, . ., K,  the transmitted symbol bk[ t ]  and { b k [ t  - 11) k: are modulation 

symbols and delay symbols assigned for kth user at tM interval (see section 2.4 and [21] 

for more details). The noise matrix term w[t] is assumed to be white Gaussian vector with 

zero mean and variance c21. Spreading matrices c!), 1 = 0, ..., L - 1 a n  defined by N x P 
matrices [2 1 I. 

N is processing gain and P is maximum channel delay. The channel vector gk, channel matrix 

H and vector b[t] can be expressed as following gk=[  gks C J ~ , ~ .  . . g k t p  IT, h p ) = ~ f ) ) ~ ~  , 
h(l)-($l) - , gk and 

(0) h(L- 1 )  H=[h, . . 1 . . . h$) . . h, (L-111 (2.8) 

2.2 Multiuser detection (MUD) 

MUD refers to the detection of data from multiple terminals in a communication 

network when observed in a nonorthogonal multiplex. that is, when derived from a multiple- 

access channel. This problem arises naturally, for example, in code-division multiple-access 

(CDMA) systems using nonorthogonal spreading codes. It also arises in orthogonally 

multiplexed wireless channels, such as time-division multiple-access channels, due to effects 

such as multipath or nonideal frequency channelization, and in wireline channels such as 

those arising in digital subscriber line (DSL) systems or powerline communications (PLC) in 

which crosstalk and other types of interference are major impairments. The basic idea of 



MUD is to exploit the cross-correlations among the signals to be demodulated to improve the 

data detection process. Considerable progress has been made on this problem over the past 

two decades. (See, e.g., [I31 and [l  I.) Among other things, it has been shown that the use of 

MUD can provide very significant performance advantages in interferencelimited channels. 

There are many types of MUD techniques. Optimal techniques, based on maximum-likelihood 

(ML) or maximum a posteriori probability (MAP) criteria, can often achieve performance 

very close to that of a system that is free of interference. However, these methods tend to be 

quite complex, particularly when compared with the processing resources available in most 

communications receivers. Consequently. a considerable amount of effort has been devoted 

to the development of lower-complexity techniques that can achieve some of the benefits of 

the optimal procedures. One class of such methods are the linear multiuser detectors, which 

use linear processing to suppress interference, followed by simple memoryless quantization 

to perform data detection. Another class of lower-complexity multiuser detectors are the 

iterative multiuser detectors, which make use of tentative channel-symbol decisions (either 

soft or hard) to provide feedback that can improve the capabilities, in terms of complexity 

or performance, of optimal or linear MUD methods. When channel coding is considered in 

addition to nonorthogonal signaling, the con~plexity of optimal receiver processing is further 

exacerbated. In particular, the complexity of optimal (ML or MAP) joint MUD and channel 

decoding tends to be extremely high. However, this combination also lends itself very 

well to the use of iterative MUD methods in which the tentative channel-symbol decisions 

are produced by the channel decoders. Similarly, MUD can be used to provide tentative 

channel-symbol decisions to the channel decoders. Iteration between these two constituent 

processes, with intermediate exchanges of soft channelsymbol information, is known as turbo 

MUD. This idea was originally developed in the context of convolutionally encoded CDMA 

channels, but has since been applied in a number of other frameworks, including DSL, PLC, 

space-time coded CDMA, ultra-wideband (UWB), and turbo-coded CDMA channels. 

2.2.1 Linear MUD 

The basic difficulty with optimal multiuser detectors is their complexity. A considerable 

amount of research has been devoted to the development of suboptimal multiuser detectors 

that mitigate this complexity (see, e.g., [ I ] ) .  One well-studied family of suboptimal multiuser 

detectors are the linear MMSE (Minimum Mean Square Error) multiuser detectors, which 

are of interest in their own right and which also form the basis for many iterative multiuser 

detectors, including the low-complexity turbo MUD. For each user ,kth a soft interference 

cancellation is performed on the matched-filter output in (2 .6) .  to obtain 

Such a soft interference cancellation scheme was first proposed in [3]. Next, in order to 

further suppress the residual interference in yk[2], an instantaneous linear MMSE filter is uik 



applied to yk[i] ,  to obtain The sufficient statistic r[ t ]  of (2.6) and (2.10) obeys the linear 

model (2.1 1) and (2.12) , 

where the filter wk E !JIN is chosen to minimize the means quare error between the code bit 

bk[i] and zk[i] the filter output , i.e., 

where 

E { r [ i ] r [ i I H )  = H H H  + o21 

and 
H (0) W ~ E  {bk[2]r [ i ] )  = W k  hk 

The solution to (2.12) is given by 

MUD (and equalization as well) can be viewed as the fitting of this model to the observations. 

The complexity of these problems comes from the fact that the elements of the vector yk[i] 

and bk[i] take values in a finite alphabet. Without this constraint, the fitting of linear niodels 

such as (2.10) is of relatively low complexity. The basic idea of linear MUD is to take 

advantage of this relatively low complexity of unconstrained linear model-fitting by first 

estimating bk[i] in  (2.1 I )  as if it were a vector with real component$, and then to project these 

real estimates onto the finite alphabet of the actual symbols. This, of course, will not yield 

ML or MAP symbol decisions, but it often works quite well. Note that the matched filter 

detector (2.6),(2.10) is a very simplc example of a linear multiuser detector. in which the 

vector yk[i]  itself is used to estimate bk[i] before quantization. As noted above, this choice 

is optimal against the white background noise in the absence of signal cross correlations. 

On the other hand, refemng to (2.6),(2.10) and (2.15). we see that this choice essentially 

ignores the off-diagonal elements of the cross-correlation matrix H. A key alternative to the 

matched filter is the linear minimum-mean-squareerror (MMSE) detector, which detects bk[i] 

via where I denotes the hrN identity matrix. This latter detector uses, as its linear estimation 

stage, the linear MMSE estimator of bk[2] given yk[2] in (2.10) under the assumption that 

the symbols have a prior distribution under which they are uncorrelated with zero means; 

namely. bk[i] sgn { w [ @ I H  [ H  H" + $11 -H yk[i]] ) 



2.3 Iterative MUD 

Turbo MUD falls within the category of iterative MUD, in which tentative decisions 

are used iteratively to improve overall data detection. Aside from turbo MUD, iterative 

detectors include several varieties, including linear and nonlinear interference cancellers, 

and model-based techniques such as those based on the expectation-maximization (EM) 

algorithm. We now discuss these very briefly. 

Note that the linear detectors discussed above typically require the inversion of a 

N x N matrix. The complexity of the matrix inversion is, in its worst case, O ( N 3 ) .  
Although simpler in principle than the exponential complexity of ML or MAP MUD, this 

samplexity can still be quite significant. Moreoever, this matrix inversion [ H H H  + a21] -' 
mnnot necessarily be amortized over more than one f ra~ne  of data, since the channel and/or 

the signaling waveforms may vary from frame to frame. Thus, it is of interest to use 

lower-complexity methods for computing the estimates used in linear MUD. 

Nonlinear interference cancellers are similar in spirit to linear interference cancellers, in 

that they use iterative methods to fit the model (2.6),(2.10). Unlike their linear counterparts, 

. however, that exploit only the linearity of the model while iterating, nonlinear interference 

cancellers also exploit the discrete nature of the symbol b[t] at each iteration by making 

intermediate soft or hard decisions between iterations. As with linear interference cancellers, 

there are a number of such methods. (See [41 for a discussion of these detectors.) 

As noted above, the basic problem of MUD is the accurate fitting of the model 

(2.6),(2.10). Linear interference cancellers perform this fitting by exploiting only the linear 

structure of the model, while nonlinear interference cancellers seek to improve on this fit by 

making use of further information about the model, namely that the symbols are elements 

of a known finite alphabet. Often, further information is known about the symbols, and this 

can also be exploited to provide further performance improvement. For example, the EM 

algorithm or Markov-chain Monte Carlo (MCMC) techniques can be used to exploit statistical 

information about b, leading to several soft-decision iterative nonlinear MUD algorithms. 

(See, e.g., [5].) Turbo MUD is a further example of such an exploitation, in which the 

information. to be exploited is the set of constraints imposed by channel coding. 

2.4 Iterative Joint MUD and Decoding 

We now turn to the situation in (2.3) in which the symbols are constrained by having 

been produced by an error-correcting code. In principle, this constraint should strengthen 

our ability to fit the model (2.6) , as it reduces the number of sequences b[i] that are 

possible. However, the complexity of including such constraint3 is quite high, a5 we will 

see below. Essentially, turbo MUD is a technique for fitting (2.6) when the symbols satisfy 

coding constraints with dramatically lower complexity than optimal algorithms. 
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Figure 2.2 General structure of turbo multiuser detection 

SISO 
Multiuser Detector 

Error-control coding is, of course, ubiquitous in wireless and other impaired channels. 

Similarly to MUD, the decoding of error-control codes exploits the dependencies among 

successive channel symbols to improve the detection of a single stream of data symbols. 

Like MUD, channel decoding typically involves very complex optimal algorithms, and so 

cemplexity issues often dominate the study of these problems. Notable among coding 

techniques with this problem are parallel and serially concatenated codes separated by 

intcrleavers, which are known to offer considerable performance improvement over traditional 

cedes, exhibiting near-Shannon-limit performance in many cases. However, although the 

optimal decoding of such codes is of particularly high complexity, iterative or turbo decoding 

algorithms that involve the iterative exchange of soft information between constituent 

decoders (separated by interleaversfde-interleavers) have been shown to be very effective 

approximations to optimal decoding. These well-known ideas are discussed, for example, 

in [6] and [7]. 

Many communication systems involve both errorcontrol coding and nonorthogonal 

'decodm (bk ri1 1 ') pm (bt [j] 1 y )  



multiplexing. A typical configuration is a convolutional encoder mapping data symbols into 

channel symbols, followed by an interleaver, and then a multiple-access channel, as shown in 

. We will focus on this model, although other applications can also fit within the formalism 

discussed here. One can view the configuration of Figure 2.1 as a serially concatenated code, 

in which the multipleaccess channel (e.g., a CDMA spreading code) is the inner code, and 

the cenvelutional code is the outer code. A traditional way of decoding this concatenation 

is ts first demodulate the multiple-access signals (using either a conventional matched-filter 

detectar, or a multiuser detector) and then to follow this demodulator by a de-interleaver and 

a channel decoder. To seek optimality in such a situation, we could replace this traditional 

configuration with an overall optimal demodulator/decoder that uses an optimal (say ML 

or MAP) mapping from the received signal to the original data symbols. The complexity 

of such a system is potentially quite high. This complexity can be mitigated however, by 

appealing to the turbo principle for decoding concatenated codes noted above. In particular 

we can reduce the complexity of joint decoding and MUD by an iterative exchange of soft 

information, iterating until some kind of convergence is reached. Like turbo decoding, this 

iterative approach to joint MUD and channel decoding can achieve very good performance 

(close to the interference-free case). 

Figure 2.3 A coded CDMA system with iterative (Turbo) multiuser receiver. 

To consider this problem, we need to refer model of (2.3) to include coding. This 

can be done very simply, by writing the channel symbols bk[z] explicitly as functions of 



underlying data symbols; i.e., for a rate- R code, we have 

The block diagram of transmitter and receiver model is shown in Fig. 2.4. The 

binary information {uk[ i ] )  for user k, k = 1, .., K are convolutionally encoded by a single 

cenvolution encoder with code rate Rk. The code bits {bk[m]} are interleaved and mapped 

te BPSK symbols stream. Each data symbol {bk[i]) is modulated by a spreading waveform 
' sk(t) [21] and transmitted through the multipath channel. The received signal vector r[t] at 

the receiver is the superposition of K user signals plus additive white Gaussian noise, which 

is defined in (2.6). In the coded communication systems, the iterative receiver structure often 

makes use of turbo principle [2]- (131 to reduce the loss of information and performance. 

The receiver structure under consideration is a iterative receiver as shown in Fig 2.4. It 

consists of two states the multiuser detector, followed by K parallel channel decoden. The 

two states are separated by deinterleavers and interleavers. 

We would like to make inferences about the set of data symbols ul[i] ,  . . . , 
tiK[i]. The observation vector Y = yk[ l ] ,  .., yk[it4] of (2.10) is still a sufficient statistic for 

such inferences, and thus joint channel decoding and MUD is another problem of sequence 

detection. Like MUD, the decoding task in this situation can be simplified by dynamic 

programming. For example, in the single-user (K = 1) case, the per-symbol complexity 

of optimal decoding reduces to O(2") , with the corresponding dynamic program being 

specified by the Viterbi algorithm in the case of ML decoding and by the Bahl, Cocke, 

Jelinek, and Raviv (BCJR) algorithm in the case of MAP decoding [8]. With multiple users 

(K > 1). optimal detection and decoding in this problem essentially combines the complexity 

of the constituent problems, to yield a dynamic program with 0(2K") complexity [9]. This 

complexity would typically be too high for most applications, since the constraint length of 

the code would normally be chosen to meet the limits of the receiver's processing capabilities. 

Amplifying this constraint length by a factor of K in the exponent will push the processing 

capability well beyond its limits. 

Like turbo-coded systems, this complexity can be mitigated by making use of the 

turbo principle of iterating between algorithms for the constituent problems, and exchanging 

soft information between iterations. (See [lo], [ l  I]. and [12].) The basic building blocks 

of a turbo multiuser detector are a soft-inputlsoft-output (SISO) multiuser detector and a 

bank of single-user SlSO channel decoders, as shown in Figure 2.2. The role of each of 

these algorithms is to compute posterior probabilities of the channel symbols based on given 

prior probabilities and on the corresponding signal structure. That is, the SISO multiuser 

detector uses prior symbol probabilities and the multiuser signaling structure to compute 

posterior symbol probabilities conditioned on the observations. Similarly, the SISO channel 

decoders use prior symbol probabilities and the structure imposed by the channel code 

to compute posterior symbol probabilities. (Of course, the SISO decoders also compute 



underlying data symbols; i.e., for a rate- R code, we have 

The block diagram of transmitter and receiver model is shown in Fig. 2.4. The 

binary information { u k [ i ] )  for user k, k = 1, .., K are convolutional~y encoded by a single 

convolution encoder with code rate Rk. The code bits { b k [ m ] )  are interleaved and mapped 

to BPSK symbols stream. Each data symbol {bk[ i ] )  is modulated by a spreading waveform 
' s k ( t )  [2 11 and transmitted through the multipath channel. The received signal vector r [ t ]  at 

the receiver is the superposition of K user signals plus additive white Gaussian noise, which 

is defined in (2.6). In the codedco~nmunication systems, the iterative receiver structure often 

makes use of turbo principle [2 ] -  [13] to reduce the loss of information and performance. 

The receiver structure under consideration is a iterative receiver as shown in Fig 2.4. It 

consists of two states the multiuser detector, followed by K parallel channel decoden. The 

two states are separated by deinterleavers and interleavers. 

We would like to make inferences about the set of data symbols u l [ i ] ,  . . . , 

u K [ i ] .  The observation vector Y = yk[l], . . , y k [ M ]  of (2.10) is still a sufficient statistic for 

such inferences, and thus joint channel decoding and MUD is another problem of sequence 

detection. Like MUD, the decoding task in this situation can be simplified by dynamic 

programming. For example, in the single-user (K = 1)  case, the per-symbol complexity 

of optimal decoding reduces to 0 ( 2 v )  , with the corresponding dynamic program being 

specified by the Viterbi algorithm in the case of ML decoding and by the Bahl, Cocke, 

Jelinek, and Raviv (BCJR) algorithm in the case of MAP decoding [8]. With multiple users 

(K > I), optimal detection and decoding in this problem essentially combines the complexity 

of the constituent problems, to yield a dynamic program with 0 ( 2 K V )  complexity [9]. This 

complexity would typically be too high for most applications, since the constraint length of 

the code would normally be chosen to meet the limits of the receiver's processing capabilities. 

Aillplifying this constraint length by a factor of K in the exponent will push the processing 

capability well beyond its limits. 

Like turbo-coded systems, this complexity can be mitigated by making use of the 

turbo principle of iterating between algorithms for the constituent problems, and exchanging 

soft information between iterations. (See [lo], [l  I] ,  and [12].) The basic building blocks 

of a turbo multiuser detector are a soft-inputfsoft-output (SISO) multiuser detector and a 

bank of single-user SISO channel decoders, as shown in Figure 2.2. The role of each of 

these algorithms is to compute posterior probabilities of the channel symbols based on given 

prior probabilities and on the corresponding signal structure. That is, the SISO multiuser 

detector uses prior sy&bol probabilities and the multiuser signaling structure to compute 

posterior symbol probabilities conditioned on the observations. Similarly, the SISO channel 

decoders use prior symbol probabilities and the structure imposed by the channel code 

to compute posterior symbol probabilities. (Of course, the SISO decoders also compute 



posterior data symbol probabilities, which will ultimately yield the overall output of the 

combined algorithm.) 

The turbo multiuser detector begins with a SISO multiuser detector applied to the 

frame of M channel symbols (M is assumed to be equal to the interleaver length). This 

detector particularly computes posterior probabilities, conditioned on the observations Y, for 

0 0.5 1 1.5 2 2.5 3 3.5 4 
EbMo (dB) 

Figure 2.4: Performance of MMSE-based low-complexity turbo MUD: four users with equal 

power: rate-112 constraint-length-5 convolutional code. 

each of the channel symbols of each of the users; that is, for each element of the vector 

b[i]. This first set of posterior probabilities is based on the prior assumption that the channel 

symbols are drawn uniformly from (-1: +I)~";  that is, that the channel symbols are 

i.i.d. equiprobably w 1 random variables. Although this assumption is not correct due to the 

channel coding (which correlates the channel symbols), it serves as a useful approximation 

for initializing the algorithm because the interleavers at the transmitter serve to decorrelate 

the symbols as they appear at the input to the channel. 

The posterior probabilities computed by the STSO MUD will then be used as prior 

probabilities in the next step of the algorithm, which makes use of the bank of singleuser 

channel decoders. 



The eutput zk[t] can be well approximated by Gaussian distribution [2]. 

(0) with Pk,t = (Ck 9 k ) H ~ k , t  and Yk,t = pk, t  - )Ipk,tI l 2  Keeping in mind that zk[t] is the function 

of xk[t] byzk[t] = (wk,t) Hyk [t]. 'LL'k,t is the function of MMSE criterion 121. 

Before applying channel decoding, however, the symbols must be de-interleaved to 

return them to their correct order for decoding. This de-interleaving has the approximate effect 

of removing any correlations that are introduced into the channel symbols by conditioning 

en the observations y in the SISO MUD. Thus, after SISO MUD and de-interleaving, the 

channel symbols can again be assumed to be independent of one another, but now having 

marginal (i.e.. individual) probability distributions determined by the probabilities computed 

by the SISO MUD. This probability model becomes the prior probability model used by 

the SISO channel decoders, which compute (via, say, the BCJR algorithm) corresponding 

pesterior probabilities for both the channel and data symbols. 

These posterior probabilities for the data symbols could, at this point, be used to MAP 

decode the data symbols. This would correspond to a conventional receiver approach based 

en MUD followed by decoding. However, a more powerful receiver results by re-interleaving 

the channel symbols at the output of the decoders and returning to the SISO MUD, now 

using as a prior distribution the posterior channel-symbol probabilities computed by the 

SISO decoders. The SISO MUD then refines its estimates of the posterior probabilities of the 

symbol probabilities and hands them back to the channel decoders after de-interleaving again. 

This process of softinformation exchange between the SISO MUD and the STSO decoders can 

continue until the posterior channelsymbol probabilities converge to stable values, at which 

point the data symbols can be MAP decoded via the data symbol posterior probabilities 

computed on the last application of the SISO decoding algorithm. The constituents of this 

process, namely MAP MUD and MAP decoding, are well known, and thus details are omitted 

for the sake of brevity. (Explicit equations can be found in 151.) 

From this description, it can be seen that the interpretation of the multiuser detector as 

a posterior-probability calculator is an essential philosophical underpinning of this approach. 

Unlike the case with turbo decoding, however, in which the complexity of the constituent 

decoders is controlled by the system designer, the complexity of the STSO multiuser detector . . 
used in this turbo rnultiusdr detector is dependent on the number of users in the channel and 

is thus beyond the designer's immediate control. Thus, although the 0 ( 2 K V )  complexity of 

optimal joint detection and decoding noted in [9] is reduced to O(2' )  + 0 ( 2 K )  via the turbo 

principle, the second term in this complexity order is prohibitive for most applications, as 

noted previously. 



CHAPTER 111 

THE PROPOSED FRAMEWORKS 

In this chapter, a mathematical closed form for computational probability density 

estimation Minimum Kullback-Leibler (MKL) were proposed for improving the iterative 

multiuser performance. This dissertation first proposed the frameworks MKL multiuser 

detector and channel estimator that is designed to combine the virtual trellis corresponding 

to each user's symbols channel delay. 

3.1 Variational Bayes (VB) of the Distribution Approximation 

In signal processing, as in all quantitative sciences, we are concerned with observation 

data, Y and we will model the data parametrically, so that a set, I9 , of unknown parameters 

describes the data-generating system. In deterministic problems, knowledge of I9 determines 

Y under some notional rule, Y = g(0). This accounts for very few of the data contexts in 

which we must work. In particular, when Y is information-bearing, then we must model the 

uncertainty (sometimes called the randomness) of the process. The defining characteristic of 

Bayesian methods is that we "se probabilities to quantify our beliefs amid uncertainty, and the 

calculus of probability to manipulate these quantitative beliefs [42]- [44]. Hence, our beliefs 

about the data are completely expressed via the parametric probabilistic observation model, 

P(Yl0). In this way, knowledge of I9 determines our beliefs about Y, not Y themselves. 

In practice, the result of an observational experiment is that we are given Y, and our 

problem is to use them to learn about the system summarized by the unknown parameters, I9 
which generated them. This learning amid uncertainty is known as inductive inference [441, 

and it is solved by constructing the distribution P(I9lD), namely, the distribution which 

quantifies our a posteriori beliefs about the system, given a specific set of data, D. The 

simple prescription of Bayes'rule solves the implied inverse problem 1451, allowing us to 

reverse the order of the conditioning in the observation model, P(YII9): 

Bayes* rule specifies how our prior beliefs, quantified by the prior distribution, P(I9), 

are updated in the light of Y. Hence, a Bayesian treatment requires prior quantification of our 

beliefs about the unknown parameters, I9 , whether or not I9 is by nature fixed or randomly 

realized. The signal processing community, in particular, has been resistant to the philosophy 

of strong Bayesian inference [44], which assigns probabilities to fixed, as well as random, 

unknown quantities. Hence, they relegate Bayesian methods to inference problems involving 



only random quantities [461- [471. 

Tractability is a primary concern to any signal processing expert seeking to develop 

a parametric inference algorithm, both in the off-line case and, particularly, on-line. The 

Bayesian approach provides P(8IY)  as the complete inference of 8, and this must be 

manipulated in order to solve problems of interest. For example, we may wish to concentrate 

the inference onto a subset, d l ,  by marginalizing over their complement, 02: 

A decision, such as a point estimate, may be required. The mean a posteriori estimate 

may then be justified: 

8 i =  O ~ P ( O ~ I Y ) ~ B ~  J (3.3) 

ei 

The integrations required in (3.2)-(3.3) will often present computational burdens 

that compromise the tractability of the signal processing algorithm. 

An tractability example of parameters estimation, let we consider the moments of the 

posterior distribution i.e. the expected or mean value of known functions, g(8)  , of the 

parameter will be denoted by 

In general, we will use the notation ij ( 8 )  to refer to a posterior point estimate of g  ( 8 ) .  if 
g(8)  = 8, posterior mean is (3.3). The posterior mean (3.4) is only one of many decisions 

that can be made in choosing a point estimate, ( O ) ,  of g  ( 6 ) .  Bayesian decision theory I3 11 

allows an optimal such choice to be made. The Bayesian model, P ( 8 ,  Y )  is supplemented by 

a loss function, L(g ,  3 )  E [0, oo) , quantifying the loss associated with estimating g = g(6)  

by tj = i j (8) .  The minimum Bayes risk estimate is found by minimizing the posterior 

expected loss, 

The quadratic loss function . L(g,  3) = (g ( 6 )  - 3 ( o ) ) ~  Q (g  ( 6 )  - 3 ( 8 ) )  . Q positive 

definite, leads to the choice of the posterior mean (2.7). Other standard loss functions lead to 

other standard point estimates, such as the maximum and median a posteriori estimates [581. 

The Maximum a Posteriori (MAP)  estimate is defined as follows: 

O M A P  = arg max P(61Y) 
e 

(3.6) 



In  the special case where P(8)  = const., i.e. the improper uniform prior, then 

B l v ~ ~  = arg max P(8IY) 
e 

- - arg max P ~ Y I ~ ) P ( ~ )  
0 P ( Y )  

- - arg m a  w'lw'(e> 
e J P(Yle)P(e)de 

8' 

tx arg max P ( Y  19) 
0 

tx BML = arg max 1 (BIY) 
0 

Here, o M L  denotes the Maximum Likelihood (ML) estimate. M L  estimation [59] is the 

workhorse of classical inference, since it avoids the issue of defining a prior over the space 

of possibilities. In this chapter, we will review some of the approximations which can help 

to address these problems, but the aim of this book is to advocate the use of the Variational 

Bayes (VB) approximation as an effective pathway to the design of tractable signal processing 

algorithms for parametric inference. These VB solutions will be shown, in many cases, to 

be novel and attractive alternatives to currently available Bayesian inference algorithms. 

The central idea of the VB method is to approximate P(81Y). ab initio, in terms of 

approximate marginals: 

In essence, the approximation forces posterior independence between subsets of 

parameters in a particular partition of 8 chosen by the designer. The optimal such 

approximation is chosen by minimizing a particular measure of divergence from . P ( 8 1 ~ )  

to P(BIY), namely, a particular Kullback-Leibler Divergence (KLD), which we will call 

KLDcpB 
The Kullback-Leibler Divergence (KLD) provides objective statistical indicators for 

the difficulty in discriminating between two statistical hypotheses [29]. In addition to 

this role as a discrimination measure between probabilistic models, KLD is a fundamental 

quantity in information theory-all information quantities can be derived from it 1341, 1351, 

and it is fundamental for characterizing the rate function, which reflects the exponential 

rate of convergence of empirical measures to their probabilities (Sanov's theorem), in large 

deviations [36]. On the application side, Kullback-Leibler Divergence (KLD) has been 

widely used to compare probabilistic models from a discrimination point of view, and to 

globally evaluate the inherent discrimination complexity [37] and the feature space quality 

in pattern recognition. These are some of the reasons that explain its wide use in the context 

of classification based on statistical decision theory [38]- [41]. 



In practical tern, functional optimization of (3.9) yields a known functional form 

for P(&(Y) and P(B~(Y),  which will be known as the Variational Bayes (VB)-marginals. 

However,the shaping parameters associated with each of these Variational Bayes (VB)- 
marginals are expressed via particular moments of the others. Therefore, the approximation 

is possible if all moments required in the shaping parameters can be evaluated. Mutual 

interaction of VB-marginals via their moments presents an obstacle to evaluation of its shaping 

parameters, since a closed-form solution is available only for a limited number of problems. 

However, a generic iterative algorithm for evaluation of VB moments and shaping parameters 

is available for tractable VB-marginals (i.e. marginals whose moments can be evaluated). 

This a1gorithm.reminiscent of the classical Expectation-Maximization (EM) algorithm will be 

called the Iterative Variational Bayes (IVZ?) algorithm in this book. Hence, the computational 

burden of the VB-approximation is confined to iterations of the IVB algorithm. The result 

is a set of moments and shaping parameters, defining the VB-approximation (3.8). 

The Variational Bayes (VB) method of approximation is one of many techniques for 

approximation of probability functions. In the VB method, the approximating family is taken 

as the set of all possible distributions expressed as the product of required marginals, with 

the optimal such choice made by minimization of a Kullback-Leibler Divergence (KLD). 

The following are among the many other approximations deterministic and stochastic that 

have been used in signal processing: 

Point-based approximations: examples include the Maximum a Posteriori (MAP) and 

ML estimates. These are typically used as certainty equivalents [48] in decision 

problems, leading to highly tractable procedures. Their inability to take account of 

uncertainty is their principal drawback. 

Local approximations: the Laplace approximation 1491, for example, performs a 

Taylor expansion at a point, typically the ML estimate. This method is known to the 

signal processing community in the context of criteria for model order selection, such 

as the Schwartz criterion and Bayes' Information Criterion (BIC), both of which were 

derived using the Laplace method [491. Their principal disadvantage is their inability 

to cope with multimodal probability functions. 

Spline approximations: tractable approximations of the probability function may 

be proposed on a sufficiently refined partition of the support. The computational 

load associated with integrations typically increases exponentially with the number of 

dimensions. 

Maximum Entropy (MaxEnt) and moment matching: the approximating distribution 

may be chosen to match a selected set of the moments of the true distribution [50] .  

Under the MaxEnt principle [331, the optimal such moment-matching distribution is 

the one possessing maximum entropy subject to these moment constraints. 



Empirical approximations: a random sample is generated from the probability func- 

tion, and the distributional approximation is simply a set of point masses placed at 

these independent, identically-distributed (i.i.d.) sampling points. The key technical 

challenge is efficient generation of i.i.d. samples from the true distribution. In recent 

years, stochastic sampling techniques 1511 particularly the class known as Markov 

Chain Monte Carlo (MCMC) methods [52] have overtaken deterministic methods as 

the golden standard for distributional approximation. They can yield approximations 

to an arbitrary level of accuracy, but typically incur major computational overheads. It 

can be instructive to examine the performance of any deterministic method-such as 

the VB method- in terms of the accuracy-vs-complexity trade-off achieved by these 

stochastic sampling techniques. 

The VB method has the potential to offer an excellent trade-off between computational 

complexity and accuracy of the distributional approximation. This is suggested in Fig. 3.1. 

The main computational burden associated with the VB method is the need to solve iteratively 

via the IVB algorithm a set of simultaneous equations in order to reveal the required moments 

of the VB-marginals. If computational cost is of concern, VB-marginals may be replaced 

by simpler approximations, or the evaluation of moments can be approximated, without, 

hopefully, diminishing the overall quality of approximation significantly. This pathway of 

approximation is suggested by the dotted arrow in Fig. 3.1 , and will be traversed in some 

of the signal processing applications presented in chapter. Should the need exist to increase 

accuracy, the VB method is sited in the flexible context of Mean Field Theory, which offers 

more sophisticated techniques that might be explored. 

3.2 How to Choose a Distributional Approximation 

It will be convenient to classify all distributional approximation methods into one of 

two types: 

First : Deterministic distributional approximations: the approximation, P ( 8 1 ~ )  (3.8), is 

obtained by application of a deterministic rule; i.e ~ ( 8 1 ~ )  is uniquely determined by 

P(BIY) . The following are deterministic methods of distributional approximation: 
(i) certainty equivalence 1481, which includes maximum likelihood and Maximum a 

posteriori (MAP) point inference [53] as special cases; (ii) the Laplace approximation 

[54] (iii) the Maximum Entropy (MaxEnt) approximation [55], [56] and (iv) fixed-form 

minimization [50]. 

Second : Stochastic distributional approximations: the approximation is developed via a 

random sample of realizations from P(BIY) . The fundamental distributional approx- 

imation in this class is the empirical distribution from nonparametric statistics [57]. 

The main focus of attention is on the numerically efficient generation of realizations 
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Figure 3.1 An transmitter and receiver structure 

from P(8IY) . An immediate consequence of stochastic approximation is that . 

~ ( 8 1 ~ )  will vary with repeated use of the method. We briefly review this class of 

approximations in this chapter. Our main focus of attention will be the Variational 

Bayes (VB) approximation, which as we will see in dissertation is a deterministic, 

free-fonn distributional approximation. 



3.2.1 Distributional Approximation as an Optimization Problem 

In general, the task is to choose an optimal distribution, ~ ( O I Y )  E F,, from the space, 

F, of all possible distributions. P(BIY) should be (i) tractable;. and (ii) "close" to the true 

posterior P(OIY), in some sense. The task can be formalized as an optimization problem 

requiring the following elements: 

1. A subspace of distributions. Fc C F, such that all functions,~(O1~) E F,, are regarded 

as tractable Here, p(f31~) denotes i? "wildcardhor candidate tractable distribution from 

the space PC. 

2. A proximity measure,A P(8IY)II ~ ( 9 1 ~ ) )  , between the true distribution and any ( 
tractable approximation. A (P(BIY)(I  ~ ( 9 1 ~ ) )  must be defined on F x F,, such that 

it accept two distributions, P(81 Y) E F, and p(O1 Y) E F,, as input arguments, yield a 

positive scalar as its value, and have ~ ( O I Y )  = P(O(Y) as its (unique) minimizer.Then, 

the optimal choice of the approximating function must satisfy 

P(B[Y) = argmin A(P(OlY)II ~(OIY))  (3.13) 
P ( ~ ~ Y ) E F =  

where we denote the optimal distributional approximation by P ( o ~ Y )  

32.2 .The Bayesian Approach to Distributional Approximation 

From the Bayesian point of view, choosing an approximation , ~ ( B I Y )  (3.9). can be 

seen a$ a decision-making problem (3.4). Hence, the designer chooses a loss function (3.1 3) 

measuring the loss associated with choosing each possible ~ ( O J Y )  E PC, when the true 

distribution is P(B1Y). In 1601, a logarithmic loss function was shown to be optimal if we 

wish to extract maximum information from the data. Use of the logarithmic loss function 

leads to the KuUback-Leibler (KL) divergence [29] (also known as the cross-entropy) as 

an appropriate assignment for A in (3. I 3): 

The Kullback-Leibler (KL) divergence from P(OI Y) to ~(OIY) is defined as: 

It has the following properties: 

I .  KL (P(B(Y)JI ~ ( 9 1 ~ ) )  2 0. 



2. K L  ( P ( B I Y ) I I  ~ ( 0 1 ~ ) )  = 0 iff P(0IY) = B(BIY)  almost everywhere. 

3. KL ( P ( B I Y )  ( 1  ~ ( 0 1  Y ) )  = m iff on a set of a positive measure P(0IY) > 0 and 

P(e1y) = 0. 

4. KL  ( P ( B ( Y ) I I  ~ ( 6 ' 1 ~ ) )  # K L  ( P ( B I Y ) I I  ~ ( 0 1 ~ ) )  in general, and the KL divergence 

does not obey the triangle inequality. 

Given 4, care is needed in the syntax describing KL(.). We say that (3.15) is from P(O(Y) to 

~ ( B I Y ) .  This distinction will be important in what follows. For future purposes, we therefore 

distinguish between the two possible orderings of the arguments in the KL divergence: 

KL divergence for Minimum Risk ( M R )  calculations, as defined in (3.15): 

KL divergence for Variational Bayes (VB) calculations: 

The notations KLDMR and KLDVB imply the order of their arguments, which are, therefore, 

not stated explicitly. 

3.2.3 The Variational Bayes (VB) Method of Distributional Approximation 

The Variational Bayes (VB) method of distributional approximation is an optimization 

technique with the following elements: The space of tractable distributions Fc is chosen as 

the space of conditionally independent distributions: 

A necessary condition for applicability of the VB approximation is therefore that 8 be 

multivariate. The proximity measure is assigned as (3.17): 

. Since the divergence, KLDILfR (3.15),(3.16), is not used, the VB approximation, P(B(Y) ,  
defined from (3.2) and (3.8). is not the minimum Bayes risk distributional approximation. 

A schematic illustrating the VB method of distributional approximation is given in 3.2. 

3.3 Other .Deterministic Distributional Approximations 

331 The Certainty Equivalence Approximation 

In many engineering problems, full distributions P(c9IY) are avoided. Instead, a point 

estimate, 8, is used to summarize the full state of knowledge expressed by the posterior 



conditionally independent 

true posterior distribution 

approximations j 
VB approximation 

minimum Bayes risk approximation 

Figure 3.2: Schematic illustrating the VB method of distributional approximation. The 

minimum Bayes' risk approximation is also illustrated for comparison. 

dktribution The point estimate, 8 = J(Y), can be interpreted as an extreme approximation 

of the posterior distribution, replacing P(0IY) by a suitably located Dirac 6 function: 

where 6 is the chosen point estimate of parameter 8. The approximation (3.20) is known as 

the certainty equivalence principle [30 1, and we have already encountered it in the QB (Quasi- 

Bayes) and EM (Expectation-Maximization) approximations for next section. It remains 

to determine an optimal assignment for the point estimate. The Bayesian decision-theoretic 

framework for design of point estimates was mentioned, where, also, popular choices such 

as the MAP, ML and mean a posteriori estimates were reviewed. 

33.11 The Quasi-Bayes (QB) Approximation 

Let we rewrite the KL divergence in (3.17) of the model parameters 8 = [el? 021 as 

follows : 



We note that the second term in (3.21) is KL P(9(Y) P(9)Y) . which is minimized for 

the restricted assignment 
- II ) 

P(e,pr) = P(eIY)del J (3.22) 

i 

i.e. the exact marginal distribution of the joint posterior P(9IY). The global minimum of 

(3.21) with respect to p ( 9 2 1 ~ )  is not reached for this choice, since the first term in (3.21) is 

also dependent on p ( 1 3 ~ 1 ~ ) .  Therefore we consider (3.22) to be the best analytical choice 

far the restricted assignment, ~ ( B ~ I Y ) ,  that we can make. It is also consistent with the 

minimizer of KLDhfR. From (3.49) and (3.22), the Quasi-Baycs (QB) approximation is 

therefore 

p(g l ly )  = ~ X P  ( E P ( ~ ( Y )  [In (P(9, Y))]) (3.23) 

The name Quasi-Bayes (QB) was first used in the context of finite mixture models [32], 

to refer to this type of approximation. In [50], the marginal for el was approximated by 

conditioning the joint posterior distribution on &, which was assigned as the true posterior 

mean of 92: 

82  = E P ( o ~ Y )  [&I (3.24) 

In this case, therefore, the approximation is the following conditional distribution: 

3.3.1.2 The Expectation-Maximization (EM) Algorithm 

The Expectation-Maximization (EM) algorithm is a well known algorithm for Maxi- 

mum Likelihood (ML) estimation and extension for MAP estimation of subset'2 of the model 

parameters B = [el, 921. Here, we follow an alternative derivation of EM via distributional 

approximations. The task is to estimate parameter 82 by maximization of the (intractable) 

marginal posterior distribution: 

82 = arg max p(e2 1Y) 
e2 

This task can be reformulated as an optimization problem for the constrained distributional 

family: 

F, -- {p(ol, 021y) : P(BI, 9 ~ 1 ~ )  = P ( B ~ I B ~ .  y)6(g2 - 822)) (3.27) 

Here, 6(.) denotes the Dirac 6-function, 

if x E X is a continuous variable, and the Kronecker function, 



if x is integer. We optimize over the family F, with respect to KLDve. Hence, we recognize 

that this method of distributional approximation is a special case of the VB approximation, 

with the functional restrictions ~ ( 6 ' ~  (Y) = P(O11e2, Y) and P ( & ~ Y )  = 6(02 - e2). The 

functional optimization for P ( O ~ ~ Y )  is trivial since in all moments and expectations with 

respect to 6(02 - 82) simply result in replacement of O2 by 82 The resulting distributional 

algorithm is then a cyclic iteration (alternating algorithm) of two steps: 

E-step: Compute the approximate marginal distribution of 6'2, at iteration 2: 

M-step: Use the approximate marginal distribution of O1 from the E-step to update 

the certainty equivalent for 6'2 : 

In the context of uniform priors (i-e. ML estimation), it was proved in [61] that this algorithm 

monotonically increases the marginal likelihood, P(Y lo2), of 6'2, and therefore converges to 

a local maximum [61]. 

332 The Laplace Approximation 

This method is based on local approximation of the posterior distribution, P(6'IY) , 

around its MAP estimate, 8, using a Gaussian distribution. Formally, the posterior distribution 

is approximated as follows: 

P(8lY) % N (8, H-l) (3.32) 

is the MAP estimate (3.4) of 6' E WP and H E R p x p  is the (negative) Hessian matrix of the 

legarithm of the joint distribution, P(B, Y) . with respect to 6' evaluated at 6' = 8: 

The asymptotic error of approximation was studied in [491. 

333 The Maximum Entropy (MaxEnt) Approximation 

The Maximum Entropy Method of distributional approximation is a freeform method 

in common with the VB method, since a known distributional form is not stipulated a priori. 

Instead, the approximation P(6 '1~)  E IFc is chosen which maximizes the entropy, 



constrained by any known moments 

In the context of MaxEnt, (3.35) are known as the mean constraints. The MaxEnt distributional 

approximation is of the form 

where the ai are chosen using, for example, the method of Lagrange multipliers for constrained 

optimization.to satisfy the mean constraints (3.35) and the normalization requirement for 

P ( 8 1 ~ )  . Since its entropy (3.3.3) has been maximized, (3.36) may be interpreted as the 

smoothest (minimally informative) distribution matching the known moments of f (3.35). 

The MaxEnt approximation has been widely used in  solving inverse problems [62]- [63] 

notably in reconstruction of non-negative data sets, such as in Burg's method for power 

spectrum estimation [64] and in image reconstruction [65]. 

3.3.4 Stochastic Distributional Approximations 

A stochastic distributional approximation maps f to a randomly-generated approxi- 

mation, ~ ( B ( Y ) ,  in contrast to all the methods we have reviewed so far, where p ( 8 1 ~ )  

is uniquely determined by P(81Y) and the rules of the approximation procedure. The 

computational engine for stochastic methods is therefore the generation of an independent, 

identically-distributed (i.i.d.) sample set (i.e. a random sample), 

The posterior moments (3.35) of P(81Y) under the empirical approximation (3.37) are 

therefore 

Note that marginal distributions and measures are also generated with ease under approxi- 

mation (3.37) via appropriate summations. 

For low-dimensional 8 it may be possible to generate the i.i.d. set {8), using 

one of a vast range of standard stochastic sampling methods. The real challenge being 

addressed by modem stochastic sampling techniques is to generate a representative random 

sample (3.37) for difficult notably high dimensional distributions. Markov Chain Monte 

Carlo (MCMC) methods refer to a class of stochastic sampling algorithms that generate a 



correlated sequence of samples 8(O) 8(') . . . { 8(*) . . . ) . from a fist-order (Markov) 

kernel, P(B(~))IB(~-' ) ,  Y). For mild regularity conditions on P(.l.) then B ( ~ )  - PS(B1Y) 
and k - oo where dk) N Ps(8[Y)  is the stationary distribution of the Markov process 

with this kernel. This convergence in distribution is independent of the initialization , B ( O ) ,  

of the Markov chain. Careful choice of the kernel can ensure that Ps(BIY) = P(81Y). 
Hence, repeated simulation from the Markov process, i = 1,2,. . . , with n sufficiently large, 

generates the required random sample (3.37) for construction of the empirical approximation 

(3.37). Typically, the associated computational burden is large, and can be prohibitive in 

m.es of high-dimensional 8. Nevertheless, the very general and flexible way in which 

MCMC methods have been defined has helped to establish them as the golden standard 

for (Bayesian) distributional approximation. In the online scenario, sequential Monte Carlo 

techniques, such as particle filtering, have been developed for recursive updating of the 

empirical distribution (3.37) via MCMC-based sampling. 

3.4 Signal Decomposition Model 

The problem of parameter estimation for separable signals is encountered in a wide 

range of signal processing, sonar, and communication applications. Most such problems can 
K 

be posed using the following measurement model T = ~ X ~ .  In [16, pp.2670-267 11 and [28], 
k=1 

the SAGE algorithm for the special case of separable signal in Gaussian noise suggests a 

specific way to decompose observation,vector (2.6) into a number of signal components. 

The set of each decomposed signal component5 is so called admissible hidden data space. 

Following [28], we assume the received signal is separable and comprises of a set of variables 

of an admissible hidden data space. Specifically we formulate the following equation. 

The noise vectors wk[t] are mutually independent circular Gaussian, with covariance = 

Dko2. where ,that is defined in [28], is a scalar probability. The Pk is a free parameter 
I< 

satisfying 0 5 Pk 5 1, such that Pk = 1 . In principle SAGE algorithm [I61 and [28], 
k=l 

the separable signal can be estimated by 



(a) Virh~al trellis representing IS1 (L=2) (b) Virtual trellis representing IS1 (L=3) 

Figure 3.3 Virtual Trellis Diagram Based on Signal Decomposition 

35 Virtual Trellis Diagram Based on Signal Decomposition 

To generate the extrinsic information by using the BCJR algorithm [25] for the 

separable signal, we first focus on a particular kt" separable signal xk[t]  in (3.40). The 

informations &,t = (bk [t - L + 11, . . . , bk[t - I ] ,  bk[t])  bits of D k ( b , t )  are composed 

of the signal xk[ t ] .  Without encoding, the information h,t of Dk(&,t) are modeled 

as corresponding output of virtual trellis that cause the state translation from Sk,t-l = 

( b k [ t - L + l ] b k [ t - L + 2 ]  . . .  bk[t-11 ) t o S k , t = (  b k [ t - L + 2 ] b k [ t - L + 3 ]  . . .  bk[t] ) 
as shown in Fig 3.3. In this technique, Markov model representing the [SI channel with 

2(L-1) states is combined with each one of separable signal xk[ t ] .  The calculation of the 

extrinsic information utilized for each separable signal xk[l]  is obtained by applying the 

BCJR algorithm via the virtual trellis representing the IS1 channel. 

3.6 Iterative Receiver Structure 

The block diagram of transmitter and receiver model is shown in Fig. 3.4. The 

binary information {uk [ i ] )  for user k,  k  = 1 ,  . . , K are convolutionally encoded by a single 

convolution encoder with code rate Rk. The code bits {bk [m] )  are interleaved and nlapped 

to BPSK symbols stream. Each data symbol { b k [ i ] )  is modulated by a spreading waveform 

sk ( t )  [211 and transmitted through the multipath channel. The received signal vector r[t]  
at the receiver is the superposition of K user signals plus additive white Gaussian noise, 

which is defined in section 2.1. In the coded communication systems, the iterative receiver 

structure often makes use of turbo principle [2]- [I31 to reduce the loss of information and 

performance. The receiver structure under consideration is a iterative receiver as shown in 

Fig 3.4. It consists of two states the Minimum Kullback-Leibler (MKL) multiuser detector. 

followed by K parallel channel decoders. The two states are separated by deinterleavers 

and interleavers. The MKL multiuser detector computes both iterative channel estimation 
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and extrinsic probability approximation for each separable signal xk[t] by using MKL 

algorithm and virtual trellis model. The extrinsic probability PM h[t]1~:') employed 

in MKL multiuser detector is the modified BCJR algorithm [25 ]  for numerical Minimum 

Kullback-Leibler solution (please see section 5. and appendix A). 

The extrinsic information PM &[t]lxtL) at the current (n)lh iteration is deinterleaved and ( 
.delivered to the kth channel decoder. Each user's channel decoder base on MAP decoding 

. algorithm [I)], f.251. It computes the extrinsic information Pd (C1[t] I deck)  for each kth 
user encode bits and the information is fed to the MKL multiuser detector as as priori 

information for (n + l ) t h  iteration. Then, the next iteration the MKL multiuser detector will 

receive data with more accurate prior information about the transmitted symbols. 



3.7 Minimum Kullback-Leibler Based Parameter Estimation 

The MKL multiuser detector developed in this paper base on Minimum Kullback- 

Leibler algorithm [291, [30] for numerical Bayesian distributional approximation. In our batch 

processing, we denote the observation corresponding to AI time slot Y = { r [ l ] ,  . . . , r[Al]). 

[ 
T 

Let 8 = e l ,  82,- - . , 8d] be the vector of unknown parameters. Suppose that we are 

interested in finding estimation of 6. Based on the condition mean estimator [31], the 8, is 

given by E [ O j  1 y]=J O j  P[8, lY]dBj. The a posteriori marginal distribution of Oj, conditional 

on the observation data Y i.e.PIBjlY], is important for finding jj. Direct calculation is 

performed by integrating the joint a posteriori distribution P[81Y] over the rest of the 

parameters and in most case it is difficult to do analytically. The basic idea behind the 

MKL algorithm is the minimization of Kullback-Leibler divergence for variational Bayes 

KLDvB between the true P(81Y) and choosing each possible approximation P ( 8 1 ~ ) .  The 

Kullback-Leibler divergence between true P(8IY) and approximation P(8Iy) (also known 

as the cross-entropy) is defined by non-negative cost function as follows: 

A strategy for the MKL algorithm is to choose possible ~ ( 8 1 ~ )  with a suitable form close 

to the true a posteriori P(81Y). The task can be formalized as an optimization problem. A 
A 

logarithmic loss function (3.42) was shown to be optimal ,i.e., f ' ( 8 1 ~ )  =P(BIY). Tf we wish 

to minimum information of loss data (3.42). Then, the minimum of KLDVB is 

f ' ( 1 9 l ~ )  = arg min I ~ L ( P ( ~ ( Y ) ( (  P ( ~ ( Y ) )  
P(@lY) 

However, in some case the true a posteriori distribution P(81Y) is often computationally 

intractable, especially in higher dimensions 8. This problenl can be overcome by approx- 

imating the true a posterior distribution P(8IY) by a distribution that is computationally 

tractable P(8lY). 

For the a posteriori distribution approximation ~ ( O I Y )  discussed above, the task is to 

choose an optimal distribution P ( 8 1 ~ )  by minimizing I<LDLrB in (3.43). Let distribution 

approximation ~ ( 8 1 ~ )  restrict to the set of conditionally independent for 82, ..., Od. 

Then, the minimum of I(LDvB for a posteriori marginal distribution ~ ( 8 ~ 1 ~ )  is 

~ ( 8 ~ 1 ~ )  = arg min K L ( P ( O ( Y ) (  (P (o (Y ) )  
Ptej ly) 



Using this strategy in ( 3 . 43 ,  we can compute P(B,-IY) by minimizing the KLDvB cost 

function. 

Only the first term on the right-hand side of (3.46) is dependent on P(ej ly) .  Hence, 

minimization of (3.46) with respect to P(Bj(y). keeping P (Bb(y) fixed is achieved by 

minimization of the first term. Invoking non-negativity property [30] of KLDErB on the 

first term of (3.46), the minimizer is almost surely that 

where BV denotes the complement of 8, in 8. Note that \ denote the exclusive operator. To 

estimate any a posteriori marginal distribution using the MKL algorithm. let we given the 

samples at iteration ( I )  



The P(O('+')~Y) is estimated from the following step 

3.8 Prior Distribution 

In principle, the prior distributions are used to incorporate the prior knowledge about the 

unknown parameters. Prior should be employed when such knowledge is limited. For MKL 

algorithm, we need to be able to compute a posteriori marginal probability distribution from 

prior and conditional posteriori distributions. A well-known strategy for MKL computation 

is to choose the prior distribution with a suitable form so that the posteriori belong to be the 

same function family as prior. The prior and posteriori are then said to be conjugated [33]. 

The choice of functional family depends on likelihood. We will use this conjugate prior 

strategy throughout the paper. 

1. For unknown channel g k ,  a complex Gaussian prior distribution is assumed P[gk] - 
N ( ~ ; ) ,  z g k ( O ) ) ) .  

2. For the noise variance a:, an inverse chi-square prior distribution is assumed 

exp(*') X-2 (a(k,o), ~ ( k . 0 ) ) .  PC:] - uk 

3.9 The Turbo Minimum Kullback-Leibler Multiuser Detector 

Let us further defining the parameters 8 = [el ,  d 2 , .  . . , O K ]  with set Ok = { g k ,  Bk, a:) 
M 

,Bk = {bk[t]),=o and a: = ,&a2. The complement of bk[t]  in Bk is Bk\bkItl = 

Bk\bk[i]- The MKL multiuser detector is an efficient method to find a posteriori dis- 

tribution P [ B ( ~ ) ~ Y ~ ~ ]  given by observation YM = { r [ l ] ,  . . . , r[M]) and previous estimation 
e(n-1) = [ey-l) , . . . , B$-')] parameters . In [161. the SAGE algorifhm suggests the special 

way to update parameters. First rather than updating all parameters simultaneously at 

iteration n, only a subset ek of 0 is updated while keeping the parameter in the complement 

Bje,  fixed. Second the concept of admissible hidden data space [ I  61 XA4 which depend only 

on Ok is selected for our algorithm. The incomplete data YM is related by mean of a possible 

nondeterministic mapping by XM + Y M ( X M )  for each ek. Let we define admissible hidden 



data space for kth parameter at iteration n by (3.40) 

zp' [ t]  = ~ ~ ( ~ ~ - 1 ) ) ~ p - l '  

wheri observation X : ~ ~ = { Z P )  [1] , sp) [2] , . . . , z f )  [A[ ]  } . Based on the Minimum Kullback- 

Leibler (MKL) notation in eq.(3.49), the a posteriori distribution approximation for the kth 
admissible hidden data space x F ~ ,  at iteration nth is given by setting 8 P )  = oP-') = 

{Br- ' ) ,  gt-l), o:(~-')}  and following operations 

(4 - (n-1) B(n) (,2("-1) 'pdate ' k  - { g k  > k 1 k } 
P(gP'lxt24) = 

(4 - Update ok - { g t ) ,  B ( ~ )  ~c , . k  C T ~ ( ~ - ' )  1 

('4 Update 6, = {g'") k ,@") ,% 2 ( 4 }  

P(eP) 1 xtL,) = P ( B ~ )  1 xi:A ) F ( g r )  1 F ( u ~ )  1 xtif) (3.5 1) 

where, the details for ~ n r ( b P )  [t] lxtif). P ( g r ) ~ ~ & )  and P ( o ~ ) I x ~ ' ~ )  in (3.5 1 ) are found 

in section 3.1 1 , 3.12 and 3.13 respectively. 

We next propose a combined Minimum Kullback-Leibler (MKL) algorithm in (3.51) and 

channel decoding, based on BCJR algorithm in Table 1. As shown in Fig. 3.4, the new 

detector is called the Minimum Kullback-Leibler-Based turbo multiuser detector. The MKL 

multiuser detector module is functionally as notation i n  eq.(3.5 I ) .  

3.10 Initialization of the MKL Algorithm 

The performance of the MKL algorithm is closely depends on the quality of the initial 

values of conjugate prior distribution. 

To estimate prior distribution, the data sequence is divided into a sequence of frame length 

M and pilot overhead of each frame known by user length hfb = 5. The initial conjugate 



priors are compute by the aid of pilot symbols. First, By assuming the perfect known pilot 

symbols, the initial conjugate priors P[gk] is computed by substituting known pilot symbols 

in (3.54). Second, the result of channel estimation and the known aid of pilot symbols 

are obtained to estimate conjugate priors P[o:] in (3.55). The initial data sequence B;) 
'40)  is simplified by linear MMSE estimation which is based on knowledge of gr) and ak . 

Finally, the initial conjugate priori algorithm,based on (3.54)-(3.59, is summarized in table 

2. 

3.11 Prove algorithm of probability distribution Pnf (bk[t] 1 XFL) 
In some engineering problems, the full stochastic distributions approximation are 

avoided due to intractable chosen P(Bk, x:if) bayesian model. Instead, the estimation 

points 8r- ' )  are used to summarize the full state of knownledge expressed by the joint 

distribution P(Bk, xtjf). The points estimation ,& = B P - l ) ,  can be interpreted as an extreme 

approximation replacing by Dirac 6-function form. 

The approximation in eq. (3.58) is known as certainty equivalence principle [30]. In order to 

exploit extrinsic information PA{ (h [t] 1 X ~ A )  for marginal distribution using MKL algorithm, 

we tin calculate by using the following expression ' 

Based on the certainty equivalence principle, we can utilize estimation points B(*-') for the 
k\bk[tl 

restricted marginal density function (3.59). Then, the density function for joint admissible 

hidden data space Xbf and Bk can be expressed as 

Substituting (3.60) back into (3.59), an expectation of function ln P(~[~]~B&-$x! ;? )  with 

nspcct to P(B!;;:! I X : ~ ~ )  simply result in replacement in p(bk[t] J B ~ ~ ~ X ~ ~ ~ ) .  Then, we 



obtain 

where Sk,t-1 = S' and SkYt = s are the states of the virtual trellis at time t-1 and t with 

corresponding output &,, of Dk(bk,,). Incorporating the modulation symbol bk[t] in virtual 

trellis in eq43.6 1 ), the summation of all ordered pairs (st, s) ,caused by bk [ t ] ,  is similar 

define bk[t]. According to the approach eq.(3.61), the BCJR algorithm [25] is revisited. 

Fmm our analysis, the recursive forward probability at (Sk t t )  = P(Sk,t  = s, x ~ Y : , )  and 

recursive backward probability &(Sk,t) = P ( x $ ~ ~ , ~ I s ~ , ~  = s )  can be formulated as 
follows [25] 

C at-l(Sk,t-l)?t(Sk,t, Sk,t-1) 

with initial condition ao(Sk,o) = 1/2(L-1) and boundary condition ,Ohf(Sk,M) = 1 / 2 ( ~ - ' ) .  
The probability cyt(Sk,t, Sk,t-l) is defined by 

The likelihood probability of admissible hidden data space x r ) [ t ]  is defined by 



Like turbo code 1261, the modified extrinsic information probability p A f ( b k [ t ] l ~ F L f )  on 

virtual trellis structure involves the information about bk[t]  without knowledge from priori 

information ~ ~ ( b r - ' ) [ t ] l d e c  k). Combining eq. L(3.62)-(3.65)l into (3.61), we obtain 

3.12 Prove algorithm of probability distribution P($) 1~:') 

The density function for joint admissible hidden data space XM and Bk can be expressed 

as 

Expanding (3.68) and taking the natural logarithm, we obtain 

Computational conditional probability of gk by 

With 



3.13 Prove algorithm of probability distribution P(O:(")IX?~~) 

Computational conditional probability of uz by 

P 1 .x$~) = [ lnp(&,  x;))]) 

With 



Table 3.1: Minimum Kullback-Leibler-Based Turbo Multiuser Detection For Separable 

DS-CDMA Signal algorithm 

* 
Initialization part : Set initial channel parameters by section 6. 

Pbk] -. N(g:D), Xgx(O))) 
-0 k.0) 

P[gt] - ($)("'""'-') IY - x-? (&(k,0), P(k,O)) 

Computation part : 

For Iteration index : n = 1, 2,3,. . . 
For User index : k = 1,2,. . . , K 

a Compute admissible hidden data space xPL by collection the observation xF '=  
{ l f ' [ l ] ,  5:"' [2] , . . . , Z p )  [MI  } 

XP)[t] = Dk(b$-l))gp-') 
k- 1 K 

(4 - C D ( n - ~ ) ) ~ p - l )  + p k  [t] - ~k (bC1)9k k @k,t I (3.52) [ l=l I=k 

set = {Bp-l) (n-l) (n-l)} 19k ,Ck 

a The MKL multiuser detector in Fig. 3.4 takes a prion informations 

{ ~ ~ ( b F - ' ) [ t ]  I deck) }fzl from kth channel decoder and B P - ~ )  in previous iteration 

(n-1) to compute a posterior probability P M ( $ ) [ J I x ~ ~ )  see (section 3.11). 

~ ~ ( b p ' [ t ]  I X ~ L )  = exp(E 
p(ek,bin-l ),tl lxt‘&) [ h P ( 8 k , ~ F ) ) ] )  (3.53) 

a Deinterleaving and feeding { ~ ~ ( b p ) [ t ] l ~ t i ~ )  }El as the extrinsic information to 

kth channel decoder (see Fig. 3.4). the kth convolutional channel decoder computes 

BCJR MAP decoding probability {pd(bp)[t] I deck) }fz, 1251 at current iteration (n). 

a The extrinsic information {pd(bP) [t] 1 deck) from kth convolutional channel 

decoder (see Fig. 3.4) is then interleaved and fed back to MKL Multiuser Detector as 

priori information a t  next iteration (n+l). 

a Upciatins BPI = {bpl[t] }El base on knowledge {Pd(bpl[t] 1 deck) }fzl and setting 
$4 = {g(n-l) 

k , BPI, o;"-l)}. 



, 

Computing conditional distribution g k  by (section 3.12) 

P(sP)Ix~L) = ex~(E, (~(~)  ,xy,) [ln P (h, xr))]) (3.54) 
k\$-l) 

Updating g r )  base on the condition mean estimator gP) = j g k ~ ( g k l ~ F L ) d g k  and 
Setting )= B(n) 2(n-l) 1 

k 9 k )*k 

Finally, Computing noise variance conditional distribution a: see (section 3.1 3). 

P(o:(~) 1 x:') = exp(E,(,(n) I-, [lnp(ek? x?))]) 
l(n-1) IXk,A4) 

(3.55) 
k\rk 

Updating a:(") base on the condition mean estimator by o:'") = , 
a(n) -1 

J a ~ ~ ( u ~ l ~ ~ , ~ ) d a ~  and setting $) = {g?), BPI, a:(n)}. 

(n-1) ' 

Updating ~ ( ~ ) = [ e r ) ~ .  . . 8p)~k;l)~. . -8, 1 . 

~ ( o P )  IXZL) = ~ ( B P )  ~ X ~ ' ~ ) p ( g p )  I X ~ ~ ~ ) P ( U ~ '  IX&) 
k K 

(n-1) P(o(~)~YM) = ~ P ( o ~ ) ~ x ~ , Z )  .n P(O~:-"~X,.,, ) (3.56) 
1=1 ll=k+l 

End : User index : k 
End : Iteration index : n 



Table 3.2 Initial Conjugate Priori Algorithm 

Initial value 9:) = o , c ~ L  = I , &") = 1 . Q ,, = 2 , P;, , = 0.1 
I , 

For Iteration index : n = 1, 2, . . .,20 

For User index : k = 1, .  . . , K 
Compute admissible hidden data space xFkb by collection the observation x,("Lb= 

{ XY [I ] ,  X p )  [2] , . . . , zF) [M~] } 

k- 1 K 

- C ~ ~ ( b ( ~ - ' ) ) ~ ~ - ' )  * , t  

l=k 

Compute initial of channel parameters priori P[gk] and P[az] 
Afb 

I 
C ~ O *  = C D k  ( b k , t I H D k  (bk,t )  

t=l 
C("-') (4 (-1) 9k- 

' g k *  = c,. c2F-1) Ck0*&k. (n-1) 

( 4  - (-1) 
( 4  M b  

9&* - 9k.  "k -  C D k ( b , t )  ( X ~ ' [ t ] - ~ k ( h , t ) g ~ - ~ ) )  . 
t= l  

O:k,n) = N M b  + aik,n-l) 
Mb 2 

= C llx?) [ t ~  - D k ( b k , t ) 9 E )  11 + P{ktn-l )  
t=l 

2 (n)  - P;k.n) 

Ck* Q;k ,n ) - l  

End; 

End; 

Setting initial conjugate priori (3.57) by 9; )  = c~E) , cK) = XZ:) 
2(0)  2(20) 

t = a&* * a ( k l ~ )  = a;&,20) 9 8(&,0)  = /3;k,20) 



CHAPTER IV 

SIMULATION RESULTS 

4.1 Simulation Results 

This section provides the simulation results to illustrate the performance of Minimum 

Kullback-Leibler (MKL) turbo multiuser detector in multipath fading channel. The multipath 

lengths for each user are L=2 and L=3. The fading coefficients are generated according 

to gk,l - N(O,l/P). The fading coefficients are assumed to remain constant over block 

of M=300 symbols. The pilot symbols overhead for each frame are Mb = 5. All users' 

spreading sequence are chose as a shot sequence with m-sequences N=15 and their shifted 

versions are employed. The maximum channel delay P is generated randomly with restriction 

P < N. The number of user is K=7. The channel code is a rate of 1/2 constraint length-5 

convolution code (with generators 23 , 35 in octal notation). The interleaver is generated 

randomly and fixed for all simulation. In comparison with other similar receiver, the 

joint turbo (LMMSE) iterative multiuser [I31 is selected with the same channel estimation 

algorithm (3.54)-(3.55). In this section, the three differen simulations are tested in order to 

demonstrate the performance of our proposed schemes. 

In Fig. 4.1 and 4.2, the performance results of iterative receiver in term of BER are 

presented for symbol channel delay L=2 and 3. Tn this case, initial channel estimation and 

iterative channel estimation algorithm are (3.54)-(3.55). The 20 iteration of turbo (LMMSE) 

multiuser detector are simulated and The 10 iteration Tubo MKL multiuser detector are 

compared. BER performance of our proposed detector reaches the convergence with a few 

iteration faster than turbo (LMMSE) multiuser detector. 

In Fig. 4.3,4.4 and 4.5, the quality of channel estimations are measured by the average 

normalized mean square error (NMSE) for both L=2 and L=3. This measurement% are 
I I S ( ~ ' - ~ ~ I I ~  compared with the estimation and tnme channel response given by NMSE, = E[*] 

11u2("'-aZ~~2 
and NMSEU2 = E[+] 

In Fig. 4.6 and 4.7, we demonstrate the performance of Turbo MKL multiuser detector 

and Turbo LMMSE multiuser detector by variation number of L. Growing number IS1 (L), 

the performance of LMMSE and soft interference cancelation will degradation. However, 

the increasing (L)- make the growing number of virtual Markov states and the IS1 channel 

representing parity check bits in virtual trellis. Thus, BER reaches convergence with a few 

iteration. 
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Figure 4.1: BER performance of The Tubo MKL multiuser detector and turbo (LMMSE) 

multiuser detector with L=2 



Figure 4.2: BER performance of The Tubo MKL multiuser detector and turbo (LMMSE) 

multiuser detector with L=3 

EbNO (dB) 

Figure 4.3: The normalized mean square error channel estimation of Turbo-MKL algorithm 

with various numbers of iteration 
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Figure 4.4: The normalized mean square error channel estimation of Turbo-LMMSE algorithm 

with various numbers of iteration 

Figure 4.5: The normalized mean square error of noise variance for Turbo-MKL algorithm 

with various numbers of iteration 
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Figure 4.6 BER performance of Turbo MKL multiuser with L=2 and L=3 
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Figure 4.7 BER performance of Turbo LMMSE multiuser with L=2 and L=3 



CHAPTER V 

CONCLUSIONS 

Following the framework of Minimum Kullback-Leibler (MKL) algorithm, this dis- 

sertation proposes the Minimum Kullback-Leibler-Based turbo multiuser detector based 

on a new concept of virtual trellis diagram representing the IS1 channels for each signal 

decomposition users. Based on virtual trellis model, the MKL multiuser module computes 

the numerical Bayesian extrinsic information in term of BCJR algorithm with complexity 

per iteration = 0(8KM2= + 4 ~ ~ 2 ( ~ - ' ) ) .  Compared with the complexity per iteration of 

conventional LMMSE turbo multiuser detector [I31 x 0 ( N 2 h f ) ,  the complexity per iteration 

of our MKL multiuser detector module is more than conventional LMMSE multiuser module. 

However, the BER performance of MKL multiuser detector improves rapidly in the first few 

iterations as one may expect from iterative decoding framework. say roughly 7th iteration 

for L = 2 and 3th iteration for L = 3 respectively. By integrating the iterative MKL 

channel estimation algorithm, the average complexity per iteration for channel vector gk is 

= 0 ( K M P L 2 )  and for noise variance is = o ( K N M ) .  
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AWGN 

BER 

BW 

CDMA 

CM 

DS 

EM 

IVB 

KL 

KLD 

KLDvs  
KLDMR 
LMMSE 

MA1 

MAP 

MaxEnt 

MCMC 

MKL 

ML 

MMSE 

MR 

MUD 

QB 
STSO 

SMC 

VB 

ZF 
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List of Abbreviations 

Additive White Gaussian Noise 

Bit Error Rate 

Bandwidth 

Code Division Multiple Access 

Channel Model 

Direct Sequence 

Expectation-Maximization 

Iterative Variational Bayes 

Kullback-Leibler 

Kullback-Leibler Divergence 

Kullback-Leibler divergence for Variational Bayes 

Kullback-Leibler divergence for Minimum Risk 

Linear Minimum Mean Square Error 

multiple access interference 

Maximum a Posteriori 

Maximum Entropy 

Markov Chain Monte Carlo 

Minimum Kullback-Leibler 

Maximum Likelihood 

Minimum Mean Square Error 

Minimum Risk 

Multiuser Detector 

Quasi-Bayes 

Soft Tnput Soft Output 

Sequential Monte Car10 

Variational Bayes 

Zero Forcing 
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