การตรวจหาแบคทีเรียที่มีประโยชน์ในน้ำนมมารดาและทดสอบ ความสามารถในการยับยั้งแบคทีเรียก่อโรค

นางสาวยุพาวดี ชาวดง

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต

สาขาวิชาจุลชี่ววิทยาทางการแพทย์ (สหสาขาวิชา)

บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2554

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

บทกัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในกลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR)

are the thesis authors' files submitted through the Graduate School.

DETECTION OF BENEFICIAL BACTERIA IN BREAST MILK AND ASSESSMENT OF THEIR ANTAGONISTIC ACTIVITY AGAINST BACTERIAL PATHOGENS

Miss Yupawadee Chaodong

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Medical Microbiology (Interdisciplinary Program) Graduate School Chulalongkorn University Academic Year 2011 Copyright of Chulalongkorn University

Thesis Title	DETECTION OF BENEFICIAL BACTERIA IN BREAST	
	MILK AND ASSESSMENT OF THEIR ANTAGONISTIC	
	ACTIVITY AGAINST BACTERIAL PATHOGENS	
By Field of Study Thesis Advisor	Miss Yupawadee Chaodong Medical Microbiology Associate Professor Somying Tumwasorn, Ph.D.	

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

...... Dean of the Graduate School (Associate Professor Pornpote Piumsomboon, Ph.D.)

THESIS COMMITTEE

...... Chairman (Associate Professor Ariya Chindamporn, Ph.D.)

..... Examiner

(Tanittha Chatsuwan, Ph.D.)

...... External Examiner (Associate Professor Amornrut Leelaporn, Ph.D.) ยุพาวดี ชาวดง : การตรวจหาแบกทีเรียที่มีประโยชน์ในน้ำนมมารดาและทดสอบความสามารถใน การยับยั้งแบกทีเรียก่อโรค (DETECTION OF BENEFICIAL BACTERIA IN BREAST MILK AND ASSESSMENT OF THEIR ANTAGONISTIC ACTIVITY AGAINST BACTERIAL PATHOGENS) อ. ที่ ปรึกษาวิทยานิพนธ์หลัก: รศ.ดร. สมหญิง ธัมวาสร, 129 หน้า.

้น้ำนมมารดาเป็นแหล่งอาหารที่สำคัญต่อทารกและมีบทบาทในการเริ่มต้นพัฒนาจุลินทรีย์ในลำไส้ ้งองทารก ในการวิจัยครั้งนี้มีวัตถุประสงค์เพื่อตรวจแยกและพิสูจน์เอกลักษณ์ของเชื้อแบคทีเรียที่มีประโยชน์ใน น้ำนมมารดา ได้แก่ lactobacilli, bifidobacteria และ streptococci และทดสอบคุณสมบัติของเชื้อเหล่านี้ในการ ยับยั้งเชื้อแบคทีเรียก่อโรค ได้แก่ enterotoxigenic E . coli (ETEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC), enterohemorrhagic E. coli (EHEC), Salmonella Typhimurium, Shigella flexneri, Vibrio cholerae, Helicobacter pylori and methicillin-resistant Staphylococcus aureus (MRSA) ทำ ้การเก็บตัวอย่างน้ำนมจากมารคาชาวไทยที่มีสุขภาพคี มีระยะการให้นมบุตรในช่วง 15-60 วัน (จำนวน 102 คน) พิสูจน์เอกลักษณ์ของ lactobacilli, bifidobacteria และ streptococci โดยการวิเคราะห์ลำดับนิวคลีโอไทด์ บางส่วนของ 16S rRNA gene และทคสอบคณสมบัติในการขับยั้งเชื้อแบคทีเรียก่อโรค โดยใช้ spot method ผล การตรวจแยกเชื้อพบ Lactobacillus ใน 37 ตัวอย่าง (36.27%) จำนวน 40 สายพันธุ์ ได้แก่ L. gasseri, L. salivarius, L. fermentum, L. mucosae, L. rhamnosus, L. casei, L. plantarum และ L. oris พบ Bifidobacterium ใน 31 ตัวอย่าง (30.39%) จำนวน 33 สายพันธุ์ ได้แก่ B. longum, B. breve, B. psedocatenulatum, B. dentium and B. bifidum และพบ Streptococcus ใน 17 ตัวอย่าง (16.67%) จำนวน 26สายพันธุ์ ได้แก่ S. salivarius, S. lactarius, Streptococcus sp., Streptococcus mitis และ Streptococcus parasangius ผลการตรวจหาดีเอ็นเอใน ้ตัวอย่างน้ำนม โดยวิธี พีซีอาร์ ตรวจพบคีเอ็นเอของ lactobacilli 94 ตัวอย่าง (92,16%) bifidobacteria 60 ้ตัวอย่าง (58.82%) และ streptococci 56 ตัวอย่าง (54.90%) ตามลำคับ การทคสอบการขับยั้งเชื้อETEC, EIEC, EPEC, EHEC and S. Typhimurium พบว่า Lactobacillus ทั้งหมดสามารถยับยั้งได้เล็กน้อย Bifidobacterium ้สามารถยับยั้งได้ไม่ชัดเจน และ Streptococcus ไม่มีความสามารถในการยับยั้ง ส่วนผลในการยับยั้งเชื้อ V. cholerae และ S. flexneri พบว่า Lactobacillus 13 สายพันธุ์ (Lac43, Lac44, Lac45, NL1, NL3, NL5, NL6, NL7, NL8, NL10, NL18, NL26 และ NL50) และ Bifidobacterium 11 สายพันธุ์ (Bif29, NB4, NB11, NB13, NB14, NB15, NB16, NB17, NB28, NB31 และ NB40) สามารถยับยั้งได้ชัดเจน นอกจากนี้ Lactobacillus 6 สายพันธุ์ (Lac 40, Lac41, NL26 NL50, NL52 และ NL53) และ Streptococcus 5 สายพันธุ์ (St10, St11, NL4, NL9 และ St27) สามารถยับยั้งเชื้อ MRSA ได้เล็กน้อย และ พบว่า Bifidobacterium 5 สายพันธุ์ (NB6, NB8, สามารถยับยั้งเชื้อ Helicobacter pylori ใด้อย่างชัดเจน Lactobacillus, NB14, NB28 และNB31) Bifidobacterium และ Streptococcus มีความสามารถในการยับยั้งเชื้อแบคทีเรียก่อโรคเหล่านี้มีคณสมบัติที่จะ นำไปใช้เป็นโพรไบโอติกส์ในการยับยั้งเชื้อแบคทีเรียก่อโรค

สาขาวิชา <u>จุลชีววิทยาทางการแพทย์</u>	ลายมือชื่อนิสิต
ปีการศึกษา <u>2554</u>	ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก

5287245420 : MAJOR MEDICAL MICROBIOLOGY KEYWORDS : BENEFICIAL BACTERIA/ BREAST MILK/ LACTOBACILLI/ BIFIDOBACTERIA/ STREPTOCOCCI

YUPAWADEE CHAODONG: DETECTION OF BENEFICIAL BACTERIA IN BREAST MILK AND ASSESSMENT OF THEIR ANTAGONISTIC ACTIVITY AGAINST BACTERIAL PATHOGENS. ADVISOR: ASSOC. PROF. SOMYING TUMWASORN, Ph.D., 129 pp.

Breast milk is an important nutrient for neonates and plays role in the initiation of the neonatal gut microbiota. This study aimed to isolate beneficial bacteria including lactobacilli, bifidobacteria and streptococci from breast milk and assess their antagonistic activity against bacterial pathogens including enterotoxigenic E .coli (ETEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC), enterohemorrhagic E. coli (EHEC), Salmonella Typhimurium, Shigella flexneri, Vibrio cholerae, Helicobacter pylori and methicillin-resistant Staphylococcus aureus (MRSA). Breast milk samples were collected from Thai healthy mothers (n=102) lactating at range 15-60 days. Lactobacillus, Bifidobacterium and Streptococcus species were identified by 16S rRNA gene sequencing and tested for their antagonistic activity against bacterial pathogens by agar spot method. Forty isolates of Lactobacillus which were L. gasseri, L. salivarius, L. fermentum, L. mucosae, L. rhamnosus, L. casei, L. plantarum and L. oris were recovered from 37 (36.27%) milk samples. Thirty-three isolates of Bifidobacterium including B. longum, B. breve, B. psedocatenulatum, B. dentium and B. bifidum were recovered from 31 (30.39%) milk samples. Twenty-six isolates of Streptococcus including S. salivarius, S. lactarius, Streptococcus sp., Streptococcus mitis and Streptococcus parasangius were presented from 17 (16.67%) milk samples. PCR assay demonstrated that DNAs of lactobacilli, bifidobacteria and streptococci were detected in 94 (92.16%), 60 (58.82%) and 56 (54.90%) of 102 breast milk samples, respectively. Antagonistic activity assay demonstrated that all Lactobacillus, Bifidobacterium and Streptococcus isolates had weak, partial as microcolony and no inhibition against ETEC, EIEC, EPEC, EHEC and S. Typhimurium, respectively. Thirteen Lactobacillus isolates (Lac43, Lac44, Lac45, NL1, NL3, NL5, NL6, NL7, NL8, NL10, NL18, NL26 and NL50) and 11 Bifidobacterium isolates (Bif29, NB4, NB11, NB13, NB14, NB15, NB16, NB17, NB28, NB31 and NB40) had strong inhibitory activities against V. cholerae and S. flexneri. Furthermore, six Lactobacillus isolates (Lac 40, Lac41, NL26 NL50, NL52 and NL53) and 5 Streptococcus isolates (St10, St11, NL4, NL9 and St27) weakly inhibited the growth of MRSA. In addition, 5 Bifidobacterium isolates (NB6, NB8, NB14, NB28 and NB31) had strong inhibitory activities against H. pylori. These Lactobacillus, Bifidobacterium and Streptococcus with antagonistic activity had potential for use as probiotics against bacterial pathogens.

Field of Study : <u>Medical Microbiology</u>	Student's Signature
Academic Year : 2011	Advisor's Signature

ACKNOWLEDGEMENTS

I wish to express my deep gratitude to my thesis advisor, Associate Professor Somying Tumwasorn Ph.D., Department of Microbiology, Faculty of Medicine, Chulalongkorn University, my principal advisor for her valuable advice, encouraging guidance and indispensable help throughout the period of this study.

I am also grateful to my thesis committee, Associate Professor Ariya Chindamporn Ph.D., Department of Microbiology, Faculty of Medicine, Chulalongkorn University, the Chairperson and Associate Professor Sunee Korbsrisate, Ph.D., Department of Immunology, Faculty of Medicine, Mahidol University for their valuable comments and constructive criticisms.

Special thanks are given to Associate Professor Boosba Vivatvakin M.D., Faculty of Medicine, Chulalongkorn University and the staffs of well baby clinic, King Clulalongkorn Memorial Hospital for her kindness and help in specimen collection.

I would also like to thank all friends, and all staff members of Bacteriology Division, Department of Microbiology, Faculty of Medicine, Chulalongkorn University for their friendship, kindness and help in the laboratory during my study.

Finally, I would like to express my deepest gratitude to my parents for their love, encouragement, understanding and support during my study.

CONTENTS

	Page
ABSTRACT (THAI)	iv
ABSTRACT (ENGLISH)	v
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF TABLES	ix
LIST OF FIGURES	х
LIST OF ABBREVIATIONS	xi
CHAPTER	
I INTRODUCTION	1
OBJECTIVE	3
CONCERPTUAL FRAMWORK	4
II LITERATURE REVIEWS	5
BREAST MILK	5
THE GENUS LACTOBACILLUS	7
BACKGROUND OF LACTOBACILLI	7
BIOLOGY OF LACTOBACILLI	9
BENEFICIAL EFFECT OF LACTOBACILLI	10
THE GENUS BIFIDOBACTERIUM	12
BACKGROUND OF BIFIDOBATERIA	12
BIOLOGY OF BIFIDOBATERIA	14
BENEFICIAL EFFECT OF BIFIDOBATERIA	15
THE GENUS STREPTOCOCCUS	21
BACKGROUND OF STREPTOCOCCI	21
BIOLOGY OF STREPTOCOCCI	22
BENEFICIAL EFFECT OF STREPTOCOCCI	22
ANTIMICROBIAL COMPOUND OF LACTOBACILLUS,	
BIFIDOBACTERIUM AND STREPTOCOCCUS	23
METHODS FOR EVALUATION OF ANTIMICROBIAL	

vii

	ACTIVITY	25
III	MATERIAL AND METHODS	27
	HUMAN SUBJECTS AND SAMPLE COLLECTION	27
	BACTERIAL CULTIVATION	27
	SELECTION OF LACTOBACILLUS, BIFIDOBACTERIUM AND	
	STREPTOCOCCUS ISOLATES	28
	GENOTYPIC IDENTIFICATION OF LACTOBACILLUS,	
	BIFIDIBACTERIUM, AND STREPTOCOCCUS ISOLATES	28
	DETECTION DNA OF LACTOBACILLI, BIFIDOBACTERIA	
	AND STREPTOCOCCI BY PCR METHOD	30
	ANTAGONISTIC ACTIVITY ASSAY	31
IV	RESULTS	33
	CULTIVATION AND PRESUMPTIVE IDENTIFICATION OF	
	LACTOBACILLUS, BIFIDOBACTERIUM AND	
	STREPTOCOCOCUS FROM BREAST MILK	33
	GENOTYPIC IDENTIFICATION OF LACTOBACILLI,	
	BIFIDOBACTERIA AND STREPTOCOCCI	36
	PCR ANALYSES OF LACTOBACILLI, BIFIDOBACTERIA AND	
	STREPTOCOCCI FROM BREAST MILK SAMPLES	59
	ANTAGONISTIC ACTIVITY OF LACTOBACILLUS,	
	BIFIDOBACTERIUM AND STREPTOCOCCUS ISOLATES	
	AGAINST BACTERIAL PATHOGENS	61
V	DISCUSSION	75
VI	CONCLUSION	81
RE	FERENCES	82
AP	PENDICES	97
	APPENDIX A	98
	APPENDIX B	101
	APPENDIX C	105
	APPENDIX D	109
BIO	OGRAPHY	129

LIST OF TABLES

Page

Table 1	Lactobacillus species of research interest as	
	probiotics	7
Table 2	The summary of beneficial effect of lactobacilli	10
Table 3	Currently assigned species of the genus Bifidobacterium species	12
Table 4	Summary of potential health benefits of bifidobacteria	16
Table 5	The species groups in genus Streptococcus	22
Table 6	Genotypic identification of Lactobacillus spp.	
	based on 16S rRNA gene sequencing	44
Table 7	Genotypic identification of Bifidobacterium spp.	
	based on 16S rRNA gene sequencing	49
Table 8	Genotypic identification of Streptococcus spp.	
	based on 16S rRNA gene sequencing	54
Table 9	Bacterial isolates cultivated from breast milk samples	
	and genotypically identified	57
Table 10	Lactobacillus, Bifidobacterium and Streptococcus species in breast	
	milk identified by 16S rRNA gene sequencing	58
Table 11	Other bacterial species found in breast milk	59
Table 12	Lactobacillus antagonistic activity against	
	bacterial pathogens	63
Table 13	Bifidobacterium antagonistic activity against	
	bacterial pathogens	66
Table 14	Streptococcus antagonistic activity against	
	bacterial pathogens	69
Table 15	The summary antagonistic activity of Lactobacillus spp. against	
	bacterial pathogens	73
Table 16	The summary antagonistic activity of Bifidobacterium spp. against	
	bacterial pathogens	73

LIST OF FIGURES

Page

Figure 1	The hypothetical model to explain how some bacterial	
	strains could be presented in breast milk	6
Figure 2	Colony growth from breast milk on different media	34
Figure 3	Colony growth from skin swabs on different media	35
Figure 4	Cell morphology of bacteria isolated from breast milk	35
Figure 5	The alignment of genus-specific primers L159F and L677R	
	with 16S rRNA gene sequence of Lactobacillus spp	37
Figure 6	The alignment of genus-specific primers Bif164F and Bif601R	
	with 16S rRNA gene sequence of Bifidobacterium spp	38
Figure 7	The alignment of genus-specific primers Tuf-Strep-1 and Tuf-	
	Strep-R with 16S rRNA gene sequence of Streptococcus spp	39
Figure 8	The alignment of universal primers 16S-8F and 16S-1541R	
	with 16S rRNA gene sequence of Lactobacillus spp	40
Figure 9	The alignment of universal primers lm 26 and lm3	
	with 16S rRNA gene sequence of Bifidobacterium spp	42
Figure 10	The alignment of universal primers F and U926 with	
	16S rRNA gene sequence of <i>Streptococcus</i> spp	43
Figure 11	Genus-specific amplification by PCR	60
Figure 12	Percentage of bacterial DNA detected by PCR	60
Figure 13	Antagonistic activity of Lactobacillus	
	against Vibrio cholerae	71
Figure 14	Antagonistic activity of Lactobacillus against	
	methicillin-resistant Staphylococcus aureus (MRSA)	71
Figure 15	Antagonistic activity of Bifidobacterium	
	against Vibrio cholerae	72

LIST OF ABBREVIATIONS

ATCC	American type culture collection
bp	base pair
BHI	brain heart infusion
CFU	colony forming unit
CO_2	carbon dioxide
°C	degree celsius
DNA	deoxyribonucleic acid
DMST	Department of Medical Science, Thailand
DW	distilled water
EDTA	ethylenediamine tetraaceticacid
EHEC	enterohemorrhagic Escherichia coli
EIEC	enteroinvasive Escherichia coli
EPEC	enteropathogenic Escherichia coli
ETEC	enterotoxigenic Escherichia coli
et al.	et alii
g	gram
g/l	gram per liter
h	hour
HCl	hydrochloric acid
i.e.	id est
kb	kilobase
1	liter
Μ	molar
mg	milligram
mg/l	milligram per liter
min	minite(s)
ml	milliliter
mm	millimeter
MC	modified Columbia medium

MRS	deMan Rogosa Sharp
PCR	polymerase chain reaction
pmol	picomol
rpm	round per minute
16SrRNA	16S ribosomal ribonucleic acid
sec	second
TBE	tris-boric acid-EDTA
Tris	tris-(hydroxymethayl)-aminoethane
μg	microgram
μl	microliter
μΜ	micromolar
WHO	World Health Oganization

CHAPTER I

INTRODUCTION

Breast milk is an important source of nutritional requirements for the growing infant because of the composition of protective factors such as immunoglobulin A (IgA), immunocompetent cells, fatty acids, oligosaccharides, lysozyme and lactoferrin that improve and protect breast-fed infants against infectious diseases [1, 2]. In addition, breast milk is an important factor in the initiation and development of the infant gut microbiota because it is a source of microorganisms to the infant gut during breast-fed after birth. An infant fed breast milk about 800 Ml/d will ingest microorganisms about 1×10^{5} - 1×10^{7} commensal bacteria [2] depending on hygiene and antibiotic use. In addition, it has been reported that the bacterial composition of the breast-fed infant flora reflected the bacterial composition of breast milk [3] Heikkila and Saris isolated commensal bacteria from breast milk, of which include four bacterial groups of staphylococci (64%), streptococci (30%), lactobacilli (10%), and enterococci (4%) [3]. Recently, it has been reported that bifidobacteria were also isolated from breast milk [4]. It was suggested that breast milk bacteria may be originated not only from external sources but also from the maternal gut microorganism. It was suspected that denditric cell that penetrated the gut epithelium take up bacteria directly from gut lumen. In addition, M cells on Peyer's patch can phagocytose the gut microorganism. Once inside the cells, bacteria may be able to move from the intestinal mucosa to colonize distant mucosal surfaces, such as those of respiratory and genitourinary tracts, salivary and lachrymal glands and most significantly that of lactating mammary gland [5].

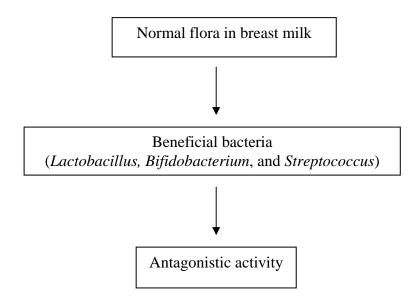
Specific strains of commensal bacteria in breast milk are beneficial bacteria, which include *Lactobacillus*, *Bifidobacterium*, and *Streptococcus*. *Lactobacillus* belongs to the lactic acid bacteria (LAB). They are Gram-positive rods or coccobacilli, catalase-negative, non-pathogenic and desirable members of the intestinal tract. They produce lactic acid as main end-product of the fermentation of carbohydrates [6]. *Lactobacillus* strains isolated from breast milk such as *L. gasseri*, *L. rhamnosus*, *L. plantarum* and *L. fermentum*, have beneficial effect of probiotic [7].

Bifidobacterium are Gram-positive polymorphic branched rods that occur singly, in chain or clumps. They are non-spore-forming, non motile, catalase-negative and produce acid but no gas from a variety of carbohydrates. They occur in animal and human habitats, in particular they have been isolated from feces, rumen of cattle, sewage, human vagina, dental caries and honey bee intestine [6]. Martin *et al.* recently reported the first isolation of bifidobacteria, i.e., *B. breve*, *B. adolescentis* and *B. bifidum* from breast milk [4]. Genus *Streptococcus* contains 60 species and its members are known for their pathogenicity, except *S. thermophilus*. It is Grampositive, catalase-negative, non-motile, non-spore-forming, and used as starter for yoghurt production. The properties of this product attributed beneficial such as alleviation of symptoms of lactose intolerance and other gastrointestinal disorder [6]. Streptococci were the second most abundant bacteria in breast milk. Most common streptococci found in breast milk are *S. agalactiae*, *S. mitis*, *S. oralis*, *S. parasagis*, *S. peroris* and *S. salivarius*. It has been shown that *S. salivarius* could inhibit the growth of *Staphylococcus aureus* [3].

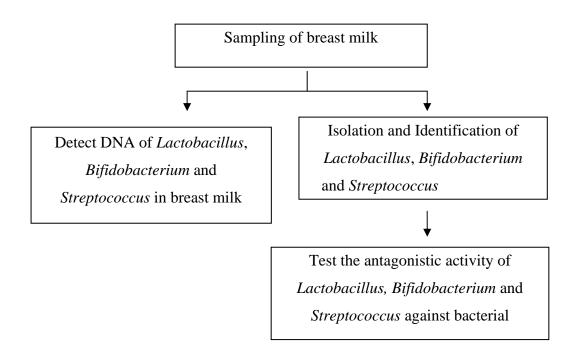
Commensal bacteria such as genera of Lactobacillus, Bifidobacterium, and Streptococcus are considered to be among the potential probiotic bacteria. Probiotics are "live microorganisms, which, when consumed in adequate amounts, confer a health benefit on the host" (FAO/WHO) [8]. The mechanisms of probiotics include remodeling of microbial communities, immunomodulation by up-regulation of antiinflammatory factors, immunomodulation by suppression of pro-inflammatory factors, enhancement of immunity, effects on epithelial cell differentiation, proliferation, promotion of intestinal barrier function and suppression of pathogens [8]. Probiotic bacteria were able to suppress pathogens by producing acid, hydrogen peroxide or bacteriocin and small organic molecules [9]. It has been known for several decades that specific probiotic lactobacilli and bifidobacteria inhibit the growth of pathogen microorganisms such as Escherichia coli, Salmonella enterica, Shigella sonnei, Helicobacter pylori , Staphylococcus aureus, Salmonella typhimurium, Yersinia enterocolitica and Clostridium perfringens [7, 10]. Lactobacillus such as L.reuteri strains produces antimicrobial compound as reuterin that ability to inhibit the growth of enteric pathogens [11]. Bifidobacterium sp. produce bacteriocin that is able to inhibit the growth of food-borne pathogens such as

C. perfringens, E. coli, Salmonella and other human health-threatening pathogens such as the *H. pylori* [12]. *Streptococcus .thermophilus* can produce bacteriocin as thermophillins that inhibits *Clostridium tyrobutyricum* [13].

Identification of *Lactobacillus*, *Bifidobacterium* and *Streptococcus* employs conventional culture and molecular techniques. Culture technique is limited in the identification and quantification of these fastidious bacteria. Therefore culture-independent molecular method based on 16S rRNA genes, plays role in the identification of these bacteria. This study aims to isolate and identify beneficial bacteria such as *Lactobacillus*, *Bifidobacterium*, and *Streptococcus* in breast milk and investigate their antagonistic activity against bacterial pathogens of these bacteria.


Hypothesis

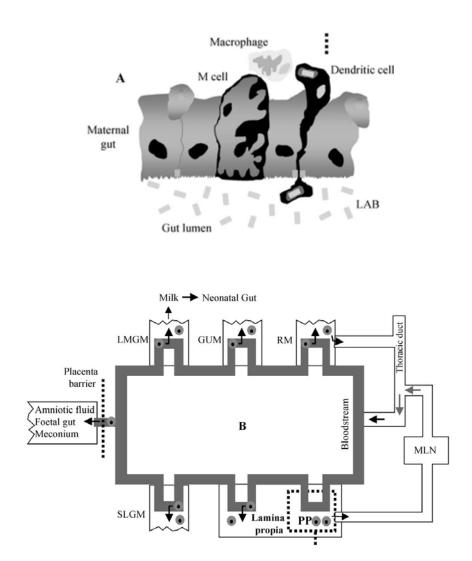
Lactobacillus, Bifidobacterium, and *Streptococcus* isolated from breast milk confer antagonistic activity against bacterial pathogens.


Objective

- Isolate and identify *Lactobacillus*, *Bifidobacterium*, and *Streptococcus* from breast milk.
- Detect DNA of *Lactobacillus, Bifidobacterium*, and *Streptococcus* in breast milk using PCR method.
- Test the antagonistic activity of *Lactobacillus*, *Bifidobacterium*, and *Streptococcus* isolates from breast milk to bacterial pathogens.

Conceptual framework

Workflow


CHAPTER II

LITERATURE REVIEWS

1. Breast milk

Breast milk is a unique, species-specific, complex nutritive fluid with immunologic and growth-promoting properties as follows. Immunoglobulin A (IgA) is an important protective factor against infection especially when the infant has limited defense against ingested pathogens. Lactoferrin in breast milk is an ironbinding protein which binds to iron, thus making it unavailable to pathogenic bacteria. Lysozyme which enhance sIgA bactericidal activity against gram-negative organisms. Oligosaccharides which intercept bacteria and form harmless compounds that the baby excretes. Lipids are known to be potent antimicrobial/microbicidal agents in vitro and to kill enveloped viruses, Gram-positive and Gram-negative bacteria and fungi on contact. Mucins which are present on milk-fat globule membrane. Mucins adhere to bacteria and viruses and help eliminate them from the body. In addition, breast milk also contains growth modulators such as epidermal growth factor (EGF), nerve growth factor (NGF), insulinlike growth factors (IGFs), interleukins, Transforming growth factor (TGF)-alpha and TGF-beta [14, 15]. The composition of breast milk that improve and protect breast-fed infants against infectious diseases [3, 5]. Breast milk consists of commensal bacteria such as genus Staphylococcus sp., i.e. S. epidermidis, S. hominis, S. capitis and S. areus that bacterial flora of the maternal skin. Streptococcus sp., i.e. S. salivarius, S. mitis, S. parasanguis and S. peroris, genus Lactobacillus sp., i.e. L. gasseri, L. rhamnosus, L. acidophilus, L. plantarum and L. fermentum, genus Enterococcus sp., i.e. E. faecium and E. faecalis [5] and genus Bifidobacterium sp., i.e. B. adolescentis. B. longum, B. breve and B. bifidum [4].

It was suggested that breast milk bacteria may be originated not only from external sources but also from the maternal gut microorganism. It was suspected that denditric cell that penetrated the gut epithelium take up bacteria directly from gut lumen [16]. In addition, M cells on Peyer's patch can phagocytose the gut microorganism. Once inside the cells, bacteria may be able to move from the intestinal mucosa to colonize distant mucosal surfaces, such as those of respiratory and genitourinary tracts, salivary and lachrymal glands and most significantly that of lactating mammary gland shown in Figure 1 [5, 17].

Figure 1. The hypothetical model to explain how some bacterial strains could be presented in breast milk. (A) denditric cell that penetrated the gut epithelium take up bacteria directly from gut lumen. (B) M cells on Peyer's patch can phagocytose the gut microorganism. Abbreviations: GUM, genitourinary tract mucosa; LMGM, mucosa of the lactating mammary gland; MLN, mesentric lymph node; PP, Peyer patches and associated lymphoid tissue; RM, respiratory tract mucosa; SLGM, mucosa of the salivary and lacrimal glands.

The commensal bacteria exhibited in breast milk was suggested to be a major factor in the initiation and development of the infant gut microbiota [5]. In addition, it has been reported that the bacterial composition of the breast-fed infant flora reflected the bacterial composition of breast milk [3]. Beneficial bacteria were presented in breast milk such as *Lactobacillus*, *Bifidobacterium* and *Streptococcus*.

1. The genus Lactobacillus

1.1 Background of lactobacilli

The genus *Lactobacillus* belongs to the phylum *Firmicutes*, class *Bacilli*, order, *Lactobacillales*, family *Lactobacillaceae*. The first species of genus *Lactobacillus* was isolated from milk as *Lactobacillus delbruceckii* by Leichman (1896). After the few years, Moro (1900) recovered was *Lactobacillus acidophilus* by culture from the breast-fed infant feces. *Lactobacillus casei* is the name of lactobacilli isolated from cheese, milk and dairy product by Orla-jensen (1904). Lauer and Kandler (1980) isolated *Lactobacillus gasseri* from human mouth, vagina and intestinal tract of man. In 1953 Rogosa *et al.* isolated *Lactobacillus salivarius* from mouth and intestinal tracts which similar *Lactobacillus murinus* isolated by Heijenoort *et al* [18]. Currently, genus *Lactobacillus* consists of more than 175 species of which 19 species are of research interest as probiotics as shown in Table 1.

Species	Original isolated	Mol%
species		G+C
L. acidophilus	Breast-fed infant feces, intestinal	32-37
	tract of human and animal	52-51
L. agilis	Sewage, human intestinal tract	34-36
L. aviarius	Human and chicken intestinal tract	34-36
L. amylovorus	Cattle waste-corn fermentation	40-41

Table 1. Lactobacillus species of research interest as probiotics [19].

Species	Original isolated	Mol%
		G+C
L. brevis	Milk, cheese, feces, mouth,	44-47
	gastrointestinal tract of human	,
L. casei	Milk, cheese, dairy product, human	15 17
	intestinal tract, mouth, vagina	45-47
L. crispatus	Human feces, vagina	35-38
L. delbrueckii subsp. bulgaricus	Yoghurt and cheese	49-51
L. galinarum	Human intestinal tract, vagina	36-37
L. gasseri	Human mouth and vagina	33-35
L. johnsonii	Human vaginal discharge and blood	25.27
	clot	35-37
L. murinus	Intestinal tract of mice and rat	43-44
L. hamsteri	Feces of hamster	33-35
L. intestinalis	Intestine of human and animal	33-35
L. plantarum	Dairy products and environment	44-46
L. reuteri	Feces of human and animal, meat	40-42
	products	40-42
L. ruminis	Rumen of cow and sewage, human	11 17
	feces	44-47
L. salivarius	Mouth and intestinal tract of human	
	and hamster	34-36
L. rhamnosus	Intestine, mouth and vagina of	
	human, dairy environment	45-47

 Table 1. Lactobacillus species of research interest as probiotics [19] (Continued)

1.2 Biology of lactobacilli

Lactobacilli are Gram-positive rod or coccobacilli shape, non-spore-forming, non-motile microorganisms. They are fermentative, microaerophylic and chemoorganotrophic, requiring rich media to grow. They are catalase negative, even if psedocatalase activity can sometime be present in some strains. Members of the genus *Lactobacillus* can be selected on solid culture media that have an acidic pH (e.g. Rososa SL agar). While many *Lactobacillus* strains used in the diary industry can be culture under microanerophilic, or aerobic conditions, intestinal isolates proliferate best under anaerobic conditions [18].

The genus Lactobacillus includes more than 175 validly described species. They are found in environments where carbohydrates are available such as food (dairy products, fermented meat, sour doughs, vegetables, fruits, beverages), respiratory, GI and genital tracts from human and animals and in sewage and plant material [20]. They are growth at temperature rage 2-53 °C and optimum generally at 30-40°C. Optimum pH for growth at 5.5-6.2 and growth generally occur pH 5.0 or less. The G+C content of DNA 32-53 mol%. They are complex nutritional requirement for growth found as amino acid, vitamin, peptide, salt, nucleic acid, fatty acid or fatty acid esters and fermentable carbohydrates [18]. The main of fermentation pathways are obligately homofermentative; lactobacilli are able degrade hexoses to lactic acid by the Embden-Meyerhof pathway (EMP), facultatively heterofermentative; lactobacilli degrade hexoses to lactic acid by the EMP and are also able degrade pentose or glucose to aldolase and phosphoketolase, finally, obligately heterofermentative; lactobacilli are degrade hexoses to lactate, ethanol or acetic and CO_2 by the phosphogluconate pathway [21]. Genus *Lactobacillus* are identify base on metabolic characteristics, phylogenetic grouping, genome GC. In addition, the fastest way to identify lactobacilli used molecular method such as comparison of 16S rDNA gene sequences, the method shows that the V1, V2 and V3 regions contain the species-specific information, 16S, 23S and 5S rRNA genes are arranged within an operon on the bacterial chromosome [22, 23].

1.3 Beneficial effect of lactobacilli

Lactobacilli are lactic acid bacteria (LAB) and are normally consumed in the form of yoghurt, fermented milk or fermented food. They are colonized in the human

large intestine and suggested a beneficial role for the host. In addition, some strains of *Lactobacillus* are plays role of probiotics. These effects are likely to involve both microbe-microbe and microbe-host interaction such as anti-microbial effects, immunomodulatory properties and gastrointestinal benefits. The beneficial effect of lactobacilli summarized shown in Table 2.

Table 2. The summary of beneficial effect of lactobacilli

Beneficial effect	Study summary	Reference
	Lactobacillus GG compared with a placebo product has been shown to significantly reduce the risk of in particular rotavirus gastroenteritis (2.2% compared with 17%, P = 0.02) in hospitalized children	[24]
Prevention of gastrointestinal disease	Lactobacillus GG and <i>L. acidophilus</i> were evaluated and compared with placebo for the prevention of side-effects in the treatment of <i>H. pylori</i>	[25]
	L. rhamnosus 19070-2 and L. reuteri DSM 12246, ameliorated acute diarrhea in hospitalized children and reduced the period of rotavirus excretion.	[26]
	<i>L. paracasei</i> could act as a potential barrier to prevent <i>S. aureus</i> - associated injury	[27]

Beneficial effect	Study summary	Reference
Cancer prevention	Specific strain <i>L. casei</i> showing significantly $(P=0.03)$ postponed tumor recurrence in 48 patients after removal of one or more bladder tumors.	[28]
Cholesterol reduction	The tablets contains <i>L. bulgaricuus</i> ATCC 33409 and <i>L. acidophilus</i> ATCC 4962 showing serum cholesterol reduced from 5.7 to 5.3 mmol/L after 7 wk (P < 0.05) in the 23 pilots.	[29]
	Specific strain of <i>L. acidophilus</i> contains with buffalo fermented milk showing serum cholesterol reduced to 12-20% after 1 month	[30]
	<i>L. salivarius</i> UCC118 produce bacteriocin for against <i>Listeria monocytogenes</i> the invasive food-borne pathogen	[31]
Anti- microbial effects	<i>L.gasseri</i> CECT5714 isolated from breast milk produce anti-microbial compound to inhibit <i>E.coli</i> , <i>Salmonella</i> spp. and <i>Listeria</i> <i>monocytogenes</i>	[32]

2. The genus Bifidobacterium

2.1 Background of bifidobacteria

The genus Bifidobacteriun belongs to the phylum Actinobacteria, class subclass Actinobacteridae, order Bifidobacteriales, Actinobacteria, family Bifidobacteriaceae. Bifidobacteria were first isolated from the breast-fed infant feces in 1899, by Henri Tissier, and were designated Bacillus bididus [33]. Even though Orla-Jensen proposed the genus Bifidobacterium in 1924[34], bifidobacteria were classified into other taxonomic group, such as Bcillus bifidus (1900), Bacteroides bifidus (1923 to 1934, in the 1st to 4th editions of Bergey's Manual of Systematic Bacteriology Bergey's Manual) and Lactobacillus bifidus (1939 to 1957, in the 5th to 7th editions of Bergey's Manual), for several decades. In 1973, Poupard et al.[35], and subsequently the 8th edition of Bergey's Manual [36], reclassified them as a separate taxon and designated the genus Bifidobacterium. Currently, genus Bifidobacterium contains 31 species that have been isolates from intestine of humans, animal and insects, and also from human dental caries and raw milk shown in Table 3.

Species	Subspecies	Original isolated	%G+C ^a	Reference
B. adolescentis		Intestine of adult	59.6_0.8	[38]
B. angulatum		Human feces	59.0_0.1	[39]
B. animalis	B. animalis subsp. Animalis	Animal feces	60.1_0.3	[40]
D. animalis	B. animalis subsp. lactis	Yogurt	61.9	[41]
B. asteroides		Intestine of honeybee	59.0	[42]
B. bifidum		Infant feces	62.3	[43]
B. bombi		Intestine of bumblebee	47.2	[44]
B. boum		Rumen of cattle	60_0.2	[45]
B. breve		Intestine of infant	58.8_0.4	[46]

Table 3. Currently defined spec	ies of the genus	Bifidobacterium	[37]
---------------------------------	------------------	-----------------	------

a; Mean _ SD. , ND, not determine

Species	Subspecies	Original isolated	%G+C ^a	Reference
B. catenulatum		Intestine of adult	54.0_0.2	[39]
B. choerinum		Porcine feces	66.3_0.2	[45]
B. coryneforme		Intestine of honeybee	ND	[47]
B. crudilactis		Raw milk	56.4	[48]
B. cuniculi		Feces of rabbit	64.1_0.4	[45]
B. dentium		Human dental caries	61.2_0.4	[39]
B. gallicum		Human feces	ND	[49]
B. gallinarum		Chicken cecum	65.7 _ 1.5	[50]
B. indicum		Intestine of honeybee	60.0	[42]
	B. longum subsp. Infantis	Intestine of infant	60.5_0.3	[46]
B. longum	B. longum subsp. Longum	Intestine of adult	60.8_0.8	[46]
	B. longum subsp. Suis	Porcine feces	62.0	[51]
B. magnum		Rabbit feces	60.0_0.6	[52]
B. merycicum		Bovine rumen	ND	[53]
B. minimum		Sewage	61.5	[47]
B. pseudocatenulatum		Infant feces	57.5_0.3	[45]
B. pseudolongum	B. pseudolongum subsp. Globosum B. pseudolongum subsp. Pseudolongum	Bovine rumen Porcine feces	63.8 _ 0.4 59.5 _ 0.4	[47] [54]

Table 3. Currently defined species of the genus *Bifidobacterium* (Continued)[37]

a; Mean _ SD. , ND, not determine

Species	Subspecies	Original isolated	%G+C ^a	Reference
В.		Porcine	59.2	[55]
pyschraerophilum		feces	57.2	[55]
B. pullorum		Chicken	67.5_0.4	[56]
b . риногит		feces	07.5_0.4	[50]
B. ruminantium		Bovine	ND	[52]
D. ruminaniium		rumen	ND	[53]
B. saeculare		Rabbit feces	ND	[57]
D		Human	ND	۲ ۶ 01
B. scardovii		blood	ND	[58]
B. subtile		Sewage	61.5	[59]
D the owner on hillow		Porcine	(0,0	[40]
B. thermophilum		feces	60.0	[40]
B. thermacidophilum	B. thermacidophilum subsp. porcinum B. thermacidophilum subsp. Thermacidophilu m	Sewage	ND	[60]

Table 3. Currently defined species of the genus *Bifidobacterium* (Continued)[37]

a; Mean _ SD. , ND, not determine

2.2 Biology of bifidobacteria

Bifidobacteria are anaerobic bacteria. They are Gram-positive, polymorphic branched rods that occur singly, in chains or clumps. *N*-acetlylamino-sugar, Ca²⁺ ions, or amino acid (alanine, aspartic acid, glutamic acid, and serine) has revealed of bifidobacteria morphology, that the absence or low concentrations of in growth media exclusively induce the bifid shape of bifidobacteria [61]. They are non-motile, non-spore-forming and non-filamentous. Bifidobacteri produce acid but not gas from a variety of carbohydrates. They are catalase negative, with some exception, *Bifidobacterium incidum* and *Bifidobacterium asteroids* when grown in presence of air [6]. Optimum growth temperature 37-41 °C, the strains isolated from human intestine growth at 37-38 °C and isolated from animal intestine growth at 41 °C. The high growth temperature 46 °C and low growth temperature 25-28 °C. Optimum pH

for growth 6.5-7.5 and could not growth at lower than pH 4.5-5.0 or higher than pH 8.0-8.5 [62]. Bifidobacteria has with a high G+C content 55 to 57 mol % [6, 63, 64]. They present in many habitats such as feces of human and animal, rumen of cattle, sewage, human vagina, dental caries and honey bee intestine [6, 37]. Recently, has isolated bifidobacteria from breast milk [4]. Bifidobacteria degrade hexose through fructose-6-phosphate pathway by using fructose-6-phosphate phosphoketolase, adolase and glucose-6-phosphate dehydrogenase enzyme and the end product is lactic acid and acetic acid [61]. The taxonomic character for identify on genus level was considered with the enzyme [65]. Detection and identification of bifidobacteria were approached for three principal such as culturing method using a selective media for selection and identification, culture absence molecular methods for detection and molecular method for identification and differentiation. Selective media developed for bifidobacteria contain with antibiotic, it was inhibitory to some bifidobacteria [66, 67]. Beerens (1990) improved *Bifidobacterium*-selective medium, columbia medium by addition of 5 g/l glucose, 5 g/l cysteine hydrocroride, 5 g/l agar, 5 ml propionic acid and adjusted to pH 5.0 was both elective and selective for all species of Bifidobacterium [68]. Molecular method has highly enhanced approaches for detection, differentiation and identification of bifidobacteria. The molecular tools for use and development of these bifidobacteria such as AP-PCR (arbitrarily primed PCR) use of a single indiscriminate primer to gain of banding patterns for strainspecific; the subject can be to reproducibility problems [69], ARDRA (amplified rRNA gene restriction analysis) i.e., RFLP analysis of the *ldh* gene [70] or RFLP analysis of the 16S rRNA gene [71], PFGE (pulsed-field gel electrophoresis) use of a band profile analysis of complete genome by use of scarce-cutting enzymes [72] and 16S rRNA gene sequence analysis [73, 74].

2.3 Beneficial effect of bifidobacteria

Bifidobacteria are bacteria in the human large intestine and suggested a helpful for the host. There shown significantly event higher in the un-weaned infant gut more than in adults, they may a more important role in gut microbiota development than in other gut function. The properties of bifidobacteria in the large intestine of human including interactions with other gut microbes, production of vitamins including group of B vitamins, modulation of convinced bacterial groups that may be baneful to the host, production antimicrobial compounds found as organic acid [62], iron-scavenging compounds [75] and bacteriocin [76, 77]. The function of bifidobacteria in the intestine may be in protection against some immune-based disorders, as previous studies have shown them to stimulate a host innate immune response [78, 79]. Numerous studies have suggested that the human health benefits is associated possession of bifidobacteria in the human large intestine such as prevention of diarrhea, establishment of a healthy microflora in premature infants, colon regularity, lactose intolerance, cholesterol reduction and immunostimulatory effects. These potential health benefits were summaries in Table 4.

Health benefit	Study summary	Reference
	<i>B. bifidum</i> and <i>B. longum</i> subsp. <i>infantis</i> showing a protective effect against rotaviral diarrhea, a statistically significant ($P_0.001$)	[80]
	<i>B. breve</i> showing a protective effect against rotaviral diarrhea but non-statistically significant	[81]
Prevention of diarrhea	<i>B. bifidum</i> showing a protective effect reduced shedding of rotavirus ($P_0.01$)	[82]
	<i>B. animalis</i> subsp. <i>lactis</i> showing protective effect against all forms of diarrhea and a higher titer of antirotaviral antibodies in the feces, statistically significant ($P_0.01$)	[83]

Table 4. Summary of potential health benefits of bifidobacteria

Study summary	Reference
B. bifidum and Streptococcus thermophilus showing protective effect reduced shedding of rotavirus , statistically significant ($P_{0.035}$)	[84]
<i>B. animalis</i> subsp. <i>lactis</i> showing protective effect but a non-statistically significant	[85]
B. breve and S. thermophilus showing a reduced	
severity of diarrhea episodes over a 5-month period $(P_0.01)$	[86]
<i>B. animalis</i> and 4 species of <i>Lactobacillus</i> showing reduced the incidence of necrotizing enterocolitis ($P = 0.05$)	[87]
	 B. bifidum and Streptococcus thermophilus showing protective effect reduced shedding of rotavirus , statistically significant (P_0.035) B. animalis subsp. lactis showing protective effect but a non-statistically significant B. breve and S. thermophilus showing a reduced severity of diarrhea episodes over a 5-month period (P_0.01) B. animalis and 4 species of Lactobacillus showing reduced the incidence of necrotizing enterocolitis (P

	B. breve showing resulted in establishment of a	[88]
	bifidobacterial flora in the majority of infants during	
Establishment	the first week of life, whereas it took the control	
of a healthy	group several weeks, with only 3 of 9 infants	
microflora in	showing bifidobacteria by week 7	
premature		
infants	B. breve showing reduced fecal butyric acid levels,	[89]
	but only in the subgroup of infants that weighed	
	2,500 g (<i>P</i> _0.05)	

Health benefit	Study summary	Reference
Colon regularity	<i>B. animalis</i> subsp. <i>lactis</i> and yogurt cultures showing some reduce in colonic transit times (P_{-} 0.05)	[90]
	<i>B. animalis</i> subsp. <i>lactis</i> and yogurt cultures showing no statistically significant reduce in colonic transit times	[91]
	Supplementation with <i>B. animalis</i> subsp. <i>lactis</i> showing some reduce in colonic transit times (P_{-} 0.05)	[92]
	<i>B. animalis</i> subsp. <i>lactis</i> showing a reduce in colonic transit after 2 weeks ($P_{0.001}$)	[93]
Lactose	<i>B. longum</i> showing some reduce in breath hydrogen $(P_0.05)$	[94]
intolerance	<i>B. animalis</i> subsp. <i>lactis</i> and yogurt cultures showing some reduce in symptom scores ($P = 0.05$)	[95]
Cholesterol reduction	<i>B. animalis</i> subsp. <i>lactis</i> and <i>L. acidophilus</i> showing some reduce in serum cholesterol levels ($P_0.05$)	[96]

Health benefit	Study summary	Reference
Cholesterol reduction	Yoghurt containing with <i>L. acidophilus</i> 145, <i>B. longum</i> 913 and 1% oligofructose (synbiotic). showing no reduction in total cholesterol but an increase in high-density lipoprotein (HDL) levels $(P_0.001)$	[97]
	<i>B. longum</i> and <i>L. acidophilus</i> showing did not affect cholesterol levels	[98]
	<i>B. bifidum</i> showing reduce in CD4_ T cells in the spleen and colon ($P_0.05$)	[99]
	<i>B. longum</i> subsp. <i>infantis</i> showing some reduce in the proinflammatory cytokines IFN-, TNF-, and IL-12	[100]
Immunostimulatory effects	B. longum showing some increase in mucosal IgA ($P_0.05$)	[101]
	<i>B. animalis</i> subsp. <i>lactis</i> and <i>Lactobacillus paracasei</i> showing no statistically significant changes in cytokine levels	[102]
	<i>B. animalis</i> subsp. <i>lactis</i> showing some increase in the anti-inflammatory cytokine IFN- and in phagocytic activity ($P_0.05$)	[78]

Health benefit	Study summary	Reference
Immunostimulatory effects	<i>B. longum</i> , inulin, and fructooligosaccharides showing some decrease in expression of genes encoding human proinflammatory cytokines (P_{-} 0.05)	[103]
	<i>B. longum</i> subsp. <i>infantis</i> showing reductions in symptom scores and in the ratio of IL-10 to IL-12 (anti-inflammatory to proinflammatory cytokines), normalized to that of healthy individuals	[104]
	Heat-killed <i>B. infantis</i> showing some reduce in the incidence of tumors $(P_0.01)$ in mice	[105]
Cancer prevention	<i>B. longum</i> showing some decrease in carcinogenesis reduced aberrant crypt foci (P_{-} 0.05) and a significant decrease following co-supplementation with <i>B. longum</i> and inulin (P_{-} 0.001) in mice	[106]
	B. animalis subsp. lactis showing a significant reduce in carcinogen-induced colonic neoplasms $(P_0.001)$ in mice	[107]
	<i>B. animalis</i> subsp. <i>lactis</i> , <i>L. rhamnosus</i> , and inulin showing some improve in epithelial barrier function and cell toxicity only in polypectomized patients (P_{-} 0.05) in cancer or polypectomized patients	[108]

3. The genus Streptococcus

3.1 Background of streptococci

The genus Streptococcus belongs to the phylum Firmicutes, class Bacilli, order Lactobacillales family Streptococcaceae. This species originally isolated from suppurative lesions in human. Since 1874, Billroth he observe to chain-forming cocci in wounds and applied the term "streptococcus" as organisms to designate their morphological arrangement. A few years later, Rosenbach (1884) first used the word Streptococcus in the generic sense and describe the species *Streptococcus pyogenes* which is now the type species of the genus. The species group recognized to genus Streptococcus in currently such as pyogenic, mitis, salivarius, anginosus, mutans and bovis (Table 5). Genus Streptococcus including about 60 species and a number of them is known for their pathogenicity. The beneficial streptococci found as salivarius group. Streptococcus thermophilus species is contain in the group of lactic acid bacteria (LAB). It is one the microorganisms using in dairy product and most commercially important of all LAB. It is association with L. delbrueckii subsp. Bulgaricus. Since 1984 Farrow and Collins reclassify S. thermophilus as S. salivarius subsp. thermophilus but the definition of its status of separate species have definitively been established by Schleifer et al. (1991) with the name of Streptococus thermophilus

Group	Species
Pyogenic	S. pyogenes. S. agalactiae, S. canis, S.dysgalactiae,
	S. equi, S. parauberis, S. iniae, S. parauberis,
	S.porcinus, S. uberis
Mitis	S. gordonii, S. mitis, S. oralis, S. parasanguis,
	S.pneumoniae, S. sanguis
Salivarius	S. salivarius, S. thermophilus, S. vestibularis
Anginosus	S. anginosus, S.constellatus, S. intermedius
Mutans	S. mutans, S. cricetus, S. downei, S. macacae, S.
	rattus, S. sobrinus
Bovis	S. vobis, S. alactolyticus, S. equinus

 Table 5. The species groups in genus Streptococcus [109, 110]

3.2 Biology of streptococci

Streptococci are Gram-positive cocci, which may be spherical or ovoid in shape and are usually arranged in chain or pairs. They are non motile and do not formendospores. These streptococci are growth in facultative anaerobe, but some strains require CO₂. They are catalase-negative and homofermentative. The growth temperature at 10-45 °C and low of G+C DNA content 35-43 mol%. The streptococci are found an the mucous membranes of the mouth, upper respiratory tract, alimentary tract and human and animal skin [111]. In addition, lactic acid streptococci were recovered in fermented milk such as yoghurt and cheese [112, 113]. *Streptococcus thermophilus* detected by specific amplified of *lacZ* gene, rapid and reliable PCR-based technique [114].

3.3 Beneficial effect of streptococci

Genus *Streptococcus* is considered to be lactic acid bacteria (LAB). *Streptococus thermophilus* is an important LAB used for the food industry such as used for the manufacture of dairy product, used for as starter culture combination with *Lactobacillus delbrueckii* subsp. *bulgaricus* for production of yoghurts [113] and usage in cheese production i.e., Swiss cheese, Brick cheese, Parmesan, Provolone, Mozzarella and Asiago [112]. *Streptococcus thermophilus* is ability to survive in gastrointestinal tract and moderately adhere to intestinal epithelial cells [115]. The beneficial effect of *Streptococcus thermophilus* has been shown as positive effects on diarrheas in young children, enterocolitis in premature neonates and inflammatory gut disease [116]. Furthermore, it has shown produce antioxidants [117], stimulate the gut immune system [116], alleviate the risk of certain cancer and improve lactose digestion in lactose intolerant individuals [118]. In addition, it has shown inhibits *Clostridium tyrobutyricum* by production of bacteriocin [13].

4. Antimicrobial compound of Lactobacillus, Bifidobacterium and Streptococcus

Antimicrobial compound is produced by lactic acid bacteria (LAB) such as *Lactobacillus, Bifidobacterium* and *Streptococcus*. The antimicrobial compound is classified as low-molecular-mass (LMM) compounds such as organic acid, hydrogen peroxide (H_2O_2), carbon dioxide (CO_2), diacetyl (2,3-butanedione) and high-molecular-mass (HMM) compounds like bacteriocins [119].

4.1 Organic acid

The organic acid is product by LAB fermentation and the character of organic acid associate with accumulation of organic acids and the accompanying reduction in pH. The type of organic acid found as lactic acid, acetic acid and propionic acid. Lactic acid is the main metabolite of LAB fermentation and the boundary of the dissociation depends on pH. It is toxicity to many bacteria, fungi and yeasts. At pH 5.0 lactic acid was inhibit to spore-forming of bacteria but was no effective against yeasts and moulds [120]. Acetic acid and propinonic are more effective of antimicrobial than lactic acid because their have higher pKa values (lactic acid 3.08, acetic acid 4.75, and propionic acid 4.87), and their have higher percent of undissociated acids than lactic acid at a given pH [121]. Acetic acid was more inhibition growth of *Listeria monocytogenes* [122] and *Bacillus cereus* [123] more than acetic acid.

4.2 Hydrogen peroxide

The antimicrobial effect of H_2O_2 may result from the oxidation of sulfhydryl groups causing denaturing of a number of enzymes, and from the peroxidation of

membrane lipids thus the increased membrane permeability. It has been reported that H_2O_2 produce by *Lactobacillus* and *Lactococcus* strains could be inhibit *Staphylococcus aureus*, *Pseudomonas* sp.[124].

4.3 Carbon dioxide

Carbon dioxide CO_2 may properties in creating an anaerobic environment which inhibits enzymatic decarboxylations and the accumulation of CO_2 in the membrane lipid bilayer may cause a dysfunction in permeability. CO_2 can inhibit the growth of many food spoilage microorganisms, especially Gram-negative psychrotrophic bacteria [125].

4.4 Diacetyl (2,3-butanedione)

Diacetyl is produced by strains within all genera of LAB by citrate fermentation. It inhibits the growth of Gram-negative bacteria more than Gram-positive bacteria by reaction of the arginine-binding protein, thus affecting the arginine utilization [126].

4.5 Reuterin

Reuterin is a product by heterofermentative of *Lactobacillus reuteri*, species a member of microbiota of human and animal gastrointestinal tract. Reuterin presented a broad spectrum of antimicrobial activity against pathogens such as Gram-positive and Gram-negative bacteria, yeast, fungi and protozoa. The organisms have sensitive to reuterin such as *Salmonella, Shigella, Clostridium, Staphylococcus, Listeria, Candida*, and *Trypanosoma* [127].

4.6 Bacteriocins

Bacteriocins are proteinaceous compounds produced by bacteria strains in order to inhibit the growth of other bacteria. Bacteriocins groups are classified base on molecular weight differences. Class I- bacteriocins are small peptides (<5 kDa), Class II- small hydrophobic bacteriocins are heat-stable peptides (<13 kDa), Class III- large bacteriocins are heat-labile proteins (>30 kDa) and Class IV- complex bacteriocins are proteins with lipid and/or carbohydrate moieties [128]. The activity spectrum of

bacteriocins can be narrow and confined to inhibition of closely related species, or it can be relatively broad and include many different bacterial species.

5. Methods for evaluation of antimicrobial activity

5.1 The agar diffusion method

The agar diffusion method was first used by Fleming in 1924. The method used for detection of antimicrobial activity and has long been widely used for evaluation of antimicrobial activity, especially for biologically derived compounds. It including agar well diffusion assay and disc assay. In this test, an antimicrobial compound is applied to an agar plate on a paper disc or in a well. The compound diffuses into agar resulting in a concentration gradient that is inversely proportional to the distance from the disc or well. The size of the inhibition zone able measured of degree around the disc or well. The results of the test are generally qualitative [129]. The method requires that the indicator organisms must grow rapidly, uniformly, and aerobically. Since highly hydrophobic antimicrobial compounds cannot diffuse in agar, they are not suitable for tests by this method [130]. The method such as agar spot method [131] and spot-on-lawn method [132].

5.2 The agar and broth dilution methods

Agar and broth dilution methods are quantitative methods for suit microorganisms with variable growth rate and for anaerobic, microaerophilic microorganisms. The results are exhibited as MIC, which is the lowest concentration of an antimicrobial that prevents growth of a microorganism after a specific incubation period. In this test, serial dilution of antimicrobial and add a single concentration to culture tube (nonselective broth) or plate (melted agar medium), which is then inoculated with test organisms and incubated. The MIC is defined as the lowest concentration at which no growth occurs (absence of turbidity) in a medium following incubation [129]. The broth dilution assay has been used for the determination of the antimicrobial activity of reuterin produced by *Lb. reuteri*, and the activity of reuterin was exhibited as MIC values or as the maximum dilutions of the reuterin fraction[127].

5.3 The automated turbidometric assay

A turbidometric assay used for determines the effect of a compound on the growth or death kinetics of a microorganism. The assay is based on automated systems. It result shown information concerning the effect of an antimicrobial that may cause a delayed lag phase or reduced growth rate at concentrations below the MIC. Since the bacterial growth is monitored by measuring the turbidity of the broth medium, the method demands that the instrument be highly sensitive [133].

CHAPTER III

MATERIAL AND METHODS

1. Human subjects and sample collection

Breast milk were collected from healthy lactating Thai women who brought infants to receive vaccination at well baby clinic, 9th floor Por-Por-Ror building, King Chulalongkorn Memorial Hospital. Participated volunteers were enrolled according to following criteria (i) healthy women without present or past underlying condition (ii) aged 18-40 years (iii) lactating at range 15 days to 60 days and (iv) never received antibiotics during pregnancy and at least 1 month before sample collection. The sample calculated from the formula n = $Z_a^2 P(1-P) / \frac{2}{\rho}$ where $Z_a = 1.96$, P = 0.07, e = 0.0.05) was found to be 99.99. In this study, a total of 102 milk samples were then collected from volunteers, All volunteers were gave written informed consent to the protocol, which were approved by Ethical Committee of Faculty of Medicine, Chulalongkorn University. The participants provide samples of breast milk and, breast skin swabs. Nipple and mammary were first cleaned with sterile water and skin sampling was performed using sterile cotton swabs to rub around area of the outer quarter of breast and placed into a sterile tubes containing 0.15% peptone water. The milk samples were collected in sterile tube by manual expression using sterile gloves. The milk samples and skin swabs were kept in an icebox and transported to the laboratory within 3 h and immediately cultured on appropriate media.

2. Bacterial cultivation

Three culture media were used: (a) MRS medium (de Man, Rogosa and Sharpe) for isolation of lactobacilli. (b) MC medium (Modified Columbia, with 0.03 g/l bromocresol purple) as described by Beerens [68] for isolation of bifidobacteria. (c) M17 medium for isolation of streptococci. Breast milk samples of 1 ml were diluted in 9 ml buffered peptone water and ten-fold serial diluted to 10⁻²-10⁻³ Diluted

sample of 100 µl were spreaded onto MRS, MC, and M17 medium. Plates of MRS and MC media were incubated under anaerobic condition for 48-72 h. at 37 °C in an anaerobic chamber. Plates of M17 medium were incubated under aerobic condition for 24-48 h. at 37 °C. The remaining samples were kept at -80 °C for experimental use. Skin swabs were plated on the above media and incubated with plates of milk samples.

3. Selection of Lactobacillus, Bifidobacterium, and Streptococcus isolates

After incubation, colonies developed on MRS, MC, and M17 media were selected according to different morphologies. Colonies of each morphotype were tested for catalase activity and catalase-negative colonies were Gram-stained and microscopically examined. Subcultured were performed to obtain isolated colonies on appropriate media. Catalase-negative, Gram-positive rods or coccobacilli were tentatively considered *Lactobacillus*-like bacteria. Catalase-negative, Gram-positive bifid-shaped rods were tentatively considered *Bifidobacterium*-like bacteria and catalase- negative, Gram-positive cocci in chain were tentatively considered *Streptococcus*-like bacteria. Isolates of suspected lactobacilli, bifidobacteria, and streptococci were kept in MRS, brain heart infusion broth (BHB), and M17 with 20% glycerol respectively, and stored in frozen cultures at -80 °C for experimental use.

4. Genotypic identification of *Lactobacillus*, *Bifidibacterium*, and *Streptococcus* isolates

Bacterial colonies were first tested with genus-specific primers. Bacterial DNAs were extracted from 2-3 colonies as follow: colonies were picked and put in to an eppendorf tube. After 200 μ l sterile water was added, the suspension was mixed and spun down to remove water and resuspended with 180 μ l sterile water. Solution of 20 μ l 10X digestion buffer (5% tween 20 and 10 mg/ml proteinase K in 0.2 M Tris pH 8.3) was added and incubated at 60 °C for 1 h. After inactivation of proteinase K at 100 °C for 15 min, the suspension was centrifuged at 13,000 rpm for 5 min.

Supernatant was collected for amplification and identification of *Lactobacillus*, *Bifidobacterium*, and *Streptococcus* using 16S rRNA genes sequencing.

Lactobacillus genus-specific primers L159F (5'-GGA AAC AG(A/G) TGC TAA TAC CG-3') and L677R (5'-CAC CGC TAC ACA TGG AG-3'),[134] were used. The 25- μ l reaction mixture contains 12.5 μ l of Hot start master mix (GE Healthcare illustra, UK), 10 pmol of each primer, 5 μ l DNA template and 2.5 μ l H₂O. Amplification was performed: 95°C for 5 min; 35 cycles of 95 °C for 30 s, 57 °C for 1 min, and 72 °C for 1 min and a final extension of 72 °C for 5 min.

Bifidobacterium genus-specific primers Bif164F (5'-GGG TGG TAA TGC CGG ATG-3') and Bif601R (5'-TAA GCG ATG GAC TTT CAC ACC-3'),[135] were used. The 25- μ l reaction mixture contains 12.5 μ l of Hot start master mix (GE Healthcare illustra, UK), 10 pmol of each primer, 5 μ l DNA template and 2.5 μ l H₂O. Amplification was performed: 95 °C for 5 min; 35 cycles of 95 °C for 1 min, 59 °C for 1 min, and 72 °C for 1 min and a final extension of 72 °C for 10 min.

Streptococcus genus-specific primer Tuf-Strp-1 (5'- GAA GAA TTG CTT GAA TTG GTT GAA-3') and Tuf-Strep-R (5'- GGA CGG TAG TTG TTG AAG AAT GG-3') [136] were used. The 25- μ l reaction mixture contains 12.5 μ l of Hot start master mix (GE Healthcare illustra, UK), 10 pmol of each primer, 5 μ l DNA template and 2.5 μ l H₂O. Amplification was performed: 95 °C for 5 min; 35 cycles of 95 °C for 1 min, 56° C for 1 min, and 72 °C for 1 min and a final extension of 72 °C for 10 min.

Bacterial isolate which gave positive result with genus-specific primers, was subjected to DNA sequencing. The 16S rRNA gene sequences was amplified by PCR using the universal primer 16S-8F (5'-AGA GTT TGA TCY TGG YTY AG-3') and 16S-1541R (5'-AAG GAG GTG WTC CAR CC-3') [137] for genus *Lactobacillus*. The 50-µl reaction mixture contains 25 µl of Hot start master mix (GE Healthcare illustra, UK), 10 pmol primer, 5 µl DNA template and 15 µl H₂O. Amplification was performed: 95 °C for 5 min; 35 cycles of 95 °C for 30 s, 57 °C for 1 min, and 72 °C for 1 min and a final extension of 72 °C for 10 min. Genus *Bifidobacterium* was amplified using the universal primers lm26 (5'-GAT TCT GGC TCA GGA TGA ACG-3') and lm3 (5'-CGG GTG CTI CCC ACT TTC ATG-3') [138]. The 50-µl reaction mixture contains 25 µl of Hot start master mix (GE), 10 pmol of each primer, 5 µl DNA template and 15 µl H₂O. Amplification was performed and 15 µl H₂O. Amplification was a minimum contains 25 µl of Hot start master mix (GE), 10 pmol of each primer, 5 µl DNA template and 15 µl H₂O. Amplification was performed: 95 °C for 5 min; 35 µl of Hot start master mix (GE), 10 pmol of each primer, 5 µl DNA template and 15 µl H₂O. Amplification was performed: 95 °C for 5 min; 35

cycles of 94 °C for 1 min, 57 °C for 3 min, and 72 °C for 4 min and a final extension of 72 °C for 10 min. Genus *Streptococcus* was amplified using universal primers forward primer (5'-AGA GTT TGA TCC TGG CTC AG-3') and U926 (5'-CCG TCA ATT CCT TTR AGT TT-3') [139]. The 50- μ l reaction mixture contains 25 μ l of Hot start master mix (GE Healthcare illustra, UK), 10 pmol of each primer, 5 μ l DNA template and 15 μ l H₂O. Amplification was performed: 95 °C for 5 min; 35 cycles of 95 °C for 1 min, 56° C for 1 min, and 72 °C for 1 min and a final extension of 72 °C for 10 min.

PCR product was individually purified by using QIAquick PCR purification kit (Qiagen Inc., USA). Sequencing will be performed by using 10 ng purified PCR product with the same primer as in PCR amplification by the dideoxynucleotide chain termination method at the 1 st BASE Sequencing, Shan Alan, Malasia (http://www.base-asia.com). The nucleotide sequence will be analysed using the match program of Ribosomal Database Project II sequence (RDP-II; http://rdp.cme.msu.edu) and GenBank DNA database search (www.ncbi.nlm.nih.gov/BLAST). The closest relative of the partial 16S rRNA gene sequences was evaluated. The identities of the isolates were determined on the basis of the highest score.

5. Detection DNA of lactobacilli, bifidobacteria and streptococci by PCR method

DNA was isolated from 100 samples of breast milk stored at -80 °C by using QIAamp DNA stool minikit (Qiagen, Hilden, Germany). One milliliter of breast milk samples were centrifuged for 20 min at 6,000 rpm. After the supernatant was removed, used pellets and added a bead-beading with 0.3 g of 0.1 mm zirconium beads and 1.4 ml of ASL buffer (Qiagen) and mixed by vortex. The suspension was incubated at 95°C for 5 min and centrifuged, then supernatant was transferred to clean vial and an InhibitEX Tablet (Qiagen) was added. After centrifugation the supernatant was transferred to QIAamp spin columns (Qiagen) and made following the manufacturer's instruction. DNA eluted in 200 µl of buffer AE (provided in the kit), and the extracted-purified DNA were stored at -20 °C. DNA targets were amplified by PCR using genus-specific primers L159F (5'-GGA AAC AG(A/G) TGC TAA

TAC CG-3') and L677R (5'-CAC CGC TAC ACA TGG AG-3') [134] for *Lactobacillus*. Bif164F (5'-GGG TGG TAA TGC CGG ATG-3') and Bif601R (5'-TAA GCG ATG GAC TTT CAC ACC-3') [135] for *Bifidobacterium* and Tuf-Strep-1 (5'- GAA GAA TTG CTT GAA TTG GTT GAA-3') and Tuf-Strep-R (5'- GGA CGG TAG TTG TTG AAG AAT GG-3') [136] for *Streptococcus*. The PCR amplicons were detected with agarrose gel electrophoresis and stained with ethidium bromide.

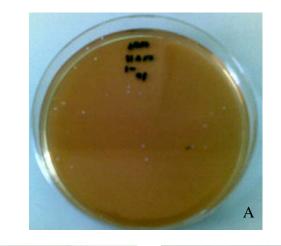
6. Antagonistic activity assay

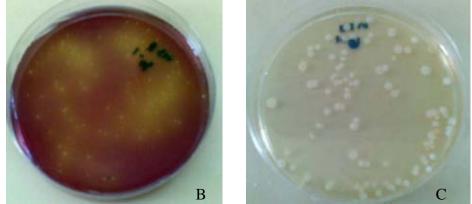
Antagonistic activities of *Lactobacillus*, *Bifidobacterium*, and *Streptococcus* against various bacterial pathogens were performed by agar spot method as previously described by Spinler *et al*[11]. Enterotoxigenic *E. coli* (ETEC) DMST 20970, enteroinvasive *E. coli* (EIEC) DMST 20971, enteropathogenic *E. coli* (EPEC) DMST 20972, enterohemorrhagic *E. coli* (EHEC) DMST 20973, *Salmonella* Typhimurium ATCC 13311, *Shigella flexneri* DMST 4423, *Vibrio cholerae* non O1 DMST 2873, *Helicobacter pylori* ATCC 43504 and Methicillin-resistant *Staphylococcus aureus* (MRSA) ATCC 43300 were selected bacterial pathogen to be tested. All target bacteria were grown on appropriate media and condition for experimental use.

Lactobacillus and *Bifidobacterium* were precultivated on MRS and MC, respectively for 48-72 h. in an anaerobic condition (the AnaeroPack system, Mitsubishi Gas Chemical, H₂: 5%, CO₂: 10%, N₂: 85%). *Streptococcus* was precultivated on M17 agar in an aerobic condition for 24-48 h. They were subcultured on MRS, BHI and M17 broth (media for lactobacilli, bifidobacteria and streptococci, respectively) twice in a 96-well plate. Forty-eight hour culture of *Lactobacillus, Bifidobacterium*, and 24 h. of *Streptococcus* were spotted by frogger (Dan-Kar Corp, MA, USA) onto the surface of BHI agar in a 140-mm plate and incubated in anaerobic condition at 37 °C for 48 h., except plates of *Streptococcus* incubated in aerobic condition at 37 °C for 24 h. Twenty milliliters of tryptic soft agar (agar 7.5 g/l) containing target bacterial pathogens at concentration about 1×10^7 CFU/ml (1 x 10^9 CFU/ml of *Helicobacter pylori*) were overlain on plate of *Lactobacillus, Bifidobacterium*, and *Streptococcus* developed spots. Each plate was incubated under appropriate condition depending on each target pathogen. Inhibition zones were

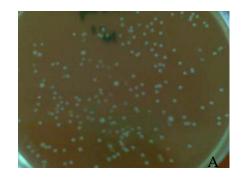
measured and a clear zone of 1-2 mm was scored as weak inhibitory activity, 3-4 mm as strong inhibitory activity and an opaque zone of inhibition <1 mm as microcolonies (M).

CHAPTER IV


RESULTS


1. Cultivation and presumptive identification of *Lactobacillus*, *Bifidobacterium* and *Streptocococus* from breast milk

One hundred and two milk samples and skin swabs were collected from Thai healthy mothers. These samples were cultured in MRS, MC and M17 agar for the isolation of *Lactobacillus*, *Bifidobacterium* and *Streptococcus*, respectively. The colonies of bacterial isolates from breast milk on MRS agar were small to medium, circular and convex, white or yellow turbid or transparent, whereas those on MC agar were small to medium, circular and convex or flat, white or yellow and transparent. On M17 agar, the colonies were medium to large, circular and convex or flat and white turbid. Colony morphologies of these bacteria on MRS, MC and M17 agar were shown in Figure 2. The colonies of bacterial isolates from skin swabs grown on MRS were small to medium, circular and convex or flat, white or yellow turbid or transparent (Figure 3 A). On MC agar, the colonies were small to medium, circular and convex or flat, white or yellow turbid or transparent (Figure 3 B) and on M17 agar the colonies were medium to large, circular and convex or flat, white or grey and turbid or transparent (Figure 3 C).


Bacterial colonies grown on each medium with different appearance were picked and tested for catalase enzyme. The catalase-negative ones were Gram-stained and examined microscopically. Isolates visualized as Gram-positive short or long rods or coccobacilli on MRS agar were suspected of *Lactobacillus* (Figure 4 A). Isolates with Gram- positive, bifid or polymorphic branched or irregular rods on MC or MRS agar were suspected of *Bifidobacterium* (Figure 4 B) *and* isolates on M17 agar or MRS suspected to be *Streptococcus* were Gram-positive, cocci in chain or single (Figure 4 C). Suspected colonies were re-streaked for single colony isolation on new media. A single pure colony was re-tested for catalase enzyme, Gram- stained and examined microscopically.

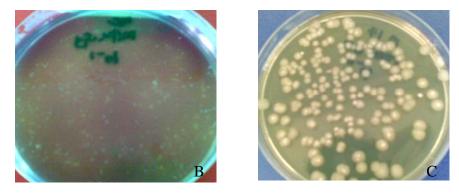

A total of 176 bacterial isolates were selected for further identification. They were 74, 62 and 40 suspected *Lactobacillus*, *Bifidobacterium* and *Streptococcus*, respectively. All bacterial isolates from skin swabs were catalase-positive. They were either Gram-positive cocci in cluster or single Gram-negative cocci or Gram-negative cocci in small cluster.

Figure 2. Colony growth from breast milk on different media, (A) MRS agar, (B) MC agar and (C) M17 agar.

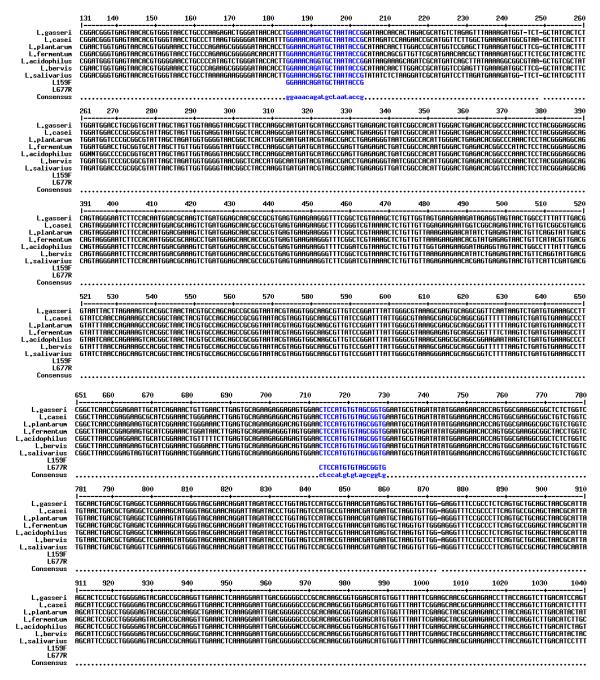
Figure 3. Colony growth from skin swabs on different media, (A) MRS agar, (B) MC agar and (C) M17 agar.

Figure 4. Cell morphology of bacteria isolated from breast milk, (A) Gram-positive short rods suspected to be *Lactobacillus* (B) Gram- positive bifid or irregular rods suspected to be *Bifidobacterium* (C) Gram-positive cocci in chain suspected to be *Streptococcus*.

A

В

С

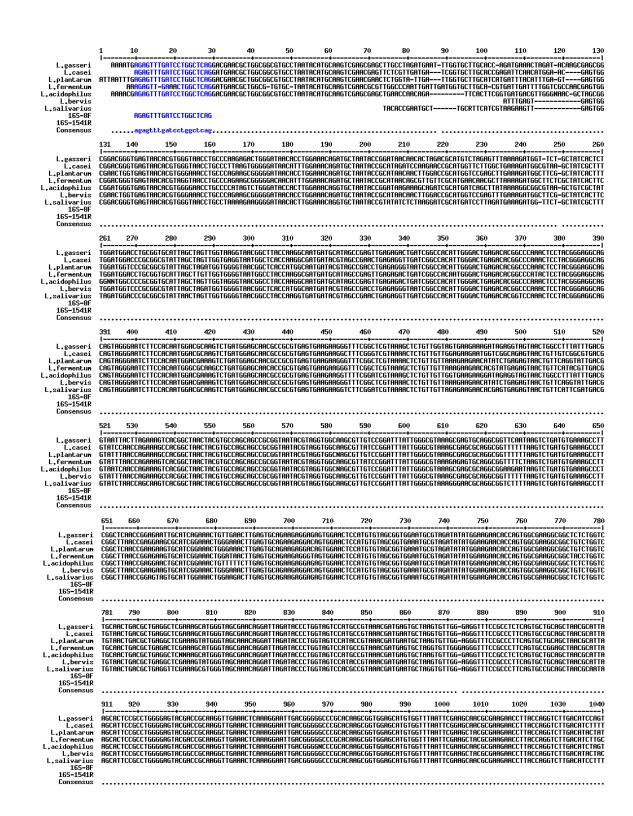

2. Genotypic identification of lactobacilli, bifidobacteria and streptococci

DNAs of all 176 isolates were amplified using genus-specific primers. These genus-specific primers were aligned with the 16S rRNA gene sequence of *Lactobacillus* spp., *Bifidobacterium* spp., and *Streptococcus* spp. with Multalin program and the result was shown in Figures 5-7 Out of 74 suspected *Lactobacillus* isolates, 53 (71.62 %) were positive for *Lactobacillus*. Out of 62 suspected *Bifidobacterium* isolates, 45 (72.58%) were positive for *Bifidobacterium*. Out of 40 suspected *Streptococcus* isolates, 26 (65%) were positive for *Streptococcus*. Isolates with positive results from genus-specific amplification were then amplified using universal primers. These universal primers were aligned with the 16S rRNA gene sequence of *Lactobacillus* spp., *Bifidobacterium* spp., and *Streptococcus* spp. with Multalin program and the result was shown in Figures 8-10.

The amplification products were sequenced and analysed with NCBI and RDP II database. Forty out of 53 isolates (75.47%) were identified as *Lactobacillus* spp. such as *L. gasseri* (6 isolates), *L. salivarius* (16 isolates), *L. fermentum* (5 isolates), *L. mucosae* (5 isolates), *L. rhamnosus* (3 isolates), *L. casei* (3 isolates), *L. plantarum* (1 isolate) and *L. oris* (1 isolate) as shown in Table 6. These *Lactobacillus* isolates were recovered from 37 (36.27%) milk samples. Thirty-three out of 45 isolates), *B. breve* (7 isolates), *B. psedocatenulatum* (5 isolates), *B. dentium* (8 isolates) and *B. bifidum* (5 isolates), *B. dentium* (8 isolates) and *B. bifidum* (5 isolates) as shown in Table 7. These *Bifidobacterium* isolates were recovered from 31 (30.39%) milk samples. All 26 isolates which were positive by *Streptococcus*-specific PCR were identified as *Streptococcus* spp. such as *S. salivarius* (13 isolates), *S. lactarius* (4 isolates), *Streptococcus* sp. (4 isolates), *Streptococcus* mitis (3 isolates) and *Streptococcus* parasanguis (2 isolates) as shown in Table 8. These *Streptococcus* isolates were recovered from 17 (16.67%) milk samples. The summary of bacterial isolates recovered from breast milk was shown in Tables 9-10.

Thirteen isolates positive with *Lactobacillus*-specific amplification were identified to be *Staphylococcus aureus* (5 isolates), *Staphylococcus epidermidis* (4 isolates) and uncultured bacteria (4 isolates). Twelve isolates positive with *Bifidobacterium*-specific amplification were identified to be *Actinomyces radicidentis*

(1 isolate) and uncultured bacteria (11 isolates). The summary of other bacterial species found in breast milk was shown in Table 11.


Figure 5. The alignment of genus-specific primer L159F and L677R with 16S rRNA gene sequence of *Lactobacillus* spp.

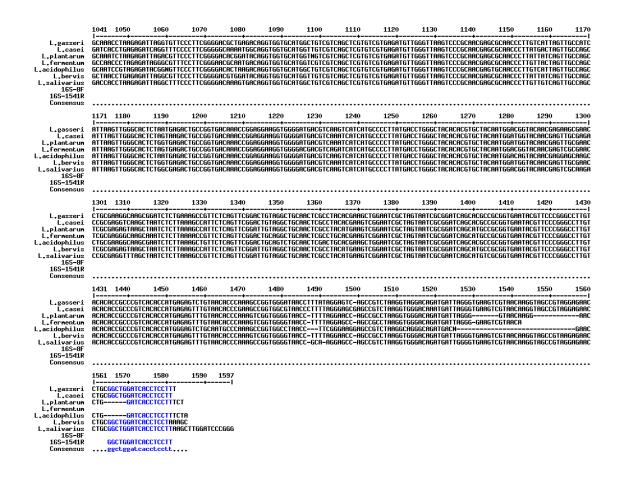

	1	10	20	30	40	50	60	70	80	90	100	110	120	130
B.bifidum B.dentium B.breve B.longum Bif601R Bif164F	TT Agagtt	TGATCATGGC TGATCCTGGC	TCAGGATGAA TCAGGATGAA TCAGGATGAA TCAGGATGAA TCAGGATGAA	CGCTGGCGGC CGCTGGCGGC	GTGCTTAACA GTGCTCAACA	CATGCAAGTC CATGCAAGTC	GAACGGGATC GAACGGGATC	CCGGGGGGTTC		TGAGAGTGGO TGAGAGTGGO	CGAACGGGTGA CGAACGGGTGA	IGTAATGCGTG IGTAATGCGTG	ACCGACCTG	CCCCA CCCCA
Consensus	•••••	• • • • • • • • • • •	•••••	• • • • • • • • • • •	•••••	• • • • • • • • • • • •	• • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	••••
	131	140	150	160	170	180	190	200	210	220	230	240	250	260
B.bifidum B.dentium B.breve B.longum Bif601R Bif164F Consensus	TGCTCC TACACC TGCACC TGCACC TACACC	GGAATAGCTC GGAATAGCTC GGAATAGCTC GGAATAGCTC GGAATAGCTC	CTGGAAACGG CTGGAAACGG CTGGAAACGG CTGGAAACGG	GTGGTAATGC GTGGTAATGC GTGGTAATGC GTGGTAATGC GTGGTAATGC	CGGATGTTCC CGGATGCTCC CGGATGCTCC CGGATGCTCC CGGATG	ACATGATCGC GGTTGGATGC ATCACACCGC AGTTGATCGC	ATGTGATTGT Atgtccttcc Atggtgtgtgt Atggtcttct Atggtcttct	GGGAAAGATT GGGAAAGGTT GGGAAAGCCT GGGAAAGCCT GGGAAAGCTT	CTATCGGCGT CCATCGGTAT TTG-CGGCAT TCG-CGGTAT	GGGATGGGGT GGGATGGGGT GGGATGGGGT GGGATGGGGG	ICGCGTCCTAT ICGCGTCCTAT ICGCGTCCTAT ICGCGTCCTAT	CAGCTTGTTG CAGCTTGATG CAGCTTGATG	GTGAGGTAA GCGGGGGTAA GCGGGGGTAA	CGGCC CGGCC
consensus	261	270	280	290	300	310	320	330	340	350			380	390
B.bifidum B.dentium B.breve B.longum Bif601R Bif164F Consensus	CACCAA CACCAA CACCAT CACCAT	GCTTCGACG GCTTCGACG GCTTCGACG	280 GGTAGCCGGC GGTAGCCGGC GGTAGCCGGC	CTGAGAGGGGC CTGAGAGGGGC CTGAGAGGGGC	GACCGGCCAC GACCGGCCAC GACCGGCCAC	ATTGGGACTG ATTGGGACTG ATTGGGACTG	AGATACGGCC AGATACGGCC AGATACGGCC	CAGACTCCTA CAGACTCCTA CAGACTCCTA	CGGGAGGCAG CGGGAGGCAG CGGGAGGCAG	CAGTGGGGAA CAGTGGGGGAA CAGTGGGGGAA	TATTGCACAA	ITGGGCGCAAG ITGGGCGCAAG	CCTGATGCA CCTGATGCA CCTGATGCA	GCGAC GCGAC GCGAC
	391	400	410	420	430	440	450	460	470	480	490	500	510	520
B.bifidum B.dentium B.breve B.longum Bif601R Bif164F Consensus	GCCGCG GCCGCG	TGAGGGATGG TGCGGGGATGG TGAGGGATGG	AGGCCTTCGG AGGCCTTCGG AGGCCTTCGG AGGCCTTCGG	GTTGTAAACC GTTGTAAACC GTTGTAAACC	GCTTTTGATC: TCTTTTGTTA	GGGAGCAAGC GGGAGCAAGC GGGAGCAAGG	CTTCGGG- C-CTTCGGGG CACTTTGTGT	TGAGTGTACC TGAGTGTACC TGAGTGTACC	TTTCGAATAA CTTCGAATAA TTTCGAATAA	GCGCCGGCTF GCACCGGCTF GCACCGGCTF	IACTACGTGCO IACTACGTGCO IACTACGTGCO	AGCAGCCGCG AGCAGCCGCG AGCAGCCGCG	GTAATACGTI GTAATACGTI	AGGGT AGGGT
	521	530	540	550	560	570	580	590	600	610	620	630	640	650
B.bifidum B.dentium B.breve B.longum Bif601R Bif164F Consensus	gcaagc gcaagc gcaagc	GTTATCCGGA GTTATCCGGA GTTATCCGGA	ATTATTGGGC ATTATTGGGC ATTATTGGGC ATTATTGGGC	GTAAAGGGCT GTAAAGGGCT GTAAAGGGCT GTAAAGGGCT	CGTAGGCGGC CGTAGGCGGT CGTAGGCGGT CGTAGGCGGT CGTAGGCGGT	TCGTCGCGTC TCGTCGCGTC TCGTCGCGTC TCGTCGCGTC TCGTCGCGTC	CGGTGTGAAA CGGTGTGAAA CGGTGTGAAA CGGTGTGAAA GGTGTGAAA	GTCCATCGCT GCCCATCGCT GTCCATCGCT GTCCATCGCT GTCCATCGCT GTCCATCGCT	TAACGGTGGA TAACGGTGGG TAACGGTGGA TAACGGTGGA TA	TCTGCGCCGG TCTGCGCCGG TCCGCGCCGG TCCGCGCCGG	GTACGGGCGC GTACGGGCGC GTACGGGCGC GTACGGGCGC GTACGGGCGC	GCTGGAGTGC GCTTGAGTGC GCTTGAGTGC	GGTAGGGGA GGTAGGGGA GGTAGGGGA	GACTG GACTG GACTG
	651	660	670	680	690	700	710	720	730	740	750	760	770	780
B.bifidun B.dentiun B.breve B.longun Bif601R Bif164F Consensus	I GAATTC GAATTC GAATTC	CCGGTGTAAC CCGGTGTAAC CCGGTGTAAC	CGGTGGAATGT CGGTGGAATGT CGGTGGAATGT CGGTGGAATGT	GTAGATATCO GTAGATATCO GTAGATATCO	GGAAGAACAC GGAAGAACAC GGAAGAACAC	CGATGGCGAA CAATGGCGAA CAATGGCGAA	GGCAGGTCTC GGCAGGTCTC GGCAGGTCTC	TGGGCCGTCA TGGGCCGTCA TGGGCCGTCA	CTGACGCTGA CTGACGCTGA CTGACGCTGA	GGAGCGAAAQ GGAGCGAAAQ GGAGCGAAAQ	CGTGGGGGAGG CGTGGGGGAGG CGTGGGGGAGG	:GAACAGGATT :GAACAGGATT :GAACAGGATT	AGATACCCT	GGTAG GGTAG
	781	790	800	810	820	830	840	850	860	870	880	890	900	910
B.bifidum B.dentium B.breve B.longum Bif601R Bif164F Consensus	TCCACG TCCACG	CCGTAAACGG CCGTAAACGG	TGGACGCTGG TGGATGCTGG TGGATGCTGG TGGATGCTGG TGGATGCTGG	ATGTGGGGCC ATGTGGGGCC	CGTTCCACGG	GTTCCGTGTC GTTCCGTGTC GTTCCGTGTC	GGAGCTAACG GGAGCTAACG GGAGCTAACG	CGTTAAGCGT CGTTAAGCAT CGTTAAGCAT	CCCGCCTGGG CCCGCCTGGG CCCGCCTGGG	GAGTACGGCO GAGTACGGCO GAGTACGGCO	GCAAGGCTAA GCAAGGCTAA	IAACTCAAAGA IAACTCAAAGA	AATTGACGG	GGGCC GGGCC

Figure 6. The alignment of genus-specific primer Bif164F and Bif601R with 16S rRNA gene sequence of *Bifidobacterium* spp.

	1	10	20	30	40	50	60	70	80	90	100	110	120	130
S.thernophilus S.vestibularis S.salivarius Tuf-Strep-R Tuf-Strep-1 Consensus		GAGAGATTTO	ATCCTGGCTC	aggacgaacg	CTGGCGGCGT	GCCTAATACF	ITGCAAGTAGI	ACGCTGAAG	ia <mark>gagga</mark> gctt	CTCTTCTT CTCTTCTT CTTGAATT		GAACGGGTG	AGTAACGCGTA	AGGTAAO
	131	140	150	160	170	180	190	200	210	220	230	240	250	260
S.thermophilus S.vestibularis S.salivarius Tuf-Strep-R Tuf-Strep-1 Consensus	CTGCCI	TGTAGCGGG	GGATAACTAT	TGGAAACGAT	AGCTAATACC	GCATAACAA1	AGGTGACACI	ATGTCATTTA	ITTTGAAAGGG	GCAATTGCT	CCACTACAAGA CCACTACAAGA CCACTACAAGA	TGGACCTGC	GTTGTATTAG	CTAGTAG
	261	270	280	290	300	310	320	330	340	350	360	370	380	390
S.thermophilus S.vestibularis S.salivarius Tuf-Strep-R Tuf-Strep-1 Consensus	GTGAGO	STAACGGCTC	acctaggcgf	ICGATACATAG	CCGACCTGAG	AGGGTGATCO	GCCACACTG	GACTGAGAG	ACGGCCCAGA	CTCCTACGG	GAGGCAGCAGT GAGGCAGCAGT GAGGCAGCAGT	AGGGAATCT	TCGGCAATGG(GGCAAC
	391	400	410	420	430	440	450	460	470	480	490	500	510	520
S.thermophilus S.vestibularis S.salivarius Tuf-Strep-R Tuf-Strep-1 Consensus	CCTGAG	CGAGCAACO	ICCGCGTGAGT	GAAGAAGGTT	TTCGGATCGT	AAAGCTCTG1	TGTAAGTCA	IGAACGAGTO	TGAGAGTGGA	AGTTCACA	CAGTGACGGTA Ctgtgacggta Ctgtgacggta Ctgtgacggta	GCTTACCAG	AA-GGGACGG	CTAACTA
conconduc	521	530	540	550	560	570	580	590	600	610	620	630	640	650
S.thermophilus S.vestibularis S.salivarius Tuf-Strep-R Tuf-Strep-1 Consensus	CGTGCO	CAGCAGCCGC	GGTAATACGT	AGGTCCCGAG	CGTTGTCCGG	ATTTATTGGO	icgtaaagcgi	ACCCCACCC	GTTTGATAAG	ICTGAAGTT	AAAGGCTGTGG AAAGGCTGTGG AAAGGCTGTGG	CTCAACCAT	AGTTCGCTTT	GGAAACT
	651	660	670	680	690	700	710	720	730	740	750	760	770	780
S.thernophilus S.vestibularis S.salivarius Tuf-Strep-R Tuf-Strep-1 Consensus	GTCAAA	ACTTGAGTGC	AGAAGGGGAG	AGTGGAATTC	CATGTGTAGC	GGTGAAATGO	GTAGATATA	rggaggaacf	ICCGGTGGCGA	AGCGGCTC	TCTGGTCTGTA TCTGGTCTGTA TCTGGTCTGTA	ACTGACGCT	GAGGCTCGAAA	ACCATCO
	781 	790	800	810	820	830	840	850	860	870	880	890	900	910
S.thernophilus S.vestibularis S.salivarius Tuf-Strep-R Tuf-Strep-1 Consensus	GGAGCO	GAACAGGATT	AGATACCCTO	IGTAGTCCACG	CCGTAAACGA	TGAGTGCTAC	GTGTTGGAT	CTTTCCGGC	ATTCAGTGCC	icagctaac	GCATTAAGCAC GCATTAAGCAC GCATTAAGCAC	TCCGCCTGG	GGAGTACGAC(CGCAAGG
	911 	920	930	940	950	960	970	980	990	1000	1010	1020	1030	1040
S.thermophilus S.vestibularis S.salivarius Tuf-Strep-R Tuf-Strep-1 Consensus	TTGAAA	ictcaaaggf	ATTGACGGGG	GCCCGCACAA	GCGGTGGAGC	ATGTGGTTTF	ATTCGAAGCI	ACGCGAAGA	ACCTTACCAG	STCTTGACA	TCCCGATGCTA TCCCGATGCTA TCCCGATGCTA	TTTCTAGAG	ATAGAAAGTTA	ACTTCGG
	1041	1050	1060	1070	1080	1090	1100	1110	1120	1130	1140	1150	1160	1170
S.thermophilus S.vestibularis S.salivarius Tuf-Strep-R Tuf-Strep-1 Consensus	TACAT	CGGTGACAGI	GTGGTGCATG	GTTGTCGTCAG	ICTCGTGTCGT	GAGATGTTG	GGTTAAGTCC	CGCAACGAG	GCAACCCCTA	ITGTTAGTT	GCCATCATTCA GCCATCATTCA GCCATCATTCA GCCATCATTCA	IGTTGGGCAC	TCTAGCGAGAG	CTGCCGG
	1171	1180	1190	1200	1210	1220	1230	1240	1250	1260	1270	1280	1290	1300
S.thermophilus S.vestibularis S.salivarius Tuf-Strep-R Tuf-Strep-1 Consensus	TAATA	AACCGGAGGI	AAGGTGGGGA AAGGTGGGGA	IGACGTCAAAT Igacgtcaaat Ccatt	CATCATGCCC Icatcatgccc Icttcaa-caa	CTTATGACC CTTATGACC CTACCGTCC	FGGGCTACAC FGGGCTACAC	ACGTGCTACI ACGTGCTACI	ATGGTTGGTA	CAACGAGTT	GCGAGTCGGTG GCGAGTCGGTG GCGAGTCGGTG	ACGGCAAGC	TAATCTCTTA	AGCCAA
	1301	1310	1320	1330	1340	1350	1360	1370	1380	1390	1400	1410	1420	1430
S.thermophilus S.vestibularis S.salivarius Tuf-Strep-R Tuf-Strep-1 Consensus	TCTCA TCTCA	GTTCGGATT(GTTCGGATT(GTAGGCTGCAI GTAGGCTGCAI	ACTCGCCTACA ACTCGCCTACA	ITGAAGTCGGA Itgaagtcgga	ATCGCTAGTI ATCGCTAGTI	ATCGCGGAT Atcgcggat	CAGCACGCCI CAGCACGCCI	CGGTGAATAC CGGTGAATAC	GTTCCCGGG GTTCCCGGG	CCTTGTACACA CCTTGTACACA CCTTGTACACA CCTTGTACACA	ICCGCCCGTC ICCGCCCGTC	ACACCACGAGA ACACCACGAGA	AGTTTGT AGTTTGT

Figure 7. The alignment of genus-specific primer Tuf-Strep-1 and Tuf-Strep-R with 16S rRNA gene sequence of *Streptococcus* spp.

Figure 8. The alignment of universal primers 16S-8F and 16S-1541R with 16S rRNA gene sequence of *Lactobacillus* spp.

	1 10	20	30	40	50	60	70	80	30	100	110	120	13
3.bifidum 3.dentium		GCTCAGGATGA GCTCAGGATGA			ACATGCAAG	TCGAACGGGA	TCCATCAAGC	TT-GCTTGGT	GGTGAGAGTG	GCGAACGGGT	GAGTAATGCO	TGACCGACCI	
B.breve B.longun 1n26 1n3	AGAGTTTGATCCTG AGAGTTTGATCCTG	GCTCAGGATGF	ACGCTGGCG0 ACGCTGGCG0	GCGTGCTCAAC	CACATGCAAG	tcgaacggga	TCCAGGCAGC	IT-GCTGCCT	GGTGAGAGTO	IGCGAACGGGT	GAGTAATGCO	STGACCGACCI	GCCCC
Insensus		gctcaggatga	acg	•••••	•••••	•••••	•••••	•• ••••••	•••••	•••••	•••••		••••
bifidum	131 140 I TGCTCCGGAATAGC	150 +	160		180	190	200 CTCCC000C0	210	220 +	230	240	250	26
dentium B.breve 3.longum 1m26 1m3 onsensus	TACACCGGAATAGC TACACCGGAATAGC TGCACCGGAATAGC TACACCGGAATAGC	TCCTGGAAACG TCCTGGAAACG	GGTGGTAATO GGTGGTAATO	SCCGGATGCTO SCCGGATGCTO	CGGTTGGAT	GCATGTCCTT GCATGGTGTG	CCGGGAAAGG" TTGGGAAAGCI	ITCCATCGGT CTTTG-CGGC	ATGGGATGGG ATGGGATGGG	IGTCGCGTCCT IGTCGCGTCCT	ATCAGCTTGA Atcagcttga	ATGGCGGGGGTF ATGGCGGGGGTF	ACGGC
nsensus	261 270	280	290	300	310	320	330	340	350	360	370	380	39
bifidun dentiun B.breve 3.longun 1m26 1m3 onsensus	I CACCAAGGCTTCGA CACCATGGCTTCGA CACCATGGCTTCGA CACCGTGGCTTCGA	CGGGTAGCCGG CGGGTAGCCGG	ICCTGAGAGGO ICCTGAGAGGO	icgaccggccf icgaccggccf	ICATTGGGAC ICATTGGGAC	TGAGATACGG TGAGATACGG	CCCAGACTCC CCCAGACTCC	FACGGGAGGC FACGGGAGGC	AGCAGTGGGG AGCAGTGGGG	AATATTGCAC	:AATGGGCGCF :AATGGGCGCF	AGCCTGATGO AGCCTGATGO	CAGCGF
	391 400	410	420	430	440	450	460	470	480	490	500	510	52
bifidun dentiun B.breve longun In26 In3	GCCGCGTGAGGGAT GCCGCGTGCGGGAT GCCGCGTGAGGGAT GCCGCGTGAGGGAT	GGAGGCCTTCC	iggttgtaaad iggttgtaaad	CGCTTTTGAT	CGGGAGCAA Agggagcaa	GCC-CTTCGG GGCACTTTGT	GGTGAGTGTA GTTGAGTGTA	CCTTCGAAT	AAGCACCGGC AAGCACCGGC	TAACTACGTO TAACTACGTO	CCAGCAGCCO	SCGGTAATACO SCGGTAATACO	itaggo itaggo
onsensus	521 530	540	550	560	570	580	590	 600	•••••• 610	620	630	64 0	65
bifidun dentiun B.breve Longun 1n26 1n3	I GCAAGCGTTATCCG GCAAGCGTTATCCG GCAAGCGTTATCCG GCAAGCGTTATCCG	GAATTATTGGG GAATTATTGGG	icgtaaaggg icgtaaaggg	TCGTAGGCG0 TCGTAGGCG0	ATTCGTCGCG ATTCGTCGCG	TCCGGTGTGA TCCGGTGTGA	AAGCCCATCG AAGTCCATCG	CTTAACGGTG CTTAACGGTG	GGTCTGCGCC GATCCGCGCC	GGGTACGGGC	GGGCTGGAG1 GGGCTTGAG1	rgcggtaggg rgcggtaggg	GAGACT GAGACT
onsensus						••••••••••••••••••••••••••••••••••••••	••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·					
bifidun dentiun B.breve Llongun 1m26 1m3	651 660 IGAATTCCCGGTGTA GAATTCCCGGTGTA GAATTCCCGGTGTA GAATTCCCGGTGTA	ACGGTGGAATG ACGGTGGAATG	TGTAGATATO TGTAGATATO	CGGGAAGAACA CGGGAAGAACA	ICCAATGGCG ICCAATGGCG	RAGGCAGGTC Raggcaggtc	TCTGGGCCGT(TCTGGGCCGT	CACTGACGCT Factgacgct	GAGGAGCGAF GAGGAGCGAF	IAGCGTGGGGF IAGCGTGGGGF	IGCGAACAGGA IGCGAACAGGA	ATTAGATACCO ATTAGATACCO	TGGTA
onsensus	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		••••
bifidun dentiun	781 790 I TCCACGCCGTAAAC TCCACGCCGTAAAC	GGTGGATGCTG	GATGTGGGGG	CCGTTCCACO	GGTTCCGTG	TCGGAGCTAA	CGCGTTAAGCI	ALCCCCCCCLC	GGGAGTACGO	ICCGCAAGGCT	AAAACTCAAA	IGAAATTGACO	iGGGGC
B.breve Llongun 1n26 1n3	TCCACGCCGTAAAC TCCACGCCGTAAAC												
nsensus	911 920	930	940	950	960	 970	980	990	1000	1010	1020	1030	10
bifidun dentiun B.breve B.longun 1m26 1m3	CGCACAAGCGGCG	GAGCATGCGGA GAGCATGCGGA	ATTAATTCGA ATTAATTCGA	rgcaacgcgaf rgcaacgcgaf	1GAACCTTAC 1GAACCTTAC	CTGGGCTTGA CTGGGCTTGA	CATGTTCCCGI CATGTTCCCGI	ACGGCCGTAG ACGATCCCAG	AGATACGGCC AGATGGGGTT	TCCCTTCGGG	GCGGGTTCAC	CAGGTGGTGCA CAGGTGGTGCA	TGGT(
onsensus													
	1041 1050	1060	1070	1080	1090	 1100	 1110		 1130	1140	1150	1160	11
.bifidum dentium B.breve B.longum 1m26 1m3	I+ CGTCAGCTCGTGT CGTCAGCTCGTGT CGTCAGCTCGTGT	CGTGAGATGT CGTGAGATGT CGTGAGATGT	GGGTTAAGTO GGGTTAAGTO GGGTTAAGTO	CCGCAACGA CCGCAACGA CCGCAACGA	CGCAACCCT	CGCCCCGTGT CGCCCCTGTGT CGCCCCGTGT	TGCCAGCACG TGCCAGCACG TGCCAGCACG TGCCAGCGGA	TATGGTGGG ICATGGTGGG ICATGCCGGG	AACTCACGGG AACTCACGGG AACTCACGGG	GGACCGCCGG GGACCGCCGG GGACCGCCGG	GGTTAACTCO GGTCAACTCO GGTCAACTCO	GAGGAAGGTG GAGGAAGGTG GAGGAAGGTG	iggga1 iggga1
dentiun B.breve B.longun In26 In3	I+ CGTCAGCTCGTGT CGTCAGCTCGTGT CGTCAGCTCGTGT CGTCAGCTCGTGT	CGTGAGATGTT CGTGAGATGTT CGTGAGATGTT CGTGAGATGTT CGTGAGATGTT	GGGTTAAGTO GGGTTAAGTO GGGTTAAGTO GGGTTAAGTO GGGTTAAGTO	CCCGCAACGAC CCCGCAACGAC CCCGCAACGAC CCCGCAACGAC CCCGCAACGAC	CGCAACCCT CGCAACCCT CGCAACCCT CGCAACCCT CGCAACCCT	CGCCCCGTGT CGCCCTGTGT CGCCCCGTGT CGCCCCGTGT CGCCCCGTGT	TGCCAGCACG TGCCAGCACG TGCCAGCAGG TGCCAGCGGA TGCCAGCGGA	TATGGTGGG ICATGGTGGG ICATGGTGGG ITATGCCGGG ITATGCCGGG	AACTCACGGG AACTCACGGG AACTCACGGG AACTCACGGG AACTCACGGG	GGACCGCCGG GGACCGCCGG GGACCGCCGG GGACCGCCGG	GGTTAACTCC GGTCAACTCC GGTTAACTCC GGTTAACTCC GGTTAACTCC	GAGGAAGGTG GAGGAAGGTG GAGGAAGGTG GAGGAAGGTG GAGGAAGGTG	iggga1 iggga1 iggga1
.dentium B.breve B.longum Im26 Im3 onsensus .dentium B.breve B.longum Im26	I	CGTGAGATGTT CGTGAGATGTT CGTGAGATGTT CGTGAGATGTT TGTCCCCTTACC TGCCCCTTACC	GGGTTAAGT(GGGTTAAGT GGGTTAAGT GGGTTAAGT 1200 TCCAGGGCT TCCAGGGCT	CCCGCAACGAC CCCGCAACGAC CCCGCAACGAC CCCGCAACGAC CCCGCAACGAC CCCGCAACGAC 1210 CACGCATGCT CCACGCATGCT		CGCCCCGTGT CGCCCCGTGT CGCCCCGTGT CGCCCCGTGT CGCCCCGTGT 1230 	TGCCAGCACG TGCCAGCACG TGCCAGCGGA TGCCAGCGGA TGCCAGCGGA 1240 	TATGGTGGG TATGCCGGG TATGCCGGG TATGCCGGG 1250 1250 5GCGACATGG 5GCGACATGG 5GCGACATGG	AACTCACGGG AACTCACGGG AACTCACGGG AACTCACGGG AACTCACGGG AACTCACGGG AACTCACGGG 1260 	GGACCGCCGC GGACCGCCGG GGACCGCCGG GGACCGCCGG 1270 1270 1270 1370 1370 1370 1370	GGTTAACTCC GGTCAACTCC GGTTAACTCC GGTTAACTCC ICCCAGTTCC ICCCAGTTCC ITCTCAGTTCC	GARGGAAGGTG GGAGGAAGGTG GGAGGAAGGTG GGAGGAAGGTG 1290 1290 GGATGGGAGTC GGATGGGAGTC GGATGGCAGTC	igggat igggat igggat igggat igggat 13 :Tgcat :Tgcat
.dentium B.breve B.longun Im26 Im3 Consensus B.bifidum J.dentium B.breve B.longum Im26 Im3	I		GGGTTAAGTI GGGTTAAGTI GGGTTAAGTI GGGTTAAGTI 1200 1200 TCCAGGGCTI STCCAGGGCTI STCCAGGGCTI	CCCGCAACGAC CCCGCAACGAC CCCGCAACGAC CCCGCAACGAC CCCGCAACGAC 1210 1210 CCACGCATGCT CCACGCATGCT CCACGCATGCT	CGCAACCCT CGCAACCCT CGCAACCCT CGCAACCCT 1220 1220 ACAATGCCC ACAATGCCC ACAATGCCC	CGCCCCGTGT CGCCCCGTGT CGCCCCGTGT CGCCCCGTGT 1230 1230 GGTACAGCGG GGTACAGCGG GGTACAGCGG GGTACAGCGG	TECCAGCACG TECCAGCACG TECCAGCAGG TECCAGCGGA 1240 1240 GATGCGACCAT GATGCGACCAT GATGCGACCACG	TTATGGTGGG ICATGGTGGG ITATGCCGGG ITATGCCGGG 1250 1250 GCGACATGG GGCGACATGG IGCGAGCTGG GGCGACGGG GGCGACGCGG	ARCTCACGGG ARCTCACGGG ARCTCACGGG ARCTCACGGG ARCTCACGGG ARCTCACGGG 1260 1260 AGCGGATCCC AGCGGATCCC AGCGGATCCC	666ACC6CC6C 666ACC6CC66 666ACC6CC66 666ACC6CC66 1270 1270 166AAAACC66 166AAAACC66 166AAAACC66 166AAAACC66	GGTTAACTCC GGTTAACTCC GGTTAACTCC GGTTAACTCC ICCCAGTTCC ICCCAGTTCC ICCCAGTTCC ICCCAGTTCC	GAAGGAAAGGTC GAAGGAAAGGTC GAAGGAAAGGTC GAAGGAAAGGTC GAAGGAAAGGTC 1290 1290 GAATCGGAAGCC GAATCGGAAGTC GAATCGCAAGTC GAATCGCAAGTC	IGGGAT IGGGAT IGGGAT IGGGAT IGGGAT IGGGAT IGGGAT IGGGAT
.dentiun B.breve B.longum 1m26 1m3 onsensus .bifidun .dentiun B.breve B.longum 1m26 1m3 onsensus	I		GGGTTAAGTI GGGTTAAGTI GGGTTAAGTI GGGTTAAGTI GGGTTAAGTI 1200 TCCAGGGCT TCCAGGGCTT TCCAGGGCTT TCCAGGGCTT TCCAGGGCTT TCCAGGGCTT	CCGCAACGAC CCGCAACGAC CCGCAACGAC CCGCAACGAC CCGCAACGAC 1210 1210 CACGCATGC CACGCATGC CACGCATGC CACGCATGC CACGCATGC	CGCAACCCT CGCAACCCT CGCAACCCT CGCAACCCT CGCAACCCT 1220 1220 ACCAATGGCC ACCAATGGCC ACCAATGGCC 1350	CGCCCCGTGT CGCCCTGTGT CGCCCCGTGT CGCCCCGTGT 1230 GGTACAGCGG GGTACAGCGG GGTACAGCGG GGTACAGCGG GGTACAGCGG GGTACAGCGG	TECCARGEACE TECCARGEACE TECCARGEACE TECCARGEACE 1240 1240 GATGCGACCACAT GATGCGACCACAT GATGCGACCACCACA GATGCGACCACCACA GATGCGACCACCACACACACACACACACACACACACACAC	TTATGGTGGG ICATGGTGGG ICATGCCGGG TTATGCCGGG 1250 36CGACHTGG 36CGACHTGG 36CGACHTGG 36CGACTGG 36CGACGCGG 36CGACGCGG	AACTCACGGG AACTCACGGG AACTCACGGG AACTCACGGG 1260 1260 AGCGGATCCC AGCGGATCCC AGCGGATCCC AGCGGATCCC 1390	GGACCGCCGG GGACCGCCGC GGACCGCCGC GGACCGCCGC 1270 TGAAAACCGG TGAAAACCGG TGAAAACCGG TGAAAACCGG		GAGGANAGGTC GAGGANGGTC GAGGANGGTC GAGGANGGTC 1290 GATCGGAGCC GATCGCAGTC GATCGCAGTC GATCGCAGTC	GGGAT GGGAT GGGAT GGGAT TGCAI TGCAI TGCAI
identiun B.breve B.longun In26 In3 consensus b.bifidun B.breve B.longun In26 In3 consensus b.bifidun B.bereve B.longun B.breve B.longun In26	I	CGTGRAGHTGTT CGTGRAGHTGTT CGTGRAGHTGTT CGTGRAGHTGTT CGTGRAGHTGTT 1190 TGCCCCCTTACC TGCCCCCTTACC TGCCCCCTTACC TGCCCCCTTACC TGCCCCCTTACC TGCCCGGAGTCGCT GCCGGAGTCGCT	GGGTTARGTI GGGTTARGTI GGGTTARGTI GGGTTARGTI 1200 1200 12CRGGGCT TCCRGGGCT TCCRGGGCT 1330 RGTARTCGCI RGTARTCGCI RGTARTCGCI	CCGCAACGA CCGCAACGA CCGCAAACGA CCGCCAACGA CCGCCAACGA 1210 CCACGCAATGC CCACGCAATGC CCACGCAATGC CCACGCAATGC CCACGCAATGC 1340 SGATCAGCAAG	CEGRARCCT SEGRARCCT SEGRARCCT 1220 1220 ACARTEGCC ACARTEGCC ACARTEGCC INCARTEGCC 1350 SECECEGEGE SECECEGEGE	CECCCETET CECCCTETET CECCCETETET CECCCCETET 1230 GETARAGEG GETARAGEG GETARAGEG GETARAGEG GETARAGEG GETARAGEG GETARAGEG HATAGEGTTCC ANTEGETTCC	TECCARCAGE TECCARCAGE TECCARCAGE TECCARCAGE TECCARCAGE 1240 ATTECARCAGE ATTECARCAGE ATTECARCAGE ATTECARCAGE ATTECARCAGE 1370 CEGECCTTETT CEGECCTTETT	THATGGTGGG TCATGGTGGG TTATGCCGGG 1714TGCCGGG 1250 3GCGACATGG 3GCGACATGG 3GCGACATGG 3GCGACGCGG 1380 CCACACCGCC CCACACCGCC CCACACCGCC	ARCTCACGG ARCTCACGG ARCTCACGG ARCTCACGG ARCTCACGG ARCCGATCC ARCGGATCC ARCGGATCC ARCGGATCC ARCGGATCC ARCGGATCC ARCGGATCC CGTCARGTC CGTCARGTC CGTCARGTC CGTCARGTC	GGACCGCCGC GGACCGCCGCCG GGACCGCCGCG GGACCGCCGCG 1270 TGANARCCG TGANARCCG TGANARCCG TGANARCCG 1400 TGANARCGG TGANARCGG TGANARGCGG TGANARGCGG TGANARGCGG TGANARGCGG	GGTTARATCE GGTTARATCE GGTTARCTCE GGTTARCTCE GGTTARCTCE 1280 TCTCAGTTCE TCTCAGTTCE TCTCAGTTCE TCTCAGTTCE TCTCAGTTCE TCTCAGTTCE TCTCAGTTCE TCTCAGTCCE CAGCACCCCG CAGCACCCCG CAGCACCCCG	56666AA66TE 56666AA66TE 56666AA66TE 1290 568TE66A6CE 568TE66A6CE 568TE66A6CE 568TE66A6CE 568TE66A6CE 1420 1420 1420 1420	1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1
B.dentium B.breve B.longun In26 In3 Consensus B.bifidum B.dentium B.dentium B.bifidum B.bifidum B.bifidum B.bifidum B.bifidum B.longun B.longun In26 In26 In26 In26 In26 In26	I	CGTGAGAFGTT CGTGAGAFGTT CGTGAGAFGTT CGTGAGAFGTT CGTGAGAFGTT CGTGAGATGTT TGCCCCTTACC TGCCCCTTACC TGCCCCTTACC TGCCCCTTACC TGCCCCCTTACC TGCCGAGTCGC GCCGGAGTCGC GCCGGAGTCGC GCCGGAGTCGC	GGGTTARGTI GGGTTARGTI GGGTTARGTI GGGTTARGTI 1200 TTCCRGGGCT TTCCRGGCT TTCCRGCGCT TTCCRGCCT TTCCRGCCT TTCCRGCGCT TTCCRGCGCT TTCCRGCGCT TTCCRGCGCT TTCCRGCCT TTCCCCCCCCCC	CCGCAACGA CCGCAACGA CCGCAACGA CCGCAACGA CCGCAACGA CCGCAACGA CCACGCATGC CCACGCATGC CCACGCATGC CACGCATGC CACGCATGC 1340 SGATCAGCAAG SGATCAGCAAG SGATCAGCAAG	CEGRACCCT CEGRACCT SEGRACCT SEGRACCT SEGRACCT 1220 1250 125	CECCCCETET CECCCTETET CECCCCETET CECCCCETET 1230 66THCARCEG 66THCARCEG 66THCARCEG 66THCARCEG 66THCARCEG 66THCARCEG 66THCARCEG 1360 1360 1360 ANTECETTCC ANTECETTCC ANTECETTCC	TECCARCAGE TECCARCAGE TECCARCAGE TECCARCAGE ATECCARCAGE ATECCARCAGE ANTECARCAGE ANTECARCAGE ANTECARCAGE ANTECARCAGE 1370 CEGECT TTETT CEGECCT TTETT	TTATGGTGGG TCATGGTGGG TCATGGTGGG TTATGCCGGG TTATGCCGGG 3GCGACGTGG 3GCGACGTGG 3GCGACGCGG 1380 1380 10CACCCGCC 10CACCGCC 10CACCGCC	ARCTCRCGG ARCTCRCGG ARCTCRCGG ARCTCRCGG ARCTCRCGG ARCCGGATCCC ARCGGATCCC ARCGGATCCC ARCGGATCCC ARCGGATCCC ARCGGATCCC ARCGGATCCC CATCARATCF CGTC	GGACCGCCGG GGACCGCCGG GGACCGCCGG GGACCGCCGCG 12270 TGAAAACCGG TGAAAACCGG TGAAAAACCGG TGAAAAACGG TGAAAAAGGGGG TGAAAAGGGGG TGAAAAGGGGG TGAAAAGGGGG TGAAAAGGGGG TGAAAAGGGGG TGAAAAGGGGG TGAAAAGGGGG	GGTTARATCC GGTTARATCC GGTTARATCC GGTTARATCC GGTTARATCC ICTCAGTTCC ICTCAGTTCC ICTCAGTTCC ICTCAGTTCC ICTCAGTTCC ICTCAGTTCC ICTCAGTTCC ICTCAGTTCC ICTCAGTTCC ICTCAGTTCC ICTCAGTTCC ICTCAGTTCC ICTCAGTTCC ICTCAGTTCC ICTCAGTCC ICTCAGTCC ICTCAG	50000000000000000000000000000000000000	6666A 6666A 13 13 1666A 1667A 1667A 1667A 1667A 1677A 1777A 1677A 17777A 17777A 1777A 1777A 1777A 1777A 1777A 1777A 1777A 1777A 1777
B.longum In26 In3 Consensus B.bifidum B.dentium B.breve B.longum In26 B.bifidum B.bifidum B.bereve B.longum B.breve B.longum	I	CGTGAGATGTT CGTGAGATGTT CGTGAGATGTT CGTGAGATGTT CGTGAGATGTT CGTGAGATGTT TGTCCCTTAC TGCCCCTTAC TGCCCCTTAC TGCCCCTTAC TGCCCCTTAC TGCCGCAGTCGC GCCGGAGTCGC GCCGGAGTCGC GCCGGAGTCGC TGCCGAGTCGC TGCCGAGTCGC	GGGTTARGTI GGGTTARGTI GGGTTARGTI GGGTTARGTI 1200 TTCCRGGGCT TTCCRGGGCT TTCCRGGGCT TTCCRGGGCT TTCCRGGGCT TTCCRGGGCT TTCCRGGGCT 1330 RGTARTCGCI RGTARTCGCI RGTARTCGCI 1460	CCGCAACGAC CCGCAACGAC CCGCAACGAC CCGCAACGAC CCGCAACGAC CCGCAACGAC CCACGCATGC CCACGCATGC CCACGCATGC CACGCATGC CACGCATGC 1340 SGATCAGCAATGC SGATCAGCAA SGATCAGCAA SGATCAGCAA SGATCAGCAA SGATCAGCAA SGATCAGCAA SGATCAGCAA SGATCAGCAA SGATCAGCAA SGATCAGCAA	CEGRACCCT CEGRACCT SEGRACCT SEGRACCT CEGRACCT 1220 1250 125	CECCCCETET CECCCTETET CECCCCETET CECCCCETET 1230 66THCRACCE 66THCRACCE 66THCRACCE 66THCRACCE 66THCRACCE 66THCRACCE 66THCRACCE 1360 1360 1360 ANTECETTCC ANTECETTCC ANTECETTCC 1490	TECCARCAGE TECCARCAGE TECCARCAGE TECCARCAGE TECCARCAGE 1240 ARTECARCAGE ARTECARCAGE ARTECARCAGE 1370 CEGECCTTETT CEGECCTTETT CEGECCTTETT CEGECCTTETT	TTATGGTGGG TCATGGTGGG TCATGGTGGG TTATGCCGGG TTATGCCGGG 3GCGACATGG 3GCGACATGG 3GCGACATGG 3GCGACCGGG 1380 1380 1380 1380 1380 1380 1380 1380	ARCTCRCGG ARCTCRCGG ARCTCRCGG ARCTCRCGG ARCTCRCGG ARCCGGATCCC ARCGGATCCC ARCGGATCCC ARCGGATCCC ARCGGATCCC ARCGGATCCC ARCGGATCCC CATCARATC CGTC CGTCARATC CGTCARATC CGTCARATC CGTCARATC CGTCARATC CGTCARATC CGTCARATC CGTCARATC CGTCARATC CGTCARATC CGTCARATC CGTCARATC CGTCARATC CGTCARATC CGTCARATC CGTCARATC CGTCARATC CGTCARATCC CGTCARATCC CGTCARATCC CGTCARATC CGTCARATC CGTCARATC CGTCARATCC CGTCARATC	GGACC6CC6C GGACC6CC6C GGACC6CC6C GGACC6CC6C GGACC6CC6C 12270 TGAAAACC6C TGAAAAACC6C TGAAAAACC6C TGAAAAACC6C TGAAAAACG6C TGAAAAACG6C TGAAAAACG6C TGAAAAACG6C TGAAAAACG6C TGAAAAACG6C TGAAAAACG6C TGAAAAACG6C TGAAAAACG6C TGAAAAACG6C TGAAAACG6C TGAAAACG6C TGAAAACG6C TGAAAACG6C TGAAAACG6C TGAAAACG6C TGAAAACG6C TGAAAACG6C TGAAAACG6C TGAAAACG6C TGAAAACG6C TGAAAACG6C TGAAAACG6C TGAAAACG6C TGAAAACG6C TGAAAACG6C TGAAACG6C TGAAACG6C TGAAACG6C TGAAACG6C TGAAACG6C TGAAACG6C TGAAACG6C TGAAACG6C TGAAACG6C TGAAACG6C TGAAACG6C TGAAACG6C TGAAACG6C TGAAACG6C TGAAACG6C TGAAACG6C TGAAACG6C TGAAACG6C TGAAACG7 TGAAACG7 TGAACG7 TGAACG7 TGAACG7 TGAAACG7 TGAA	GGTTARATCC GGTTARATCC GGTTARATCC GGTTARATCC GGTTARATCC ICTCAGTTCC ICTCAGTTCC ICTCAGTTCC ICTCAGTTCC ICTCAGTTCC ICTCAGTTCC ICTCAGTTCC ICTCAGTTCC ICTCAGTTCC ICTCAGTTCC ICTCAGTTCC ICTCAGTTCC ICTCAGTTCC ICTCAGTTCC ICTCAGTCC ICTCAGTCC ICTCAG	50000000000000000000000000000000000000	6666A 6666A 13 13 1666A 1667A 1667A 1667A 1667A 1677A 1777A 1677A 17777A 17777A 1777A 1777A 1777A 1777A 1777A 1777A 1777A 1777A 1777

Figure 9. The alignment of universal primers lm 26 and lm3 with 16S rRNA gene sequence of *Bifidobacterium* spp.

	1 10	20 30	40	50	60	70	80	90	100	110	120	130
S.thermophilus	I+	GATCCTGGCTCAGGAC	+		+	+		+	+	+	+	
S,vestibularis S,salivarius forward U926 Consensus	ATGGGAGAGTT TTTAATGAGAGTT AGAGTT	IGATCCTGGCTCAGGAC IGATCCTGGCTCAGGAC IGATCCTGGCTCAG IGATCCTGGCTCAG	GAACGCTGGCGGC	GTGCCTAATAC	ATGCAAGTA	GAACGCTGAA	GAGAGGAGCTT	GCTCTTCTT	GGATGAGTTGC	GAACGGGTGA	GTAACGCGTA	GGTAAC
conscilada	131 140	150 160	170	180	190	200	210	220	230	240	250	260
S.thermophilus S.vestibularis S.salivarius forward U926 Consensus	CTGCCTTGTAGCG	GGGATAACTATTGGAA GGGATAACTATTGGAA GGGATAACTATTGGAA GGGATAACTATTGGAA	ICGATAGCTAATA	CCGCATAACAA	TAGGTGACA	ATGTCATT	ATTTGAAAGGG	GCAATTGCT	CCACTACAAGA	TGGACCTGCG	ITTGTATTAGC	TAGTAG
consensus	261 270	280 290	300	 310	320	330	340	350	360	370	380	390
S.thermophilus S.vestibularis S.salivarius forward U926	GTGAGGTAATGGC GTGAGGTAACGGC	TACCTAGGCGACGATA ICACCTAGGCGACGATA ICACCTAGGCGACGATA ICACCTAGGCGACGATA	CATAGCCGACCTG CATAGCCGACCTG	AGAGGGTGATC Agagggtgatc	GGCCACACTO GGCCACACTO	GGACTGAGA GGACTGAGA	CACGGCCCAGA CACGGCCCAGA	TCCTACGG	GAGGCAGCAGT GAGGCAGCAGT	AGGGAATCTT AGGGAATCTT	CGGCAATGGG CGGCAATGGG	I GGCAAC GGCAAC
Consensus	•••••			•••••	••••••		•••••	•••••	•••••	•••••	•••••	•••••
	391 400	410 420	430	440	450	460	470	480	490	500	510	520
S.thermophilus S.vestibularis S.salivarius forward U926 Consensus	CCTGACCGAGCAA	COCCOCOTGACTGAAGA Coccocotgagtgaaga Coccocotgagtgaaga Coccocotgagtgaaga	AGGTTTTCGGATC	GTAAAGCTCTG	TTGTAAGTCA	AGAACGAGT	GTGAGAGTGGA	AGTTCACA	CTGTGACGGTA	GCTTACCAGA	IA-GGGACGGC	TAACTA
	521 530	540 550	560	570	580	590	600	610	620	630	640	650
S.thermophilus S.vestibularis S.salivarius forward U926 Consensus	CGTGCCAGCAGCC	* CGGTAATACGTAGGTC(CGGTAATACGTAGGTC(CGGTAATACGTAGGTC(CGAGCGTTGTCC	GGATTTATTGG	GCGTAAAGCI	AGCGCAGGC	GGTTTGATAAG	rctgaagtt	AAAGGCTGTGG	CTCAACCATA	GTTCGCTTTG	GAAACT
conscisus	651 660	670 680	690	700	710	720	730	740	750	760	770	780
S.thermophilus S.vestibularis S.salivarius forward U926	GTCAAACTTGAGTO GTCAAACTTGAGTO	CAGAAGGGGAGAGAGTGG CAGAAGGGGGAGAGTGG CAGAAGGGGGAGAGTGG CAGAAGGGGGAGAGTGG	ATTCCATGTGTA	GCGGTGAAATG	CGTAGATATI CGTAGATATI	TGGAGGAAC	ACCGGTGGCGA ACCGGTGGCGA	AGCGGCTC	TCTGGTCTGTA	ACTGACGCTG	AGGCTCGAAA	GCGTGG
Consensus	781 790	800 810	820	830	840	850	860	 870	880	890	900	••••• 910
S.thermophilus S.vestibularis S.salivarius forward U926	GGAGCGAACAGGA GGAGCGAACAGGA	TAGATACCCTGGTAGT TAGATACCCTGGTAGT TAGATACCCTGGTAGT TAGATACCCTGGTAGT	CACGCCGTAAAC	GATGAGTGCTA GATGAGTGCTA	GGTGTTGGA GGTGTTGGA	CCTTTCCGG	GATTCAGTGCC GATTCAGTGCC	+ GCAGCTAAC GCAGCTAAC	GCATTAAGCAC GCATTAAGCAC	+ TCCGCCTGGG TCCGCCTGGG	GAGTACGACC GAGTACGACC	I GGAAGG GCAAGG
Consensus	•••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
6 . I I. I	911 920	930 940	950	960	970	980	990	1000	1010	1020	1030	1040
S.thermophilus S.vestibularis S.salivarius forward U926		GAATTGACGGGG-CCCG GAATTGACGGGGGGCCCG GAATTGACGGGGGGCCNG GAATTGACGG	CACAAGCGGTGGA	GCATGTGGTTT	AATTCGAAGO	CAACGCGAAG	AACCTTACCAG	GTCTTGACA	TCCCGATGCTA	TTTCTAGAGA	TAGAAAGTTA	CTTCGG
Consensus	aaactcaaag 1041 1050	<pre>gaattgacgg 1060 1070</pre>	1080	1090	1100	1110	 1120	 1130	 1140	 1150	1160	 1170
S.thermophilus	++	TGGTGCATGGTTGTCG	+	+	+	+	+	+	+	+	+	1
S.vestibularis S.salivarius forward U926 Consensus	TACATCGGTGACAG	GTGGTGCATGGTTGTCG GTGGNGCATGGTTGTCG	TCAGCTCGTGTCG	TGAGATGTTG	GTTAAGTCC	CGCAACGAG(GCAACCCCTAT	TGTTAGTT	GCCATCATTCA	GTTGGGCACT	CTAGCGAGAC	TGCCGG
	1171 1180	1190 1200	1210	1220	1230	1240	1250	1260	1270	1280	1290	1300
S.vestibularis S.salivarius forward U926	TAATAAACCGGAGGA	HAGGTGGGGATGACGTC HAGGTGGGGATGACGTC HAGGTGGGGGATGACGTC HAGGTGGGGGATGACGTC	RAATCATCATGCC	CCTTATGACCI	rgggctacac	ACGTGCTACA	ATGGTTGGTAC	AACGAGTT	GCGAGTCGGTG	ACGGCAAGCT	AATCTCTTAA	AGCCAA
Consensus		4000 4000										•••••
	1301 1310 	1320 1330 	1340 FREATGRAGTEGG	1350 	1360 	1370 	1380 	1390	1400 +	1410 	1420	1430
S,vestibularis S,salivarius forward U926	TCTCAGTTCGGATT(TCTCAGTTCGGATT(STAGGCTGCAACTCGCC Staggctgcaactcgcc	TACATGAAGTCGG TACATGAAGTCGG	AATCGCTAGTA AATCGCTAGTA	IATCGCGGAT IATCGCGGAT	CAGCACGCCO CAGCACGCCO	CGGTGAATACO CGGTGAATACO	TTCCCGGG TTCCCGGG	CCTTGTACACA CCTTGTACACA	CCGCCCGTCA CCGCCCGTCA	icaccacgaga Icaccacgaga	GTTTGT GTTTGT
Consensus	 1431 1440	1450 1460	 1470	1480	1490	1500	1510	1520	1530	•••••• 1540	1551	•••••
S.thermophilus	I+	1450 1460 +	AGCCAGCCGCCTA	AGGTGGGACAG	ATGATTGGG	GTGAAGTCG1	AACAAGGTAGO	CGATCCGG	AGGTGCGGCT	GGATCACCTO	+	
	AACACCCGAAGTCG	STGAGGTAACCTTTTGG	AGCCAGCCGCCTA	AGGTGGGATAC	ATGAGGG	661	TAACAAGGTA	TCGG	AG	ATCACCTO		

Figure 10. The alignment of universal primers F and U926 with 16S rRNA gene sequence of *Streptococcus* spp.

No.	Subject No. (day of lactation)	Bacterial isolates	Match organism (Data bank)	% Identity	Query length (bp)
1	20	St8	Lactobacillus gasseri (NCBI)	99.0	906
1	(60d.)		Lactobacillus gasseri (RDP)	98.9	
	25	Lac39	Lactobacillus salivarius (NCBI)	98.0	1513
2	(60d.)	Lac39	Lactobacillus salivarius (RDP)	98.5	1515
	28		Lactobacillus fermentum (NCBI)	98.0	029
3	28 (60d.)	Lac31	Lactobacillus fermentum (RDP)	97.9	928
	20		Lactobacillus salivarius (NCBI)	99.0	1 477
4	29 (60d.)	Lac40	Lactobacillus salivarius (RDP)	99.4	1477
	20		Lactobacillus salivarius (NCBI)	100.0	(5)
5	30 (60d.)	Lac41	Lactobacillus salivarius (RDP)	99.6	656
	25		Lactobacillus salivarius (NCBI)	100.0	017
6	35 (15d.)	Lac42	Lactobacillus salivarius (RDP)	99.8	917
	40		Lactobacillus rhamnosus (NCBI)	98.0	1507
7	40 (15d.)	Lac43	Lactobacillus rhamnosus (RDP)	98.4	1507
	<i>A</i> 1		Lactobacillus casei (NCBI)	99.0	706
8	41 (15d.)	Lac44	Lactobacillus casei (RDP)	98.9	786
	4.4		Lactobacillus salivarius (NCBI)	94.0	624
9	44 (15d.)	Lac45	Lactobacillus salivarius (RDP)	94.6	624

Table 6. Genotypic identification of Lactobacillus spp. based on 16S rRNA gene sequencing

No.	Subject No. (day of lactation)	Bacterial isolates	Match organism (Data bank)	% Identity	Query length (bp)
		NL1	Lactobacillus salivarius (NCBI)	99.0	1101
		INL I	Lactobacillus salivarius (RDP)	98.9	1101
	45	NL2	Lactobacillus salivarius (NCBI)	100.0	1157
10	(60d.)	INL2	Lactobacillus salivarius (RDP)	99.6	1157
			Lactobacillus salivarius (NCBI)	99.0	1.407
		NL3	Lactobacillus salivarius (RDP)	99.5	1497
			Lactobacillus salivarius (NCBI)	100.0	
11	50 (60d.)	NL5	Lactobacillus salivarius (RDP)	99.8	653
			Lactobacillus salivarius (NCBI)	99.0	
		NL6	Lactobacillus salivarius (RDP)	98.9	614
12	54 (30d.)		Lactobacillus salivarius (NCBI)	82.0	-
		NL7	Lactobacillus salivarius (RDP)	82.4	796
		NH 0	Lactobacillus gasseri (NCBI)	100.0	1.402
13	55 (60d.)	NL8	Lactobacillus gasseri (RDP)	99.8	1493
			Lactobacillus salivarius (NCBI)	97.0	1011
14	56 (60d.)	NL9	Lactobacillus salivarius (RDP)	97.4	1311
	50	NH 10	Lactobacillus gasseri (NCBI)	99.0	001
15	15 59 (28d.)	NL10	Lactobacillus gasseri (RDP)	99.5	901

 Table 6. Genotypic identification of Lactobacillus spp. based on 16S rRNA gene sequencing (Continued)

No.	Subject No. (day of lactation)	Bacterial isolates	Match organism (Data bank)	% Identity	Query length (bp)
16	61	NL12	Lactobacillus salivarius (NCBI)	98.0	1028
10	(30d.)		Lactobacillus salivarius (RDP)	97.8	
	62	NL16	Lactobacillus fermentum (NCBI)	99.0	903
17	(60d.)	1.210	Lactobacillus fermentum (RDP)	98.9	200
	63	NL18	Lactobacillus mucosae (NCBI)	98.0	1502
18	(60d.)	NL10	Lactobacillus mucosae (RDP)	98.4	1302
	65	NI 10	Lactobacillus salivarius (NCBI)	99.0	1290
19	(30d.)	NL19	Lactobacillus salivarius (RDP)	99.5	1389
	67	NL20	Lactobacillus mucosae (NCBI)	98.0	962
20	(60d.)	NL20	Lactobacillus mucosae (RDP)	97.8	902
	70	NL25	Lactobacillus mucosae (NCBI)	97.0	1523
21	(60d.)	NL23	Lactobacillus mucosae (RDP)	96.9	1525
	71	NL26	Lactobacillus salivarius (NCBI)	98.0	661
22	(60d.)	NL20	Lactobacillus salivarius (RDP)	97.8	001
	72	NL45	Lactobacillus salivarius (NCBI)	94.0	601
23	(60d.)	NL4J	Lactobacillus salivarius (RDP)	93.9	001
	75	NL46	Lactobacillus mucosae (NCBI)	100.0	1077
24	(60d.)	11240	Lactobacillus mucosae (RDP)	100.0	1077

 Table 6. Genotypic identification of Lactobacillus spp. based on 16S rRNA gene sequencing (Continued)

No.	Subject No. (day of lactation)	Bacterial isolates	Match organism (Data bank)	% Identity	Query length (bp)
25	76 (60d.)	NL48	Lactobacillus gasseri (NCBI) Lactobacillus gasseri (RDP)	99.0 99.4	1296
26	78	NL49	Lactobacillus oris (NCBI)	95.0	621
	(60d.)	NL50	Lactobacillus oris (RDP) Lactobacillus fermentum (NCBI)	94.8	
27	(60d.)	INL30	Lactobacillus fermentum (RDP)	97.4	747
28	84 (60d.)	NL52	Lactobacillus mucosae (NCBI) Lactobacillus mucosae (RDP)	99.0 98.6	1509
29	86 (60d.)	NL53	Lactobacillus fermentum (NCBI) Lactobacillus fermentum (RDP)	100.0 99.8	749
30	87 (23d.)	NL54	Lactobacillus gasseri (NCBI) Lactobacillus gasseri (RDP)	97.0 97.4	809
31	90 (60d.)	NL55	Lactobacillus fermentum (NCBI) Lactobacillus fermentum (RDP)	97.0 96.9	780
32	92 (60d.)	NL56	Lactobacillus rhamnosus (NCBI) Lactobacillus rhamnosus (RDP)	99.0 98.9	948

 Table 6. Genotypic identification of Lactobacillus spp. based on 16S rRNA gene sequencing (Continued)

No.	Subject No. (day of lactation)	Bacterial isolates	Match organism (Data bank)	% Identity	Query length (bp)
	0.7		Lactobacillus casei (NCBI)	85.0	
33	95 (30d.)	NL57	Lactobacillus casei (RDP)	85.4	791
			Lactobacillus rhamnosus (NCBI)	97.0	
34	97 (60d.)	NL58	Lactobacillus rhamnosus (RDP)	97.5	759
			Lactobacillus casei (NCBI)	98.0	
35	98 (60d.)	NL60	Lactobacillus casei (RDP)	98.4	658
			Lactobacillus plantarum (NCBI)	99.0	
36	100 (60d.)	NL61	Lactobacillus plantarum (RDP)	98.6	942
			Lactobacillus gasseri (NCBI)	98.0	
37	102 (60d.)	NL62	Lactobacillus gasseri (RDP)	97.9	986

Table 6. Genotypic identification of Lactobacillus spp. based on 16S rRNA gene sequencing (Continued)

No.	Subject No. (day of lactation)	Bacterial isolates	Match organism (Data bank)	% Identity	Query length (bp)
1	23 (60d.)	Bif29	Bifidobacterium breve (NCBI) Bifidobacterium breve (RDP)	100.0 99.8	874
	``		Bifidobacterium breve (NCBI)	99.0	
2	26 (22d.)	NB1	Bifidobacterium breve (RDP)	99.8	1355
			Bifidobacterium psedocatenulatum	99.0	
3	31 (15d.)	NB2	(NCBI) Bifidobacterium psedocatenulatum (RDP)	99.5	1360
4	40 (15d.)	NB3	Bifidobacterium dentium (NCBI) Bifidobacterium dentium (RDP)	99.0 99.8	1355
5	41 (15d.)	NB4	Bifidobacterium dentium (NCBI) Bifidobacterium dentium (RDP)	99.0 99.5	1358
	45	NB5	Bifidobacterium bifidum(NCBI) Bifidobacterium bifidum (RDP)	99.0 99.8	1056
6	45 (60d.)	NB6	Bifidobacterium dentium (NCBI) Bifidobacterium dentium (RDP)	99.0 99.5	1356
7	47 (60d.)	NB8	Bifidobacterium longum (NCBI) Bifidobacterium longum (RDP)	99.0 99.8	1340

Table 7. Genotypic identification of *Bifidobacterium* spp. based on 16S rRNA gene sequencing

No.	Subject No. (day of lactation)	Bacterial isolates	Match organism (Data bank)	% Identity	Query length (bp)		
			Bifidobacterium psedocatenulatum	98.0			
	10		(NCBI)				
8	48 (60d.)	NB9	Bifidobacterium psedocatenulatum	98.4	1356		
			(RDP)				
			Bifidobacterium psedocatenulatum	98.0			
		53		(NCBI)			
9	53 (30d.)	NB10	Bifidobacterium psedocatenulatum	98.6	1356		
			(RDP)				
			Bifidobacterium dentium (NCBI)	100.0			
10	54 (30d.)	NB11	Bifidobacterium dentium (RDP)	99.8	993		
			Bifidobacterium bifidum (NCBI)	98.0			
11	59 (28d.)	NB12	Bifidobacterium bifidum (RDP)	98.4	973		
			Bifidobacterium bifidum (NCBI)	100.0			
12	61 (30d.)	NB13	Bifidobacterium bifidum (RDP)	99.5	938		
			Bifidobacterium dentium (NCBI)	100.0			
13	64 (30d.)	NB14	Bifidobacterium dentium (RDP)	99.8	1475		
			Bifidobacterium bifidum (NCBI)	99.0			
14	67 (60d.)	NB15	Bifidobacterium bifidum (RDP)	98.9	1365		

Table 7. Genotypic identification of *Bifidobacterium* spp. based on 16S rRNA gene sequencing (Continued)

No.	Subject No. (day of lactation)	Bacterial isolates	Match organism (Data bank)	% Identity	Query length (pb)
15	70 (60d.)	NB16	Bifidobacterium bifidum (NCBI) Bifidobacterium bifidum (RDP)	99.0 98.8	1350
16	71	NB17	Bifidobacterium longum (NCBI)	98.0	1347
10	(60d.)		Bifidobacterium longum (RDP) Bifidobacterium longum (NCBI)	98.6	
17	72 (60d.)	NB18	Bifidobacterium longum (RDP)	99.5	696
18	75 (60d.)	NB19	Bifidobacterium longum (NCBI) Bifidobacterium longum (RDP)	99.0 98.8	985
19	76 (60d.)	NB20	Bifidobacterium longum (NCBI) Bifidobacterium longum (RDP)	99.0 98.9	1350
20	82 (60d.)	NB25	Bifidobacterium breve (NCBI) Bifidobacterium breve (RDP)	99.0 98.8	623
21	83 (60d.)	NB28	Bifidobacterium longum (NCBI) Bifidobacterium longum (RDP)	99.0 99.5	1350
		NB31	Bifidobacterium breve (NCBI) Bifidobacterium breve (RDP)	98.0 98.4	701
22	85 (60d.)	NB37	Bifidobacterium dentium (NCBI) Bifidobacterium dentium (RDP)	98.0 98.6	1355

Table 7. Genotypic identification of *Bifidobacterium* spp. based on 16S rRNA gene sequencing (Continued)

No. No. (day of lactation)		BacterialMatch organismisolates(Data bank)		% Identity	Query length (bp)	
	lactation)		Bifidobacterium breve (NCBI)	100.0		
23	86 (60d.)	NB38	Bifidobacterium breve (RDP)	99.8	1368	
			Bifidobacterium bifidum (NCBI)	98.0		
24	87 (60d.)	NB39	Bifidobacterium bifidum (RDP)	98.8	1460	
	90 (60d.)	NB40	Bifidobacterium dentium (NCBI)	100.0		
25			Bifidobacterium dentium (RDP)	99.5	1365	
26	91 (60d.)	NB42	Bifidobacterium bifidum (NCBI)	100.0		
			Bifidobacterium bifidum (RDP)	99.8	1222	
			Bifidobacterium psedocatenulatum	99.0		
27	92 (60d.)	NB45	(NCBI) Bifidobacterium psedocatenulatum (RDP)	98.9	1351	
			Bifidobacterium breve (NCBI)	98.0		
28	95 (60d.)	NB46	Bifidobacterium breve (RDP)	98.5	1363	
	~ -		Bifidobacterium longum (NCBI)	99.0		
29	97 NB47 (60d.)		Bifidobacterium longum (RDP)	15 99.4		

Table 7. Genotypic identification of *Bifidobacterium* spp. based on 16S rRNA gene sequencing (Continued)

No.	Subject No. (day of lactation)	Bacterial isolates	Match organism (Data bank)	% Identity	Query length (bp)
30	98 (60d.)	NB48	Bifidobacterium psedocatenulatum (NCBI) Bifidobacterium psedocatenulatum (RDP)	99.0 98.8	1369
31	102 (60d.)	NB49	Bifidobacterium breve (NCBI) Bifidobacterium breve (RDP)	97.0 97.5	1355

Table 7. Genotypic identification of *Bifidobacterium* spp. based on 16S rRNA gene sequencing (Continued)

No.	Subject No. (day of lactation)	Bacterial isolates	Match organism (Data bank)	% Identity	Query length (bp)
1	2 (15d.)	St1	Streptococcus salivarius (NCBI) Streptococcus salivarius (RDP)	98.0 97.9	875
2	8	St2	Streptococcus salivarius (NCBI)	98.0	765
2	(15d.)		Streptococcus salivarius (RDP) Streptococcus sp. (NCBI)	98.4 	
3	10 (15d.)	St4	Streptococcus sp. (RDP)	98.9	914
4	17 (60d.)	St5	Streptococcus salivarius (NCBI) Streptococcus salivarius (RDP)	98.0 98.6	886
		St6	Streptococcus salivarius (NCBI) Streptococcus salivarius (RDP)	98.0 97.9	888
5	18 (60d.)		Streptococcus mitis (NCBI)	98.0	893
			Streptococcus mitis (RDP) Streptococcus lactarius (NCBI)	98.3 100.0	
6	21 (60d.)	Lac22 St9	Streptococcus lactarius (RDP)	99.5	669
			Streptococcus parasanguis (NCBI) Streptococcus parasanguis (RDP)	98.0 97.6	887

Table 8. Genotypic identification of Streptococcus spp. based on 16S rRNA gene sequencing

No.	Subject No. (day of lactation)	Bacterial isolates	Match organism (Data bank)	% Identity	Query length (pb)
		St10	Streptococcus lactarius (NCBI)	99.0	
			Streptococcus lactarius (RDP)	99.4	886
		St11	Streptococcus lactarius (NCBI)	99.0	883
		St12 St13 St14	Streptococcus lactarius (RDP)	98.6	
	22 (60d.)		Streptococcus salivarius (NCBI)	98.0	
7			Streptococcus salivarius (RDP)	97.9	884
			Streptococcus salivarius (NCBI)	98.0	
			Streptococcus salivarius (RDP)	97.6	887
			Streptococcus salivarius (NCBI)	98.0	888
			Streptococcus salivarius (RDP)	98.3	
8	23 (60d.)		Streptococcus salivarius (NCBI)	98.0	
			Streptococcus salivarius (RDP)	98.5	886
			Streptococcus mitis (NCBI)	99.0	884
			Streptococcus mitis (RDP)	98.9	
9	50	NL4	Streptococcus sp. (NCBI)	99.0	
	50 (60d.)		Streptococcus sp. (RDP)	99.5	935
	54 (30d.)		Streptococcus salivarius (NCBI)	97.0	
10		NL9	Streptococcus salivarius (RDP)	97.4	931

Table 8. Genotypic identification of *Streptococcus* spp. based on 16S rRNA gene sequencing (Continued)

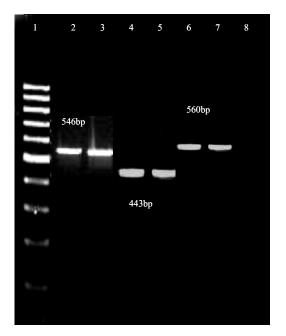
No.	Subject No. (day of lactation)	Bacterial isolates	Match organism (Data bank)	% Identity	Query length (bp)	
11	61 (30d.)	St19	Streptococcus salivarius (NCBI) Streptococcus salivarius (RDP)	95.0 94.6	864	
	· · /	G . Q Q	Streptococcus salivarius (NCBI)	94.0		
12	67 (60days)	St20	Streptococcus salivarius (RDP)	94.5	865	
			Streptococcus salivarius (NCBI)	95.0		
13	70 (60d.)	St21	Streptococcus salivarius (RDP)	94.9	838	
		St22	Streptococcus parasanguis (NCBI)	97.0	824	
			Streptococcus parasanguis (RDP)	97.4		
14	81 (60d.)	St26	Streptococcus lactarius (NCBI)	99.0		
			Streptococcus lactarius (RDP)	99.5	849	
			Streptococcus sp. (NCBI)	99.0		
15	87 (23d.)	St27	Streptococcus sp. (RDP)	98.9	855	
			Streptococcus sp. (NCBI)	99.0		
	95 (30d.)	St32	Streptococcus sp. (RDP)	99.4	846	
16		St33	Streptococcus mitis (NCBI)	97.0	641	
			Streptococcus mitis (RDP)	96.9		
	100 (60d.)		Streptococcus salivarius (NCBI)	92.0		
17			Streptococcus salivarius (RDP)	91.8	262	

Table 8. Genotypic identification of *Streptococcus* spp. based on 16S rRNA gene sequencing (Continued)

Caltana	No. of	No. of samples	
Culture	isolates	(Total=102)	
MRS culture:			
Suspected Lactobacillus	74	71	
Positive by Lactobacillus-specific PCR	53	49	
Identified as Lactobacillus spp. based on 16S	40	37	
rRNA sequencing			
MC culture:			
Suspected Bifidobacterium	62	58	
Positive by Bifidobacterium -specific PCR	45	43	
Identified as Bifidobacterium spp. based on 16S	33	31	
rRNA sequencing			
M17 culture:			
Suspected Streptococcus	40	34	
Positive by Streptococcus-specific PCR	26	23	
Identified as Streptococcus spp. based on 16S	26	17	
rRNA sequencing			

 Table 9. Bacterial isolates cultivated from breast milk samples and genotypically identified

Destanial species	Number of	Occurrence in milk	
Bacterial species	isolates	samples	
Lactobacillus			
L. gasseri	6	6	
L. salivarius	16	13	
L. fermentum	5	5	
L. mucosae	5	5	
L. rhamnosus	3	3	
L. casei	3	3	
L. plantarum	1	1	
L. oris	1	1	
Total	40	37 (36.27%)	
Bifidobacterium			
B. longum	8	8	
B. breve	7	6	
B. psedocatenulatum	5	5	
B. dentium	8	7	
B. bifidum	5	5	
Total	33	31 (30.39%)	
Streptococcus			
S. salivarius	13	10	
S. lactarius	4	3	
Streptococcus sp.	4	4	
S. mitis	3	3	
S. parasangius	2	2	
Total	26	17 (16.67%)	


Table 10. Lactobacillus, Bifidobacterium and Streptococcus species in breast milkidentified by 16S rRNA gene sequencing

Groups of bacteria	No. of isolates
Staphylococcus aureus	5
Staphylococcus epidermidis	4
Actinomyces radicidentis	1
uncultured bacteria	15
Total	25

Table 11. Other bacterial species found in breast milk

3. PCR analyses of lactobacilli, bifidobacteria and streptococci from breast milk samples.

Since culture may not be able to recover all lactobacilli, bifidobacteria and streptococci, PCR was used to detect the presence of these bacteria in breast milk samples. DNA targets were extracted from samples using QIAamp DNA stool minikit (Qiagen, Hilden, Germany). DNA target were amplified by genus-specific primers L159F and L677R for *Lactobacillus* spp., Bif164F and Bif601R for *Bifidobacterium* spp. and Tuf-Strep-1 and Tuf-Strep-R for *Streptococcus* spp. The amplified product of *Lactobacillus*, *Bifidobacterium* and *Streptococcus* was 546bp, 443bp and 560bp, respectively (Figure 11). Lactobacilli, bifidobacteria and streptococci DNA was detected by PCR in 94 (92.16%), 60 (58.82%) and 56 (54.90%) out of 102 breast milk samples, respectively (Figure 12).

Figure 11. Genus-specific amplification by Polymerase Chain Reaction (PCR). Lane 1, 100 bp DNA ledder: lane 2, suspected *Lactobacillus* sample: lane 3, *L. salivarius* control: lane 4, suspected *Bifidobacterium* sample: lane 5, *B. bifidum* control: lane 6, suspected *Streptococcus* sample: lane 7, *S. salivarius* control: lane 8, negative control.

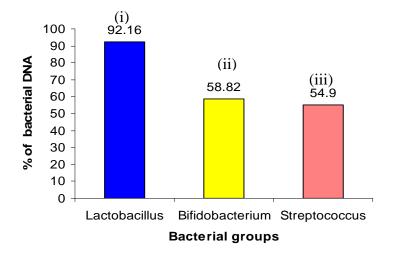


Figure 12. Percentage of bacterial DNA detected by PCR using genus-specific primers. (ii) *Lactobacillus*, (ii) *Bifidobacterium* and (iii) *Streptococcus*

4. Antagonistic activity of *Lactobacillus*, *Bifidobacterium* and *Streptococcus* isolates against bacterial pathogens

The inhibitory activity of 40 *Lactobacillus* isolates was demonstrated in Table 12. All 40 *Lactobacillus* isolates had no inhibitory effect against *E. coli* and *H. pylori* but these isolates had weak inhibition against ETEC, EIEC, EPEC, EHEC and *S.* Typhimurium. Out of 40 isolates, 30 (75.00%) were able to inhibit the growth of *V. cholerae* and *S. flexneri*. The strong inhibitory activity of *Lactobacillus* against *V. cholerae* and *S. flexneri* was found in 9 isolates (Lac43, Lac44, Lac45, NL1, NL6, NL7, NL8, NL18 and NL50) and 6 isolates (Lac45, NL3, NL5, NL6, NL10 and NL50), respectively. The clear zones demonstrated antagonistic activity of lactobacillus isolates had weak inhibition against Methicillin-resistant *Staphylococcus aureus* (MRSA) as shown in Figure 14.

The inhibitory activity of 33 *Bifidobacterium* isolates was demonstrated in Table 13. All *Bifidobacterium* isolates had no inhibition against *E. coli* and MRSA but they had partial inhibition against ETEC, EIEC, EPEC, EHEC and *S.* Typhimurium as microcolony. Out of 33 isolates, 30 (90.91%) and 28 (84.85%) were able to inhibit the growth of *V. cholerae* and *S. flexneri*, respectively. The strong inhibitory activity of *Bifidobacterium* against *V. cholerae* and *S. flexneri* found as 10 isolates (Bif29, NB4, NB11, NB13, NB14, NB15, NB16, NB17, NB31 and NB40) and 1 isolate (NB28), respectively. The clear zones demonstrated antagonistic activity of bifidobacteria against *V. cholerae* were shown in Figure 15. In addition, 23 (69.70%) out of 33 isolates inhibited the growth of *H. pylori*. Five of these 23 *Bifidobacterium* isolates (NB6, NB8, NB14, NB28 and NB31) had strong inhibitory activities against *H. pylori*.

The inhibitory activities of *Streptococcus* were tested in 21 isolates whereas those of 5 isolates were neglected. These 5 isolates belonged to *Streptococcus mitis* and *Streptococcus parasanguis* which were considered as human pathogens. The inhibitory activities of *Streptococcus* were demonstrated in Table 14. All 21 *Streptococcus* isolates had no inhibition against all bacterial pathogens, except four isolates had partial inhibition against *S. flexneri* as microcolony. Moreover, 8

(36.36%) and 5 (22.73%) out of 21 isolates had weak inhibition against *V. cholerae* and MRSA, respectively. The summary antagonistic activity of *Lactobacillus*, *Bifidobacterium* and *Streptococcus* were shown in Tables 15-17.

					Path	ogens				
Isolates	EHEC DMST 12743	EIEC DMST 20971	EPEC DMST 20972	ETEC DMST 20970	S. Typhimurium ATCC 13311	S. flexneri DMST 4423	V. cholerae non O1 DMST 2873	E. coli 25922	H. pylori ATCC 43504	MRSA ATCC 43300
St8	-	-	-	-	-	-	-	-	-	-
Lac31	-	-	-	-	-	-	-	-	-	-
Lac39	М	М	М	-	М	weak	weak	-	-	-
Lac40	М	М	М	-	М	weak	weak	-	-	strong
Lac41	weak	weak	weak	-	М	weak	weak	-	-	strong
Lac42	-	-	-	-	-	М	М	-	-	-
Lac43	-	М	М	-	-	weak	strong	-	-	-
Lac44	-	М	М	-	weak	weak	strong	-	-	-
Lac45	weak	weak	weak	М	weak	weak	strong	-	-	-
NL1	weak	weak	М	М	weak	weak	strong	-	-	-
NL2	-	М	М	-	М	weak	weak	-	-	-
NL3	-	М	М	М	М	weak	weak	-	-	-

 Table 12. Lactobacillus antagonistic activity against bacterial pathogens

- : No inhibition zone; M, microcolonies : opaque zone of inhibition <1 mm; weak: a clear inhibition zone of 1-2 mm; strong: a clear inhibition zone of 3-4 mm

					Path	ogens				
Isolates	EHEC DMST 12743	EIEC DMST 20971	EPEC DMST 20972	ETEC DMST 20970	<i>S.</i> Typhimurium ATCC 13311	S. flexneri DMST 4423	V. cholerae non O1 DMST 2873	E. coli 25922	H. pylori ATCC 43504	MRSA ATCC 43300
NL5	М	-	М	М	М	strong	weak	-	-	-
NL6	weak	weak	weak	weak	weak	strong	strong	-	-	-
NL7	weak	weak	weak	М	weak	weak	strong	-	-	-
NL8	-	-	-	-	-	weak	strong	-	-	-
NL9	weak	weak	М	-	М	weak	weak	-	-	-
NL10	-	М	-	-	-	strong	weak	-	-	-
NL12	-	М	-	-	-	weak	weak	-	-	-
NL16	-	-	-	-	-	М	weak	-	-	-
NL18	-	-	-	-	-	weak	strong	-	-	weak
NL19	М	-	М	-	-	weak	weak	-	-	-
NL20	-	-	-	-	-	-	-	-	-	-
NL25	-	М	-	М	-	weak	weak	-	-	-

Table 12. Lactobacillus antagonistic activity against bacterial pathogens (Continued)

-: No inhibition zone; M, microcolonies : opaque zone of inhibition <1 mm; weak: a clear inhibition zone of 1-2 mm; strong: a clear inhibition zone of 3-4 mm

					Path	ogens				
Isolates	EHEC DMST 12743	EIEC DMST 20971	EPEC DMST 20972	ETEC DMST 20970	<i>S.</i> Typhimurium ATCC 13311	S. flexneri DMST 4423	V. cholerae non O1 DMST 2873	E. coli 25922	<i>H.</i> <i>pylori</i> ATCC 43504	MRSA ATCC 43300
NL49	-	-	-	-	-	-	-	-	-	-
NL50	-	-	-	-	-	strong	strong	-	-	weak
NL52	-	-	-	-	-	М	weak	-	-	weak
NL53	-	М	-	-	-	М	weak	-	-	weak
NL54	-	-	М	-	-	-	-	-	-	-
NL55	-	-	-	-	-	-	М	-	-	-
NL56	М	М	М	-	М	М	weak	-	-	-
NL57	М	М	М	-	М	weak	weak	-	-	-
NL58	М	М	М	М	М	weak	weak	-	-	-
NL60	-	М	М	М	-	weak	weak	-	-	-
NL61	М	М	М	М	М	weak	weak	-	-	-
NL62	-	-	-	-	-	-	-	-	-	-

Table 12. Lactobacillus antagonistic activity against bacterial pathogens (Continued)

- : No inhibition zone; M, microcolonies : opaque zone of inhibition <1 mm; weak: a clear inhibition zone of 1-2 mm; strong: a clear inhibition zone of 3-4 mm

					Path	ogens				
Isolates	EHEC DMST 12743	EIEC DMST 20971	EPEC DMST 20972	ETEC DMST 20970	S. Typhimurium ATCC 13311	S. flexneri DMST 4423	V. cholerae non O1 DMST 2873	E. coli 25922	H. pylori ATCC 43504	MRSA ATCC 43300
Bif 29	М	М	М	М	М	weak	strong	-	weak	-
NB1	-	-	-	-	-	-	-	-	-	-
NB2	-	-	-	-	-	weak	weak	-	weak	-
NB3	-	-	-	-	-	weak	weak	-	weak	-
NB4	-	-		-	-	weak	strong	-	weak	-
NB5	М	М	-	-	М	weak	weak	-	weak	-
NB6	-	-	-	-	М	weak	weak	-	strong	-
NB8	-	-	-	-	-	weak	weak	-	strong	-
NB9	-	-	-	-	-	weak	weak	-	weak	-
NB10	-	-	-	-	-	weak	weak	-	-	-
NB11	-	-	-		-	weak	strong	-	weak	-

 Table 13. Bifidobacterium antagonistic activity against bacterial pathogens

-: No inhibition zone; M, microcolonies : opaque zone of inhibition <1 mm; weak: a clear inhibition zone of 1-2 mm; strong: a clear inhibition zone of 3-4 mm

					Path	ogens				
Isolates	EHEC DMST 12743	EIEC DMST 20971	EPEC DMST 20972	ETEC DMST 20970	<i>S.</i> Typhimurium ATCC 13311	S. flexneri DMST 4423	V. cholerae non O1 DMST 2873	E. coli 25922	H. pylori ATCC 43504	MRSA ATCC 43300
NB12	-	М	М	-	-	weak	weak	-	-	-
NB13	-	М	-	М	М	weak	strong	-	weak	-
NB14	-	-	-	-	-	weak	strong	-	strong	-
NB15	-	М	-	М	М	weak	strong	-	weak	-
NB16	-	М	-	-	-	weak	strong	-	weak	-
NB17	-	М	-	-	М	weak	strong	-	weak	-
NB18	М	М		-	М	М	weak		weak	
NB19	М	М	-	М	М	weak	weak	-	-	-
NB20	-	М	-	-	М	-	weak	-	weak	-
NB25	-	-	-	-	-	weak	weak	-	-	-
NB28	-	-	-	-	-	strong	weak	-	strong	-

 Table 13. Bifidobacterium antagonistic activity against bacterial pathogens (Continued)

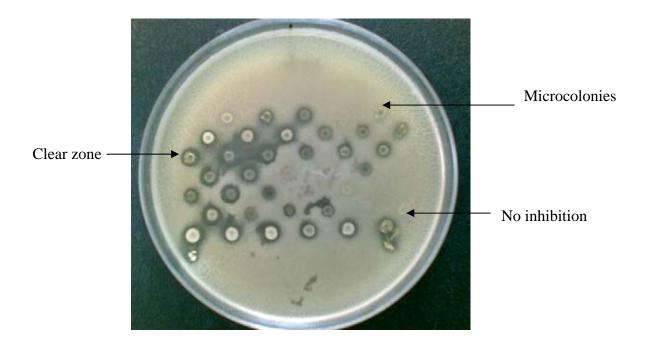
-: No inhibition zone; M, microcolonies : opaque zone of inhibition <1 mm; weak: a clear inhibition zone of 1-2 mm; strong: a clear inhibition zone of 3-4 mm

					Path	ogens				
Isolates	EHEC DMST 12743	EIEC DMST 20971	EPEC DMST 20972	ETEC DMST 20970	S. Typhimurium ATCC 13311	S. flexneri DMST 4423	V. cholerae non O1 DMST 2873	E. coli 25922	H. pylori ATCC 43504	MRSA ATCC 43300
NB31	-	М	М	-	М	М	strong	-	strong	-
NB37	-	-	-	-	-	М	weak	-	-	-
NB38	-	-	-	-	-	weak	weak	-	-	-
NB39	М	М	М	М	М	weak	weak	-	weak	-
NB40	-	-	-	-	М	weak	strong	-	weak	-
NB42	-	-	-	-	-	М	weak	-	weak	-
NB45	-	-	-	-	М	М	weak	-	weak	-
NB46	-	-	-	-	-	-	-	-	-	-
NB47	-	-	-	-	-	-	-	-	-	-
NB48	-	-	-	-	-	М	weak	-	weak	-
NB49	-	-	-	-	-	-	М	-	-	-

Table 13. *Bifidobacterium* antagonistic activity against bacterial pathogens (Continued)

- : No inhibition zone; M, microcolonies : opaque zone of inhibition <1 mm; weak: a clear inhibition zone of 1-2 mm; strong: a clear inhibition zone of 3-4 mm

					Path	ogens				
Isolates	EHEC DMST 12743	EIEC DMST 20971	EPEC DMST 20972	ETEC DMST 20970	<i>S.</i> Typhimurium ATCC 13311	S. flexneri DMST 4423	V. cholerae non O1 DMST 2873	E. coli 25922	H. pylori ATCC 43504	MRSA ATCC 43300
St1	-	-	-	-	-	-	-	-	-	-
St2	-	-	-	-	-	-	-	-	-	-
St4	-	-	-	-	-	-	-	-	-	-
St5	-	-	-	-	-	-	М	-	-	-
St6	-	-	-	-	-	-	weak	-	-	-
Lac22	-	-	-	-	-	-	-	-	-	-
St10	-	-	-	-	-	-	-	-	-	weak
St11	-	-	-	-	-	-	-	-	-	weak
St12	-	-	-	-	-	М	weak	-	-	М
St13	-	-	-	-	-	М	weak	-	-	М
St14	-	-	-	-	-	М	weak	-	-	-


Table 14. Streptococcus antagonistic activity against bacterial pathogens

- : No inhibition zone; M, microcolonies : opaque zone of inhibition <1 mm; weak: a clear inhibition zone of 1-2 mm; strong: a clear inhibition zone of 3-4 mm

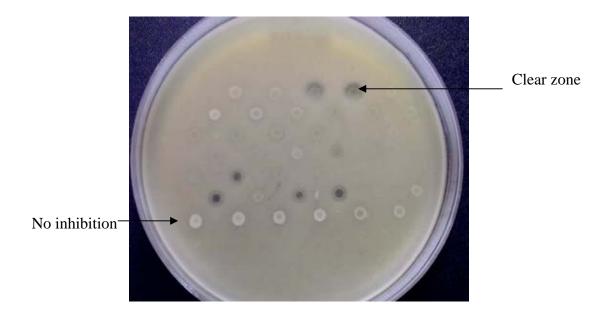

					Path	ogens				
Isolates	EHEC DMST 12743	EIEC DMST 20971	EPEC DMST 20972	ETEC DMST 20970	S. Typhimurium ATCC 13311	S. flexneri DMST 4423	V. cholerae non O1 DMST 2873	E. coli 25922	H. pylori ATCC 43504	MRSA ATCC 43300
St15	-	-	-	-	-	-	weak	-	-	-
NL4	-	-	-	-	-	-	-	-	-	weak
NL9	-	-	-	-	-	-	-	-	-	weak
St19	-	-	-	-	-	-	-	-	-	М
St20	-	-	-	-	-	-	-	-	-	-
St21	-	-	-	-	-	-	-	-	-	М
St26	-	-	-	-	-	-	-			-
St27	-	-	-	-	-	-	weak	-	-	weak
St32	-	-	-	-	-	-	weak	-	-	М
St34	-	-	-	-	-	М	weak	-	-	М

 Table 14. Streptococcus antagonistic activity against bacterial pathogens. (Continued)

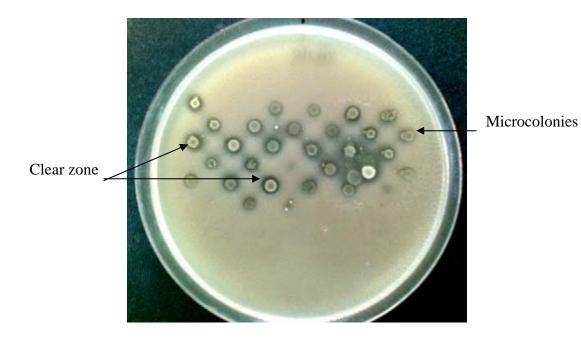

-: No inhibition zone; M, microcolonies : opaque zone of inhibition <1 mm; weak: a clear inhibition zone of 1-2 mm; strong: a clear inhibition zone of 3-4 mm

Figure 13. Antagonistic activity of *Lactobacillus* against *Vibrio cholerae* with clear zone, microcolonies and no inhibition zone in 140 mm plate

Figure 14. Antagonistic activity of *Lactobacillus* against methicillin-resistant *Staphylococcus aureus* (MRSA) with clear zone and no inhibition zone in 140 mm plate

Figure 15. Antagonistic activity of *Bifidobacterium* against *Vibrio cholerae* with clear zone and microcolonies in 140 mm plate

Dathagang	Inhibition results
Pathogens	(number of isolates)
ETEC	Inhibition (10): weak (1), microcolony (9)
EIEC	Inhibition (21): weak (6), microcolony (15)
EPEC	Inhibition (20): weak (4), microcolony (16)
EHEC	Inhibition (14): weak (6), microcolony (8)
S.Typhimurium	Inhibition (16): weak (5), microcolony (11)
E. coli	No inhibition
V. cholerae	Inhibition (30): strong (9), weak (19), microcolony (2)
S. flexneri	Inhibition (30): strong (6), weak (20), microcolony (4)
MRSA	Weak inhibition (6)
H. pylori	No inhibition

Table 15. The summary antagonistic activity of *Lactobacillus* spp. against bacterialpathogens

Table 16. The summary antagonistic activity of *Bifidobacterium* spp. against bacterial pathogens

Pathogens	Inhibition results
1 athogens	(number of isolates)
ETEC	Inhibition as microcolony (5)
EIEC	Inhibition as microcolony (12)
EPEC	Inhibition as microcolony (4)
EHEC	Inhibition as microcolony (5)
S.Typhimurium	Inhibition as microcolony (13)
E. coli	No inhibition
V. cholerae	Inhibition (30): strong (10), weak (19), microcolony (1)
S. flexneri	Inhibition (28): strong (1), weak (21), microcolony (6)
MRSA	No inhibition
H. pylori	Inhibition (23): strong(5), weak (18)

Pathogens	Inhibition results (number of isolates)						
ETEC							
EIEC							
EPEC	No inhibition						
EHEC							
S.Typhimurium							
E. coli							
V. cholerae	Inhibition (9): weak (8), microcolony (1)						
S. flexneri	Partial in inhibition as microcolony (4)						
MRSA	Weak inhibition of (5)						
H. pylori	No inhibition						

Table 17. The summary antagonistic activity of *Streptococcus* spp. against bacterial pathogens

CHAPTER V

DISCUSSION

Breast milk is the best food for growing infant and has been shown to be a source of commensal and/or probiotic bacteria [2]. The commensal bacteria presented in breast milk were such as staphylococci, streptococci, lactobacilli, enterococci and bifidobacteria [3, 4]. These bacterial groups were shown to be associated with neonates gut microbiota and may also play role in the reduction of the incidence of infections in the breast-fed infant [2, 5]. Our results showed the diversity of lactobacilli, bifidobacteria and streptocooci in breast milk detected by the use of culture-dependent techniques and genotypic identification. MRS medium was a culture medium for the cultivation of Lactobacillus and Bifidobacterium [140]. However, our study demonstrated that only Lactobacillus was recovered on MRS agar. Bifidobacterium was detected only on MC agar which is Columbia medium modified by the addition of glucose, cysteine hydrochloride, agar and bromocresol purple for the differentiation of acid-producing as described by Beerens [68]. There are many type of media for detection of Bifidobacterium such as TPY medium (trypticase-phytone-yeast) described by Scardovi (1986) [141] and Columbia agar containing horse blood (5%, V/V) [140]. In fact, Streptococcus may grow on MRS medium but this work could not isolate these bacteria from this medium. Streptococcus isolates were detected on M 17 medium which is a selective media for lactic acid streptococci and recommended for the isolation of S. thermophilus from yogurt [142].

The skin swabs were cultured for *Lactobacillus*, *Bifidobacterium* and *Streptococcus* in the same condition as breast milk samples and none of them were recovered. This suggested that *Lactobacillus*, *Bifidobacterium* and *Streptococcus* found in breast milk were not from the contamination of these bacteria from nipple and the surrounding skin of volunteers. The origin of the live *Lactobacillus*, *Bifidobacterium* and *Streptococcus* in breast milk is still controversial. They may be

from exogenous source such as the infant mouth and fecal of the mother [143] or the maternal gut involving maternal dendritic cells and macrophages [5, 144].

All isolates of *Lactobacillus*, *Bifidobacterium and Streptococcus* were genotypically identified by 16S rRNA gene sequencing. Forty *Lactobacillus* isolates were identified to 8 species such as *L. gasseri*, *L. salivarius*, *L. fermentum*, *L. mucosae*, *L. rhamnosus*, *L. casei*, *L. plantarum* and *L. oris*. These *Lactobacillus* isolates were recovered from 37 (36.27%) milk samples. The result demonstrated that the diversity of species was more than that found in previous studies but the number of positive samples was varied. Heikkila *et al.* isolated 7 *Lactobacillus* from 4 (10%) of 40 healthy lactating mothers in Finland. The majority of samples were taken within 90 days of delivery. These *Lactobacillus* species were *L. rhamnosus* and *L. crispatus* [3]. Martin *et al.* reported the isolation of three *Lactobacillus* species such as *L. gasseri* and *L. fermentum* from 8 (100%) lactating mothers [2, 145]. However, this study did not mention about the age of lactation.

Thirty-three *Bifidobacterium* isolates were identified to 5 species such as *B. longum, B. breve, B. psedocatenulatum, B. dentium* and *B. bifidum*. These *Bifidobacterium* isolates were recovered from 31 (30.39%) milk samples. The diversity of species was more but the number of positive samples was less than those of the previous study. Martin *et al.* was the first to report the isolation of bifidobacteria from 8 (34.78%) of 23 healthy lactating mothers in Spain. These *Bifidobacterium* species were *B. breve, B. adolescentis* and *B. bifidum* [4].

Twenty-six *Streptococcus* isolates were identified to 5 species such as *S. salivarius*, *S. lactarius*, *Streptococcus* sp., *S. mitis and S. parasanguis*. These *Streptococcus* isolates were recovered from in 17 (16.67%) milk samples. The diversity of species and the number of positive samples was less than those found in previous studies. Heikkila *et al.* isolated *Streptococcus* from 40 healthy lactating mothers in Finland. The result was shown 151 *Streptococcus* isolates and recovered from 29 (72.5%) milk samples. The *Streptococcus* species such as *S. salivarius*, *S. mitis*, *S. parasanguis*, *S. peroris*, *S. agalactiae* and *Streptococcus* sp. (oral) [3]. In fact, genus *Streptococcus* was the second most abundant in breast milk and associated with oral species. In this work *S. lactarius* which was reported as a novel species in breast milk [146] was also recovered from milk samples. *Staphylococcus* isolates

which were picked up by technical errors from catalase test and positive with *Lactobacillus*-specific amplification revealed that genus-specific primers had homology with *Staphylococcus* DNA. Alignment of these primers with *S. aureus* and *S. epidermidis* 16S rRNA genes showed that they had 59.09% and 86.36%, respectively. It is therefore possible that the genus-specific primers could amplify *S. epidermidis* which is skin flora.

Polymerase chain reaction (PCR) method was used for detect of lactocbacilli, bifidobacteria and streptococci DNAs in breast milk. Targets DNA were extracted by Qiagen stool mini kit and add a bead-beading to the chemical lyses for increase cells lysis step. PCR amplicons were generated with genus-specific primers for Lactobacillus, Bifidobacterium and Streptococcus. The results demonstrated the presence of lactobacilli, bifidobacteria and streptococci DNAs in 94 (92.16%), 60 (58.82%) and 56 (54.90%) of 102 breast milk samples, respectively. Based on the false-positive result of genus-specific amplification of bacterial isolates in Table 9, the positive result of DNA presence in breast milk samples was estimated to be 76.94% of Lactobacillus, 84% of Bifidobacterium and 100% of Streptococcus. Collado et al. reported the presence of Lactobacillus, Bifidobacterium and Streptococcus in 50 (100%) lactating mothers by quantitative real-time PCR [136]. In addition, Martin et al. reported the detection of Bifidobacterium in 22 (95.65%) of 23 milk samples by quantitative real-time PCR. They also showed that the percentage of *Bifidobacterium* DNA was \leq 16% of total bacterial DNA [4]. Our result demonstrated that the number of bacterial isolates cultivated from breast milk samples was lower than that detected by PCR. This resulted from the fact that culture method is not perfect to recover all bacterial species in samples.

Since *Lactobacillus* and *Bifidobacterium* are anaerobic bacteria, they are sensitive to oxygen. Samples should be transported in anaerobic condition which was not feasible for liquid samples like breast milk and skin swab in peptone water. To acquire anaerobic condition, the lid of sample tube must be loosen resulting in sample leak. In addition, sample transportation was carried in cold which was not appropriate temperature for cold- sensitive *Streptococcus*. The result of *Streptococcus* prevalence in breast milk was then less than that of previous study [3].

Antagonistic activity assay was performed in all isolates of Lactobacillus, **Bifidobacterium** and Streptococcus against bacterial pathogens such as enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC), enterohemorrhagic E. coli (EHEC), Salmonella Typhimurium, Shigella Helicobacter pylori methicillin-resistant flexneri, Vibrio cholerae, and Staphylococcus aureus (MRSA). Thirteen Lactobacillus isolates such as Lac43 (L. rhamnosus), Lac44 (L. casei), Lac45 (L. salivarius), NL1 (L. salivarius), NL3 (L. salivarius), NL5 (L. salivarius), NL6 (L. salivarius), NL7 (L. salivarius), NL8 (L. gasseri), NL10 (L. gasseri), NL18 (L. mucosae), NL26 (L. salivarius) and NL50 (L. fermentum) had strong antagonistic activity against V. cholerae and S. flexneri and weak antagonistic activity against ETEC, EIEC, EPEC, EHEC and S. Typhimurium. Furthermore, six isolates of Lactobacillus such as Lac 40 (L. salivarius), Lac41 (L. salivarius), NL26 (L. salivarius), NL50 (L. fermentum), NL52 (L. mucosae) and NL53 (L. fermentum) could inhibit the growth of methicillin-resistant Staphylococcus aureus (MRSA). Since 2006, only Olivares et al. has reported breast - milk originated Lactobacillus such as L. salivarius CECT5713 and L. gasseri CECT5714 could inhibit the growth of Salmonella cholerasuis, Escherichia coli, Staphylococcus aureus, Literia monocytogenes and Clostridium tyrobutyricum, [32]. Antagonistic activity was reported in Lactobacillus isolated from other sources such as four Lactobacillus reuteri strains could inhibit the growth of enteric pathogens (EHEC, ETEC, Salmonella enterica, Shigella sonnei and Vibrio cholerae) [11]. Parvathi et al. demonstrated that Lactobacillus fermentum isolated from the intestinal biopsy samples could inhibit the growth of enteric pathogens such as E. coli, S. paratyphi, and S. sonnei [147]. Raffaella et al. reported Lactobacillus acidophilus ATCC 4356 could inhibit growth of *Campylobacter jejuni* strains [148].

Eleven *Bifidobacterium* isolates such as Bif29 (*B. breve*), NB4 (*B. dentium*), NB11 (*B. dentium*), NB13 (*B. bifidum*), NB14 (*B. dentium*), NB15 (*B. bifidum*), NB16 (*B. bifidum*), NB17 (*B. longum*), NB28 (*B. longum*), NB31 (*B. breve*) and NB40 (*B. dentium*) had strong antagonistic activity against *V. cholerae* and *S. flexneri* and had partial antagonistic activity against ETEC, EIEC, EPEC, EHEC and *S. Typhimurium* as microcolony. In addition, five *Bifidobacterium* isolates including NB6 (*B. dentium*), NB8 (*B. longum*), NB14 (*B. dentium*), NB28 (*B. longum*) and NB31 (*B. dentium*).

breve) had strong antagonistic activity against *H. pylori*. Breast-milk originated *Bifidobacterium* spp. have not been reported for their antagonistic activity. Only *Bifidobacterium* isolated from feces were studied previously. Gibson *et al.* has shown that *B. infantis* isolated from infant feces could inhibit the growth of *E. coli* and *Clostridium perfringens* [149]. Bevilacqua *et al.* has shown bifidobacteria isolated from human feces could inhibit the growth of *Clostridium sporogenes* [150]. Collado *et al.* had demonstrated that *Bifidobacterium* isolated from feces could inhibit the growth of *Helicobacter pylori* [151].

Eight Streptococcus isolates such as St6 (S. salivarius), St12 (S. salivarius), St13 (S. salivarius), St14 (S. salivarius), St15 (S. salivarius), St 32 (Streptococcus sp.) and St34 (S. salivarius) had weak antagonistic activity against V. cholerae. Five isolates including St10 (S. lactarius), St11 (S. lactarius), NL4 (Streptococcus sp.), NL9 (S. salivarius) and St27 (Streptococcus sp.) weakly inhibited the growth of MRSA. There was only one report of Heikkila *et al.* demonstrating that Streptococcus salivarius isolated from breast milk had antagonistic activity against Staphylococcus aureaus [3].

Beneficial bacteria such as Lactobacillus, Bifidobacterium and Streptococcus isolated from breast milk had the ability to inhibit the growth of pathogenic bacteria. It has been documented that bacterial antagonistic activity may be from the production of acid, hydrogen peroxide or bacteriocin and small organic molecules [9, 145, 149-152]. Sigrid et al. reported the antibacterial activity of Lactobacillus rhamnosus GG against Salmonella typhimurium by the production of antimicrobial compound which was a low molecular weight, heat-stable, non-proteinaceous substance, thought to be lactic acid [153]. Collado et al. demonstrated that six Bifidobacterium isolated from feces could inhibit the growth of H. pylori. These antagonistic effects were found to relate to heat-stable, proteinaceous bactericidal substance, suspected to be antimicrobial peptides [151]. Cheikhyoussef et al. purified bacteriocin called bifidin I from Bifidobacterium infantis BCRC 14602 and demonstrated its ability to inhibit the growth of many Gram-positive and Gramnegative bacteria which cause food spoilage and food-borne diseases [76]. Mathot et al. reported that S. thermophilus could produce bacteriocin called thermophilins with the ability to inhibit the growth of *Clostridium tyrobutyricum* [13].

The mechanisms which breast milk-derived lactobacilli, bifidobacteria and streptococci employed to suppress the growth of pathogens in this study were not determined. They were of interest to investigate in further study.

CHAPTER VI

CONCLUSION

Culture and identification of beneficial bacteria from breast milk and swabs of nipple and surrounding skin of Thai healthy mothers were performed. It was found that 40 *Lactobacillus*, 33 *Bifidobacterium* and 26 *Streptococcus* isolates were recovered from 37 (36.27%), 31 (30.39%) and 17 (16.67%) samples, respectively. None of these bacteria was recovered from skin swabs. Isolated *Lactobacillus* spp. included *L. gasseri*, *L. salivarius*, *L. fermentum*, *L. mucosae*, *L. rhamnosus*, *L. casei*, *L. plantarum* and *L. oris* whereas isolated *Bifidobacterium* spp. were *B. longum*, *B. breve*, *B. pseudocatenulatum*, *B. dentium* and *B. bifidum*. Isolated *Streptococcus* was found to be *S. salivarius*, *S. lactarius*, *Streptococcus* sp., *S. mitis* and *S. parasangius*

Test for antagonistic activity against ETEC, EIEC, EPEC, EHEC and *S.* Typhimurium revealed that all isolates of *Lactobacillus*, *Bifidobacterium* and *Streptococcus* had weak, partial and no activity, respectively. Thirteen *Lactobacillus* isolates (Lac43, Lac44, Lac45, NL1, NL3, NL5, NL6, NL7, NL8, NL10, NL18, NL26 and NL50) and 11 *Bifidobacterium* isolates (Bif29, NB4, NB11, NB13, NB14, NB15, NB16, NB17, NB28, NB31 and NB40) demonstrated strong antagonistic activity against *V. cholerae* and *S. flexneri*. Furthermore, six *Lactobacillus* isolates (Lac41, NL26 NL50, NL52 and NL53) and 5 *Streptococcus* isolates (St10, St11, NL4, NL9 and St27) weakly inhibited the growth of MRSA. In addition, five *Bifidobacterium* isolates (NB6, NB8, NB14, NB28 and NB31) had strong antagonistic activity against *H. pylori*.

The majority of lactobacilli, bifidobacteria and streptococci that had strong inhibitory activities against bacterial pathogens belonged to *L. salivarius, L. gasseri, L. mucosae, L. fermentum. B. dentium, B. bifidum.* Since specific strains of *Lactobacillus, Bifidobacterium* and *Streptococcus* had probiotic properties, these breast milk-derived bacteria were probiotic candidates for further study to elucidate their antagonistic mechanism against gastrointestinal bacterial pathogens.

REFERENCES

- [1] Martin R, Heilig GHJ, Zoetendal EG, Smidt H, Rodriguez JM. Diversity of the *Lactobacillus* group in breast milk and vagina of healthy women and potential role in the colonization of the infant gut. <u>Journal of</u> <u>Applied Microbiology</u>. 103,6 (2007):2638-44.
- [2] Martin R, Langa S, Reviriego C, Jimenez E, Marin ML, Xaus J, et al. Human milk is a source of lactic acid bacteria for the infant gut. <u>Journal of</u> <u>Pediatrics</u>. 143,6 (2003):754-8.
- [3] Heikkila MP, Saris PEJ. Inhibition of *Staphylococcus aureus* by the commensal bacteria of human milk. <u>Journal of Applied Microbiology</u>. 95,3 (2003):471-8.
- [4] Martin R, Jimenez E, Heilig H, Fernandez L, Marin ML, Zoetendal EG, et al. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. <u>Applied and Environmental Microbiology</u>. 75,4 (2009):965-9.
- [5] Martin R, Langa S, Reviriego C, Jimenez E, Marin ML, Olivares M, et al. The commensal microflora of human milk: New perspectives for food bacteriotherapy and probiotics. <u>Trends in Food Science and Technology</u>. 15,3-4 (2004):121-7.
- [6] Felis GE, Dellaglio F. Taxonomy of lactobacilli and bifidobacteria. <u>Current</u> <u>Issues in Intestinal Microbiology</u>. 8,2 (2007):44-61.
- [7] Lara-Villoslada F, Olivares M, Sierra S, Miguel Rodriguez J, Boza J, Xaus J. Beneficial effects of probiotic bacteria isolated from breast milk. <u>British Journal of Nutrition</u>. 98(2007):96-100.
- [8] Preidis GA, Versalovic J. Targeting the Human Microbiome With Antibiotics, Probiotics, and Prebiotics: Gastroenterology Enters the Metagenomics Era. <u>Gastroenterology</u>. 136,6 (2009):2015-31.
- [9] Huovinen P. Bacteriotherapy: The time has come. <u>British Medical Journal</u>. 323,7309 (2001):353-4.
- [10] Hutt P, Shchepetova J, Loivukene K, Kullisaar T, Mikelsaar M. Antagonistic activity of probiotic lactobacilli and bifidobacteria against entero- and uropathogens. <u>Journal of Applied Microbiology</u>. 100,6 (2006):1324-32.

- [11] Spinler JK, Taweechotipatr M, Rognerud CL, Ou CN, Tumwasorn S, Versalovic J. Human-derived probiotic *Lactobacillus reuteri* demonstrate antimicrobial activities targeting diverse enteric bacterial pathogens. <u>Anaerobe</u>. 14,3 (2008):166-71.
- [12] Cheikhyoussef A, Pogori N, Chen W, Zhang H. Antimicrobial proteinaceous compounds obtained from bifidobacteria: From production to their application. <u>International Journal of Food Microbiology</u>. 125,3 (2008):215-22.
- [13] Mathot AG, Beliard E, Thuault D. Streptococcus thermophilus 580 produces a bacteriocin potentially suitable for inhibition of Clostridium tyrobutyricum in hard cheese. Journal of Dairy Science. 86,10 (2003):3068-74.
- [14] William B. P. Breast Milk Immunology. <u>Am J Dis Child</u>. 133(1979):83-7.
- [15] Walker A. Breast Milk as the Gold Standard for Protective Nutrients. Journal of Pediatrics. 156,2 (2010):3-7.
- [16] Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. <u>Nature Immunology</u>. 2,4 (2001):361-7.
- [17] Roitt I. Essential immunology: Oxford Blackwell Scientific, 1994.
- [18] Kandler OaNW. Genus Lactobacillus. In: P.H.A. Sneath NSM, M.E. Sharpe and J.G. Holt ed., <u>Bergey's manual of systemict bacteriology</u>, p. 1209-32. Baltimore London Williams and Wilkins, 1986.
- [19] Tannock GW. Identification of lactobacilli and bifidobacteria. <u>Current issues</u> <u>in molecular biology</u>. 1,1-2 (1999):53-64.
- [20] Giovanna E., Dellaglio FaF. Taxonomy of Lactobacilli and Bifidobacteria. Intestinal Microbiology.8 (2007):44-61.
- [21] Hammes WPaV, R.F. The genus Lactobacillus In: Holzapfel BJBWaWH ed., <u>The Genera of Lactic Acid Bacteria</u>, p. 19-54. UK: Blackoe Academic and Professional, 1995.
- [22] Berthier F, Ehrlich SD. Rapid species identification within two groups of closely related lactobacilli using PCR primers that target the 16S/23S rRNA spacer region. <u>Microbiology Letters</u>. 161,1 (1998):97-106.
- [23] Tilsala-Timisjärvi A, Alatossava T. Development of oligonucleotide primers from the 16S-23S rRNA intergenic sequences for identifying different

dairy and probiotic lactic acid bacteria by PCR. <u>International Journal</u> of Food Microbiology. 35,1 (1997):49-56.

- [24] Szajewska H, Kotowska M, Mrukowicz JZ, Armánska M, Mikolajczyk W. Efficacy of Lactobacillus GG in prevention of nosocomial diarrhea in infants. Journal of Pediatrics. 138,3 (2001):361-5.
- [25] Cremonini F, Di Caro S, Covino M, Armuzzi A, Gabrielli M, Santarelli L, et al. Effect of different probiotic preparations on anti-*Helicobacter pylori* therapy-related side effects: A parallel group, triple blind, placebo-controlled study. <u>American Journal of Gastroenterology</u>. 97,11 (2002):2744-9.
- [26] Rosenfeldt V, Michaelsen KF, Jakobsen M, Larsen CN, Møller PL, Pedersen P, et al. Effect of probiotic *Lactobacillus* strains in young children hospitalized with acute diarrhea. <u>Pediatric Infectious Disease Journal</u>. 21,5 (2002):411-6.
- [27] Bendali F, Madi N, Sadoun D. Beneficial effects of a strain of *Lactobacillus paracasei* subsp. *paracasei* in *Staphylococcus aureus*-induced intestinal and colonic injury. <u>International Journal of Infectious Diseases</u>. 15,11 (2011):787-94.
- [28] Aso Y, Akazan H. Prophylactic effect of a *Lactobacillus casei* preparation on the recurrence of superficial bladder cancer. <u>Urologia Internationalis</u>. 49,3 (1992):125-9.
- [29] Lin SY, Ayres JW, Winkler Jr W, Sandine WE. Lactobacillus effects on cholesterol: in vitro and in vivo results. Journal of Dairy Science. 72,11 (1989):2885-99.
- [30] Khedkar CD GR, Mantri JM, Kulkarni SA, Khedkar GD. Effect of feeding acidophilus milk on serum cholesterol in human volunteers. <u>Dairy</u> <u>Foods Home Science</u>. 8(1993):12-33.
- [31] Corr SC, Li Y, Riedel CU, O'Toole PW, Hill C, Gahan CGM. Bacteriocin production as a mechanism for the antiinfective activity of *Lactobacillus salivarius* UCC118. <u>Proceedings of the National</u> <u>Academy of Sciences of the United States of America</u>. 104,18 (2007):7617-21.
- [32] Olivares M, Díaz-Ropero MP, Martín R, Rodríguez JM, Xaus J. Antimicrobial potential of four *Lactobacillus* strains isolated from breast milk. <u>Journal of Applied Microbiology</u>. 101,1 (2006):72-9.
- [33] Tissier H. Le bacterium coli et la reaction chromophil d'Escherich. <u>Biology</u>. 51(1899):943-5.

- [34] Orla-Jensen S. La classification des bactéries lactiques, 1924.
- [35] Poupard JA, I. Husain, and R. F. Norris. Biology of the bifidobacteria. <u>Bacteriology</u>.37 (1973):136-65.
- [36] Bergey DH, R. E. Buchanan, and N. E. Gibbone. <u>Bergey's manual of</u> determinative bacteriology, 1974.
- [37] Lee JH, O'Sullivan DJ. Genomic insights into bifidobacteria. <u>Microbiology</u> <u>and Molecular Biology Reviews</u>. 74,3 (2010):378-416.
- [38] Reuter G. Vergleichenden Untersuchung uber die Bifidus-Flora im Sauglings und Erwachsenenstuhl. (1963):486–507.
- [39] Cardovi V, Crociani F. Bifidobacterium catenulatum, Bifidobacterium dentium, and Bifidobacterium angulatum: three new species and their deoxyribonucleic acid homology relationships. <u>International Journal of Systematic Bacteriology</u>. 24,1 (1974):6-20.
- [40] Mitsuoka T. Comparative studies on bifidobacteria isolated from the alimentary tract of man and animals (including descriptions of *Bifidobacterium thermophilum* nov. spec. and *Bifidobacterium pseudolongum* nov.spec.). <u>Zentralbl Bakteriol Orig</u>. 210(1969):52-64.
- [41] Meile L, Ludwig W, Rueger U, Gut C, Kaufmann P, Dasen G, et al. *Bifidobacterium lactis* sp. nov., a moderately oxygen tolerant species isolated from fermented milk. <u>Systematic and Applied Microbiology</u>. 20,1 (1997):57-64.
- [42] Scardovi V, Trovatelli LD. New species of bifid bacteria from Apis mellifica L. and Apis indica F. A contribution to the taxonomy and biochemistry of the genus *Bifidobacterium*. <u>Allgemeine</u>, <u>landwirtschaftliche und</u> <u>technische Mikrobiologie</u>. 123,1 (1969):64-88.
- [43] Tissier H. <u>Recherches sur la flore intestinale des nourrissons</u> (etatnormal et pathologique). 1900.
- [44] Killer J, Kopečny J, Mrázek J, Rada V, Benada O, Koppová I, et al. Bifidobacterium bombi sp. nov., from the bumblebee digestive tract. International Journal of Systematic and Evolutionary Microbiology. 59,8 (2009):2020-4.
- [45] Scardovi V, L. D. Trovatelli, B. Biavati, and G. Zani. *Bifidobacterium cuniculi, Bifidobacterium choerinum, Bifidobacterium boum*, and *Bifidobacterium pseudocatenulatum*-4 new species and their

deoxyribonucleic-acid homology relationships. <u>Bacteriology</u>.29 (1979):291–311.

- [46] Reuter G. Vergleichenden Untersuchung uber die Bifidus-Flora im Sauglings und Erwachsenenstuhl. <u>Zentralbl</u>.191 (1963):486–507.
- [47] Biavati B, V. Scardovi, and W. E. C. Moore. *Bifidobacterium cuniculi*, *Bifidobacterium choerinum*, *Bifidobacterium boum*, and *Bifidobacterium pseudocatenulatum –4* new species and their deoxyribonucleic-acid homology relationships. <u>Bacteriology</u>.32 (1982):358-73.
- [48] Delcenserie V, Gavini F, Beerens H, Tresse O, Franssen C, Daube G. Description of a new species, *Bifidobacterium crudilactis* sp. nov., isolated from raw milk and raw milk cheeses. <u>Systematic and Applied</u> <u>Microbiology</u>. 30,5 (2007):381-9.
- [49] Lauer E. *Bifidobacterium gallicum* sp. nov. isolated from human feces. International Journal of Systematic Bacteriology. 40,1 (1990):100-2.
- [50] Watabe J, Benno Y, Mitsuoka T. *Bifidobacterium gallinarum* sp. nov.: A new species isolated from the ceca of chickens. <u>International Journal of Systematic Bacteriology</u>. 33,2 (1983):127-32.
- [51] Matteuzzi D, Crociani F, Zani G, Trovatelli LD. *Bifidobacterium suis* n. sp.: a new species of the genus *Bifidobacterium* isolated from pig feces. Zeitschrift fur Allgemeine Mikrobiologie. 11,5 (1971):387-95.
- [52] Scardovi V, Zani G. *Bifidobacterium magnum* sp. nov., a large, acidophilic bifidobacterium isolated from rabbit feces. <u>International Journal of</u> <u>Systematic Bacteriology</u>. 24,1 (1974):29-34.
- [53] Biavati B, Mattarelli P. Bifidobacterium ruminantium sp. nov. and Bifidobacterium merycicum sp. nov. from the rumens of cattle. International Journal of Systematic Bacteriology. 41,1 (1991):163-8.
- [54] Yaeshima T, Fujisawa T, Mitsuoka T. Bifidobacterium globosum, subjective synonym of Bifidobacterium pseudolongum, and description of Bifidobacterium pseudolongum subsp. pseudolongum comb. nov. and Bifidobacterium pseudolongum subsp. globosum comb. nov. Systematic and Applied Microbiology. 15,3 (1992):380-5.
- [55] Simpson PJ, Ross RP, Fitzgerald GF, Stanton C. *Bifidobacterium psychraerophilum* sp. nov. and Aeriscardovia aeriphila gen. nov., sp. nov., isolated from a porcine caecum. <u>International Journal of Systematic and Evolutionary Microbiology</u>. 54,2 (2004):401-6.

- [56] Trovatelli LD, Crociani F, Pedinotti M, Scardovi V. *Bifidobacterium pullorum* sp. nov.: a new species isolated from chicken feces and a related group of bifidobacteria isolated from rabbit feces. <u>Archives of Microbiology</u>. 98,3 (1974):187-98.
- [57] Biavati B, Mattarelli P, Crociani F. *Bifidobacterium saeculare*: A new species isolated from feces of rabbit. <u>Systematic and Applied Microbiology</u>. 14,4 (1991):389-92.
- [58] Hoyles L, Inganäs E, Falsen E, Drancourt M, Weiss N, McCartney AL, et al. Bifidobacterium scardovii sp. nov., from human sources. International Journal of Systematic and Evolutionary Microbiology. 52,3 (2002):995-9.
- [59] Biavati B, V. Scardovi, and W. E. C. Moore. Electrophoretic patterns of proteins in the genus *Bifidobacterium* and proposal of 4 new species. <u>Bacteriology</u>.32 (1982):358–73.
- [60] Dong X, Xin Y, Jian W, Liu X, Ling D. *Bifidobacterium thermacidophilum* sp. nov., isolated from an anaerobic digester. <u>International Journal of</u> <u>Systematic and Evolutionary Microbiology</u>. 50,1 (2000):119-25.
- [61] Ballongue J. Bifidobacteria and Probiotic action ed., <u>Lactic acid bacteria</u>, p. 357-432. New York: Marcel Dekker, 1993.
- [62] Scardovi V. Genus *Bifidobacterium* In: Sneath P.H.A. MNS, Sharp M.E. and Holt J.G. ed., <u>Bergey's Manual of Systematic Bacteriology</u>, p. 1418-34. Baltimore, U.S.A: William and Wilkins, 1986.
- [63] Klijn A, Mercenier A, Arigoni F. Lessons from the genomes of bifidobacteria. <u>Microbiology Reviews</u>. 29,3 (2005):491-509.
- [64] Ventura M, van Sinderen D, Fitzgerald GF, Zink R. Insights into the taxonomy, genetics and physiology of bifidobacteria. <u>International</u> <u>Journal of General and Molecular Microbiology</u>. 86,3 (2004):205-23.
- [65] Gomes AMP, Malcata FX. *Bifidobacterium* spp. and *Lactobacillus acidophilus*: Biological, biochemical, technological and therapeutical properties relevant for use as probiotics. <u>Trends in Food Science and Technology</u>. 10,4-5 (1999):139-57.
- [66] Mara DD, Oragui JI. Sorbitol-fermenting bifidobacteria as specific indicators of human faecal pollution. <u>Journal of Applied Bacteriology</u>. 55,2 (1983):349-57.

- [67] Munoa FJ, Pares R. Selective medium for isolation and enumeration of *Bifidobacterium* spp. <u>Applied and Environmental Microbiology</u> 54,7 (1988):1715-8.
- [68] Beerens H. An elective and selective isolation medium for *Bifidobacterium* spp. Letters in Applied Microbiology. 11,3 (1990):155-7.
- [69] Zhuravlev YN, Kozyrenko MM, Artyukova EV, Reunova GD, Ilyushko MV. Fingerprinting genomes of the far eastern species of the genus Iris L. by RAPD-PCR. <u>Genetika</u>. 34,3 (1998):368-72.
- [70] Roy D, Sirois S. Molecular differentiation of *Bifidobacterium* species with amplified ribosomal DNA restriction analysis and alignment of short regions of the ldh gene. <u>Microbiology Letters</u>. 191,1 (2000):17-24.
- [71] Ventura M, Elli M, Reniero R, Zink R. Molecular microbial analysis of *Bifidobacterium* isolates from different environments by the speciesspecific amplified ribosomal DNA restriction analysis (ARDRA). <u>Microbiology Ecology</u>. 36,2-3 (2001):113-21.
- [72] Simpson PJ, Stanton C, Fitzgerald GF, Ross RP. Genomic diversity and relatedness of bifidobacteria isolated from a porcine cecum. <u>Journal of</u> <u>Bacteriology</u>. 185,8 (2003):2571-81.
- [73] Ventura M, Zink R. Rapid identification, differentiation, and proposed new taxonomic classification of *Bifidobacterium lactis*. <u>Applied and</u> Environmental Microbiology. 68,12 (2002):6429-34.
- [74] Sakata S, Chun SR, Kitahara M, Sakamoto M, Hayashi H, Fukuyama M, et al. Characterization of the genus *Bifidobacterium* by automated ribotyping and 16S rRNA gene sequences. <u>Microbiology and Immunology</u>. 50,1 (2006):1-10.
- [75] O'Sullivan DJ. Genomics can advance the potential for probiotic cultures to improve liver and overall health. <u>Current Pharmaceutical Design</u>. 14,14 (2008):1376-81.
- [76] Cheikhyoussef A, Cheikhyoussef N, Chen H, Zhao J, Tang J, Zhang H, et al. Bifidin I - A new bacteriocin produced by Bifidobacterium infantis BCRC 14602: Purification and partial amino acid sequence. <u>Food</u> <u>Control</u>. 21,5 (2010):746-53.
- [77] Lee JH, Karamychev VN, Kozyavkin SA, Mills D, Pavlov AR, Pavlova NV, et al. Comparative genomic analysis of the gut bacterium *Bifidobacterium longum* reveals loci susceptible to deletion during pure culture growth. <u>BMC Genomics</u>. 9(2008).

- [78] Arunachalam K, Gill H, Chandra RK. Enhancement of natural immune function by dietary consumption of *Bifidobacterium lactis* (HN019). <u>European Journal of Clinical Nutrition</u>. 54,3 (2000):263-7.
- [79] Hoarau C, Martin L, Faugaret D, Baron C, Dauba A, Aubert-Jacquin C, et al. Supernatant from *Bifidobacterium* differentially modulates transduction signaling pathways for biological functions of human dendritic cells. <u>PLoS ONE</u>. 3,7 (2008).
- [80] Qiao H, Duffy LC, Griffiths E, Dryja D, Leavens A, Rossman J, et al. Immune responses in rhesus rotavirus-challenged Balb/c mice treated with bifidobacteria and prebiotic supplements. <u>Pediatric Research</u>. 51,6 (2002):750-5.
- [81] Yasui H, Kiyoshima J, Ushijima H. Passive protection against rotavirusinduced diarrhea of mouse pups born to and nursed by dams fed *Bifidobacterium breve* YIT4064. Journal of Infectious Diseases. 172,2 (1995):403-9.
- [82] Duffy LC, Zielezny MA, Riepenhoff-Talty M, Dryja D, Sayahtaheri-Altaie S, Griffiths E, et al. Effectiveness of *Bifidobacterium bifidum* in mediating the clinical course of murine rotavirus diarrhea. <u>Pediatric Research</u>. 35,6 (1994):690-5.
- [83] Shu Q, Qu F, Gill HS. Probiotic treatment using *Bifidobacterium lactis* HN019 reduces weanling diarrhea associated with rotavirus and *Escherichia coli* infection in a piglet model. <u>Journal of Pediatric</u> <u>Gastroenterology and Nutrition</u>. 33,2 (2001):171-7.
- [84] Saavedra JM, Bauman NA, Oung I, Perman JA, Yolken RH. Feeding of *Bifidobacterium bifidum* and *Streptococcus thermophilus* to infants in hospital for prevention of diarrhoea and shedding of rotavirus. <u>Lancet</u>. 344,8929 (1994):1046-9.
- [85] Chouraqui JP, Van Egroo LD, Fichot MC. Acidified milk formula supplemented with *Bifidobacterium lactis*: impact on infant diarrhea in residential care settings. Journal of Pediatric Gastroenterology and <u>Nutrition</u>. 38,3 (2004):288-92.
- [86] Thibault H, Aubert-Jacquin C, Goulet O. Effects of long-term consumption of a fermented infant formula (with *Bifidobacterium breve* c50 and *Streptococcus thermophilus* 065) on acute diarrhea in healthy infants. <u>Journal of Pediatric Gastroenterology and Nutrition</u>. 39,2 (2004):147-52.
- [87] Siggers RH, Siggers J, Boye M, Thymann T, Mølbak L, Leser T, et al. Early administration of probiotics alters bacterial colonization and limits

diet-induced gut dysfunction and severity of necrotizing enterocolitis in preterm pigs. Journal of Nutrition. 138,8 (2008):1437-44.

- [88] Li Y, Shimizu T, Hosaka A, Kaneko N, Ohtsuka Y, Yamashiro Y. Effects of *Bifidobacterium breve* supplementation on intestinal flora of low birth weight infants. <u>Pediatrics International</u>. 46,5 (2004):509-15.
- [89] Wang C, Shoji H, Sato H, Nagata S, Ohtsuka Y, Shimizu T, et al. Effects of oral administration of *Bifidobacterium breve* on fecal lactic acid and short-chain fatty acids in low birth weight infants. <u>Journal of Pediatric Gastroenterology and Nutrition</u>. 44,2 (2007):252-7.
- [90] Agrawal A, Houghton LA, Morris J, Reilly B, Guyonnet D, Goupil Feuillerat N, et al. Clinical trial: The effects of a fermented milk product containing *Bifidobacterium lactis* DN-173 010 on abdominal distension and gastrointestinal transit in irritable bowel syndrome with constipation. <u>Alimentary Pharmacology and Therapeutics</u>. 29,1 (2009):104-14.
- [91] Guyonnet D, Chassany O, Ducrotte P, Picard C, Mouret M, Mercier CH, et al. Effect of a fermented milk containing *Bifidobacterium animalis* DN-173 010 on the health-related quality of life and symptoms in irritable bowel syndrome in adults in primary care: A multicentre, randomized, double-blind, controlled trial. <u>Alimentary Pharmacology and Therapeutics</u>. 26,3 (2007):475-86.
- [92] Marteau P, Cuillerier E, Meance S, Gerhardt MF, Myara A, Bouvier M, et al. *Bifidobacterium animalis* strain DN-173 010 shortens the colonic transit time in healthy women: A double-blind, randomized, controlled study. <u>Alimentary Pharmacology and Therapeutics</u>. 16,3 (2002):587-93.
- [93] Meance S, Cayuela C, Turchet P, Raimondi A, Lucas C, Antoine JM. A fermented milk with a *Bifidobacterium* probiotic strain DN-173 010 shortened oro-fecal gut transit time in elderly. <u>Microbial Ecology in</u> <u>Health and Disease</u>. 13,4 (2001):217-22.
- [94] Jiang T, Mustapha A, Savaiano DA. Improvement of Lactose Digestion in Humans by Ingestion of Unfermented Milk Containing *Bifidobacterium longum*. Journal of Dairy Science. 79,5 (1996):750-7.
- [95] He T, Priebe MG, Zhong Y, Huang C, Harmsen HJM, Raangs GC, et al. Effects of yogurt and bifidobacteria supplementation on the colonic microbiota in lactose-intolerant subjects. <u>Journal of Applied</u> <u>Microbiology</u>. 104,2 (2008):595-604.

- [96] Ataie-Jafari A, Larijani B, Alavi Majd H, Tahbaz F. Cholesterol-lowering effect of probiotic yogurt in comparison with ordinary yogurt in mildly to moderately hypercholesterolemic subjects. <u>Annals of Nutrition and Metabolism</u>. 54,1 (2009):22-7.
- [97] Kießling G, Schneider J, Jahreis G. Long-term consumption of fermented dairy products over 6 months increases HDL cholesterol. <u>European</u> <u>Journal of Clinical Nutrition</u>. 56,9 (2002):843-9.
- [98] Greany KA, Nettleton JA, Wangen KE, Thomas W, Kurzer MS. Probiotic consumption does not enhance the cholesterol-lowering effect of soy in postmenopausal women. Journal of Nutrition. 134,12 (2004):3277-83.
- [99] Kim N, Kunisawa J, Kweon MN, Eog Ji G, Kiyono H. Oral feeding of *Bifidobacterium bifidum* (BGN4) prevents CD4+ CD45RBhigh T cellmediated inflammatory bowel disease by inhibition of disordered T cell activation. <u>Clinical Immunology</u>. 123,1 (2007):30-9.
- [100] McCarthy J, O'Mahony L, O'Callaghan L, Sheil B, Vaughan EE, Fitzsimons N, et al. Double blind, placebo controlled trial of two probiotic strains in interleukin 10 knockout mice and mechanistic link with cytokine balance. <u>Gut.</u> 52,7 (2003):975-80.
- [101] Takahashi T, Nakagawa E, Nara T, Yajima T, Kuwata T. Effects of Orally Ingested *Bifidobacterium longum* on the Mucosal IgA Response of Mice to Dietary Antigens. <u>Bioscience</u>, <u>Biotechnology</u> and <u>Biochemistry</u>. 62,1 (1998):10-5.
- [102] Christensen HR, Larsen CN, Kæstel P, Rosholm LB, Sternberg C, Michaelsen KF, et al. Immunomodulating potential of supplementation with probiotics: A dose-response study in healthy young adults. <u>Immunology and Medical Microbiology</u>. 47,3 (2006):380-90.
- [103] Furrie E, Macfarlane S, Kennedy A, Cummings JH, Walsh SV, O'Neil DA, et al. Synbiotic therapy (*Bifidobacterium longum*/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: A randomised controlled pilot trial. <u>Gut</u>. 54,2 (2005):242-9.
- [104] O'Mahony L, McCarthy J, Kelly P, Hurley G, Luo F, Chen K, et al. Lactobacillus and Bifidobacterium in irritable bowel syndrome: Symptom responses and relationship to cytokine profiles. <u>Gastroenterology</u>. 128,3 (2005):541-51.
- [105] Sekine K, Toida T, Saito M. A new morphologically characterized cell wall preparation (whole peptidoglycan) from *Bifidobacterium infantis* with a higher efficacy on the regression of an established tumor in mice. <u>Cancer Research</u>. 45,3 (1985):1300-7.

- [106] Rowland IR, Rumney CJ, Coutts JT, Lievense LC. Effect of *Bifidobacterium longum* and inulin on gut bacterial metabolism and carcinogen-induced aberrant crypt foci in rats. <u>Carcinogenesis</u>. 19,2 (1998):281-5.
- [107] Le Leu RK, Hu Y, Brown IL, Woodman RJ, Young GP. Synbiotic intervention of *Bifidobacterium lactis* and resistant starch protects against colorectal cancer development in rats. <u>Carcinogenesis</u>. 31,2 (2010):246-51.
- [108] Rafter J, M. Bennett, G. Caderni, Y. Clune, R. Hughes, P. C. Karlsson, A. Klinder, M. O'Riordan, G. C. O'Sullivan, B. Pool-Zobel, G. Rechkemmer, M. Roller, I. Rowland, M. Salvadori, H. Thijs, J. Van Loo, B. Watzl, and J. K. Collins. <u>Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients</u>: Am. J., 2007.
- [109] Hardie JM, Bowden GH. Physiological classification of oral viridans streptococci. Journal of Dental Research. 55,A (1976):166-76.
- [110] Kawamura Y, Hou XG, Sultana F, Liu S, Yamamoto H, Ezaki T. Transfer of Streptococcus adjacens and Streptococcus defectivus to Abiotrophia gen. nov. as Abiotrophia adjacens comb. nov. and Abiotrophia defectiva comb. nov., respectively. International Journal of Systematic <u>Bacteriology</u>. 45,4 (1995):798-803.
- [111] Skinner FA, Quesnel, L.B. <u>Streptococci</u>. London, New York, SanFrancisco: Academic Press, 1978.
- [112] Parente E, and Cogan, T.M. Starter culture : general aspects. In: P.F. Fox PLHM, T.M. Cogan, and T.P. Guinee ed., <u>Cheese : Chemistry</u>, <u>physics and microbiology</u>, p. 122-47. San Diego, CA, USA: Elsevier Academic press, 2004.
- [113] Hols P, Hancy F, Fontaine L, Grossiord B, Prozzi D, Leblond-Bourget N, et al. New insights in the molecular biology and physiology of *Streptococcus thermophilus* revealed by comparative genomics. <u>Microbiology Reviews</u>. 29,3 (2005):435-63.
- [114] Lick S, Keller M, Bockelmann W, Heller KJ. Rapid identification of *Streptococcus thermophilus* by primer-specific PCR amplification based on its lacZ gene. <u>Systematic and Applied Microbiology</u>. 19,1 (1996):74-7.
- [115] Brigidi P, Swennen E, Vitali B, Rossi M, Matteuzzi D. PCR detection of *Bifidobacterium* strains and *Streptococcus thermophilus* in feces of human subjects after oral bacteriotherapy and yogurt consumption. <u>International Journal of Food Microbiology</u>. 81,3 (2003):203-9.

- [117] Bruno-Bárcena JM, Andrus JM, Libby SL, Klaenhammer TR, Hassan HM. Expression of a heterologous manganese superoxide dismutase gene in intestinal lactobacilli provides protection against hydrogen peroxide toxicity. <u>Applied and Environmental Microbiology</u> 70,8 (2004):4702-10.
- [118] Rizkalla SJ, Lou, W., Chevalier, A., Pacher, N., and Slama, G. Chronic consumption of fresh but not heated yoghurt improves breath-hydrogen status and short-chain fatty acid profiles: a controlled in healthy men with or witgout lactose maldigestion. <u>American Journal of Clinical Nutrition</u>. 72(2000):1474-9.
- [119] Ouwehand AC. Antimicrobial components from lactic acid bacteria. In: Salminen SavW, A. 2 nd ed., <u>Lactic Acid Bacteria: Microbiology and</u> <u>Functional Aspects</u>, p. 139-59. New York: Marcel Dekker Inc, 1998.
- [120] Woolford MK. Microbiological screening of food preservatives cold sterilant and specific antimicrobial agents as potential silage additives. <u>Journal</u> <u>of Science Food Agricultural</u>. 26(1975.): 229-37.
- [121] Earnshaw RG. The antimicrobial action of lactic acid bacteria: natural food preservation systems. In: Wood BJB ed., <u>The Lactic Acid Bacteria in</u> <u>Health and Disease</u>, p. 211-32. London, New York: Elsevier Applied Science, 1992.
- [122] Ahmad N, and Marth, E.H. Behaviour of Listeria monocytogenes at 7, 13, 21 and 35 degree in tryptose broth acidified with acetic, citric or lactic acid. Journal of Food Protection. 52(1989.):688-95.
- [123] Wong HC, Chen YL. Effects of lactic acid bacteria and organic acids on growth and germination of *Bacillus cereus*. <u>Applied and Environmental Microbiology</u>. 54,9 (1988):2179-84.
- [124] Cords BR, and Dychdala, G.R. . Sanitizers: halogens, surface-active agents, and peroxides. 2nd ed., <u>Antimicrobials in Foods</u>, p. 469-537. New York: Davidson, P.M. and Branen, A.L., Marcel Dekker Inc, 1993.
- [125] Hotchkiss JH, Chen JH, Lawless HT. Combined effects of carbon dioxide addition and barrier films on microbial and sensory changes in pasteurized milk. Journal of Dairy Science. 82,4 (1999):690-5.
- [126] Jay JM. Antimicrobial properties of diacetyl. <u>Applied and Environmental</u> <u>Microbiology</u> 44,3 (1982):525-32.

- [127] Talarico TL, Casas IA, Chung TC, Dobrogosz WJ. Production and isolation of reuterin, a growth inhibitor produced by *Lactobacillus reuteri*. <u>Antimicrobial Agents and Chemotherapy</u>. 32,12 (1988):1854-8.
- [128] Ouwehand ACaV, S. Antimicrobial components from lactic acid bacteria. In: S. Salmonen Av, and A.Ouwehand 3rd ed., <u>Lactic Acid Bacteria</u>: <u>Microbiology and Function Aspects</u>, p. 375-95. New York: Marcel Dekker., 2004.
- [129] Parish ME, and Davidson, P.M. . Methods for evaluation. In: Davidson PMaB, A.L 2nd ed., <u>Antimicrobials in Foods</u>, p. 597-615 New York: Marcel Dekker Inc., 1993.
- [130] Piddock LJV. Techniques used for the determination of antimicrobial resistance and sensitivity in bacteria. <u>Journal of Applied Bacteriology</u>. 68,4 (1990):307-18.
- [131] Barefoot SF, Klaenhammer TR. Detection and activity of lactacin B, a bacteriocin produced by *Lactobacillus acidophilus*. <u>Applied and</u> <u>Environmental Microbiology</u>. 45,6 (1983):1808-15.
- [132] Hastings JW, Stiles ME. Antibiosis of *Leuconostoc gelidum* isolated from meat. <u>Journal of Applied Bacteriology</u>. 70,2 (1991):127-34.
- [133] Davidson PM, and Parish, M.E. . Methods for testing the efficacy of food antimicrobials. Journal of Food Technology. 1(1989):148-55.
- [134] Heilig HGHJ, Zoetendal EG, Vaughan EE, Marteau P, Akkermans ADL, De Vos WM. Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. <u>Applied and Environmental</u> <u>Microbiology</u>. 68,1 (2002):114-23.
- [135] Bernhard AE, Field KG. Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal anaerobes. <u>Applied and Environmental</u> <u>Microbiology</u>. 66,4 (2000):1587-94.
- [136] Collado MC, Delgado S, Maldonado A, Rodríguez JM. Assessment of the bacterial diversity of breast milk of healthy women by quantitative real-time PCR. <u>Letters in Applied Microbiology</u>. 48,5 (2009):523-8.
- [137] Pena JA, Li SY, Wilson PH, Thibodeau SA, Szary AJ, Versalovic J. Genotypic and Phenotypic Studies of Murine Intestinal Lactobacilli: Species Differences in Mice with and without Colitis. <u>Applied and</u> <u>Environmental Microbiology</u>. 70,1 (2004):558-68.

- [138] Satokari RM, Vaughan EE, Akkermans ADL, Saarela M, De Vos WM. Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. (2001):55-6.
- [139] Cebeci A, Gurakan GC. Molecular methods for identification of *Lactobacillus delbrueckii* subsp. *bulgaricus* and *Streptococcus thermophilus* using methionine biosynthesis and 16S rRNA genes. Journal of Dairy <u>Research</u>. 75,4 (2008):392-8.
- [140] A. Léké MBR, and C. Mullié. Insights in the Human Bifidobacterial Flora Through Culture-Dependent and Independent Techniques. <u>Applied</u> <u>Microbiology</u>. (2007):758-65.
- [141] Hadadji M, Benama R, Saidi N, Henni DE, Kihal M. Identification of cultivable *Bifidobacterium* species isolated from breast-fed infants feces in West-Algeria. <u>African Journal of Biotechnology</u>. 4,5 (2005):422-30.
- [142] Rybka S, Kailasapathy K. Media for the enumeration of yoghurt bacteria. International Dairy Journal. 6,8-9 (1996):839-50.
- [143] Mackie RI, Sghir A, Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract. <u>American Journal of Clinical Nutrition</u>. 69,5 (1999):1035S-45S.
- [144] Perez PF, Doré J, Leclerc M, Levenez F, Benyacoub J, Serrant P, et al. Bacterial imprinting of the neonatal immune system: Lessons from maternal cells? <u>Pediatrics</u>. 119,3 (2007):724-32.
- [145] Martin R, Olivares M, Marin ML, Fernandez L, Xaus J, Rodriguez JM. Probiotic potential of 3 lactobacilli strains isolated from breast milk. <u>Journal of Human Lactation</u>. 21,1 (2005):8-17.
- [146] Virginia Martín RM-L, Juan Miguel Rodríguez, and Antonio Maldonado-Barragán. *Streptococcus lactarius* sp. nov., isolated from breast milk of healthy women <u>International Journal of Systematic and Evolutionary</u> <u>Microbiology</u>. 61(2010):1048-52.
- [147] Varma P, Dinesh KR, Menon KK, Biswas R. Lactobacillus Fermentum Isolated from Human Colonic Mucosal Biopsy Inhibits the Growth and Adhesion of Enteric and Foodborne Pathogens. Journal of Food Science. 75,9 (2010):M546-M51.
- [148] Raffaella Campana SF, Eleonora Ciandrini, Wally Baffone. Antagonistic Activity of *Lactobacillus acidophilus* ATCC 4356 on the Growth and Adhesion/Invasion Characteristics of Human *Campylobacter jejuni*. <u>Current Microbiology</u>. 64(2012):371-8.

- [149] Gibson GR, Wang X. Regulatory effects of bifidobacteria on the growth of other colonic bacteria. <u>Journal of Applied Bacteriology</u>. 77,4 (1994):412-20.
- [150] Bevilacqua L, Ovidi M, Di Mattia E, Trovatelli LD, Canganella F. Screening of *Bifidobacterium* strains isolated from human faeces for antagonistic activities against potentially bacterial pathogens. <u>Microbiological</u> <u>Research</u>. 158,2 (2003):179-85.
- [151] Collado MC, González A, González R, Hernández M, Ferrús MA, Sanz Y. Antimicrobial peptides are among the antagonistic metabolites produced by *Bifidobacterium* against *Helicobacter pylori*. <u>International</u> <u>Journal of Antimicrobial Agents</u>. 25,5 (2005):385-91.
- [152] Fernández L, Delgado S, Herrero H, Maldonado A, Rodríguez JM. The bacteriocin nisin, an effective agent for the treatment of *staphylococcal mastitis* during lactation. Journal of Human Lactation. 24,3 (2008):311-6.
- [153] Sigrid C.J. De Keersmaecker TLAV, Jos Desair, Kathleen Marchal, Jos Vanderleyden &, Nagy Ia. Strong antimicrobial activity of *Lactobacillus rhamnose* against *Salmonella typhimurium* is due to accumulation of lactic acid. <u>FEMS Microbiology Letters</u>. 256(2006):89-96.

APPENDICES

APPENDIX A

MATERIALS AND EQUIPMENTS

Materials and reagents

- Agarose (Research organism, USA)
- Anaerobic indicator (Oxoid, Basingstroke, Hamps, UK)
- Boric acid (Sigma, USA)
- Brain heart infusion agar (Difco, USA)
- Brain heart infusion broth (Difco, USA)
- Columbia blood agar base (Oxoid, Basingstroke, Hamps, UK)
- Cysteine hydrochloride (Sigma, USA)
- Dextrose bacteriological (Oxoid, Basingstroke, Hamps, UK)
- Ethylene diamine tetraacetic acid (EDTA) (Sigma, USA)
- Ethidium bromide (Bio Rad, USA)
- Gaspak (AnaeroPack-Anaero, Mitsubishi, Japan)
- GeneRulerTM 100bp DNA Ladder Plus (Fermentas, USA)
- Glycerol (Merck, Germany)
- MRS agar (Oxoid, Basingstroke, Hamps, UK)
- MRS broth (Oxoid, Basingstroke, Hamps, UK)
- M17 agar (Oxoid, Basingstroke, Hamps, UK)
- M17 broth (Oxoid, Basingstroke, Hamps, UK)
- Peptone bacteriological (Oxoid, Basingstroke, Hamps, UK)
- Proteinase K (Sigma, USA)

- QIAamp® DNA Stool Mini Kit (Qiagen, Hilden, Germany)
- QIAquick PCR Purification Kit (Qiagen, Hilden, Germany)
- Sodium chloride (NaCl) (Sigma, USA)
- Tris base (Sigma, USA)
- Tween 20 (Merck, Germany)
- Tween 80 (Sigma, USA)
- Yeast extract (Difco, USA)

2. Equipments

- Anaerobic Chamber (Concept Plus, Ruskinn Technology, UK)
- Anaerobic Jar (BBL, USA)
- Autoclave (Hirayama, Japan)
- Autopipettes (Gilson, France)
- Centrifuge (Kubota, Japan)
- Deep Freezer (-20⁰C) (Sanyo, Japan)
- Deep Freezer (-80⁰C) (Sanyo, Japan)
- Electrophoresis chamber (BioRad, USA)
- Frogger (DAN-KAR CCRP, USA)
- Gel doc (BioRad, USA)
- Heat block (Scientific, USA)
- Hot air oven (Haraeus, Germany)
- Incubator (Forma Scientific, USA)
- Light Microscope (Nikon, Japan)
- Microcentrifuge (Eppendorf, USA)

- pH meter (Orion, USA)
- Thermal cycler (Eppendorf, Hamburg, Germany)
- Vortex mixer (Scientific, USA)
- Water bath (Memmert, USA)

3. Software and program

- GenBank DNA database search (http://www.ncbi.nlm.gov/BLAST).
- Multalin program (http://bioinfo.genotoul.fr/multalin)
- Sequence mach program of the Ribosomal Database Project II (RDP-II; http://rdp.cme.msu.edu)

APPENDIX B

PREPARATION OF MEDIA AND REAGENT

Media for lactobacilli

1. MRS agar

	6		
MRS agar (oxoid)		62	g
	Distilled water	1,000	ml
2. MRS	S broth		
	MRS broth (oxoid)	52	g
	Distilled water	1,000	ml
3. 20%	glycerol MRS broth		
	Glycerol	20	ml
	Distilled water	40	ml
	MRS broth	40	ml
	(MRS 2.08 g + DW 40 ml)		

20% glycerol MRS broth using for kept lactobacilli cell in deep freeze.

Media for bifidobacteria

4. Modified Columbia (MC) medium

Columbia agar base (oxoid)	39	g
Glucose	5	g
Cysteine hydrochloride	0.5	g
Agar	5	g
Distilled water	1,000	ml

The pH was adjusted to 7.3 before autoclaving at 121^oC for 15 minutes.

When use the media as differential medium add 0.03 g/l of bromocresol purple indicator for observed glucose fermentation.

5. Brain Heart Infusion Broth (BHB)

Brain Heart Infusion (BBL)	37	g
Yeast extract	5	g
Cysteine hydrochloride	0.5	g
Distilled water	1,000	ml

The pH was adjusted to 7.2 before autoclaving at 121^{0} C for 15 minutes. Brain heart infusion broth using as enrichment medium.

6. Brain Heart Infusion Agar (BHA)

Brain Heart Infusion Agar (BBL)	52	g
Yeast extract	5	g
Cysteine hydrochloride	0.5	g
Distilled water	1,000	ml

Brain heart infusion agar using for antagonistic activity assay.

7. 20% glycerol Brain Heart Infusion Broth

Brain Heart Infusion (BBL)	3.7	g
Yeast extract	0.5	g
Cysteine hydrochloride	0.05	g
Glycerol	20	ml
Distilled water	80	ml

20% glycerol BHB using for kept bifidobacteria cell in deep freeze.

Media for streptococci

8. M17 agar

M17 agar (oxoid)	48.25	g
Distilled water	950	ml
10% lactose solution	50	ml

9. 20% glycerol M17 broth

Glycerol	20	ml
Distilled water	40	ml
M17 broth (oxoid)	40	ml
(M 17 1.37 g+ Lactose solution 5 ml + DW 35 ml)		

Reagent for molecular analysis

10. 0.5M EDTA, pH 8.0

Ethylene diamine tetraacetic acid (EDTA)	93.05	g
Distilled water	500	ml

Dissolve 93.05 g of EDTA in 400 ml of distilled water, then the pH was adjusted to 8.0 with NaOH (pellets) and final volume was bought up to 500 ml. The stock reagent sterile by autoclaving at 121^{0} C at 15 pounds/inch² pressure for 15 minutes. The solution was stored at room temperature.

11. 5X TBE

Tris base	54	g
Boric acid	27.5	g
0.5M EDTA pH 8.0	20	ml
Distilled water	1,000	ml

Dissolve all of ingradients in 1,000 ml of distilled water. The stock reagent sterile by autoclaving at 121^{0} C at 15 pounds/inch² pressure for 15 minutes. The solution was stored at room temperature.

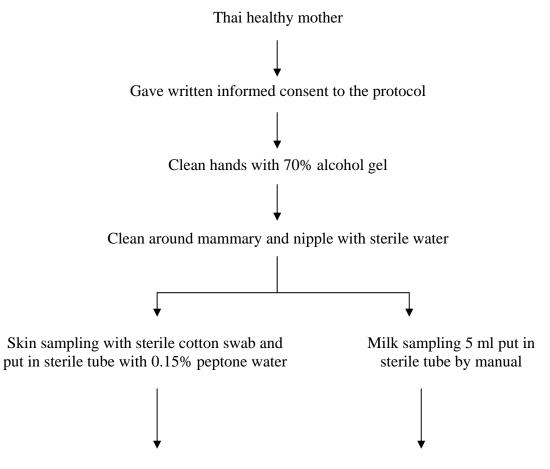
12. 1M Tris-HCl, pH 8.0

Tris base	121.1	g
Distilled water	1,000	ml

Dissolve 121.1 g of Tris base in 800 ml of distilled water. Adjust the pH to the desired value by adding concentrated HCl 42 ml and allow the solution to cool to room temperature before making final adjustments to the pH 8.0. Adjust the volume of the solution to 1 liter with distilled water. Dispense in to aliquots and sterilize by autoclaving.

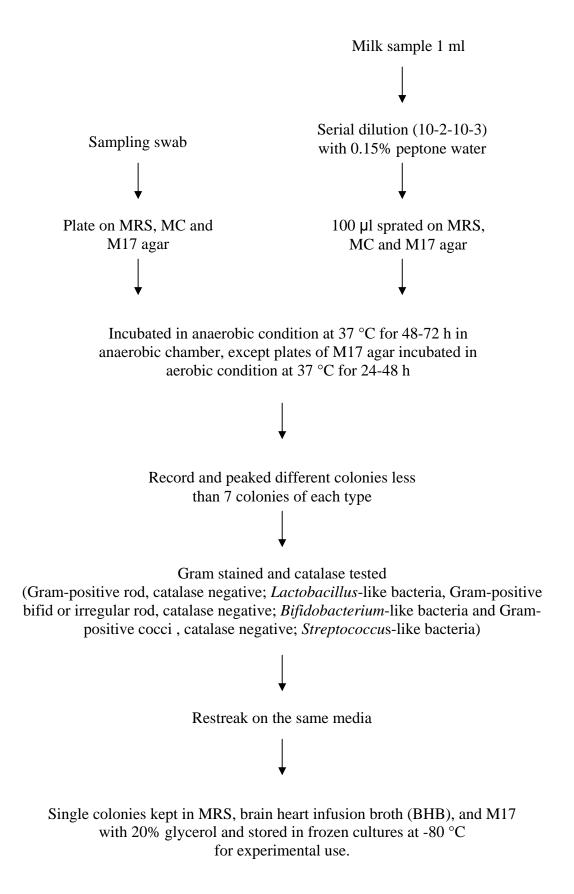
13. 10X Digestion buffer

The stock reagent 10X digestion buffer contained 5% tween 20 and 10 mg/ml proteinase K in 0.2 M Tris pH 8.3. For example prepare 4 ml of the stock reagent.

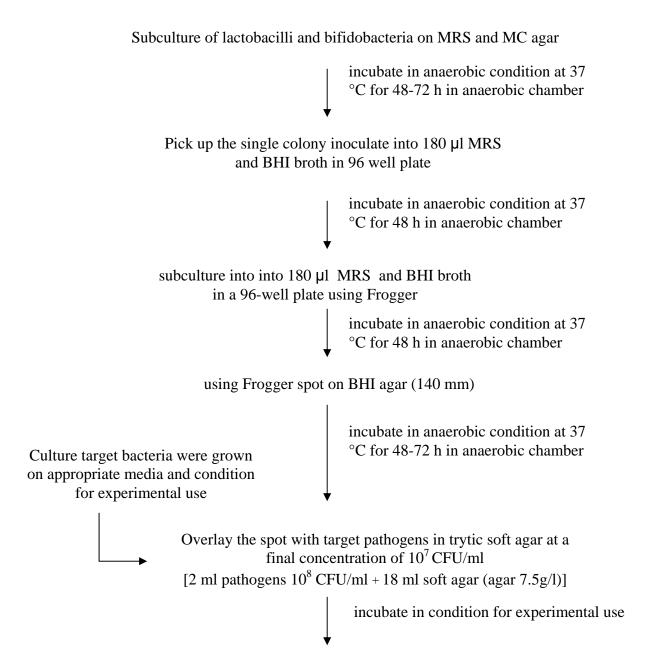

Tween 20	0.2	ml
Proteinase K	40	mg
1M Tris pH 8.3	0.8	ml
Distilled water	3.0	ml

Dissolve 40 mg of Proteinase K in 3 ml of distilled water adding Tween 20 and 1M Tris pH 8.3 making final volume to 4 ml. Mix well and store at 4^{0} C.

APPENDIX C

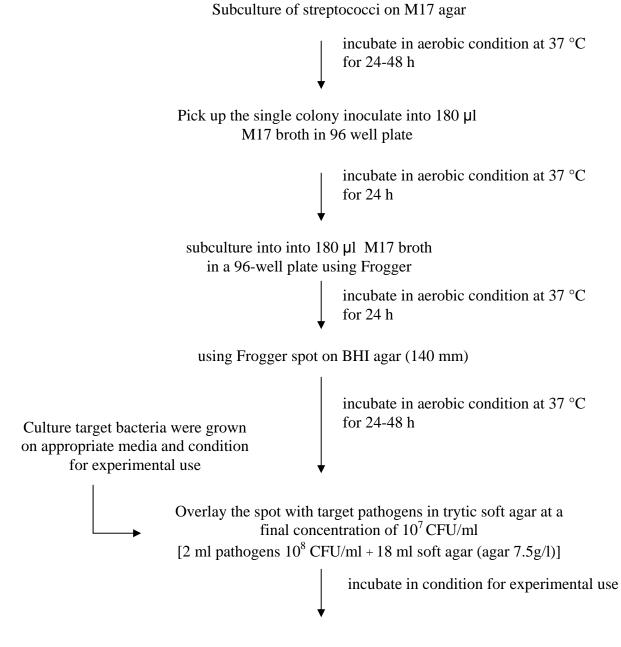

FLOW CHART OF PROTOCAL

1. Collection of breast milk



The sample collected on 4 °C until delivery to the laboratory

2. Isolation of Lactobacillus, Bifidobacterium and Streptococcus from breast milk



3. Antagonistic activity assay of lactobacilli and bifidobacteria using agar spot method

Measured inhibition zone around the spot (mm)

4. Antagonistic activity assay of streptococci using agar spot method

Measured inhibition zone around the spot (mm)

APPENDIX D

NECLEOTIDE ALINGMENT

1. The similarly alignment 16S rRNA gene sequence of *Lactobacillus* spp. isolated from breast milk with the 16S rRNA gene sequence of *Lactobacillus* spp. published in NCBI data bank.

```
>gb|DQ901733.1| Lactobacillus salivarius strain DSM 20555 165 ribosomal RNA ge
partial sequence
Length=1063
Score = 867 \text{ bits } (469)
                    Expect = 0.0
Identities = 488/497 (98%), Gaps = 1/497 (0%)
Strand=Plus/Plus
     398
Query
          AGGTCTTGACATCCTTTGACCACCTAAGAGATTAGGCTTTCCCTTCGGGGACAAAGTGAC
                                                          457
          554
          AGGTCTTGACATCCTTTGACCACCTAAGAGATTAGGCTTTCCCTTCGGGGACAAAGTGAC
                                                          613
Sbjct
Query
     458
          AGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGA
                                                          517
          AGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGA
                                                          673
Sbjct
     614
     518
                                                          577
Query
          GCGCAACCCTTGTAGTCAGTTGCCAGCATTAAGTTGGGCACTCTGGCGAGACTGCCGGTG
          GCGCAACCCTTGTTGTCAGTTGCCAGCATTAAGTTGGGCACTCTGGCGAGACTGCCGGTG
Sbjct
     674
                                                          733
Query
     578
          ACAAACCGGAGGAAGGTGGGGACGACGTCAAGTCATCATGCCCCTTATGACCTGGGCTAC
                                                          637
          Sbjct
     734
          ACAAACCGGAGGAAGGTGGGGACGACGTCAAGTCATGACCCCTTATGACCTGGGCTAC
                                                          793
Query
     638
          ACACGTGCTACAATGGACGGTACAACGAGTCGCGAGACCGCGAGGTTTAGCTAATCTCTT
                                                          697
          Sbjct
     794
          ACACGTGCTACAATGGACGGTACAACGAGTCGCGAGACCGCGAGGTTTAGCTAATCTCTT
                                                          853
Query
     698
          AAAGCCGTTCTCAGTTCGGATTGTAGGCTGCAACTCGCCTACATGAAGTCGGAATCGCTA
                                                          757
          913
Sbjct
     854
          AAAGCCGTTCTCAGTTCGGATTGTAGGCTGCAACTCGCCTACATGAAGTCGGAATCGCTA
Query
     758
          GTAATCGCGAATCAGCATGTCGCGGTGAATACGTTCCCGGGCCTTTTACGGACCGCCCGT
                                                          817
          973
Sbjct
     914
          GTAATCGCGAATCAGCATGTCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGT
Query
     818
          877
            ......
                            CACACCATGAGAGTTTGTAACACCC-AAAGCCGGTGGGGTAACCGCAAGGAGCCAGCCGT
                                                          1032
Sbjct
     974
Query
     878
         CTAAGGTGGGACAGATG 894
```

>gb[FJ55/004.1] Lactobacillus gasseri strain NCC2856 16S ribosomal RNA gene, partial sequence Length=151 Score = 1605 bits (869), Expect = 0.0
Identities = 880/885 (99%), Gaps = 2/885 (0%) Strand=Plus/Plus Query 397 TTCGGCTCAACCGGAGAATTGCATCAGAAACTGTTGAACTTGAGTGCAGAAGAGGAGAGT 456 678 Sbjct 619 TTCGGCTCAACCGGAGAATTGCATCAGAAACTGTTGAACTTGAGTGCAGAAGAGGAGAGT Query 457 GGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGC 516 738 Sbjct 679 GGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGC Query 517 GGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGA 576 798 Sbjct 739 GGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGA Query 577 TACCCTGGTAGTCCATGCCGTAAACGATGAGTGCTAAGTGTTGGGAGGTTTCCGCCTCTC 636 799 TACCCTGGTAGTCCATGCCGTAAACGATGAGTGCTAAGTGTTGGGAGGTTTCCGCCTCTC 858 Sbjct Query 637 AGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGACCGCAAGGTTGAAACT 696 AGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGACCGCAAGGTTGAAACT 918 Sbjct 859 Query 697 CAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACG 756 978 919 CAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACG Sbjct Query 757 CGAAGAACCTTACCAGGTCTTGACATCCAGTGCAAACCTAAGAGATTAGGAGTTCCCTTC 816 979 1038 CGAAGAACCTTACCAGGTCTTGACATCCAGTGCAAACCTAAGAGATTAGGAGTTCCCTTC Sbjct Query 817 GGGGACGCTGAGACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTT 876 1098 1039 Sbjct GGGGACGCTGAGACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTT 877 AAGTCCCGCAACGAGCGCAACCCTTGTCATTAGTTGCCATCATTAAGTTGGGCACTCTAA 936 Ouerv Sbjct 1099 AAGTCCCGCAACGAGCGCAACCCTTGTCATTAGTTGCCATCATTAAGTTGGGCACTCTAA 1158 937 TGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGGATGACGTCAAGTCATCATGCCCCTT 996 Ouerv TGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGCCCCTT Sbjct 1159 1218 997 ATGACCTGGGCTACACGTGCTACAATGGACGGTACAACGAGAAGCGAACCTGCGAAGG 1056 Query ATGACCTGGGCTACACGTGCTACAATGGACGGTACAACGAGAAGCGAACCTGCGAAGG 1278 Sbjct 1219 1057 CAAGCGGATCTCTGAAAGCCGTTCTCAGTTCGGACTGTAGGCTGCAACTCGCCTACAGGA 1116Query 1279 CAAGCGGATCTCTGAAAGCCGTTCTCAGTTCGGACTGTAGGCTGCAACTCGCCTACACGA 1338 Sbjct 1117 AGCTGGAATCGCTAGTAATCGCGGATCAGCACGCCGCGGTGAATACGTTCCCGGGCCTTG 1176 Query AGCTGGAATCGCTAGTAATCGCGGATCAGCACGCCGCGGTGAATACGTTCCCGGGCCTTG 1398 Sbjct 1339 1177 TACACACCGCCCGTCACACCATGAGAGTCTGTAACACCCCAAAGCCGGTGGGATAACCTT 1236 Query 1399 TACACCGCCGTCACACCATGAGAGTCTGTAACACCCAAAGCCGGTGGGATAACCTTT 1458 Sbjct Query 1237 ATAGGAGTCAGCCGTCTAATGTAGGACAGA-GATTAGTGGTTAAG 1280 ATAGGAGTCAGCCGTCTAAGGTAGGACAGATGATTAG-GGTGAAG Sbict 1459 1502

gb|AF126738.1|AF126738 Lactobacillus mucosae 165 ribosomal RNA gene, complete sequence Ēength=1568 Score = 2651 bits (1435), Expect = 0.0
Identities = 1477/1495 (99%), Gaps = 14/1495 (1%)
Strand=Plus/Plus ATACATGCAAGTCGAACGCGTTGGCCCAACTGATTGAACGTGCTTGCACGGACTTGACGT Query 8 67 103 Sbjct 44 Query 68 TGGTTTACCAGCGAGTGGCGGACGGGTGAGTAACACGTAGGTAACCTGCCCCAAAGCGGG 127 TGGTTTACCAGCGAGTGGCGGACGGGTGAGTAACACGTAGGTAACCTGCCCCAAAGCGGG 163 Sbjct 104 187 Query 128 GGATAACATTTGGAAACAGATGCTAATACCGCATAACAATTTGAATCGCATGATTCAAAT GGATAACATTTGGAAACAGATGCTAATACCGCATAACAATTTGAATCGCATGATTCAAAT 223 Sbjct 164 TTAAAAGATGGCTTCGGCTATCACTTTGGGATGGACCTGCGGCGCATTAGCTTGTTGGTA 188 247 Ouerv 283 Sbjct 224 Query 248 GGGTAACGGCCTACCAAGGCTGTGATGCGTAGCCGAGTTGAGAGACTGATCGGCCACAAT 307 GGGTAACGGCCTACCAAGGCTGTGATGCGTAGCCGAGTTGAGAGACTGATCGGCCACAAT 284 343 Sbjct Query 308 GGAACTGAGACACGGTCCATACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGG 367 GGAACTGAGACACGGTCCATACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGG 344 403 Sbict Query 368 GCGCAAGCCTGATGGAGCAACACCGCGTGAGTGAAGAAGGGTTTCGGCTCGTAAAGCTCT 427 GCGCAAGCCTGATGGAGCAACACCGCGTGAGTGAAGAAGGGTTTCGGCTCGTAAAGCTCT 404 463 Sbjct GTTGTTAGAGAAGAACGTGCGTGAGAGGCAACTGTTCACGCAGTGACGGTATCTAACCAGA Query 428 487 GTTGTTAGAGAAGAACGTGCGTGAGAGCAACTGTTCACGCAGTGACGGTATCTAACCAGA 523 Sbjct 464 488 547 Ouerv AAGTCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCG AAGTCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCG Sbjct 524 583 Query 548 GATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTGATAAGTCTGATGTGAAAGCCTTTGG 607 584 GATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTGATAAGTCTGATGTGAAAGCCTTTGG 643 Sbjct Query 608 CTTAACCAAAGAAGTGCATCGGAAACTGTCAGACTTGAGTGCAGAAGAGGACAGTGGAAC 667 Sbjct 644 CTTAACCAAAGAAGTGCATCGGAAACTGTCAGACTTGAGTGCAGAAGAGGACAGTGGAAC 703 Query 668 TCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTG 727 704 763 Sbjct TCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTG 787 728 Query TCTGGTCTGCAACTGACGCTGAGGCTCGAAAAGCATGGGTAGCGAAAACACGATTAGATA 764 820 Sbict 847 Query 788 CCCCTGGTAGTTCCATGCCCGTAAAACGATGAAGTGCTAGGTGTTGGAAGGGGTTTCCGC -CCCTGGTAG-TCCATG-CCGT-AAACGATG-AGTGCTAGGTGTTGG-A-GGGTTTCCG-Sbjct 821 872 CCCTTCAGTGCCGCAGCTAACGCATTAAGCACTCCGCCTGGGGGAGTNCGACCGCAAGGT 907 Query 848 873 931 Sbjct Ouerv 908 TGAAACTCAAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCG 967 TGAAACTC-AAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCG Sbjct 932 990 Query 968 AAGATACGCGAAGAACCTTACCAGGTCTTGACATCTTGCGCCAACCCTAGAGATAGGGCG 1027 991 AAGCTACGCGAAGAACCTTACCAGGTCTTGACATCTTGCGCCAACCCTAGAGATAGGGCG 1050 Sbjct Query 1028 TTTCCTTCGGGAACGCAATGACAGGTGGTGCATGGTCGTCGTCAGCTCGTGTGGGAGAT 1087

>gb|EU825658.1| Lactobacillus fermentum strain 1 16S ribosomal RNA gene, partial sequence Length=1554

```
Score = 1007 bits (545), Expect = 0.0
Identities = 586/607 (97%), Gaps = 7/607 (1%)
Strand=Plus/Plus
         GGGGAGGTACGACCCGCAAGGGTTGGAGACTCAAAGGAAATTGAACGGGGGGCCCGCNCA
                                                   183
Query 124
Sbjct 899
                                                    952
         AGCGGTGGAGCATGTGGTTTAATTGGAAGCTACGCGAAGAACCTTA-CAGGTGTTGAGAT
Query 184
                                                    242
                                                    1012
Sbjct 953
         CTTGGGCCAACCCTAGAGATAGGGCGTTTCCTTNGGGAACGCAATGACAGGTGGTGCATG
                                                    302
Query
    243
Sbjct 1013
                                                    1072
    303
Query
         GTGGTCGTCAGCTCGTGTCGTGAGATGTTNGGTTAAGTCCCGCAACGAGCGCAACCCTTG
                                                    362
            Sbjct 1073
         GTCGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTG
                                                   1132
         TTAATAGTTGCCAGCATTAAGTTGGGCACTCTAGTGAGACTGCCNGTGACANACCGGAGG
    363
                                                    422
Ouerv
Sbjct 1133
                                                    1192
Query 423
         AAGGTGGGGACGACGTCAGATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACA
                                                    482
         Sbjct 1193
         AAGGTGGGGACGACGTCAGATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACA
                                                    1252
Query 483
         542
         Sbjct 1253
         1312
                                                    602
Query 543
         AGTTCGGACTGCAGGCTGCAACTCGCCTGCACGAAGTCGGAATCGCTAGTAATCGCGGAT
         Sbjct 1313
         AGTTCGGACTGCAGGCTGCAACTCGCCTGCACGAAGTCGGAATCGCTAGTAATCGCGGAT
                                                    1372
    603
         CAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGAGA
                                                    662
Query
         Sbjct 1373
         CAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGAGA
                                                    1432
Query
    663
         722
         Sbjct 1433
                                                    1492
Query 723
         AGATGAT 729
         | | | | | | | |
               1499
Sbjct 1493
        AGATGAT
```

>dbj|AB120029.1| Lactobacillus plantarum gene for 165 rRNA, partial sequence, strain:A6bLP03 Length=625 Score = 1016 bits (550), Expect = 0.0
Identities = 555/557 (99%), Gaps = 2/557 (0%) Strand=Plus/Plus CATGCAAGGTCGAACGAACTCTTGGTATTGATTGGTGCTTGCATCATGATTTACATTTGA Query 9 68 Sbjct 18 CATGCAA-GTCGAACGAACTC-TGGTATTGATTGGTGCTTGCATCATGATTTACATTTGA 75 GTGAGTGGCGAACTGGTGAGTAACACGTGGGAAACCTGCCCAGAAGCGGGGGATAACACC Ouerv 69 128 Sbjct 76 135 GTGAGTGGCGAACTGGTGAGTAACACGTGGGAAACCTGCCCAGAAGCGGGGGATAACACC 129 188 Query TGGAAACAGATGCTAATACCGCATAACAACTTGGACCGCATGGTCCGAGTTTGAAAGATG TGGAAACAGATGCTAATACCGCATAACAACTTGGACCGCATGGTCCGAGTTTGAAAGATG 195 Sbjct 136 Query 189 GCTTCGGCTATCACTTTTGGATGGTCCCGCGGCGTATTAGCTAGATGGTGGGGTAACGGC 248 255 Sbjct 196 GCTTCGGCTATCACTTTTGGATGGTCCCGCGGCGTATTAGCTAGATGGTGGGGTAACGGC 249 308 Query TCACCATGGCAATGATACGTAGCCGACCTGAGAGGGTAATCGGCCACATTGGGACTGAGA 256 TCACCATGGCAATGATACGTAGCCGACCTGAGAGGGTAATCGGCCACATTGGGACTGAGA 315 Sbjct Query 309 CACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGAAAGTCT 368 Sbjct 316 375 428 369 GATGGAGCAACGCCGCGTGAGTGAAGAAGGGTTTCGGCTCGTAAAACTCTGTTGTTAAAG Query Sbjct 376 GATGGAGCAACGCCGCGTGAGTGAAGAAGGGTTTCGGCTCGTAAAACTCTGTTGTTAAAG 435 488 429 Query AAGAACATATCTGAGAGTAACTGTTCAGGTATTGACGGTATTTAACCAGAAAGCCACGGC 495 Sbjct 436 AAGAACATATCTGAGAGTAACTGTTCAGGTATTGACGGTATTTAACCAGAAAGCCACGGC 548 Query 489 TAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGG Sbjct 496 TAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGG 555 549 565 Query GCGTAAAGCGAGCGCAA 556 GCGTAAAGCGAGCGCAA 572 Sbjct

```
>gb/JQ412726.1| Lactobacillus casei strain L8 16S ribosomal RNA gene, partial
sequence
Length=1518
Score = 673 bits (364), Expect = 0.0
Identities = 369/371 (99%), Gaps = 2/371 (1%)
Strand=Plus/Plus
Query 7
                                                           66
         CTATACATGCCAAGTCGGAACGAGTTCTCGTTGATGATCGGTGCTTGCACCGAGATTCAA
                  CTATACATG-CAAGTC-GAACGAGTTCTCGTTGATGATCGGTGCTTGCACCGAGATTCAA
                                                           72
Sbjct 15
Query
     67
         CATGGAACGAGTGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCCTTAAGTGGGGGGAT
                                                           126
          Sbjct 73
                                                           132
         CATGGAACGAGTGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCCTTAAGTGGGGGGAT
Query 127
         AACATTTGGAAACAGATGCTAATACCGCATAGATCCAAGAACCGCATGGTTCTTGGCTGA
                                                           186
          192
Sbjct 133
         AACATTTGGAAACAGATGCTAATACCGCATAGATCCAAGAACCGCATGGTTCTTGGCTGA
     187
         AAGATGGCGTAAGCTATCGCTTTTGGATGGACCCGCGGCGTATTAGCTAGTTGGTGAGGT
                                                           246
Query
          Sbjct
     193
         AAGATGGCGTAAGCTATCGCTTTTGGATGGACCCGCGGCGTATTAGCTAGTTGGTGAGGT
                                                           252
     247
         AATGGCTCACCAAGGCGATGATACGTAGCCGAACTGAGAGGTTGATCGGCCACATTGGGA
                                                           306
Query
          253
         AATGGCTCACCAAGGCGATGATACGTAGCCGAACTGAGAGGTTGATCGGCCACATTGGGA
                                                           312
Sbjct
     307
Query
         CTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGC
                                                           366
          CTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGC
Sbjct
     313
                                                           372
     367
         AAGTCTGATGG
                    377
Query
          11111111111
Sbjct
     373
         AAGTCTGATGG
                    383
```

>gb|HQ697661.1| Lactobacillus oris strain 47-219 165 ribosomal RNA gene, partial sequence Length=567

```
Score = 248 bits (134), Expect = 1e-62
Identities = 152/163 (93%), Gaps = 0/163 (0%)
Strand=Plus/Plus
                                                                                   80
Query 21
             AGCGCACTGNNCCAACAGAAATGACGTGCTTGCACTGATTTGACGTTGNATTCCCAGTGA
Sbjct 63
             AGCGCACTGGCCCAACAGAAATGACGTGCTTGCACTGATTTGACGTTGGATTCCCAGTGA
                                                                                   122
Query 81
             GCGGCGGACGGGTGAGTANCACGTGGCCCACCTGCCCCAAAGCGGGGGATAACATTTGGA
                                                                                   140
             GCGCCGGACGGGTGAGTAACACGTGGGCAACCTGCCCCAAAGCGGGGGATAACATTTGGA
Sbjct 123
                                                                                   182
Query 141
             AACAGGTGCTAATACCGCATAATTTGGAATACTATATGttttt
                                                                183
             AACAGGTGCTAATACCGCATAACTTGGAAAAACCACATGGTTTT
Sbjct 183
                                                                225
```

>gb|HM218396.1| Lactobacillus rhamnosus strain NM94-5 165 ribosomal RNA gene, partial sequence Length=1504

Ident		3 bits (1420), Expect = 0.0 = 1469/1491 (99%), Gaps = 16/1491 (1%) /Plus	
Query	10	ATACATGCAAGTCGAACGAGTTCTGATTATTGAAAGGTGCTTGCATCTTGATTTAATTTT	69
Sbjct	28	ATACATGCAAGTCGAACGAGTTCTGATTATTGAAAGGTGCTTGCATCTTGATTTAATTTT	87
Query	70	GAACGAGTGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCCTTAAGTGGGGGGATAACA	129
Sbjct	88	GAACGAGTGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCCTTAAGTGGGGGGATAACA	147
Query	130	TTTGGAAACAGATGCTAATACCGCATAAATCCAAGAACCGCATGGTTCTTGGCTGAAAGA	189
Sbjct	148	TTTGGAAACAGATGCTAATACCGCATAAATCCAAGAACCGCATGGTTCTTGGCTGAAAGA	207
Query	190	TGGCGTAAGCTATCGCTTTTGGATGGACCCGCGCGTATTAGCTAGTTGGTGAGGTAACG	249
Sbjct	208	TGGCGTAAGCTATCGCTTTTGGATGGACCCGCGCGTATTAGCTAGTTGGTGAGGTAACG	267
Query	250	GCTCACCAAGGCAATGATACGTAGCCGAACTGAGAGGTTGATCGGCCACATTGGGACTGA	309
Sbjct	268	GCTCACCAAGGCAATGATACGTAGCCGAACTGAGAGGTTGATCGGCCACATTGGGACTGA	327
Query	310	GACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGCAAGT	369
Sbjct	328	GACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGCAAGT	387
Query	370	CTGATGGAGCAACGCCGCGTGAGTGAAGAAGGCTTTCGGGTCGTAAAACTCTGTTGTGG	429
Sbjct	388	CTGATGGAGCAACGCCGCGTGAGTGAAGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTGG	447
Query	430	AGAAGAATGGTCGGCAGAGTAACTGTTGTCGGCGTGACGGTATCCAACCAGAAAGCCACG	489
Sbjct	448	AGAAGAATGGTCGGCAGAGTAACTGTTGTCGGCGTGACGGTATCCAACCAGAAAGCCACG	507
Query	490 508	GCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATT	549 567
Sbjct	508 550		507 609
Query Sbjct	568	GGCGTAAAGCGAGCGCAGGCGGTTTTT-T-AAGTCC-TGATGTGAAAGC-CC-TCGG-CT	621
Query	610	TTNNCCCGAGGGAAAGTGCATCCGGAAACTGGGAAAACTTTGAGTGCAGAAGNAGGACAG	669
Sbjct	622	TAA-CC-GAGG-AA-GTGCATC-GGAAACTGGGAAA-CTT-GAGTGCAGAAG-AGGACAG	673
Query	670	TGGAAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAG	729
Sbjct	674	TGGAA-CTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAG	732
Query	730	GCGGCTGTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTA	789
Sbjct	733	GCGGCTGTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTA	792
Query	790	GATACCCCTGGTAGTCCATGCCGTAAACGATGAATGCTAGGTGTTGGAGGGTTTCCGCCC	849
Sbjct	793	GATACCC-TGGTAGTCCATGCCGTAAACGATGAATGCTAGGTGTTGGAGGGTTTCCGCCC	851
Query	850	TTCAGTGCCGCAGCTAACGCATTAAGCATTCCGCCTGGGGAGTACGACCGCAAGGTTGAA	909
Sbjct	852	TTCAGTGCCGCAGCTAACGCATTAAGCATTCCGCCTGGGGAGTACGACCGCAAGGTTGAA	911
Query	910	ACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCA	969
Sbjct	912	ACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCA	971

Query	970	ACGCGAAGAACCTTACCAGGTCTTGACATCTTTTGATCACCTGAGAGATCAGGTTTCCCC	1029
Sbjct	972	ACGCGAAGAACCTTACCAGGTCTTGACATCTTTTGATCACCTGAGAGATCAGGTTTCCCC	1031
Query	1030	TTCGGGGGCAAAATGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGG	1089
Sbjct	1032	TTCGGGGGCAAAATGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGG	1091
Query	1090	GTTAAGTCCCGCAACGAGCGCAACCCTTATGACTAGTTGCCAGCATTTAGTTGGGCACTC	1149
Sbjct	1092	GTTAAGTCCCGCAACGAGCGCAACCCTTATGACTAGTTGCCAGCATTTAGTTGGGCACTC	1151
Query	1150	TAGTAAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCC	1209
Sbjct	1152	TAGTAAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCC	1211
Query	1210	CTTATGACCTGGGCTACACACGTGCTACAATGGATGGTACAACGAGTTGCGAGACCGCGA	1269
Sbjct	1212	CTTATGACCTGGGCTACACACGTGCTACAATGGATGGTACAACGAGTTGCGAGACCGCGA	1271
Query	1270	GGTCAAGCTAATCTCTTAAAGCCATTCTCAGTTCGGACTGTAGGCTGCAACTCGCCTACA	1329
Sbjct	1272	GGTCAAGCTAATCTCTTAAAGCCATTCTCAGTTCGGACTGTAGGCTGCAACTCGCCTACA	1331
Query	1330	CGAAGTCGGAATCGCTAGTAATCGCGGATCAGCACGCCGCGGGGAATACGTTCCCGGGCC	1389
Sbjct	1332	CGAAGTCGGAATCGCTAGTAATCGCGGATCAGCACGCCGCGGTGAATACGTTCCCGGGCC	1391
Query	1390	TTGTACACACCGCCGTCACACCATGAGAGTTTGTAACACCCGAAGCCGGTGGCGTAACC	1449
Sbjct	1392	TTGTACACCGCCCGTCACACCATGAGAGTTTGTAACACCCGAAGCCGGTGGCGTAACC	1451
Query	1450	CTTTTAGGGAGCGAGCCGTCTAAGGTGGGACAAATGATTAGTGTGAAGTCG 1500	
Sbjct	1452	CTTTTAGGGAGCGAGCCGTCTAAGGTGGGACAAATGATTAGGGTGAAGTCG 1502	

2. The similarly alignment 16S rRNA gene sequence of *Bifidobacterium* spp. isolated from breast milk with the 16S rRNA gene sequence of *Bifidobacterium* spp. published in NCBI data bank.

```
>dbj|AB690245.1| Bifidobacterium longum gene for 165 rRNA, partial sequence, strain:
JCM 1250
Length=1464
Score = 2220 bits (1202), Expect = 0.0
Identities = 1271/1303 (98%), Gaps = 10/1303 (1%)
Strand=Plus/Plus
         27
                                                        82
Ouerv
     47
                                                        103
Sbict
Query
     83
         TGCCCGACCTGCCCCATACACCGGAATAGCTCCTGGAAACGGGTGGTAATGCCGGATGTT
                                                        142
         Sbjct
     104
                                                        163
Query
     143
         CCAGTTGATCGCATGGTCTTCTGGGAAAGCTTTCGCGGTATGGGATGGGGTCGCGTCCTA
                                                        202
Sbjct
     164
         CCAGTTGATCGCATGGTCTTCTGGGAAAGCTTTCGCGGTATGGGATGGGGTCGCGTCCTA
                                                        223
     203
         262
Query
Sbjct
     224
                                                        283
     263
                                                        322
Ouerv
         CGACCGGCCACATTGGGACTGAAATACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGA
          ĊĠĂĊĊĠĠĊĊĂĊĂŢŦĠĠĠĂĊŦĠĂĠĂŦĂĊĠĠĊĊĊĂĠĂĊŦĊĊŦĂĊĠĠĠĂĠĠĊĂĠĊĂĠŦĠĠĠĠĂ
Sbjct
     284
                                                        343
Query
     323
         ATATTGCACAATGGGCGCAAGCCTGATGCAGCGACCCCGCGTGAGGCATGGAGGCCTTCG
                                                        382
         Sbjct
     344
                                                        403
     383
                                                        442
Query
         404
                                                        463
Sbjct
         CGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTACGGTGCAAGCGTTATCCGGAATTA
Query
     443
                                                        502
         CGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTATCCGGAATTA
Sbjct
     464
                                                        523
     503
                                                        562
Query
         TTGGGCGTAAAGGGCTCCTAGGCGGGTCGTCTCGACCGGTGTGAAAGTCCATCGCTTAAC
         TTGGGCGTAAAGGGCTCGTAGGCGGTTCGTCGCGTCCGGTGTGAAAGTCCATCGCTTAAC
Sbjct
     524
                                                        583
     563
         622
Query
         Sbjct
     584
                                                        643
     623
         TGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCAATGGCGAAGGCAGGTCTCTGGG
                                                        682
Ouerv
         644
                                                        703
Sbict
     683
Query
         CCGTTACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAG
                                                        742
           CCGTTACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAG
     704
                                                        763
Sbjct
     743
                                                        802
Query
         TCCACGCCGTAAACGGTGGATGCTGGATGTGGGGCCCGTTCCACGGGTTCCGTGTCGGAG
         TCCACGCCGTAAACGGTGGATGCTGGATGTGGGGCCCGTTCCACGGGTTCCGTGTCGGAG
                                                        823
Sbjct
     764
         CTAACGCGTTAAGCATCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGAAATT
Query
     803
                                                        862
         CTAACGCGTTAAGCATCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGAAATT
     824
Sbjct
                                                        883
Query
     863
         GACGGGGGCCCGCACAAGCGGCGGAGCATGCGGATTAATTCGATGCAACGCGAAGAACCT
                                                        922
         Sbjct
     884
                                                        943
     923
                                                        982
Query
         TACCTGGGCTTGACATGTTCCCGACGATCCCAGAGATGGGGTTTCCCTTCGGGGCGGGTT
          TACCTGGGCTTGACATGTTCCCGACGATCCCAGAGATGGGGTTTCCCTTCGGGGCGGGTT
     944
                                                        1003
Sbict
     983
                                                        1042
Ouerv
         CACAGGTGGTGCATGGTCGTCGTCGTGTGGTGAGATGTTGGGTTAAGTCCCGCAA
          1004
         CACAGGTGGTGCATGGTCGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAA
Sbjct
                                                        1063
     1043
         CGAGCGCAACCCTCGCCCCGTGTTGCCAGCGGATTGTGCCGGGAACTCACGGGGGACCGC
                                                        1102
Query
         CGAGCGCAACCCTCGCCCGTGTTGCCAGCGGATTGTGCCGGGAACTCACGGGGGACCGC
Sbjct 1064
                                                        1123
```

Query	1103	CGGGGTTAACTCGGAGGAAGGTGGGGATGACGTCAGATCATCATGCCCCTTACGTCCAGG	1162
Sbjct	1124	CGGGGTTAACTCGGAGGAAGGTGGGGATGACGTCAGATCATCATGCCCCTTACGTCCAGG	1183
Query	1163	GCTTCACGCATGCTACAATGGCCGGTACAACGGGATGCGACGCGGCGACGCGGAGCGGAT	1222
Sbjct	1184	GCTTCACGCATGCTACAATGGCCGGTACAACGGGATGCGACGCGGCGACGCGGAGCGGAT	1243
Query	1223	CCCTGAAAACCGGTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGGCGGAGT	1282
Sbjct	1244	CCCTGAAAACCGGTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGGCGGAGT	1303
Query	1283	CGGTAGTAATC-CGGAATCAGCAACGTCCCGG-GAATGTGTTC 1323	
Sbjct	1304		

>gb GU936674.1 Bifidobacterium bifidum strain R0071 16S ribosomal RNA gene, partial sequence Length=1368						
Score = 2224 bits (1204), Expect = 0.0 Identities = 1274/1305 (98%), Gaps = 15/1305 (1%) Strand=Plus/Plus						
Query	29	GGACTCGATCGCGGCTTTGCCTGGTGGTGAGAGTGGCGAACGGGTGAGTAATGCGTGACC	88			
Sbjct	4	GGA-TCCATCG-GGCTTTGCTTGGTGGTGAGAGTGGCGAACGGGTGAGTAATGCGTGACC	61			
Query	89	GACCTGCCCATGCTCCGGAATAGCTCCTGGAAACGGGTGGTAATGCCGGATGTTCCACA	148			
Sbjct	62	GACCTGCCCATGCTCCGGAATAGCTCCTGGAAACGGGTGGTAATGCCGGATGTTCCACA	121			
Query	149	TGATCGCATGTGATTGTGGGAAAGATTCTATCGGCGTGGGATGGGGTCGCGTCCTATCAG	208			
Sbjct	122	TGATCGCATGTGATTGTGGGAAAGATTCTATCGGCGTGGGATGGGGTCGCGTCCTATCAG	181			
Query	209		268			
Sbjct	182	ĊTTGTTGGTGAGGTAACGGCTCACCAAGGCTTCGACGGGTAGCCGGCCTGAGAGGGGCGAC	241			
Query	269		328			
Sbjct	242	CGGCCACATTGGGACTGAGATACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATAT	301			
Query	329	TGCACAATGGGCGCAAGCCTGATGCAGCGACGCCGCGTGAGGGATGGAGGCCTTCGGGTT	388			
Sbjct	302	TGCACAATGGGCGCAAGCCTGATGCAGCGACGCCGCGTGAGGGATGGAGGCCTTCGGGTT	361			
Query	389	GTAAACCTCTTTTGTTTGGGAGCAAGCCTTCGGGTGAGTGTACCTTTCGAATAAGCGCCG	448			
Sbjct	362	GTAAACCTCTTTTGTTTGGGAGCAAGCCTTCGGGTGAGTGTACCTTTCGAATAAGCGCCG	421			
Query	449	GCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGCGCAAGCGTTATCCGGATTTATT	508			
Sbjct	422	GCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGCGCAAGCGTTATCCGGATTTATT	481			
Query	509	GGGCGTAAAGGGCTCGTAGGCGGCTCGTCGCGTCCGGTGTGAAAGTCCATCGCTTAACGG	568			
Sbjct	482	GGGCGTAAAGGGCTCGTAGGCGGCTCGTCGCGTCCGGTGTGAAAGTCCATCGCTTAACGG	541			
Query	569	TGGATCTGCGCCGGGTACGGGCGGGGCTGGAGTGCGGTAGGGGAGACTGGAATTCCCGGTG	628			
Sbjct	542	TGGATCTGCGCCGGGTACGGGCGGGCGGGAGAGTGCGGTAGGGGAGACTGGAATTCCCGGTG	601			
Query	629	TAACGGTGGAATGTGTAGATATCGGGAAGAACACCGATGGCGAAGGCAGGTCTCTGGGCC	688			
Sbjct	602	TAACGGTGGAATGTGTAGATATCGGGAAGAACACCGATGGCGAAGGCAGGTCTCTGGGCC	661			
Query	689	GTCACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTC	748			
Sbjct	662	GTCACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTC	721			
Query	749	CACGCCGTAAACGGTGGACGCTGGATGTGGGGCACGTTCCACGTGTTCCGTGTCTGAACT	808			
Sbjct	722	CACGCCGTAAACGGTGGACGCTGGATGTGGGGGCACGTTCCACGTGTTCCGTGTCGGAGCT	781			
Query	809	AACGCGTTAAGCGTCCCGCCTGGGCAGTACGGCCCGCAAGGCTAAAACTCAAAGAAATTG	868			
Sbjct	782	AACGCGTTAAGCGTCCCGCCTGGGGAGTACGGCC-GCAAGGCTAAAACTCAAAGAAATTG	840			
Query	869	ACCGGGGGCCCTACACAAGCGGGGGGGGGGCATGCAGAATTAACTTCGATTTCAACCCGAA	928			
Sbjct	841	ÁC-GGGGGCCCG-CÁCÁA-GCGGCGG-ÁGCATGCGGÁ-TTAA-TTCGÁTG-CÁACGCGAA	893			
Query	929	AAGACCCTTACCTGGGCTTGACATGTTCCCGACGACGCCAGAGATGGCGTTTCCCTTCGG	988			
Sbjct	894	GÁ-ÁCC-TTÁCCTGGGCTTGÁCATGTTCCCGÁCGÁCGCCÁGAGATGGCGTTTCCCTTCGG	951			
Query	989	GGCGGGTTCACAGGTGGTTCATGGTCGTCGTCAGCTCGTGTTGTGAGATGTTGGGTTAAG	1048			
Sbjct	952	GGCGGGTTCACAGGTGGTGCATGGTCGTCGTCGTGTCGT	1011			

Query	1049	TCCCGCAACGAGCGCAACCCTCGCCCCGTGTTGCCAGCACGTTATGGTGGGAACTCACGG	1108
Sbjct	1012	TCCCGCAACGAGCGCAACCCTCGCCCCGTGTTGCCAGCACGTTATGGTGGGAACTCACGG	1071
Query	1109	GGGACCGCCGGGGTTAACTCGGAGGAAGGTGGGGATGACGTCAGATCATCATGCCCCTTA	1168
Sbjct	1072	GGGACCGCCGGGGTTAACTCGGAGGAAGGTGGGGATGACGTCAGATCATCATGCCCCTTA	1131
Query	1169	CGTCCAGGGCTTCACGCATGGTACAATGGCCGGTACAACGGGATGCGACATGGCGACATG	1228
Sbjct	1132	CGTCCAGGGCTTCACGCATGCTACAATGGCCGGTACAGCGGGATGCGACATGGCGACATG	1191
Query	1229	GAGC GGATCCC T GAAAACC GGTC T C AGTTC GGATC G GAGCC T GC AACCC G GC T C C G - G AA	1287
Sbjct	1192	GAGCGGATCCCTGAAAACCGGTCTCAGTTCGGATCGGAGCCTGCAACCCGGCTCCGTGAA	1251
Query	1288	GGCGGAGTCGCTAGTAATACGCGGATCAGCAACGTCGCGG-GAAT 1331	
Sbjct	1252	GGCGGAGTCGCTAGTAAT-CGCGGATCAGCAACGCCGCGGTGAAT 1295	

>gb|HQ259740.1| Bifidobacterium breve strain LCR5 16S ribosomal RNA gene, partial sequence Length=1393

Lenge	-1000			
Score = 2314 bits (1253), Expect = 0.0 Identities = 1282/1296 (99%), Gaps = 1/1296 (0%) Strand=Plus/Plus				
Query Sbjct	32 46	CCATCGAGCTTTGCTTGGTGGTGAGAGTGGCGAACGGGTGAGTAATGCGTGACCGACC	91 105	
Query		CCCCATGCACCGGAATAGCTCCTGGAAACGGGTGGTAATGCCGGATGCTCCATCACACCG	151	
Sbjct	106	CCCCATGCACCGGAATAGCTCCTGGAAACGGGTGGTAATGCCGGATGCTCCATCACACCG	165	
Query	152	CATGGTGTGTGTGGGAAAGCCTTTGCGGCATGGGATGGG	211	
Sbjct	166	CATGGTGTGTGGGAAAGCCTTTGCGGCATGGGATGGGGTCGCGTCCTATCAGCTTGATG	225	
Query	212	GCGGGGTAACGGCCCACCATGGCTTCGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCAC	271	
Sbjct	226	GCGGGGTAACGGCCCACCATGGCTTCGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCAC	285	
Query	272	ATTGGGACTGAGATACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAA	331	
Sbjct	286	ATTGGGACTGAGATACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAA	345	
Query	332	TGGGCGCAAGCCTGATGCAGCGACGCCGCGTGAGGGATGGAGGCCTTCGGGTTGTAAACC	391	
Sbjct	346		405	
Query		TCTTTTGTTAGGGAGCAAGGCATTTTGTGTTGAGTGTACCTTTCGAATAAGCACCGGCTA	451	
Sbjct Query	406 452		465 511	
Sbjct	466	ACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTATCCGGAATTATTGGGC	525	
Query	512	GTAAAGGGCTC GTAAGC GGTTC GTCCC GTCC GGTGTGAAAGTCC ATC GCTTAAC GGTGGA	571	
Sbjct	526	GTAAAGGGCTC GTAGGC GGTTC GTC GC GTCC GGTGTGAAAGTCC ATC GC TTAAC GGTGGA	585	
Query	572	TCCGCGCCGGGTACGGGCGGGCTTGAGTGCGGTAGGGGAGACTGGAATTCCCGGTGTAAC	631	
Sbjct	586	TCC GC GCC GGGTAC GGGC GGGC TTGAGTGC GGTAGGGGAGAC TGGAATTCC C GGTGTAAC	645	
Query	632	GGTGGAATGTGTAGATATCGGGAAGAACACCAATGGCGAAGGCAGGTCTCTGGGCCGTTA	691	
Sbjct	646	GGTGGAATGTGTAGATATCGGGAAGAACACCAATGGCGAAGGCAGGTCTCTGGGCCGTTA	705	
Query	692	CTGACGCTGAAGAACGAAAGCCTGGGGAGCCAACAGGATTAGATACCCTGGTAGTCCACG	751	
Sbjct	706	ĊŢĠĂĊĠĊŢĠĂĠĠĂĠĊĠĂĂĂĠĊĠŢĠĠĠĠĠĠĊĠĂĂĊĂĠĠĂŢŢĂĠĂŢĂĊĊŢĠĠŢĂĠŢĊĊĂĊĠ	765	
Query	752	CCGTAAACGGTGGATGCTGGATGTGGGGGCCCGTTCCACGGGTTCCGTGTCCGAACTAACG	811	
Sbjct	766		825	
Query	812		871 885	
Sbjct Query	826 872	CGTTAAGCATCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGAAATTGACGGG GGCCCGCACAAGCGGCGGAACATGCGGATTAATTCGATGCAACGCGAAGAACCTTACCTG	931	
Sbjct	886	GGCCC GCACAAGC GGC GGAGCATGC GGATTAATTC GATGCAAC GC GAAGAACCTTACCTG	945	
Query	932	GGCTTGACATGTTCCCGACGATCCCAGAGATGGGGTTTCCCTTCGGGGCGGGTTCACAGG	991	
Sbjct	946	GGCTTGACATGTTCCCGACGATCCCAGAGATGGGGTTTCCCTTCGGGGCGGGTTCACAGG	1005	
Query	992	TGGTGCATGGTCGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCG	1051	
Sbjct	1006	TGGTGCATGGTCGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCG	1065	
Query	1052		1111	
Sbjct	1066	CAACCCTCGCCCCGTGTTGCCAGCGGATTGTGCCGGGAACTCACGGGGGACCGCCGGGGT	1125	

Query	1112	TAACTCGGAGGAAGGTGGGGATGACGTCAGATCATCATGCCCCTTACGTCCAGGGCTTCA	1171
Sbjct	1126	TAACTCGGAGGAAGGTGGGGATGACGTCAGATCATCATGCCCCTTACGTCCAGGGCTTCA	1185
Query	1172	CGCATGCTACAATGGCCGGTACAACGGGATGCGACAGTGCGAGCTGGAGCGGATCCCTGA	1231
Sbjct	1186	CGCATGCTACAATGGCCGGTACAACGGGATGCGACAGTGCGAGCTGGAGCGGATCCCTGA	1245
Query	1232	AAACCGGTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGGCGGAGTCGCTAG	1291
Sbjct	1246	AAACCGGTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGGCGGAGTCGCTAG	1305
Query	1292	TAATCGCGAATCAGCAACGTCGTCGGTGAATGTGtt 1327	
Sbjct	1306	TAATCGCGAATCAGCAACGTCG-CGGTGAATGCGTT 1340	

Score = 2361 bits (1278), Expect = 0.0Identities = 1294/1302 (99%), Gaps = 0/1302 (0%)Strand=Plus/PlusQuery 24AACGGAATCCATCAGGCTTTGCTTGGTGGTGAGGGTGGCGAACGGGTGAGTAATGCGTGA 83Sbjct 56AACGGGATCCATCAGGCTTTGCTTGGTGGTGAGAGGTGGCGAACGGGTGAGTAATGCGTGA 115Query 84CCGACCTGCCCCATACACCGGAATAGCTCCTGGAAACGGGTGGTAATGCCGGATGCTCCG 143Sbjct 116CCGACCTGCCCCATACACCGGAATAGCTCCTGGAAACGGGTGGTAATGCCGGATGCTCCG 175	
sbjct 56 AACGGGATCCATCAGGCTTTGCTTGGTGGTGAGAGTGGCGAACGGGTGAGTAATGCGTGA 115 Query 84 CCGACCTGCCCCATACACCGGAATAGCTCCTGGAAACGGGTGGTAATGCCGGATGCTCCG 143	
sbjct 56 AACGGGATCCATCAGGCTTTGCTTGGTGGTGAGAGTGGCGAACGGGTGAGTAATGCGTGA 115 Query 84 CCGACCTGCCCCATACACCGGAATAGCTCCTGGAAACGGGTGGTAATGCCGGATGCTCCG 143	
shipt 116 CCCACCTCCCCATACACCCCCAATACCTCCTAAAACCCCCTCCT	
sbjct 116 ccgacctgccccatacaccggaatagctcctggaaacgggtggtaatgccggatgctccg 175	
Query 144 ACTCCTCGCATGGGGTGTCGGGAAAGATTTCATCGGTATGGGATGGGGTCGCGTCCTATC 203	
sbjct 176 ACTCCTCGCATGGGGTGTCGGGAAAGATTTCATCGGTATGGGATGGGGTCGCGTCCTATC 235	
Query 204 AGGTAGTCGGCGGGGTAACGGCCCACCGAGCCTACGACGGGTAGCCGGCCTGAGAGGGCG 263	
sbjct 236 AGGTAGTCGGCGGGGTAACGGCCCACCGAGCCTACGACGGGTAGCCGGCCTGAGAGGGGCG 295	
Query 264 ACCGGCCACATTGGGACTGAGATACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAAT 323	
sbjct 296 ACCGGCCACATTGGGACTGAGATACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAAT 355	
Query 324 ATTGCACAATGGGCGCAAGCCTGATGCAGCGACGCCGCGGGGATGACGGCCTTCGGG 383 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
sbjct 356 ATTGCACAATGGGCGCAAGCCTGATGCAGCGACGCCGCGTGCGGGATGACGGCCTTCGGG 415	
Query 384 TTGTAAACCGCTTTTGATCGGGAGCAAGCCTTCGGGTGAGTGTACCTTTCGAATAAGCAC 443	
Sbjct 416 TTGTAAACCGCTTTTGATCGGGAGCAAGCCTTCGGGTGAGTGTACCTTTCGAATAAGCAC 475	
Query 444 CGGCTAACTACGTGCCAGCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTATCCGGAATTA 503	
sbjct 476 CGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTATCCGGAATTA 535	
Query 504 TTGGGCGTAAAGGGCTCGTAGGCGGTTCGTCGCGTCCGGTGTGAAAGTCCATCGCTTAAC 563 Sbict 536 TTGGGCGTAAAGGGCTCGTAGGCGGTTCGTCGCGTCCGGTGTGAAAGTCCATCGCTTAAC 595	
Query 564 GGTGGATCTGCGCCCGGGTACGGGCCGGGCTGGAGTGCGGTAGGGGAGACTGGAATTCCCGG 623 Sbjct 596 GGTGGATCTGCGCCGGGGTACGGGCCGGGCTGGAGTGCGGTAGGGGAGACTGGAATTCCCGG 655	
Query 624 TGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCAATGGCGAAGGCAGGTCTCTGGG 683	
sbjct 656 TGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCAATGGCGAAGGCAGGTCTCTGGG 715	
Query 684 CCGTTACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAG 743	
sbjct 716 CCGTTACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAG 775	
Query 744 TCCACGCCGTAAACGGTGGATGCTGGATGTGGGGCCCGTTCCACGGGTTCCGTGTCGGAG 803	l
Sbjct 776 TCCACGCCGTAAACGGTGGATGCTGGATGTGGGGCCCGTTCCACGGGTTCCGTGTCGGAG 835	
Query 804 CTAACGCGTTAAGCATCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGAAATT 863	}
Sbjct 836 CTAACGCGTTAAGCATCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGAAATT 895	
Query 864 GACGGGGGCCCGCACAAGCGGCGGAGCATGCGGATTAATTCGATGCAACGCGAAGAACCT 923	}
Sbjct 896 GACGGGGGGCCCGCACAAGCGGCGGAGCATGCGGATTAATTCGATGCAACGCGAAGAACCT 955	
Query 924 TACCTGGGCTTGACATGTTCCCGACAGCGGCAGAGATGTCGCTTCCCCTTCGGGGCGGGTT 983	}
Sbjct 956 TACCTGGGCTTGACATGTTCCCGACAGCCGTAGAGATATGGCCTCCCTTCGGGGCGGGTT 101	5
Query 984 CACAGGTGGTGCATGGTCGTCGTCGTCGTGTGGGAGATGTTGGGTTAAGTCCCGCAA 104	3
Sbjct 1016 CACAGGTGGTGCATGGTCGTCGTCAGCTCGTGTGGGAGATGTTGGGTTAAGTCCCGCAA 107	5
Query 1044 CGAGCGCAACCCTCGCCCTGTGTTGCCAGCACGTCGTGGTGGGAACTCACGGGGGACCGC 110	3
sbjet 1076 cgagcgcaaccectcgccctgtgtgtgcagcaccgtggggaactcacgggggaccgc 113	5

Query	1104	CGGGGTCAACTCGGAGGAAGGTGGGGATGACGTCAGATCATCATGCCCCTTACGTCCAGG	1163
Sbjct	1136	CGGGGTCAACTCGGAGGAAGGTGGGGATGACGTCAGATCATCATGCCCCTTACGTCCAGG	1195
Query	1164	GCTTCACGCATGCTACAATGGCCGGTACAACGGGATGCGACACGGCGACGTGGAGCGGAT	1223
Sbjct	1196	GCTTCACGCATGCTACAATGGCCGGTACAACGGGATGCGACACGGCGACGTGGAGCGGAT	1255
Query	1224	CCCTGAAAACCGGTCTCAGTTCGGATTGGAGTCTGCAACCCGACTCCATGAAGGCGGAGT	1283
Sbjct	1256	CCCTGAAAACCGGTCTCAGTTCGGATTGGAGTCTGCAACCCGACTCCATGAAGGCGGAGT	1315
Query	1284	CGCTAGTAATCGCGGATCAGCAACGCCGCGGTGAATGCGTTC 1325	
Sbjct	1316	CGCTAGTAATCGCGGATCAGCAACGCCGCGGTGAATGCGTTC 1357	

>gb|GU361819.1| Bifidobacterium dentium strain KCTC 3222 165 ribosomal RNA gene, partial sequence Length=1483

Score = 2314 bits (1253), Expect = 0.0 Identities = 1274/1284 (99%), Gaps = 1/1284 (0%) Strand=Plus/Plus					
Query	33	GGGGGTTCGCTTCCGGGTGAGAGTGGCGAACGGGTGAGTAATGCGTGACCGACC	92		
Sbjct	49	GGGGGTTCGCCTCCGGGTGAGAGTGGCGAACGGGTGAGTAATGCGTGACCGACC	108		
Query	93	ATACACCGGAATAGCTCCTGGAAACGGGTGGTAATGCCGGATGCTCCGGTTGGATGCATG	152		
Sbjct	109	ATACACCGGAATAGCTCCTGGAAACGGGTGGTAATGCCGGATGCTCCGGTTGGATGCATG	168		
Query	153	TCCTTCCGGGAAA-GATCCGTCGGTATGGGATGGGGTCGCGTCCTATCAGCTTGATGGCG	211		
Sbjct	169	TCCTTCCGGGAAAGGTTCCATCGGTATGGGATGGGGTCGCGTCCTATCAGCTTGATGGCG	228		
Query	212 229	GGGTAACGGCCCACCATGGCTTCGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACATT	271 288		
Sbjct Query	272		331		
Sbjct	289	GGGACTGAGATAC GGCCC AGACTCC TAC GGGAGGC AGC AGTGGGGAATATTGC AC AATGG	348		
Query	332	GCGCAAGCCTGATGCAGCGACGCCGCGTGCGGGATGGAGGCCTTCGGGTTGTAAACCGCT	391		
Sbjct	349	GCGCAAGCCTGATGCAGCGACGCCGCGTGCGGGATGGAGGCCTTCGGGTTGTAAACCGCT	408		
Query	392	TTTGATCGGGAGCAAGCCCTTCGGGGTGAGTGTACCTTTCGAATAAGCACCGGCTAACTA	451		
Sbjct	409	TTTGATCGGGAGCAAGCCCTTCGGGGTGAGTGTACCCTTCGAATAAGCACCGGCTAACTA	468		
Query	452	CGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTATCCGGAATTATTGGGCGTAA	511		
Sbjct	469	CGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTATCCGGAATTATTGGGCGTAA	528		
Query	512	AGGGCTCGTAGGCGGTTCGTCGCGTCCGGTGTGAAAGCCCATCGCTTAACGGTGGGTCTG	571		
Sbjct	529	AGGGCTCGTAGGCGGTTCGTCGCGTCCGGTGTGAAAGCCCATCGCTTAACGGTGGGTCTG	588		
Query	572	CGCCGGGTACGGGCGGGCTGGAGTGCGGTAGGGGAGACTGGAATTCCCGGTGTAACGGTG	631		
Sbjct	589	CGCCGGGTACGGGCGGGCTGGAGTGCGGTAGGGGAGACTGGAATTCCCGGTGTAACGGTG	648		
Query	632	GAATGTGTAGATATCGGGAAGAACACCAATGGCGAAGGCAGGTCTCTGGGCCGTCACTGA	691		
Sbjct	649	GAATGTGTAGATATCGGGAAGAACACCAATGGCGAAGGCAGGTCTCTGGGCCGTCACTGA	708		
Query	692	CGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGT	751		
Sbjct	709		768		
Query	752	AAACGGTGGATGCTGGATGTGGGGGCCCGTTCCACGGGTTCCGTGTCGGAGCTAACGCGTT	811 828		
Sbjct	769 812		828 871		
Query Sbjct	829		888		
Query	872		931		
Sbjct	889		948		
Query	932		991		
Sbjct	949	TGACATGTTCCCGACGGCCGTAGAGATACGGCCTCCCTTCGGGGCGGGTTCACAGGTGGT	1008		
Query	992	GCATGGTCGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAAC	1051		
Sbjct	1009	GCATGGTCGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAAC	1068		
-					

Query	992	GCATGGTCGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAAC	1051
Sbjct	1009	GCATGGTCGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAAC	1068
Query	1052	CCTCGCCCTGTGTTGCCAGCACGTCATGGTGGGAACTCACGGGGGACCGCCGGGGTCAAC	1111
Sbjct	1069		1128
Query	1112	TCGGAGGAAGGTGGGGATGACGTCAGATCATCATGCCCCTTACGTCCAGGGCTTCACGCA	1171
Sbjct	1129	TCGGAGGAAGGTGGGGATGACGTCAGATCATCATGCCCCTTACGTCCAGGGCTTCACGCA	1188
Query	1172	TGC TAC AATGGCC GGTAC AGC GGGATGC GAC ATGGC GAC ATGGAGC GGATCCC TGAAAAC	1231
Sbjct	1189	TGCTACAATGGCCGGTACAGCGGGATGCGACATGGCGACATGGAGCGGATCCCTGAAAAC	1248
Query	1232	CGGTCTCAGTTCGGATTGGAGTCTGCAACCCGACTCCATGAAGGCGGAGTCGCTAGTAAT	1291
Sbjct	1249	CGGTCTCAGTTCGGATTGGAGTCTGCAACCCGACTCCATGAAGGCGGAGTCGCTAGTAAT	1308
Query	1292	CGCGGATCAGCAACGCCGCGGTGA 1315	
Sbjct	1309	CGCGGATCAGCAACGCCGCGGTGA 1332	

3. The similarly alignment 16S rRNA gene sequence of *Streptococcus* spp. isolated from breast milk with the 16S rRNA gene sequence of *Streptococcus* spp. published in NCBI data bank.

>gb|GU045364.1| Streptococcus lactarius strain MV1 165 ribosomal RNA gene, partial sequence Length=1452 Score = 907 bits (491), Expect = 0.0Identities = 500/504 (99%), Gaps = 2/504 (0%) Strand=Plus/Plus Query 20 79 GTGCCTAATACATGCAAGTAGAACGCTGAAGGAAGGAGCTTGCTCTTTCTGGATGAGTTG 79 20 Sbjct GTGCCTAATACATGCAAGTAGAACGCTGAAGGAAGGAGCTTGCTCTTTCTGGATGAGTTG CGAACGGGTGAGTAACGCGTAGGTAACCTGCCTCTTAGCGGGGGATAACTATTGGAAACG Query 80 139 Sbjct 80 139 ATAGCTAATACCGCATAAAAGTCGACATTGCATGAAGTTGACTTGAAAGGTGCAATTGCA Query 140 199 Sbjct 140 199 Query 200 TCACTAAGAGATGGACCTGCGTTGTATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGC 259 200 TCACTAAGAGATGGACCTGCGTTGTATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGC 259 Sbjct Query 260 GACGATACATAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAG 319 Sbjct 260 AACGATACATAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAG 319 320 379 Query ACTCCTACGGGAGGCAGCAGTAGGGAATCTTCGGCAATGGGGGGAACCCTGACCGAGCAA Sbjct 320 ACTCCTACGGGAGGCAGCAGTAGGGAATCTTCGGCAATGGGGGGGAACCCTGACCGAGCAA 379 Query 380 CGCCGCGTGAGTGAAGAAGGTTTTCGGATCGTAAAGCTCTGTTGTAAGAGAAGAACGAGT 439 CGCCGCGTGAGTGAAGAAGGTTTTCGGATCGTAAAGCTCTGTTGTAAGAGAAGAACGAGT 380 439 Sbjct Query 440 GTGAGAGTGGAAAGTTCACACTGTGACGGTATCTTACCAGAAAGGGACGGCTAACTACGT 499 GTGAGAGTGGAAAGTTCACACTGTGACGGTATCTTACCAGAAAGGGACGGCTAACTACGT 440 499 Sbjct Query 500 GCCAGCACGCCGCGGTGAATACGT 523 Sbjct 500 521

gb AY188352.1 Streptococcus salivarius strain ATCC 7073 16S ribosomal RNA complete sequence Length=1546					
Ident	ities	80 bits (801), Expect = 0.0 = 813/818 (99%), Gaps = 4/818 (0%) s/Plus			
Query	16	CGGC-TG-CT-ATACATGCAAGTAGAACGCTGAAGAGAGGAGCTTGCTCTTCTTGGATGA	72		
Sbjct	38	CGGCGTGCCTAATACATGCAAGTAGAACGCTGAAGAGAGGAGCTTGCTCTTCTTGGATGA	97		
Query	73	GTTGCGAACGGGTGAGTAACGCGTAGGTAACCTGCCTTGTAGCGGGGGATAACTATTGGA	132		
Sbjct	98	GTTGCGAACGGGTGAGTAACGCGTAGGTAACCTGCCTTGTAGCGGGGGATAACTATTGGA	157		
Query	133	AACGATAGCTAATACCGCATAACAATGGATGACACATGTCATTTATTT	192		
Sbjct	158	AACGATAGCTAATACCGCATAACAATGGATGACACATGTCATTTATTT	217		
Query	193	TGCTCCACTACAAGATGGACCTGCGTTGTATTAGCTAGTAGGTGAGGTAACGGCTCACCT	252		
Sbjct	218	TGCTCCACTACAAGATGGACCTGCGTTGTATTAGCTAGTAGGTGAGGTAACGGCTCACCT	277		
Query	253	AGGCGACGATACATAGCCGACCTGAGAGGGGGGGGCGACCACACTGGGACTGAGACACGGC	312		
Sbjct	278	AGGCGACGATACATAGCCGACCTGAGAGGGGTGATCGGCCACACTGGGACTGAGACACGGC	337		
Query	313		372		
Sbjct	338	CCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCGGCAATGGGGGGCAACCCTGACCGA	397		
Query	373	GCAACGCCGCGTGAGTGAAGAAGGTTTTCGGATCGTAAAGCTCTGTTGTAAGTCAAGAAC	432		
Sbjct	398	GCAACGCCGCGTGAGTGAAGAAGGTTTTCGGATCGTAAAGCTCTGTTGTAAGTCAAGAAC	457		
Query	433	GAGTGTGAGAGTGGAAAATTCACACTGTGACGGTAGCTTACCAGAAAGGGACGGCTAACT	492		
Sbjct	458	GAGTGTGAGAGTGGAAAGTTCACACTGTGACGGTAGCTTACCAGAAAGGGACGGCTAACT	517		
Query	493	ACGTGCCAGCAGCCGCGGTAATACGTAGGTCCCGAGCGTTGTCCGGATTTATTGGGCGTA	552		
Sbjct	518	ACGTGCCAGCAGCCGCGGTAATACGTAGGTCCCGAGCGTTGTCCGGATTTATTGGGCGTA	577		
Query	553	AAGCGAGCGCAGGCGGTTTGATAAGTCTGAAGTTAAAGGCTGTGGCTCAACCATAGTTCG	612		
Sbjct	578	AAGCGAGCGCAGGCGGTTTGATAAGTCTGAAGTTAAAGGCTGTGGCTCAACCATAGTTCG	637		
Query	613	CTTTGGAAACTGTCAAACTTGAGTGCAGAAGGGGAGAGTGGAATTCCATGTGTAGCGGTG	672		
Sbjct	638	CTTTGGAAACTGTCAAACTTGAGTGCAGAAGGGGAGAGTGGAATTCCATGTGTAGCGGTG	697		
Query	673	AAATGCGTAGATATATGGAGGAACACCGGTGGCGAAAGCGGCTCTCTGGTCTGTAACTGA	732		
Sbjct	698 722	AAATGCGTAGATATATGGAGGAACACCGGTGGCGAAAGCGGCTCTCTGGTCTGTAACTGA	757		
Query	733	C GC T GAGGC T C GAAAAGC G T G G G G AG C G AA C A G G A T T A G A T A C C C T G G T A G T C C A C G C C G T	792		
Sbjct	758	CGCTGAGGCTCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGT	817		
Query	793 818	AAACGATGAGTGCTAGGTGTTGGATCCTTTCCGG-ATT 829			
Sbjct	818	AAACGATGAGTGCTAGGTGTTGGATCCTTTCCGGGATT 855			

BIOGRAPHY

Miss Yupawadee Chaodong was born on November 13, 1985 in Buriram, Thailand. She graduated with Bachelor degree of Science in Biotechnology from the Faculty of Agricultural Technology at Walailak University in 2008.