Results

Crude venoms

Thrombin Activity

Both T. popeorun and C. rhodostoma venom possess coagulant action, thrombin activity, direct fibrinogen clotting to fibrin. clots formed by the venom's action seemed to be more friable or dispersed and transparent than those formed by bovine thrombin. Their actions on fibrinogen solution (Table 1) and normal pool plasma (Table 2) were compared with thrombin (Table 3), as shown in Fig. 3 and

They
were
concentration-dependent,
higher concentrations of venom provided more fapid clotting time. On fibrinogen solution, T. popeorum venom gave mean clotting 9 time of 261.2 sed with denom concentration of $20 \mu \mathrm{~g} / \mathrm{ml}$, and reduced to 107 sec with concentration of $2,000 \mu \mathrm{~g} / \mathrm{ml}$, whereas C.rhodostoma venom gave mean clotting time of 121.5 sec with venom concentration of $1 \mu \mathrm{~g} / \mathrm{ml}$, and reduced to the plateau level at 4.0 sec with $500 \mu \mathrm{~g} / \mathrm{ml}$ or more of venom (Fig. 3). Similar effects were observed on normal pool plasma, except that Malayan pit viper venom

Table 1. Thrombin Activities of T. popeorum and C. rhodostoma Venoms on Fibrinogen Solution ($5 \mathrm{mg} / \mathrm{ml}$)

Table 2. Clotting Activities of T. popeorum and C. rhodostoma Venoms on Normal Pool plasma

Table 3. Coagulant Activities of Bovine Thrombin on Fibrinogen Solution ($5 \mathrm{mg} / \mathrm{ml}$) and Normal Pool Plasma

Figure 3. Fhrombin activities of T. Dopeorum $(0-0)$ and C. rhodostoma (-) venom on fibrinogen 99 solution $(5 \mathrm{mg} / \mathrm{mI}$, , compared with bovine thromin $(x-x)$. จุหาลงกรณ์มหาวิทยาลัย

Figure 4. Coagulant activities of T. popeorum $(0-0)$ and
 plasma, compared with bovine thrombin $(x-x)$. จุหาลงกรณมหาวททยาลย
produced more prolonged clotting time again from 9.7 sec to 11.5 sec or more with the venom concentration of more than $100 \mu \mathrm{~g} / \mathrm{ml}$. (Table 2, Fig. 4)

By parallel assay method approximately 3 mg of T. popeorum venom has an equivalent clotting activity of 1 N.I.H. unit of bovine thrombin, whereas only about $25 \mu \mathrm{~g}$ of whole venom for c. Shodostoma.

Fibrinolytic Activity

The fibrinolytic activities of T. popeorum and C.rhodostoma venoms were illustrated in Table 4, 5 and Fig. 5. Similar with thrombin activity, the fibrinolytic activities of both venoms were dose dependent. The mean lysed area were increased from $64^{\circ} \mathrm{co} 580 \mathrm{sq} \mathrm{mm}$ with T. popeorum venom concentration of 0.2 to $20 \mathrm{mg} / \mathrm{ml}$, as from 62 to $888,5 \mathrm{sq} \mathrm{mm}$ with 25 to $1000 \mu \mathrm{~g}$ per ml of c. rhodostomaquonom. 9 \&

Normal platelet aggregation patterns with various inducers : ADP, adrenaline, thrombin and collagen were shown in Fig. 6.

No direct platelet aggregating effects were seen, neither with T. popeorum venom concentration of $1.0-50 \mu \mathrm{~g}$

Table 4. Fibrinolytic Activity of T. popeorum Venom $(25 \mu \mathrm{l})$ on Fibrin Plate

ศูนย์วิทยทรัพยากร
จุหาลงกรณ์มหาวิทยาลัย

Table 5. Fibrinolytic Activity of C. rhodostoma Venom ($25 \mu \mathrm{l}$) on Fibrin Plate

Figure 5. Fibrinolytic activities of T. popeorum ($0-0$) and C. shodostoma (O)) crude venom.

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Figure 6. Platelet aggregation curves induced by various
inducers.
Platelet aggregation was measured turbidimetri-

$0.1 \mathrm{mg} / \mathrm{ml}$, (c) thrombin $0.25 \mathrm{unit} / \mathrm{ml}$, and (d)
per ml (Fig. 7), nor with C.rhodostoma venom concentration of $1.0-10 \mu \mathrm{~g} / \mathrm{ml}$ (Fig. 9A) on human PRP.

Platelet Aggregation Inhibition

After PRP were pre-warmed at $37^{\circ} \mathrm{C}$ with $1.0-50 \mu \mathrm{~g}$ per ml of T. popeorum venom, no inhibition of ADP- or adrenaline-induced human platelet aggregation were observed (Fig. 8). Resupts obtained with thrombin and collagen induction vere fecognized similarly.

With 1.0-10 $\mu g / \mathrm{ml}$ of C. shodostoma, there seemed to be also no inhibition of ADP-induced platelet aggregation (Fig. 9B), same with adrenaline, thrombin and collagen. Limitation of tests happened with higher concentration of venom because they pere interfered by fibrin clot.

Hemorrhagic Activity $9 \& 9 \approx M \& \cap \hat{\rho}$

 hemorrhagic activities (Fig. 10). Their response were dose related as shown in Table 6 and Fig. 11. The MHD of T. popeorum and C. rhodostoma venom were about 1.2 and $30 \mu \mathrm{~g}$, or specific activities of hemorrhagic activity of venoms were 0.83 and 0.03 MHD per μ g protein, respectively.

Figure

aggregation.

Figure 8. Inhibitory effects of T. popeorum venom on human platelet aggregation.

6 a -
PAfter PRP werepre-warmed with the venom at \uparrow, the final llconcentrations $(\mu \mathrm{g} / \mathrm{ml})$ of (a) 5.0 , (b) 10.0 , (c) 20.0 ,

Figure 9. (A) Effect of C. rhodostoma venom on human platelet aggregation.

6 The final concentrations $(\mu \mathrm{g} / \mathrm{ml})$ of venom were ค1. $9.6(\mathrm{a}) 5.0$, and $(\mathrm{b}) 10.0 \cdot 1 ?$

The venoms were added at \mathbf{A}.
ค9คค (B) Inhibitory effect of c rhodostoma venom tested on human platelet aggregation.
After PRP was pre-warmed with the venom at \uparrow (as
A.), vilatelet aggregation was induced by ADP
$5 \mu \mathrm{M}$ at ${ }^{(}$.

Figure 10. Venom-produced hemorrhage observed from visceral
ค) 9 side of rabbit skin, 0 ? $?$
Various dilutions of $30,10,5,1,0,5$ and 0.1

C. rhodostoma (MPVV) venoms were used. Normal
saline solution (NSS) was injected as control.

Table 6. Hemorrhagic Activities of T. popeorum and C. rhodostoma crude venoms on rabbit skin

Figure 11．Dose－response curve of hemorrhage induced

（米一类）venom。
ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Isolation and Fractionation of Venoms

Using DEAE-cellulose column chromatography, the T. popeorum venom was separated into nine fractions (Fig. 12). Two fractions were obtained by simple elution with 0.05 N ammonium acetate, pi 5.0 , and the other six in the first stage gradient elution, none in the second stage.

In the same condition, the C. rhodostoma venom was separated into seven fractions (Fig. 13). Four fractions were eluted by simple elution and the other three in the first gradient stage, none in the second.

Thrombin-like Acivity

Thrombin-like activity was recovered in fraction numbers II, V añd VI of T. popeorum venom (Table 7), none in the rest; and in fraction number $I, ~ I I, ~ I I I, ~ I V, V, V I$ of c. rhodostoma yenom (Table 8.9 and 8.2$)$ non in fraction VII.

จุหาลงกรณ์มหาวิทยาลัย

For T. popeorum venom fractions containing thrombin-like activities, they were all more potent than the crude venom (Fig. 14). The fraction V appeared to exhibit the strongest action. About $100 \mu \mathrm{~g}$ of this fraction has an equivalent activity to 1 NIH unit of thrombin.

Figure 12. DEAE-cellulose (DE 52) column chromatography of T. popeorum venom. Bed volumn 250 ml . ศูนยวทยทรพยากร จุฬาลงกรณ์มหาวิทยาลัย

Figure 13. DEAE-cellulose (DE 52) column chromatography of
C. rhodostoma venom. Bed volumn 250 ml .

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Table 7. Thrombin Activities of T. popeozum yenom fractions II, V, VI on fibrinogen solution ($5 \mathrm{mg} / \mathrm{ml}$)

Figure 14. Thrombin activities of T. popeorum crude venom
 and fraction VI (ロ-ロ), compared with bovine จุหาลงคศรึเม่ำวิทยาลัย

Table 8.1 Thrombin Activities of C. rhodostoma venom fractions I, II, III on fibrinogen solution ($5 \mathrm{mg} / \mathrm{ml}$)

Table 8.2 Thrombin Activities of C. rhodostona venom fractions IV, V, VI on fibrinogen solution ($5 \mathrm{mg} / \mathrm{ml}$)

Concerning about C. rhodostoma venom, among fractions I, II, III, IV, V, VI, two of them : IV and V had stronger thrombin activity than the crude venom, and the rest four had weaker action, as shown in Fig. 15. The fraction IV has the most potent activity on fibrinogen, whereas fraction I has the least one. Compared with bovine thrombin, approximately $10 \mathrm{\mu g}$ of fraction IV has an equivalent activity of 1 N.I.H. unit.

Fibrinolytic Activity

The fibrinolytic activities were distributed in fractions I and V of Topopeorum venom. Fraction V Iysed fibrin plate in mean areas of 64 to 225 sq mm with the fraction concentration of $100 \mu \mathrm{~g} / \mathrm{ml}$ to $1.5 \mathrm{mg} / \mathrm{ml}$ (Table 9). This activity sas about two times higher than that of the crude venom (Fig. 16).

The fibringlytic lactivity of C. Thodostoma venom can be demonstrated only in fraction I It action on fibrin plate was shown in/ Table 10,1 and compared with crude venom as Fig. 17.

Hemorrhagic activity

Of nine fractions of T. popeorum venom, the active components on hemorrhagic activity were found mainly in

Table 9. Fibrinolytic Activities of T. popeorum Venom Fractions I and V on Fibrin Plate

Figure 16. Fibrinolytic activities of T. popeorum crude venorn $(\theta---\theta)$, fraction $I(x-x)$ and fraction V (\varnothing - \varnothing). ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Table 10. Fibrinolytic Activity of C. rhodostoma venom fraction I on fibrin plate.

Figure 17. Fibrinolytic activities of C. rhodostoma crude venom $(--\theta)$ and fraction $I(\varnothing-\infty)$.

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย
peaks I, III, VII, VIII, and weakly in peaks II and IV (Fig. 18). Most of the original hemorrhagic activity seemed to be concentrated in fraction I. The MHD of fractions I, III, VII, VIII were $1.05,17.5,40$ and $2.8 \mu \mathrm{~g}$; as specfic activities were $0.95,0.06,0.025$ and 0.36 MHD per μ g protein respectively.

For C. rhodostoma venom, The hemorrhatic activity was only present in the fraction I (Fig. 19). The MHD was approximately $40 / \mu g$, and specific activity was 0.025 MHD per $\mu \mathrm{g}$ protein

SDS-Polyacrylamide Gel Electrophoresis of Venoms

Electrophoresis on SDS-polyacryamide gel (15\%) at pH 8.3 of T . popeorum, C . rhodostoma crude venoms, and their fractions were demonstrated in Fig. 20 and 21, respectively.

ศูนย์วิทยทรัพยากร

T. popeorum venom andits Fractions 9 ही?

After electrophoresis and staining. The main coagulant as well fibrinolytic fraction, venom peak v, appeared as eight bands (Fig. 20-e). Three bands with R_{f} of $0.50,0.35$ and 0.79 , stained strongly; whereas the rests were less obvious. The second potent coagulant
 control.

Figure 20. SDS-Polyacrylamide gel (15\%) electrophoresis at 9) $\mathrm{pH}^{8.3}$ of/To popeorum prade venom (a), fraction I (b), fraction II (c), fraction III (d),
 R_{f} represents relative mobility ratio.

Figure 21. SDS-Polyacrylamide gel (15\%) electrophoresis at pH 8.3 of the C . rhodostoma crude venom (a), 9 - fraction $I($ b), fraction II (c). fraction IV ค. 9% (d), and fraction $\mathrm{V}(\mathrm{e}) \curvearrowleft \mathrm{R}_{\mathrm{f}}$ (epresents relative mobility ratio.
fraction, peak VI, showed 90\% of it in dense band with Rf 0.46 (Fig. 20-f).

The fraction I, potent hemorrhagic and less fibrinolytic activities, contained many different staining bands (Fig. 20-b). The more apparent ones were R_{f} of 0.46 , 0.55 and 0.70 bands.

The gel patterns obtained for peak II and III were also shown in Fig. $20-\mathrm{c}$ and 20 -d.

C. rhodostoma Venom and its Fractions

The coagulant peak of C. rhodostoma venom, fraction IV. was run on 15% acrylamide gel clictrophoresis as shown in Fig. 21-d. Two strongly Staining bands were obvious, of which the R_{f} value were 0.27 and 0.35 . The fraction V, which also posses the strong thrombin-like activity, was seperated to the pattern shown in Fig. 21-c. About 80% of that was concentrated in the dense band with R_{f} of 0.27 , as seen in the peak IV subfraction.

The electrophoretic pattern of fraction I, containing both fibrinolytic and hemorrhagic activities, was demonstrated in Fig. 21-b. Two fast-running dark stained bands were striking present, taking about 90-95\% of venom fraction content. They were characterized by R_{f} 0.71 and 0.75 .

