การระบาษสีแบบรวมของกราฟปะติด

 วิทยานิพน์์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
 ลิขสิทธิ์ของจุหาลงกรณ์มหาวิทยาลัย

TOTAL COLORINGS OF GLUED GRAPHS

A Thesis Submitted in Partial Fulfillment of the Requirements

Copyright of Chulalongkorn University

$$
500505
$$

Thesis Title

By

Field of Study
Thesis Principle Advisor
Thesis Co-advisor

TOTAL COLORINGS OF GLUED GRAPHS
Mr. Wongsakorn Charoenpanitseri
Mathematics
Chariya Uiyyasathian, PhD.
Associate Professor Wanida Hemakul. Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Pardial Fulfillment of the Requirements for the Master's Degree
. caa. . Dean of the Faculty of Science
(Professor Supt Hannorgbtua, PhD.)

THESIS COMMITTEE
Udaiti
(Associate Professor Paramee Ldomkavanich, PhD.)

วงศกร เจริญูพานิชิสรี : การระบายสีแบบรวมของกราฟปะติด (TOTAL COLORINGS OF GLUED GRAPHS) อ.ที่ปรึกษาหลัก : ดร.จริยา อุ่ยยะเสลียร อ.ที่ปรีกษาร่วม : รศ.ดร. วนิดา เหมะกุล 55 หน้า

ข้อความคาดการณ์ของการระบายสีเมบรวมของกราฟ G กล่าวว่า $\chi^{\text {" }}(G) \leq \Delta(G)+2$ เมื่อ $\chi^{"}(G)$ แทนรงคเลขแบบรวมของกราฟ G และ $\Delta(G)$ แทเดีกรีสูงสุดในกราฟ G เรากล่าวว่ากราฟ G สอดคล้องสมบัติชนิดที่หนึ่ง ถ้า $\chi^{\prime \prime}(G)=\Delta(G)+1$ และชนิทที่สอง ถ้า χ " $(G)=\Delta(G)+2$

ในวิทยานิพนธ์ดบับนี้เรวหาขอบเขดบนของรงคเลขเบบรวมของกราฟปะติดในเทอมของรงคเลข แบบรวมของกราฟเริ่มด้น เราสนใจรงกกลขบบบรวมของกราฟปะติดระหว่างกราฟกลุ่มเดียวกันซึ่งคือ กราฟ วง กราฟด้นไม้ กราฟสองส่วน และกราฟบบริขรรน์และสิสูจน์ว่ากราฟเหล่านี้สอดคล้องข้อความคาดการณ์ ของการระบายสีแบบรวมและเสนอเงื่อนไขข์าเป็นและเพียงพอสำหรับกราฟปะติดเหล่านื้ยกเว้นกราฟปะติด ของกราฟสองส่วน สอตคล้องข้อควมมกาดการณ์ของการระบาขสีแบบรวมและสมบัติชนิดที่หนึ่ง หรือชนิด ที่สอง ถิ่งกว่านั้นเราสนใจเง่อนไขเพียงพอสำหรับกราฟดดๆที่สอคคล้องข้อความคาดการณ์ของการระบาขสี แบบรวมและสวบัติชนิดที่หนึ่ง หรือ ชนิดที่กอง เพื่อใช้เื่ลนไขเหล่านี้กับผลลัพธ์ของกราฟปะติศขยงกราฟ ใดจและกราฟต้นไม้ไดๆ

\# \# 4972464323 : MAJOR MATHEMATICS KEYWORDS : GLUED GRAPHS / THE TOTAL CHROMATIC NUMBER

WONGSAKORN CHAROENPANITSERI : TOTAL COLORINGS OF GLUED

GRAPHS. THESIS PRINCIPLE ADVISOR: CHARIYA UIYYASATHIAN, Ph.D. THESIS CO-ADVISOR : ASSOC. PROF. WANIDA HEMAKUL, Ph.D. 55 pp.

The Total Coloring Conjecture states that for every graph $G, \chi^{\prime \prime}(G) \leq \Delta(G)+$ 2 when $\chi^{\prime \prime}(G)$ is the total chromatic number of G and $\Delta(G)$ is the maximum number of degree of vertices of G. We say that a graph G is of type 1 if $\chi^{\prime \prime}(G)=$ $\Delta(G)+1$ and type 2 if $\chi^{\prime \prime}(G)=\Delta(G)+2$

In this thesis, upper bounds of the total chromatic number of glued graphs in terms of the total chromatic number of original graphs are presented. We investigate the total chromatic number of glued graphs of same class where the classes are cycles, trees, bipartite graphs and complete graphs and prove that these glued graphs satisfy the Total Coloring Conjecture and obtain necessary and sufficient conditions for these glued graplis except the glued graph of bipartite graphs to be either of type 1 or type 2. Furthermore, we study sufficient conditions for any graph to satisfy the Total Coloring Conjecture and be either type 1 graph or type 2 graphand use these conditions to obtain the result of glued graphs of

Department : ...Mathematics...
Field of Study : ...Mathematics...
Academic Year : \qquad 2007. \qquad

Student's Signature :.2...ont.............anıl Principle Advisor's Signature:............. Co-advisor's Signature:.............12........

ACKNOWLEDGEMENTS

1 am greatly indebted to many person. First, I would like to thank Dr. Chariya Uiyyasathian, my thesis advisor, for her suggestions in my thesis and my life and for her patient to read and check my thesis. Next, I would like to thank Associate Professor Dr. Wanida Hemakul, my thesis co-advisor for her willingness to sacrifice her time to read and check my thesis. I am very happy that I do this thesis with them. Next, I woild like to thank Associate Professor Dr. Patanee Udomkavanich, Dr. Yotsanan Meemark and Professor Dr. Narong Punnim, my thesis commitee, for value suggestions. Finally, I would like to thank all of the teachers and all of the lectures during my study.

If I did the wrong thing, Ido apologize. It does not happen by intention.

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

CONTENTS

page
ABSTRACT IN THAI iv
ABSTRACT IN ENGLIGH v
ACKNOWLEDGEMENTS vi
CONTENTS vii
LIST OF FIGURES ix
CHAPTER
1 INTRODUCTION 1
1.1 Introduction 1
1.2 Basic Properties of Colorimgs, Edge-colorings and Total Colorings 2
1.3 Basic Properties of Glued Graphs 6
2 TOTA: COLORINGS OF SOME CLASSES OF GLUED GRAPHS 10
2.1 Upper Bounds of the Total Chromatic Numbers of Glued Graphs 10
2.2 Total Colorings of Glued Graphs of Cycles 11
2.3 Total Colorings of Glued Graphs of Bipartite Graphs 16
2.4 Total Colorings of Glued Graphs of Trees $/ .9, \cap . ?$ 21
2.5 Total Colorings of Glued Graphs of Complete Graphs 25
ค 3 TRIMMED GRAPHS VSGLUED GRAPHS
3.1 TotaLColorings of t trimmed Graphs I. 31 31
3.2 Trimmed Graphs and Glued Graphs 42
4 CONCLUSIONS AND OPEN PROBLEMS 45
4.1 Conclusions 45
page

LIST OF FIGURES

$1.2 .1 \chi\left(C_{3}\right)=\chi^{\prime}\left(C_{3}\right)=\chi^{\prime \prime}\left(C_{3}\right)$ 3
1.3.1 The results of glued graphs G_{1} and G_{2} in different isomorphisms 7
1.3.2 The results of glued graphs G_{1} and G_{2} in different isomorphisms 7
2.2.1 Total colorings of evcles 12
2.2.2 A 2-degenerated graph 12
2.2.3 A graph G and its line graph $L(G)$ 13
2.2.4 An edge-colorimg of $C_{6} \oplus C_{6}$ when its clone is P_{2} 14
2.2.5 A total coloring of $C_{7} Ф C_{8}$ when its clone is P_{4} 15
2.3.1 An edge-coloring of a bipartite graph 17
2.3.2 A total coloring of a bipartite graph 17
2.3.3 C_{m}, C_{n} and $C_{m} \Phi C_{n}$ are bipartite graphs with $\chi^{\prime \prime}\left(C_{m} \Phi C_{n}\right)=$ $\chi^{\prime \prime}\left(C_{m}\right)+\chi^{\prime \prime}\left(C_{n}\right)-2 \ldots . .$. 19
2.3.4 Both G_{1} and G_{2} are of type 1 while $G_{1} \Phi G_{2}$ is of type 2 20
2.3.5 Both G_{1} and G_{2} are of type 2 while $G_{1} \phi G_{2}$ is of type 1 20
2.3.6 G_{1}, G_{2} and $G_{1} \Phi G_{2}$ are of type 2 21
2.4.1 A coloring of a tree 22
2.4.2 An edgescotoring of a tree 22
2.4.3 A total coloring of a tree $\because \cdots .9 . ? \mid ? \%$ 24
2.4.4 Total colorings of T_{1}, T_{2} and $T_{1} \triangleleft T_{2}$ 25
จุ 9-2.3.1 Colorings of complete graphs with 5 rand 4 vertices rices 6. $\%$ 26 26
2.5.3 Total colorings of complete graphs with 5 and 4 vertices 27
3.1.1 A graph G with its 2-trimmed graphs and its smallest 2-trimmed graph 31 3.1.2 An outerplanar graph 36
3.1.3 A type 1 graph having a 1-trimmed graph of type $2 \ldots 40$
3.1.4 A type 2 graph which is construted by Chen and Fu[17] . . . 40
3.1.5 A type 2 graph which has a 1-trimmed graph of type $2 \ldots 40$
3.2.1 Total colorings of K_{3} and $K_{1,3} \ldots44$
3.2.2 A total coloring of $K_{3} \otimes K_{1,3}$ when its clone is P_{2}. 44

จุหาลงกรณ์มหาวิทยาลัย

CHAPTER I

INTRODUCTION

1.1 Introduction

The glue operator is a mathematical operator defined by Uiyyasathain[1]. She studies maximal-clique partitions of different sizes whether or not there exists a clique-inseparable graph with n maximal-clique partitions of n different sizes, so the glue operator is defined to solve the problem. Later, Promsakon[2] studies colorability of the glued graphs. Bounds of the chromatic number and the edgechromatic number of the glued graplis in term of the chromatic number and the edge-chromatic number of the original graphs are obtained in [3] and [4]. This is a motivation for us to study tofal colorings of glued graphs. In section 1.2, we show literature reviews of vertex colorings, edge colorings and total colorings. In section 1.3, we give examples and also investigate some basie properties of glued graphs. In chapter 2, we analyze the results of total colorings of glued graphs for some classes of graphs such as cycles, bipartite graphs, trees and complete graphs. In chapter 3 , we study total colofings of the glued ghap fis between any graph and any tree. Moreover, there are some necessary conditions of graphs satisfying the Total Coloring Conjecture. In chapter 4, we give conclusions and open problems

In this thesis, we consider only a connected graph without loops and multiple edges. $V(G)$ and $E(G)$ stand for the vertex set and edge set of a graph G, respectively. The number of elements in $V(G)$ is represented by $n(G)$ and the
number of elements in $E(G)$ is represented by $e(G)$. We use v_{i} for a vertex and use e_{i} for an edge. We also use $v_{i} v_{j}$ for the edge whose endpoints v_{i} and v_{j}.

1.2 Basic Properties of Colorings, Edge-colorings and Total Colorings

Let $[k]$ represent the set $\{1,2, \ldots, k\}$ and we use $\{1,2, \ldots, k\}$ as the set of k colors. A k-coloring of a graph G is a coloring $f: V(G) \rightarrow[k]$. A k-coloring is proper if adjacent vertices have different colors. A graph is k-colorable if it has a proper k-coloring. The chromatic number $\chi(G)$ is the least positive integer k such that G is k-colorable.

A k-edge-coloring of a graph G is a coloring $f: E(G) \rightarrow[k]$. A k-edgecoloring is proper if incident edges have different colors. A graph is k-edgecolorable it it has a proper k-edge-coloring. The edge-chromatic number $\chi^{\prime}(G)$ of a graph G is the least positive integer k strch that G is k-edge-colorable.

A k-total coloring of a graph G is a coloring $f: V(G) \cup E(G) \rightarrow[k]$. A k-total colorimg is proper if incident edges have different colors, adjacent vertices have different colors, and edges and its endpoints have different colors. A graph is k-total colorabte if it has a proper k-total coloring. The total chromatic number $\chi^{\prime \prime}(G)$ of a graph G is the least positive infeger k such that G is k-total colorable. Remark 1.2.1. Let G be a graph. Then $x^{\prime \prime}(G) \geq \Delta(G)+f_{1}$? we have $\Delta(G)+1 \leq \chi^{\prime \prime}(G)$.

The Total Coloring Conjecture, introduced independently by Behzad[5] and Vizing[6], states that for every graph $G, \chi^{\prime \prime}(G) \leq \Delta(G)+2$. It is known that for
any graph $G, \chi^{\prime \prime}(G) \geq \Delta(G)+1$. A graph G is of type 1 if $\chi^{\prime \prime}(G)=\Delta(G)+1$ and type 2 if $\chi^{\prime \prime}(G)=\Delta(G)+2$.

Remark 1.2.2. Let G be a graph and H be a subgraph of G. Then
(a) $\chi(H) \leq \chi(G)$,
(b) $\chi^{\prime}(H) \leq \chi^{\prime}(G)$,
(c) $\chi^{\prime \prime}(H) \leq \chi^{\prime \prime}(G)$.

Proposition 1.2.3. Let G be n nontrivial graph. Then $\chi^{\prime \prime}(G) \geq 3$.
Proof. Since G is a nontrivial graph, there is an edge $u v$ where $u, v \in V(G)$. We need 3 colors to label yertices $-u, v$ and edge $u v$. Thus $\chi^{\prime \prime}(G) \geq 3$.

Remark 1.2.4. Let G be a graph. Then
(a) $\chi^{\prime \prime}(G) \geq \chi(G)$,
(b) $\chi^{\prime \prime}(G) \geq \chi^{\prime}(G)$.

Q 90 As shown in Figure 12.6 we are interested in determining a necessary and sufficient condition for equality of $\chi(G), \chi^{\prime}(G)$ and $\chi^{\prime \prime}(G)$.
Remark 1.2.5. $\chi\left(C_{n}\right)=\chi^{\prime}\left(C_{n}\right)= \begin{cases}2 & \text { if } n \text { is even, } \\ 3 & \text { if } n \text { is odd. }\end{cases}$

Proposition 1.2.6. [7] $\chi^{\prime \prime}\left(C_{n}\right)= \begin{cases}3 & \text { if } n \equiv 0(\bmod 3) . \\ 4 & \text { otherwise. }\end{cases}$
Theorem 1.2.7. $[8],[9]$ For every graph $G, \chi(G) \leq \Delta(G)+1$. The equality holds if and only if G is a complete graph or an odd cycle.

Remark 1.2.8. $\chi^{\prime \prime}\left(C_{n}\right) \geq \chi^{\prime}\left(C_{n}\right)=\chi\left(C_{n}\right)$.

Proposition 1.2.9. $\chi\left(C_{n}\right)=\chi^{\prime}\left(C_{n}\right)=\chi^{\prime \prime}\left(C_{n}\right)$ if and only if $n \equiv 3(\bmod 6)$.

Proof. Sufficiency. Assume that $n \equiv 3(\bmod 6)$. Since C_{n} is an odd cycle, we get $x\left(C_{n}\right)=3$ and $x^{\prime}\left(C_{n}\right)=3$. By Proposition 1.2.6, we get $x^{\prime \prime}\left(C_{n}\right)=3$. Therefore, $\chi\left(C_{n}\right)=\chi^{\prime}\left(C_{n}\right)=\chi^{\prime \prime}\left(C_{n}\right)$.

Necessity. We will prove by contrapositive, Assume that $n \not \equiv 3(\bmod 6)$. By the division algorithm, $n=6 k, 6 k+1,6 k+2,6 k+4$ or $6 k+5$ for some integer k.

Case 1. $n=6 k, 6 k+2$ or $6 k+4$.
Since C_{n} is an even cycle, we get $x\left(C_{n}\right)=2$. However, $\chi^{\prime \prime}\left(C_{n}\right) \geq \Delta\left(C_{n}\right)+1=3$.
Then $\chi\left(C_{n}\right) \neq \chi^{\prime \prime}\left(C_{n}\right)$.
Case 2. $n=6 k+1$ or $n=6 k+5$.
Since n is not divisible by 3 , by Proposition 1.2 .6 , we get $\chi^{\prime \prime}\left(C_{n}\right)=4$. By Theorem 1.2.7, $\chi\left(C_{n}\right) \leq \Delta\left(C_{n}\right)+1=3$ and $\chi^{\prime \prime}\left(C_{n}\right)=4$. Then $\chi\left(C_{n}\right) \neq \chi^{\prime \prime}\left(C_{n}\right)$. Therefore $\chi\left(C_{n}\right)=\lambda^{\prime}\left(C_{n}\right)=\chi^{\prime \prime}\left(C_{n}\right)$ if and only if $n \equiv 3(\bmod 6)$,
Remark 1.2 .10 . For every integer $n, \chi\left(K_{n}\right)=n$.
(Q) Proposition 1.2.11. $[10] x^{\prime}\left(K_{n}\right)=\left\{\begin{array}{l}n \\ n-1 \text { if } n \text { is even. } \\ n / n \text { is odd, }\end{array}\right.$

Proposition 1.2.12. [11] $\chi^{\prime \prime}\left(K_{n}\right)= \begin{cases}n & \text { if } n \text { is odd, } \\ n+1 & \text { if } n \text { is even. }\end{cases}$

Proposition 1.2.13. If n is odd then $\chi\left(K_{n}\right)=\chi^{\prime}\left(K_{n}\right)=\chi^{\prime \prime}\left(K_{n}\right)$. Otherwise, $\chi\left(K_{n}\right)=\chi^{\prime}\left(K_{n}\right)+1=\chi^{\prime \prime}\left(K_{n}\right)-1$.

Proof. Case 1. n is odd. By Remark 1.2.10, Proposition 1.2.11 and Proposition 1.2.12, we get $\chi\left(K_{n}\right)=\chi^{\prime}\left(K_{n}\right)=\chi^{\prime \prime}\left(K_{n}\right)=n$.

Case 2. n is even
By Proposition 1.2.12, we get $\chi^{\prime \prime}\left(K_{n}\right)=n+1$. However, $\chi\left(K_{n}\right)=n$. Thus $\chi\left(K_{n}\right)=\chi^{\prime \prime}\left(K_{n}\right)$ 1. By Proposition 1.2.11. we get $\chi^{\prime}\left(K_{n}\right)=n-1$. Thus $\chi\left(K_{n}\right)=\chi^{\prime \prime}\left(K_{n}\right)+1$.

Theorem 1.2.14. Let G be a graph. If G is not a complete graph of even degree, then $\chi^{\prime \prime}(G) \geq \chi^{\prime}(G) \geq \chi(G)$. Otherwise, $\chi(G)=\chi^{\prime}(G)-1=\chi^{\prime \prime}(G)+1$.

Proof. Case 1. G is neither a complete graph nor an odd cycle. By Theorem 1.2.7, $\chi(G) \leq \Delta(G)$. Since $\Delta(G) \leq \chi^{\prime}\left(G^{\prime}\right)$ and $\chi^{\prime}(G) \leq \chi^{\prime \prime}(G)$, we get $\chi^{\prime \prime}(G) \geq \chi^{\prime}(G) \geq$ $\chi(G)$.

Case 2. G is an odd cycle. By Remark 1.2.8. $\chi^{\prime \prime}(G) \geq \chi^{\prime}(G) \geq \chi(G)$.
Case 3. G is a complete graph. If n is odd then $\chi\left(K_{n}\right)=\chi^{\prime}\left(K_{n}\right)=\chi^{\prime \prime}\left(K_{n}\right)$ and if n is even then $x\left(K_{n}\right)=\chi^{\prime}\left(\kappa_{n}\right)+1=\chi^{\prime \prime}\left(\kappa_{n}\right)-1$ by Proposition 1.2.13.

The following theorem gives necessary and sufficient conditions for the equality of the chromatic number, the edge-chromatic number and the total chromatic

Theorem 1.2.15. Let G be a graph with n vertices. $\chi(G)=\chi^{\prime}(G)=\chi^{\prime \prime}(G)$ if tion 1.2.13.

Necessity. Assume that $\chi(G)=\chi^{\prime}(G)=\chi^{\prime \prime}(G)$. By Theorem 1.2.7 and Remark 1.2.1, we get $\chi(G) \leq \Delta(G)+1 \leq \chi^{\prime \prime}(G)$. Then $\chi(G)=\Delta(G)+1=\chi^{\prime \prime}(G)$.

Thus $\chi(G)>\Delta(G)$. From Theorem 1.2.7, G is an odd cycle or a complete graph. By Proposition 1.2.9 and Proposition 1.2.13, G is a cycle of length $n \equiv 3(\bmod 6)$ or a complete graph of order n when n is odd.

1.3 Basic Properties of Glued Graphs

In this section, we introduce the glued graph and give some properties of glued graphs. Let G_{1} and G_{2} be any two vertex-distinct graphs. Let H_{1} and H_{2} be nontrivial connected subgraphs of G_{1} and G_{2}, respectively, such that $H_{1} \cong H_{2}$ with an isomorphism f, then the glued graph of G_{1} and G_{2} at H_{1} and H_{2} with respect to f, denoted by ${ }_{H_{1}}^{G_{1} \otimes G_{2}}$, is the graph that results from combining G_{1} with G_{2} by identifying H_{1} and H_{2} with respect to the isomorphism f between H_{1} and H_{2}. Let H be the copy of H_{1} and H_{2} in the glued graph. We refer to H as its clone and refer to G_{1} and G_{2} as its original graphs.

The glued graph of G_{1} and G_{2} at the clone H, written $G_{1} \oplus G_{2}$, means that there exist a subgraph H_{1} of G_{1} and a subgraph H_{2} of G_{2} and an isomorphism f between H_{1} and H_{2} such that $G_{1} \triangleright G_{2}$ and H is the copy of H_{1} and H_{2} in the resulting graph.

We denote $G_{1} \triangleright G_{2}$ an arbitrary graph resulting from glning graphs G_{1} and G_{2} at any isomorphic subgraph $H_{1} \cong H_{2}$ with respect to any of their isomorphism.

Notation $K_{r}\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ denotes a complete graph on vertices $v_{1}, v_{2}, \ldots, v_{n}$, $C_{n}\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ denotes a cycle on vertices $v_{1}, v_{2}, \ldots, v_{n}$ and $P_{n}\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ denotes a path on vertices $v_{0}, y_{2} \ldots v_{n}$. 198 . Let G_{1} and G_{2} be graphs as shown in Figure 1.3.1.

Let $H_{1} \cong K_{3}(1,3,4)$ be a subgraph of G_{1} and $H_{2} \cong K_{3}(a, b, c)$ be a subgraph of G_{2}. Consider three isomorphisms f, g and h between H_{1} and H_{2}, as follows:

$$
f(1)=a, f(3)=b, f(4)=c,
$$

Figure 1.3.1: The results of glued graphs G_{1} and G_{2} in different isomorphisms

$$
\begin{aligned}
& g(1)=b, g(3)=c, g(4)=a \text { and } \\
& h(1)=c, h(3)=a, h(4)=b .
\end{aligned}
$$

The glued graphs between G_{1} and G_{2} with respect to f, g and h are shown in Figure 1.3 .1

Example 1.3.1 shows that different isomorphisms can give the different or the same result. However, in some cases it is possible that all isomorphisms give the same result as shown in the next example.

Figure 1.3.2: The results of glued graphs G_{1} and G_{2} in different isomorphisms

Let $H_{1} \cong K_{3}(2,3,4)$ be a subgraph of G_{1} and $H_{2} \cong K_{3}(a, b, c)$ be a subgraph of G_{2}. There are six isomorphisms between H_{1} and H_{2}, but all of them give the same result as shown in a Figure 1.3 .2 where f is arbitrary isomorphism between H_{1} and H_{2}.

We first observe some basic properties of gined graphs in the following remark.

Remark 1.3.3.

1. The original graphs are subgtaphs of their glued graph.
2. The graph gluing does not create or destroy an edge.
3. A glued graph between discomected graphs is also disconnected and a glued graph between connected graphs is also connected.
4. If $u \in V\left(G_{1}\right)-V(H)$ and v है। $\left(G_{2}\right)-V(H)$ where G_{1} and G_{2} are graphs and H is a clone of $G_{1} \not H_{2}^{*}$, then u and v are not adjacent in $G_{1} \Phi G_{2}$.

A glued graph could bea simple or not simple graph. Clearly the graph gluing of G_{1} and G_{2} is not a simple graph if G_{1} or G_{2} is not a simple graph. If original graphs are simple graphs, it is not necessary that their glued graph is a simple graph. The nicressary and sufficiency condition for ghed graphs to be simple is given in next theorem. In this thesis, we consider only simple connected glued graphs.

Theoremp1.3.4. [2] het G_{1} and G_{2} be simple graphssand tel H be the clone of a glued graph $\underset{H}{G_{1} \triangleright G_{2}}$. Then $\underset{H}{G_{4} \triangleright G_{2}}$ is a simple-graph if and only if there are no vertices u and v in H such that there are edges $e_{1} \in E\left(G_{1}\right)-B(H)$ and

Remark 1.3.5. [2] Let G_{1} and G_{2} be nontrivial graphs.
Then $\Delta\left(G_{1} \triangleright G_{2}\right) \leq \Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-1$.

Theorem 1.3.6. Let G_{1} and G_{2} be graphs. Then $\chi^{\prime \prime}\left(G_{1} \Phi G_{2}\right) \geq \max \left\{\chi^{\prime \prime}\left(G_{1}\right), \chi^{\prime \prime}\left(G_{2}\right)\right\}$

Proof. Since G_{1} and G_{2} are subgraphs of $G_{1} \Phi G_{2}$, we get $\chi^{\prime \prime}\left(G_{1}\right) \leq \chi^{\prime \prime}\left(G_{1} \Phi G_{2}\right)$ and $\chi^{\prime \prime}\left(G_{2}\right) \leq \chi^{\prime \prime}\left(G_{1} \Phi G_{2}\right)$. Then $\chi^{\prime \prime}\left(G_{1} \Phi G_{2}\right) \geq \max \left\{\chi^{\prime \prime}\left(G_{1}\right), \chi^{\prime \prime}\left(G_{2}\right)\right\}$.

Theorem 1.3.7 (a) gives an upper bound of the chromatic number of glued graphs in terms of the chromatic number of original graphs and Theorem 1.3 .7 (b) shows an upper bound of the edge-chromatic number of glued graphs in terms of the edge-chromatic number of originat graphs. Furthermore, Theorem 1.3.8 shows an upper bound of the chromatie number of glued graphs when the clone is an induced subgraph of original graphs in terms of the chromatic number of original graphs.

Theorem 1.3.7. [3], [4] Let G_{1} and G_{2} be graphs. Then
(a) $\chi\left(G_{1} \Phi G_{2}\right) \leq \chi\left(G_{1}\right) \times\left(G_{2}\right)$,
(b) $\chi^{\prime}\left(G_{1} \triangleright G_{2}\right) \leq \chi^{\prime}\left(G_{1}\right)+\chi^{\prime}\left(G_{2}\right)$

Theorem 1.3.8. [3] Let G_{1} and G_{2} be graphs and $G_{1} \Phi G_{2}$ a glued graph with clone H. If H is an indueed subgraph, then $\chi\left(G_{1} \Phi G_{2}\right) \leq \chi\left(G_{1}\right)+\chi\left(G_{2}\right)$.

ศูนย์วิทยทรัพยากร
จุหาลงกรณ์มหาวิทยาลัย

CHAPTER II

TOTAL COLORINGS OF SOME CLASSES OF GLUED

 GRAPHS
2.1 Upper Bounds of the Total Chromatic Numbers of

Glued Graphs

In this section, ve investigate the values and bounds of the chromatic numbers, the edge-chromatic numbers and the total chromatic numbers of some classes of graphs and their glued graphs.

Theorem 2.1.1. Let G_{1} gnd G_{2} be graphs. If $\chi^{\prime \prime}\left(G_{1} \oplus G_{2}\right) \leq \Delta\left(G_{1} \oplus G_{2}\right)+2$ then $\chi^{\prime \prime}\left(G_{1} \oplus G_{2}\right) \leq \chi^{\prime \prime}\left(G_{1}\right)+\chi^{\prime \prime}\left(G_{2}\right)-1$.

Proof. Assume that $\chi^{\prime \prime}\left(G_{1} \oplus G_{2}\right) \leq \Delta\left(G_{1} \oplus G_{2}\right)+2$. Then

$$
\chi^{\prime \prime}\left(G_{1} \triangleright G_{2}\right) \leq \Delta\left(G_{1} \triangleright G_{2}\right)+2
$$

$$
\leq \Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-1+2, \quad \text { by Remark 1.3.5 }
$$

We obtained an upper bound of the total chromatic numbers of glued graphs in terms of the total chromatic number of original graphs. Note that if graphs G_{1} and G_{2} with $\chi^{\prime \prime}\left(G_{1} \triangleleft G_{2}\right) \leq \Delta\left(G_{1} \triangleright G_{2}\right)+2$ satisfy following conditions (a) a vertex with maximum degree of G_{1} is glued to a vertex with maximum
degree of G_{2} and the corresponding vertex in the clone has degree 1,
(b) G_{1} and G_{2} are of type 1,
(c) $G_{1} \triangleright G_{2}$ is of type 2 .

Then we have $\chi^{\prime \prime}\left(G_{1} \triangleright G_{2}\right)=\chi^{\prime \prime}\left(G_{1}\right)+\chi^{\prime \prime}\left(G_{2}\right)-1$.
However, any two conditions among above three conditions yield $\chi^{\prime \prime}\left(G_{1} \Phi G_{2}\right) \leq$ $\chi^{\prime \prime}\left(G_{1}\right)+\chi^{\prime \prime}\left(G_{2}\right)-2$. We conjecture that no graph satisfies all of the above conditions; hence, we have the following conjecture.

Conjecture 2.1.2. Let G_{1}, G_{2} be graphs. Then $\chi^{\prime \prime}\left(G_{1} \Phi G_{2}\right) \leq \chi^{\prime \prime}\left(G_{1}\right)+\chi^{\prime \prime}\left(G_{2}\right)-$ 2.

We next try to prove the conjecture by first considering some classes of graph such as cycles, bipartite graphs, trees and complete graphs.

2.2 Total Colorings of Glued Graphs of Cycles

In this section, we investigate the values or bounds of the chromatic number, the edge-chromatic numbers and the total chromatic numbers of cycles and their glued graphs. Moreover, we prove that any gimed graph of eycles satisfies the Total Coloring Conjecture and give a necessary and sufficient condition to be either of type 1 or of type 2 of glued graphs of cycles.

Q. Proposition 2.2.2. $[9] \chi^{\prime}\left(C_{n}\right)=\left\{\begin{array}{l}2 \| \text { if } n \text { is even } 9 \cap ? \cap ? \\ 3 \text { if } n \text { is odd. }\end{array}\right.$

Proposition 2.2.3. $[7] \chi^{\prime \prime}\left(C_{n}\right)= \begin{cases}3 & \text { if } n \equiv 0(\bmod 3), \\ 4 & \text { otherwise. }\end{cases}$

Figure 2.2.1: Total colorings of cycles

A graph is said to be s-degenerated for an integer $s \geq 1$ if it can be reduced to a trivial graph by successive removal of vertices with degree at most s.

For example, the graph in Figure 2.2.2 is 2-degenerated and every planar graph is 5-degenerated.

Figure 2.2.2. A 2-degenerated graph

Theorem 2.2.4. [12],[13] If G is an s-degenerated graph then $\chi(G) \leq s+1$.
Proposition 2.2.5. [3] Let G_{1} and G_{2} be graphs. Then $G_{1} \Phi G_{2}$ is bipartite if and only if G_{1} and G_{2} are bipartite.

Proof. Case 1. m and n are even. Consequently, C_{m} and C_{n} are bipartite. By
Proposition 2.2.5. $C_{m} \Phi C_{n}$ isbipartite. Hence $\chi\left(C_{m} \oplus C_{n}\right) \oplus 2 \cap$
Case 2. m° or n are odd. Then $C_{m} \Phi C_{n}$ is not bipartite. Thus $\chi\left(C_{m} \Phi C_{n}\right) \geq 3$. Since $C_{m} \bowtie C_{n}$ has at most 2 vertices with degree greater than $2, C_{m} \bowtie C_{n}$ is a 2-degenerated graph. By Theorem 2.2.4, $\chi\left(C_{m} \Phi C_{n}\right) \leq 3$. Thus $\chi\left(C_{m} \Phi C_{n}\right)=$ 3.

Let G be a connected graph. The line graph $L(G)$ of G is the graph generated from G by $V(L(G))=E(G)$ and for any two vertices $e, f \in V(L(G))$, vertex e and vertex f are adjacent in $L(G)$ if and only if edge e and edge f share a common vertex in G. If H is the line graph of G, we call G the root graph of H.

Figure 2.2.3: A graph G and its line graph $L(G)$

Since colorings of the line graph of a graph G are edge-colorings of G, it follows that the chromatic number of the line graph of G is equal to the edge-chromatic number of G.

Theorem 2.2.7. For a glued graph $Q_{m} \Phi C_{n},-\chi^{\prime}\left(C_{m} \triangleright C_{n}\right) \leq 3$.

Proof. If $C_{i n} \phi C_{n}$ is a cycle, we are done. Assume that $C_{i,} \otimes C_{n}$ is not a cycle.
Case 1. The clone of $C_{m} \triangleright C_{n}$ is not P_{2}. Then every vertex in the line graph of $C_{m} \triangleright C_{n}$ has degree at most 3. Hence $\Delta\left(L\left(C_{m} \Phi C_{n}\right)\right) \leq 3$. Since $L\left(C_{m} \Phi C_{n}\right)$ is neither an odd cyclemor a complete graph, by Theorem 1.2.7, $\chi\left(L\left(C_{m} \Phi C_{n}\right)\right) \leq$
 Case 2. The clone of $C_{m} \Phi C_{n}$ is P_{2}. Let C_{m} be a cycle with a vertex set $\left\{t_{1}, u_{2}, h_{m}\right\}$ and an edge set $\left\{e_{1}, e_{2}\right.$, , em $\}$ where $e_{i}=u_{1} u_{n}$ for $i=$
$1,2, \ldots, m-1$ and $e_{m}=u_{m} u_{1}$. Let C_{n} be a cycle with a vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and an edge set $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ where $f_{i}=v_{i} v_{i+1}$ for $i=1,2, \ldots, n-1$ and $f_{n}=v_{\mathrm{n}} v_{1}$. Since the clone of $C_{m_{P_{2}}}^{\otimes} C_{n}$ is P_{2}, without loss of generality, assume that we glue u_{1} to v_{1} and u_{2} to v_{2}. Let $f: E\left(C_{m_{P_{2}}}^{\Phi} C_{n}\right) \rightarrow[3]$ be an edge-coloring
of $C_{m} \Phi P_{P_{2}} C_{n}$ defined by

Then f is a proper edge-coloring from $E\left(C_{m} \Phi C_{P_{2}}\right)$ to [3]. Thus $\chi^{\prime}\left(C_{m} \Phi C_{n}\right) \leq$ 3.

Theorem 2.2.8. $\chi^{\prime}\left(C_{m} \oplus C_{n}\right)=$ 2. if $C_{m} \Phi C_{n}$ is an even cycle,

$$
3 \text { otherwise. }
$$

Proof. Case 1. $C_{m} \Phi C_{n}$ is a cycle. If $C_{m} \Phi C_{n}$ is an even cycle then $\chi^{\prime}\left(C_{m} \Phi C_{n}\right)=$ 2. If $C_{m} \Phi C_{n}$ is an odd cyete then $\chi^{\prime}\left(C_{m} \Phi C_{n}\right)=3$.

Case 2. $C_{m} \otimes C_{n}$ is not a cycle. Then $\Delta\left(C_{m} \Phi C_{n}\right)=3$, hence, $\chi^{\prime}\left(C_{m} \Phi C_{n}\right) \geq$ $\Delta\left(C_{m} \Phi C_{n}\right)=3$. By Theorem 2.2.7, we get $\chi^{\prime}\left(C_{m} \Phi C_{n}\right) \leq 3$. Consequently, $\chi^{\prime}\left(C_{m} \Phi C_{n}\right)=3$.

Figure 2.2.4: An edge-coloring of $C_{6} \Phi C_{6}$ when its clone is P_{2}.

Theorem 2.2.9. [14] Let G be a graph. Then $\chi^{\prime \prime}(G) \leq\left\lfloor\frac{3}{2} \Delta(G)\right\rfloor$.

Theorem 2.2.10. For a glued graph $C_{m} \Phi C_{n}, \chi^{\prime \prime}\left(C_{m} \Phi C_{n}\right) \leq 4$.

Proof. By Theorem 2.2.9, $\chi^{\prime \prime}\left(C_{m} \Phi C_{n}\right) \leq\left\lfloor\frac{3}{2} \Delta\left(C_{m} \Phi C_{n}\right)\right\rfloor=\left\lfloor\frac{3}{2} \times 3\right\rfloor=4$.

Theorem 2.2.11. For a glued graph $C_{m} \triangleright C_{n}$,
$\chi^{\prime \prime}\left(C_{m} \Phi C_{n}\right)=\left\{\begin{array}{lll}3 & \text { if } C_{m} \Phi C_{n} \text { is a cycle and } m=n \equiv 0(\bmod 3), \\ 4 & \text { otherwise }\end{array}\right.$,
Figure 2.2.5: A total coloring of $C_{7} \Phi C_{8}$ when its clone is P_{4}

Proof. Case 1. $C_{m} \Phi C_{n}$ is a.cyele. Then $m=n$ and $C_{m} \Phi C_{n} \cong C_{m} \cong C_{n}$. If $m=n \equiv 0(\bmod 3)$, by Theorem 2:2.3, $\chi^{\prime \prime}\left(C_{m} \Phi C_{n}\right)=\chi^{\prime \prime}\left(C_{m}\right)=3$. If $m=n \equiv 1,2(\bmod 3)$, by Theorem 2.2.3. $\chi^{\prime \prime}\left(\Theta_{m} \Phi C_{n}\right)=\chi^{\prime \prime}\left(C_{m}\right)=4$.

Case 2. $C_{m} \Phi C_{n}$ is not a cycle. Then $\Delta\left(C_{m} \Phi C_{n}\right)=3$. Thus $\chi^{\prime \prime}\left(C_{m} \Phi C_{n}\right) \geq$ $\Delta\left(C_{m} \Phi C_{n}\right)+1=4$. By Theorem 2.2.10, $\chi^{\prime \prime}\left(C_{m} \Phi C_{n}\right) \leq$ 4. Hence $\chi^{\prime \prime}\left(C_{m} \Phi C_{n}\right)=$ 4.

Theorem 2.2.12. Any glued graph of cyelessatisfies the Total Goloring Conjecture.

Proof, By Theorem 2.2.10, we get $\chi^{\prime \prime}\left(C_{n n} \Phi C_{n}\right) \leftrightarrows 4$. Since $\Delta\left(C_{m} \Phi C_{n}\right)+2 \geq 4$,
we get $\chi^{\prime \prime}\left(C_{m} \Phi C_{n}\right) \leq \Delta\left(C_{m} \Phi^{2} C_{n}\right)+2$.

Theorem 2.2.13. If the glued graph $C_{m} \Phi C_{n}$ is a cycle and $m=n \equiv 1,2$ (mod 3) then $C_{m} \Phi C_{n}$ is of type 2. Otherwise, $C_{m} \Phi C_{n}$ is of type 1 .

Proof. Case 1. $C_{m} \bowtie C_{n}$ is not a cycle. Then $\Delta\left(C_{m} \oplus C_{n}\right)=3$. By Theorem 2.2.10, $\chi^{\prime \prime}\left(C_{m} \Phi C_{n}\right)=4=\Delta\left(C_{m} \Phi C_{n}\right)+1$. Hence, $C_{m} \Phi C_{n}$ is of type 1.

Case 2. $C_{m} \bowtie C_{n}$ is a cycle. Then $m=\mu$ and $C_{m} \triangleright C_{n} \cong C_{m} \cong C_{n}$. If $C_{m} \Phi C_{n}$ is a cycle and $m=n \equiv 0(\bmod 3)$. By Theorem 2.2.3, we get $\chi^{\prime \prime}\left(C_{m} \Phi C_{n}\right)=3=$ $\Delta\left(C_{m} \Phi C_{n}\right)+1$. Thus $C_{m} \triangleright C_{n}$ is of type 1. If $C_{m} \Phi C_{n}$ is a cycle and $m=n \equiv 1,2$ $(\bmod 3)$, by Theorem 2.2.3, $\gamma^{\prime \prime}\left(G_{m} \Phi C_{n}\right)=4=\Delta\left(C_{m} \Phi C_{n}\right)+2$.

Corollary 2.2 .14 .

(a) $C_{m} \Phi C_{n}$ is of type 1 if and only if $C_{m} \Phi C_{n}$ is not a cycle or $m \neq n$ or $m=n \equiv 0(\bmod 3)$,
(b) $C_{m} \Phi C_{n}$ is of type 2 if and only if $C_{m} \Phi C_{n}$ is a cycle and $m=n \equiv 1,2$ $(\bmod 3)$.

Proof. It follows from Theorem 2.2.12 and Theorm 2.2.13.

Theorem 2.2.15. $\chi^{\prime \prime}\left(C_{m} \Phi C_{n} y \leqslant \chi^{\prime \prime}\left(C_{m}\right)+x^{\prime \prime}\left(C_{n}\right)-2\right.$. The equality holds if $m, n \equiv 0(\bmod 3)$ and $\chi^{\prime \prime}\left(C_{m} \Phi C_{n}\right)=4$.

Proof. By Theorem 2.2.10, we get $\chi^{\prime \prime}\left(C_{m} \Phi C_{n}\right) \leq 4$. Since $\chi^{\prime \prime}\left(C_{m}\right), \chi^{\prime \prime}\left(C_{n}\right) \geq 3$, we get $\chi^{\prime \prime}\left(C_{m}\right)+\chi^{\prime \prime}\left(C_{n}\right)-2 \geq 4$. Then $\chi^{\prime \prime}\left(C_{m} \Phi C_{n}\right) \leq \chi^{\prime \prime}\left(C_{m}\right)+\chi^{\prime \prime}\left(C_{n}\right)-$ 2. If $m, n \equiv 0(\bmod 3)$, by Proposition 2.2.3, $\chi^{\prime \prime}\left(C_{m}\right)=\chi^{\prime \prime}\left(C_{n}\right)=3$. Thus $x^{\prime \prime}\left(C_{m}\right)+x^{\prime \prime}\left(C_{n}\right)-2=4$. Since $x^{\prime \prime}\left(C_{m} \varnothing C_{n}\right)=4$, we get $x^{\prime \prime}\left(C_{m} \Phi C_{n}\right)=4=$ $\chi^{\prime \prime}\left(C_{m}\right)+\chi^{\prime \prime}\left(C_{n}\right)-2$.
2.3 Total Colorings of Glued Graphs of Bipartite Graphs

In this section, we investigate the values or bounds of the chromatic numbers, the edge-chromatic numbers and the total chromatic numbers of bipartite graphs
and their glued graphs. Moreover, we prove that any glued graph of bipartite graphs satisfy the Total Coloring Conjecture.

Proposition 2.3.1. [9] Let G be a nontrivial bipartite graph. Then $\chi(G)=2$.
Proof. It follows from the definition of a bipartite graph.
Theorem 2.3.2. (König [15]) For every bipartite graph $G, \chi^{\prime}(G)=\Delta(G)$.

Figure 2.3.1: An edge-coloring of a bipartite graph

Proposition 2.3.3. Let G be a bipattite graph. Then $\chi^{\prime \prime}(G) \leq \Delta(G)+2$.

Proof. Let G be a bipartite graph. If is easy to see that $\chi^{\prime \prime}(G) \leq \chi^{\prime}(G)+\chi(G)$ By Proposition 2.3.1 and Theorem 2.3.2, $x(G)=2$ and $\chi^{\prime}(G)=\Delta(G)$. Then $\chi^{\prime \prime}(G) \leq \Delta(G) \pm 2$.

ค 9% ค 9 Figure 2.32: Altotal coloring of a bipartite graph 61

Theorem 2.3.4. Let G_{1} and G_{2} be nontrivial graphs.
Then $\chi\left(G_{1} \triangleright G_{2}\right)=2$ if and only if $\chi\left(G_{1}\right)=2$ and $\chi\left(G_{2}\right)=2$.

Proof. Sufficiency. Assume that $\chi\left(G_{1} \Phi G_{2}\right)=2$. Since $\chi\left(G_{1}\right) \leq \chi\left(G_{1} \Phi G_{2}\right)=2$ and G_{1} is nontrivial, we get $\chi\left(G_{1}\right)=2$. Similarly, $\chi\left(G_{2}\right)=2$.

Necessity. Assume that $\chi\left(G_{1}\right)=2$ and $\chi\left(G_{2}\right)=2$. Then G_{1} and G_{2} are bipartite. By Proposition 2.2.5, $G_{1} \otimes G_{2}$ is also bipartite.

Hence $\chi\left(G_{1} \Phi G_{2}\right)=2$.

Remark 2.3.5. Let G_{1} and G_{2} be nontrivial bipartite graphs. Then $\chi\left(G_{1} \oplus G_{2}\right)=$ 2.

Proof. Let G_{1} and G_{2} be nontrivial bipartite graphs. By Proposition 2.2.5, $G_{1} \triangleright G_{2}$ is bipartie. Then $\chi\left(G_{1} \triangleright G_{2}\right)=2$.

Theorem 2.3.6. [11] $K_{m, n}$ is of type 2 if and only if $m=n$.

Theorem 2.3.7. If G_{1} and G_{2} are bipartite graphs then $\chi^{\prime}\left(G_{1} Ф G_{2}\right)=\Delta\left(G_{1} \Phi G_{2}\right)$.

Proof. Assume that G_{1} and G_{2} are bipartite graphs. By Proposition 2.2.5, $G_{1} \oplus G_{2}$ is also bipartite. By Proposition 2.3.2, $\chi^{\prime}\left(G_{1} \oplus G_{2}\right)=\Delta\left(G_{1} \oplus G_{2}\right)$.

Theorem 2.3.8. Any glued graph of bipartite graphs satisfies the Total Coloring Conjecture.

Proof. Let G_{1} and G_{2} be bipartite graphs. By Proposition 2.2.5, $G_{1} \triangleright G_{2}$ is bipartite. By Proposition 2.3.3, $\chi^{\prime \prime}\left(G_{1} Ф G_{2}\right) \leq \Delta\left(G_{1} \Phi G_{2}\right)+2$. Theorem 2.3.9. Let $G_{G_{1}}$ and G_{2} be bipartite graphs, $\chi^{\prime \prime}\left(G_{1} \leqslant D G_{2}\right) \leq x^{\prime \prime}\left(G_{1}\right)+$ $\chi^{\prime \prime}\left(G_{2}\right)-1$.
8 Proof. By Theorem 2,3.8. we get $\chi^{\prime \prime}\left(G_{1} \phi G_{2}\right) \leqq \Delta\left(G_{1} \phi G_{2}\right)+2$. Then this theorem holds by Theorem 2.1.1.

Example 2.3.10. There are bipartite graphs G_{1} and G_{2} such that $\chi^{\prime \prime}\left(G_{1} \Phi G_{2}\right)=$ $\chi^{\prime \prime}\left(G_{1}\right)+\chi^{\prime \prime}\left(G_{2}\right)-2$. We consider C_{m}, C_{n} where $m, n \equiv 0(\bmod 6)$ and the clone
is an edge of them. Since $m, n \equiv 0(\bmod 3)$, we get $\chi^{\prime \prime}\left(C_{m}\right)=\chi^{\prime \prime}\left(C_{n}\right)=3$. By Theorem 2.2.10, since $C_{m} \Phi C_{n}$ is not a cycle, we get $\chi^{\prime \prime}\left(C_{m} \Phi C_{n}\right)=4$. Hence $\chi^{\prime \prime}\left(C_{m} \Phi C_{n}\right)=4=3+3-2=\chi^{\prime \prime}\left(C_{m}^{\prime}\right)+\chi^{\prime \prime}\left(C_{n}\right)-2$.

Figure 2.3.3: C_{m}, C_{n} and $C_{m} \Phi C_{n}$ are bipartite graphs with $\chi^{\prime \prime}\left(C_{m} \Phi C_{n}\right)=$ $\chi^{\prime \prime}\left(C_{m}\right)+\chi^{\prime \prime}\left(C_{n}\right)-2$

Figure 2.3.3 is an example of bipartite graphs with $\chi^{\prime \prime}\left(G_{1} \triangleright G_{2}\right)=\chi^{\prime \prime}\left(G_{1}\right)+$ $\chi^{\prime \prime}\left(G_{2}\right)-2$ Moreover, G_{1}, G_{2} and $G_{1} \Phi G_{2}$ are of type 1. Example 2.3 .11 shows a glued graph of type 2 such that original graphs are of type 1. Furthermore, when original graphs are of type 2, a glued graph can be either of type 1 or of type 2 as shown in Example 2.3.12 and Example 2.3.13.

Example 2.3.11. According to the proper total coloring shown in Figure 2.3.4, $\chi^{\prime \prime}\left(G_{1}\right) \leq 3$ and $\chi^{\prime \prime}\left(G_{2}\right) \leq 4$. By Remark 1.2.1, $\chi^{\prime \prime}\left(G_{1}\right) \geq \Delta\left(G_{1}\right)+1=3$ and $Q^{\prime \prime}\left(G_{2}\right) \geq \Delta\left(G_{2}\right)+1=$. Hence G_{1} and G_{2} are of type (1). By Theorem 2.3.6, $G_{1} \Phi G_{2}$ is of type 2.

When G_{1} and G_{2} are of type $2, G_{1} \bowtie G_{2}$ can be both of type 1 and type 2 as shown in Example 2.3.12 and Example 2.3.13.

Figure 2.3.4: Both G_{1} and G_{2} are of type 1 while $G_{1} \triangleleft G_{2}$ is of type 2

Example 2.3.12. In Figure 2.3.5, G_{T} and G_{2} are $K_{2,2}$. By Theorem 2.3.6, G_{1} and G_{2} are of type 2. Since $G_{1} \Phi G_{2}$ is $K_{3,2}$, by Theorem 2.3.6, $G_{1} \Phi G_{2}$ is of type 1.

Figure 2.3.5: Both G_{1} and G_{2} are of type 2 while $G_{1} \triangleleft G_{2}$ is of type 1

We show that any glued graph of bipartite graphs satisfies the Total Coloring Conjecture. It is an open problem to find a necessary and sufficient condition of the glued graph of bipartite graphs be either of type 1 or of type 2 .

Figure 2.3.6: G_{1}, G_{2} and $G_{1} \triangleright G_{2}$ are of type 2

2.4 Total Colorings of Glued Graphs of Trees

In this section, we investigate the yalues or bounds of the chromatic numbers, the edge-chromatic numbers and the total chromatic numbers of trees and their glued graphs. Moreover, we prove that any glued graph of trees satisfies the Total Coloring Conjecture and give a recessary and sufficient condition to be either of type 1 or of type 2 of glued graphs of trees,

Throughott this thesis, $G-\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is the inducedsubgraph on $V(G)-$ $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. We write $G-v$ instead of $G-\{v\}$.

Proposition 2.4.1. Let T be a nontrivial tree. Then
(a) $\chi(T)=2$,

(c) $\chi^{\prime \prime}(T)=$
(2) 99 Proof. (a) T is nontrivial bipartite. Then $x(T)=2$.
(b) By Proposition 2.3.2, $\chi^{\prime}(T)=\Delta(T)$.
(c) If T has only one vertex, then $\chi^{\prime \prime}(T)=1=\Delta(T)+1$. If T is P_{2}, then we have $\chi^{\prime \prime}(T)=3=\Delta(T)+2$. Assume that T is a tree with n vertices, where

Figure 2.4.2: An edge-coloring of a tree
$n \geq 3$. Thus $\Delta(T) \geq 2$.
When $n=3$, we get $T \cong P_{3}$. It is easy to see that $\chi^{\prime \prime}(T)=3=\Delta(T)+1$.
Assume that $\chi^{\prime \prime}(T)=\Delta(T) \neq 1$ for all T with k vertices where $k \geq 3$. Let T be a tree with $k+1$ vertices where $k \geq 3$ and $m=\Delta(T)+1$. It suffices to show that there is a proper total coloring from $V(T) \cup E(T)$ to $\{1,2, \ldots, m\}$. Since T is a tree, T has a vertex with degree 1 , say v. Let u be a vertex which is adjacent to v.

Case 1. u is a vertéx with maximum degree. Then $\Delta(T-v)+1=\Delta(T)=m-1$. Since $T-v$ is a tree with k vertices where $k \geq 3$, by mouction hypothesis, $\chi^{\prime \prime}(T-\hat{v}) \leq \Delta(T-v)+1=m-1$. Then there is a proper total coloring
coloring of T defined by

$$
f^{\prime}(x)= \begin{cases}f(x) & \text { if } x \in V(T-v) \cup E(T-v) \\ k & \text { if } x=u v \\ r & \text { if } x=v\end{cases}
$$

Then f^{\prime} is a proper total coloring from $V(T) \cup E(T)$ to $\{1,2, \ldots, m\}$.
Case 2. u is not a vertex with maximum degree in $T-v$. Then $\Delta(T-v)+1=$ $\Delta(T)+1=m$. Since $T-v$ is a tree with k vertices where $k \geq 3$, by induction hypothesis, $\chi^{\prime \prime}(T-v) \leq \Delta(T-v)+1=m$. Thus there is a proper total coloring f : $V(T-v) \cup E(T-v) \rightarrow\{1,2, \ldots, m\}$. Since $d_{T-v}(t)+1 \leq \Delta(T-v)=\Delta(T)=m-1$, at most $m-1$ colors are used to color u and edges incident to u in $T-v$. There is a remaining color in $\{1,2, \ldots, m\}$, say r. Since $m=\Delta(T)+1 \geq 2+1=3$, there is a color which differs from $f(u)$ and r, say r^{\prime}. Let $f^{\prime}: V(T) \cup E(T) \rightarrow\{1,2, \ldots, m\}$ be a total coloring of T defimed by

Then f^{\prime} is a proper total coloring from $V(T) \cup E(T)$ to $\{1,2, \ldots, m\}$. Hence $\chi^{\prime \prime}(T) \leq m=\Delta(T)+$ Since $\chi^{\prime \prime}(T) \geq \Delta(T)+1$, we get $\chi^{\prime \prime}(T)=\Delta(T)+1$.

Example 2.4.2.Figure 2.4.3 shows an example of a total coloring of tree.
(a) $\chi\left(T_{1} \Phi T_{2}\right)=2$,
(b) $\chi^{\prime}\left(T_{1} \triangleright T_{2}\right)=\Delta\left(T_{1} \Phi T_{2}\right)$,
(c) $T_{1} \bowtie T_{2}$ is of type 1 unless $T_{1} \cong T_{2} \cong P_{2}$.

Figure 2.4.3: A total coloring of a tree

Proof. Proposition 2.4.3 states that any glued graph of trees is a tree. Then this theorem follows from Theorem 2.4.1.

Remark 2.4.5. Any glued graph of trees satisfies the Total Coloring Conjecture.

Theorem 2.4.6. Let T_{1} and T_{2} be nontrivial trees. Then $\chi^{\prime}\left(T_{1} \Phi T_{2}\right) \leq \chi^{\prime}\left(T_{1}\right)+$ $\chi^{\prime}\left(T_{2}\right)-1$. The equality holds if and only if $\Delta\left(T_{1} \triangleright T_{2}\right)=\Delta\left(T_{1}\right)+\Delta\left(T_{2}\right)-1$.

Proof. Let T_{1} and T_{2} be trees,

$$
\begin{array}{rlr}
\chi^{\prime}\left(T_{1} \Phi T_{2}\right) & =\Delta\left(T_{1} \oplus T_{2}\right) . & \text { by Proposition } 2.4 .1(\mathrm{~b}), \\
& \leq \Delta\left(T_{1}\right)+\Delta\left(T_{2}\right)-1, & \text { by Remark } 1.3 .5, \\
& =x^{\prime}\left(T_{1}\right)+x^{\prime}\left(T_{2}\right)-1, & \text { by Proposition } 2.4 .1(\mathrm{~b}) .
\end{array}
$$

As shown above, if $\chi^{\prime}\left(T_{1} \Phi T_{2}\right)=\chi^{\prime}\left(T_{1}\right)+\chi^{\prime}\left(T_{2}\right)-1$ if and only if $\Delta\left(T_{1} \Phi T_{2}\right)=$ $\Delta\left(T_{1}\right)+\Delta\left(T_{2}\right)-1$. \qquad 0
Theorem 2.4.7. Let T_{1} and T_{2} be nontrizal trees Then $\chi^{\prime \prime}\left(T_{1} \odot T_{2}\right) \leq x^{\prime \prime}\left(T_{1}\right)+$ $\chi^{\prime \prime}\left(T_{2}\right)=2$. The equality holds if and only if $\Delta\left(T_{1} \Phi T_{2}\right)=\Delta\left(T_{1}\right)+\Delta\left(T_{2}\right)-1$ and

Proof. If $T_{1} \triangleleft T_{2} \cong P_{2}$ then $T_{1} \cong T_{2} \cong P_{2}$. Since $\chi^{\prime \prime}\left(P_{2}\right)=3$, we get $\chi^{\prime \prime}\left(T_{1}\right)=$ $\chi^{\prime \prime}\left(T_{2}\right)=\chi^{\prime \prime}\left(T_{1} \triangleright T_{2}\right)=3$. Then $\chi^{\prime \prime}\left(T_{1}\right)+\chi^{\prime \prime}\left(T_{2}\right)-2=4>\chi^{\prime \prime}\left(T_{1} \triangleright T_{2}\right)$. Assume
that $T_{1} \triangleright T_{2}$ is not P_{2}. Thus

$$
\begin{array}{rlr}
\chi^{\prime \prime}\left(T_{1} \triangleleft T_{2}\right) & =\Delta\left(T_{1} \triangleright T_{2}\right)+1, & \text { by Proposition 2.4.1, } \\
& \leq\left(\Delta\left(T_{1}\right)+\Delta\left(T_{2}\right)-1\right)+1, \quad \text { by Remark 1.3.5 }, \\
& =\Delta\left(T_{1}\right)+\Delta\left(T_{2}\right) & \\
& =x^{\prime \prime}\left(T_{1}\right)+x^{\prime \prime}\left(T_{2}\right)-2, \quad \text { by Proposition 2.4.1. }
\end{array}
$$

As proof above, $\chi^{\prime \prime}\left(T_{1} \Phi T_{2}\right)=x^{\prime \prime}\left(T_{1}\right)+x^{\prime \prime}\left(T_{2}\right)-2$ if and only if $\Delta\left(T_{1} \Phi T_{2}\right)=$ $\Delta\left(T_{1}\right)+\Delta\left(T_{2}\right)-1$ and $T_{1} \Delta T_{2}$ is not P_{2}.

Example 2.4.8. Figure 2.4.4 shows examples of trees and their glued graph making the equality in Theorem 2.4.7 holds. By Proposition 2.4.1 (c), we get $\chi^{\prime \prime}\left(T_{1}\right)=4, \chi^{\prime \prime}\left(T_{2}\right)=3$ and $\chi^{\prime \prime}\left(T_{1} \oplus T_{2}\right)=5$. Hence $\chi^{\prime \prime}\left(T_{1} \triangleright T_{2}\right)=\chi^{\prime \prime}\left(T_{1}\right)+$ $\chi^{\prime \prime}\left(T_{2}\right)-2$.

In this section, we investigate the values or bounds of the chromatic numbers, the edge-chromatic numbers and the total chromatic numbers of complete graphs and their glued graphs. Moreover, we prove that any glued graph of complete
graphs satisfies the Total Coloring Conjecture and give a necessary and sufficient condition to be either of type 1 or of type 2 of glued graphs of complete graphs. Proposition 2.5.1. $\chi\left(K_{n}\right)=n$.

Figure 2.5.1: Colorings of complete graphs with 5 and 4 vertices

Proof. Proposition holds since each vertex is adjacent to all remaining vertices.

Proposition 2.5.2. [10]

Lemma 2.5.4. If a glued graph $K_{m} \triangleright K_{n}$ is a simple graph, then $\Delta\left(K_{m} \triangleright K_{n}\right)=$ $n\left(K_{m} \triangleright K_{n}\right)-1$.

Figure 2.5.3: Total colorings of complete graphs with 5 and 4 vertices

Proof. Assume that $K_{m} \triangleleft K_{n}$ is a simple graph. Then the clone of $K_{m} \triangleleft K_{n}$ is a complete graph, say K_{r}. Each vertex in the clone of $K_{m} \Phi K_{n}$ gives the maximum degree. Hence $\Delta\left(K_{r_{1}} \triangleright K_{n}\right)=(m-1)+(n-1)-(r-1)=m+n-r-1$. Besides, $n\left(K_{m} \Phi K_{n}\right)=n\left(K_{m}\right)+n\left(K_{n}\right)-n\left(K_{r}\right)=m+n-r$. Therefore, $\Delta\left(K_{K_{r}} \Phi K_{n}\right)=$ $n\left(K_{m_{r}} \Phi K_{n}\right)-1$.

Theorem 2.5.5. Any glued graph of complete graphs satisfies the Total Coloring Conjecture.

Proof. Let K_{m} and K_{n} be complete graphs of order m and n, respectively. Let $k=n\left(K_{m} \triangleleft K_{n}\right)$. Then

$$
\begin{aligned}
\chi^{\prime \prime}\left(K_{m} \triangleright K_{n}\right) & \leq \chi^{\prime \prime}\left(K_{k}\right) & \text { since } K_{m} \triangleright K_{n} \text { is a subgraph of } K_{k}, \\
& \leq \Delta\left(K_{k}\right)+2, & \text { by Proposition 2.5.3, }
\end{aligned}
$$

$$
\leqq n\left(K_{m} \triangleright K_{n}\right)-1+2
$$

$$
99 \rightarrow 2=\Delta\left(K_{m} \triangleright K_{n}\right)+2, \quad \delta 9 N \& \cap ? \text { by Eemma 2.5.4. }
$$

We have already proved that any glued graph of complete graphs satisfies the Total Coloring Conjecture. Next, Theorem 2.5 .8 gives a necessary and sufficient condition to be either of type 1 or of type 2 for a glued graph of complete graphs by using Theorem 2.5.6 and Lemma 2.5.7.

A matching in a graph G is a set of edges with no shared endpoints. The maximum size of matching of a graph G is denoted by $\alpha^{\prime}(G)$

Theorem 2.5.6. [16] Suppose that G is a graph of order $2 n$ and $\Delta(G)=2 n-1$, then $\chi^{\prime \prime}(G)=2 n$ if and only if $e(\bar{G})+n^{\prime}(\bar{G}) \geq n$.

Lemma 2.5.7. For $m, n, r \in \mathbb{R}$,
$m<r+\frac{2 r-n}{2 n-2 r-1}$ if and only if $(m-r)(n-r)+(n-r)<\frac{m+n-r}{2}$.
Proof.

$$
m<r+\frac{2 r-n}{2 n-2 r-1} \Leftrightarrow m<\frac{r(2 n-2 r-1)+(2 r-n)}{2 n-2 r-1}
$$

$$
\Leftrightarrow m\left(\frac{2 r(n-r)-(n-r)}{2 n-2 r-1}\right.
$$

$$
\Leftrightarrow m<\frac{n-r}{2 n-2 r-1}(2 r-1)
$$

 then $K_{m_{r}} \oplus K_{n}$ is of type 2. Otherwise, $K_{m_{K_{r}}} \oplus K_{n}$ is of type 1 .

Proof. Let $m \geq n$ and $G=K_{m_{r}} \triangleleft K_{n}$.
Case 1. $m+n-r$ is odd. By Proposition 2.5.3, $\chi^{\prime \prime}\left(K_{m+n-r}\right)=m+n-r=$
$\Delta\left(K_{m+n-r}\right)+1$. Since G is a subgraph of K_{m+n-r} and $\Delta(G)=\Delta\left(K_{m+n-r}\right)$, we get $\chi^{\prime \prime}(G) \leq \chi^{\prime \prime}\left(K_{m+n-r}\right)=\Delta\left(K_{m+n-r}\right)+1=\Delta(G)+1$. Thus G is of type 1 .

Case 2. $m+n-r$ is even. By Lemma 2.5.4, $\Delta(G)=n(G)-1=m+n-r-1$. The complement of $G, \overline{K_{n} \stackrel{\Delta}{K} K_{n}}$ has only one nontrivial component, $K_{m-r, n-r}$ Then $e(\bar{G})=(m-r)(n-r)$. Since $m \geq n$, we get $\alpha^{\prime}(\bar{G})=n-r$. Thus $e(\bar{G})+\alpha^{\prime}(\bar{G})=(\overline{m-r})(n-r)+(\bar{n}-r)$. If $m \geq r+\frac{2 r-n}{2 n-2 r-1}$, by Lemma 2.5.7, $e(\bar{G})+\alpha^{\prime}(\bar{G})=(m-r)(n-p)+(n-r) \geq \frac{m+n-r}{2}$. Consequently, by Theorem 2.5.6, G is of type 1. If $m<r+\frac{2 r-n}{2 n-2 r-1}$, by Lemma 2.5.7, $e(\bar{G})+\alpha^{\prime}(\bar{G})=(m-r)(n-$ $r)+(n-r)<\frac{m+n-r}{2}$. Hence, by Theorem 2.5.6, $\chi^{\prime \prime}(G) \neq n+m-r$. Since $n+m-r=n(G)=\Delta(G)+1$, we have $\chi^{\prime \prime}(G) \neq \Delta(G)+1$. By Theorem 2.5.5, $\chi^{\prime \prime}(G) \leq \Delta(G)+2$. Therefor, $\chi^{\prime \prime}(G)=\Delta(G)+2$; hence, G is of type 2 .

Corollary 2.5.9. Let $m \geq n$ Then
(a) $K_{K_{r}} \stackrel{K_{n}}{ }$ is of type 1 if and onty if in $+\underline{n}-r$ is odd or $m \geq r+\frac{2 r-n}{2 n-2 r-1}$,
(b) $K_{m_{r}} \triangleright K_{n}$ is of type 2 if and only if $m+n-r$ is even and $m<r+\frac{2 r-n}{2 n-2 r-1}$.

Proof. They follow immediarely from Theorem 2.5.5 and Theorem 2.5.8.
Theorem 2.5.10. $\lambda^{\prime \prime}\left(K_{m} \Phi K_{n}\right) \leq \lambda^{\prime \prime}\left(K_{m}\right) \pm \lambda^{\prime \prime}\left(K_{n}\right)-2$.
Proof. Since the clone of $K_{m} \otimes K_{n}$ must be nontrivial, we get $m, n \geq 2$. If $m=2$, we get the clone of $K_{m} \triangleright K_{n}$ is K_{2} and $K_{m} \triangleright K_{n}=K_{n}$. Since $\chi^{\prime \prime}\left(K_{2}\right)=3$, we get $\chi^{\prime \prime}\left(K_{n} \Phi K_{n}\right)<\chi^{\prime \prime}\left(K_{n}\right)+1=x^{\prime \prime}\left(K_{m}^{0}\right) \pm x^{\prime \prime}\left(K_{n}\right)-2$. If $n=2$, similarly, $\chi^{\prime \prime}\left(K_{m} \Phi K_{n}\right)<\chi^{\prime \prime}\left(K_{n}\right)+\chi^{\prime \prime}\left({\underline{K_{n}}}\right)-2$, Assume that $m, n \geq 3$, d

$$
\leq \chi^{\prime \prime}\left(K_{m}\right)+\chi^{\prime \prime}\left(K_{n}\right)-1
$$

by Remark 1.2.1.

Note that $\chi^{\prime \prime}\left(K_{m} \triangleleft K_{n}\right)=\chi^{\prime \prime}\left(K_{m}\right)+\chi^{\prime \prime}\left(K_{n}\right)-1$ if a vertex with maximum degree of K_{m} is glued to a vertex with maximum degree of K_{n} and the corre-
sponding vertex in clone has degree $1, K_{m}$ and K_{n} are of type 1 and $K_{m} \Phi K_{n}$ is of type 2 .

Assume that a vertex with maximum degree of K_{m} is glued to a vertex with maximum degree of K_{n} and the corresponding vertex in clone has degree 1 and K_{m} and K_{n} are of type 1. Since the clone must be a complete graph, the clone is K_{2}. Without loss of generality, assume that $m \geq n$. Since $m \geq 3$ and $n \geq 3$, we get $(n-2)(2 m-2(2)+1)=(n-2)(2 m-3) \geq m$. By Theorem 2.5.8, $K_{m} \Phi K_{r}$ is of type 1. Thus $\chi^{\prime \prime}\left(K_{m} \triangleright K_{n}\right) \neq \chi^{\prime \prime}\left(K_{m}\right)+\chi^{\prime \prime}\left(K_{n}\right)-1$. Hence $\chi^{\prime \prime}\left(K_{m} \triangleright K_{n}\right) \leq$ $\chi^{\prime \prime}\left(K_{m}\right)+\chi^{\prime \prime}\left(K_{n}\right)-2$.

Theorem 2.5.11. $\chi^{\prime \prime}\left(K_{m} \triangleleft K_{n}\right)=\chi^{\prime \prime}\left(K_{m}\right)+\chi^{\prime \prime}\left(K_{n}\right)-2$ if and only if m, n are odd and the clone of $K_{m} \triangleleft K_{n}$ is K_{2}

Proof. Since we are interested in simple glued graphs, the clone is a complete graph, say K_{r}. By Theorem $2.5 .5, \chi^{n}\left(K_{m} \triangleright K_{n}\right) \leq \Delta\left(K_{K_{r}} \Phi K_{n}\right)+2$. By Lemma 2.5.4, we have $\Delta\left(K_{K_{r}} \oplus K_{n}\right)=n\left(\frac{\left.K_{m} \triangleright K_{n}\right)-1}{K_{r}}\right)$. Then $\chi^{\prime \prime}\left(K_{K_{r}} \triangleright K_{n}\right)=\Delta\left(K_{K_{r}} \oplus K_{n}\right)+1=$ $n\left(K_{K_{r}} \stackrel{\rightharpoonup}{K_{r}} K_{n}\right)=m+n-r$ or $\chi \bar{n}\left(K_{K_{r}} \triangleright K_{n}\right)=\Delta\left(K_{K_{r}} \triangleright K_{n}\right)+2=n\left(K_{m_{r}} \Phi K_{n}\right)+1=$ $m+n-r+1$

Case 1. m and n are odd. By Proposition 2.5.3, $\chi^{\prime \prime}\left(K_{m}\right)+\chi^{\prime \prime}\left(K_{n}\right)-2=m+n-2$. Then $\chi^{\prime \prime}\left(K_{K_{r}} \triangleright K_{n}\right)=\chi^{\prime \prime}\left(K_{m}\right)+\chi^{\prime \prime}\left(K_{n}\right)-2$ if and only if $r=2$. Case 2. Either m or n is odd. Then $\chi^{\prime \prime}\left(K_{m}\right)+\chi^{\prime \prime}\left(K_{n}\right)-2=m+n-1$. If $r \geq 3$ then $\chi^{\prime \prime}\left(K_{n_{r}} \stackrel{K_{n}}{ }\right) \leq m+n-r+1<m+n \rightarrow 24 \chi^{\prime \prime}\left(K_{m}\right)+\chi^{\prime \prime}\left(K_{n}\right)-2$. Assume that $r=2$. Then $m+v-r$ is odd. By Corollary 2.5.9, $\chi^{\prime \prime}\left(K_{K_{2}} \oplus K_{n}\right)=$

Case 3. m and n are even. By Proposition 2.5.3, $\chi^{\prime \prime}\left(K_{m}\right)+\chi^{\prime \prime}\left(K_{n}\right)-2=m+n>$ $\chi^{\prime \prime}\left(K_{m_{r}}^{\Phi} \stackrel{K_{n}}{n}\right)$ because $r \geq 2$.

CHAPTER III

TRIMMED GRAPHS VS GLUED GRAPHS

3.1 Total Colorings of t-trimmed Graphs

A graph H is a t-trimmed graph of a graph G if G can be reduced to a graph H by successive removal of vertices with degree at most t. Among t-trimmed graphs of G, the smallest t-trimmed graph of G is the one with the minimum number of vertices.

Example 3.1.1. A graph G have a lot of 2 -trimmed graphs but only one smallest 2-trimmed graph.
 graph ${ }^{\circ}$
Q $991 \cap$ Theorem 3.1.2. The is the only one smallest tctrimmed graph of graph G, unless the smallest t-trimmed graph has one vertex.

Proof. If the smallest trimmed graph of a graph G has only one vertex, then it is unique up to isomorphism. Assume that the smallest trimmed graph of a
graph G has more than one vertex. Let H_{1} and H_{2} be the smallest t-trimmed graphs of G. Let H_{1} be obtained from successive removal vertices $v_{1}, v_{2}, \ldots, v_{k}$, respectively. Assume that $H_{1} \neq H_{2}$. By the definition of t-trimmed graph, a t-trimmed graph of G is an induced subgraph of G. Then $V\left(H_{1}\right) \neq V\left(H_{2}\right)$. Since H_{2} is the smallest t-trimmed graph of $G, V\left(H_{2}\right) \nsubseteq V\left(H_{1}\right)$. Let $j \in[k]$ be the smallest number such that $\bar{v}_{j} \in V\left(H_{2}\right)-V\left(H_{1}\right)$. If $j=1$, let $K=G$. Then H_{2} is a subgraph of K. If $j \geq 2$, let $K=G-\left\{v_{1}, v_{2}, \ldots, v_{j-1}\right\}$. Since $v_{1}, v_{2}, \ldots, v_{j-1} \notin V\left(H_{2}\right), H_{2}$ is a subgraph of K. Both cases, H_{2} is a subgraph of K. Since $d_{K}\left(v_{j}\right) \leq t$, we get $d_{H_{2}}\left(v_{j}\right) \leq t$. Thus $H_{2}-v_{j}$ is a t-trimmed graph of G. It is a contradietion because H_{2} is the smallest t-trimmed graph. Hence $H_{1}=H_{2}$.

Lemma 3.1.3. Let G be a graph with $\Delta(G) \geq 2$ and contain a vertex v with degree 1. If $\chi^{\prime \prime}(G-v) \leq \Delta(G-v)+2$ and $\Delta(G)=\Delta(G-v)+1$, then G is of type 1 .

Proof. Since y has degree 1 , let u be a vertex of G which is adjacent to v. Assume that $\mathcal{X}^{\prime \prime}(G-v) \leq \Delta(G-v)+2$ and $\Delta(G)=\Delta(G-v)+1$. Since $\Delta(G)=\Delta(G-v)+1, u$ is a vertex with maximum degree in $G-v$. Let $k=\Delta(G)+1$. It suffices to show that there is a proper total coloring from $V(G) \cup E(G)$ to $[k]$

We get $\Delta(G-v)+2=(\Delta(G)-1)+2=k$. Since $\chi^{\prime \prime}(G-v) \leq \Delta(G-v)+2$, there is a proper total coloring $f: V(G-v) \cup E(G-v) \rightarrow[k]$. Since $d_{G_{-v}}(\mu)+1 \leq$ $\Delta(G-v)+1=\Delta(G) \approx 2-1$, we usegat most $k \mathscr{1}$ colors to color u and edges incident to u in $G-v$, there is a remaining color in $[k]$, say r. Since $k=\Delta(G)+1 \geq 3$, there is a color s which differs from $f(u)$ and r. Let
$f^{\prime}: V(G) \cup E(G) \rightarrow[k]$ be a total coloring of a graph G defined by

$$
f^{\prime}(x)= \begin{cases}f(x) & \text { if } x \in V(G-v) \cup E(G-v) \\ r & \text { if } x=u v \\ s & \text { if } x=v\end{cases}
$$

Then f^{\prime} is a proper total coloring from $\mid(G) \cup E(G)$ to $[k]$. Hence $\chi^{\prime \prime}(G)=$ $\Delta(G)+1$ and G is of type 1 .

Lemma 3.1.4. Let v be a vertex with degree 1 of a graph G. If $\chi^{\prime \prime}(G-v) \leq$ $\Delta(G-v)+2$ then $\chi^{\prime \prime}(G) \leq \Delta(G)+2$.

Proof. Since v is a vertex with degree 1 , let u be the vertex which is adjacent to v. Assume that $\chi^{\prime \prime}(G-v) \leq \Delta(G-v)+2$. Let $k=\Delta(G)+2$. It suffices to show that there is a proper total coloring from $V(G) \cup E(G)$ to $[k]$.

Case 1. u is a vertex with maximum degree in $G-v$.
Then $\Delta(G)=\Delta(G-v)$ 1. By Lemma 3.1.3. $x^{\prime \prime}(G)=\Delta(G)+1<\Delta(G)+2$.
Case 2. u is not a vertex with maximmm degree in $G-v$.
Hence $\Delta(G-v)+2=\Delta(G)+2=k$. Since $\chi^{\prime \prime}(G-v) \leq \Delta(G-v)+2$, there is a proper total coloring $f: V(G-v) \cup E(G-v) \rightarrow[k]$. Since $d_{G-v}(u)+1 \leq$ $\Delta(G-v)+1=\Delta(G)+1=k-1$, we use at most $k-1$ colors to color u and edges incident to u in $G-v$, there is a remaining color in $[k]$, say r. Since $k=\Delta(G)+2 \geq d(v)+2=3$, thereisa colon which differs from $f(u)$ and r, say s. Let $f^{\prime}: \|(G) \cup E(G) \rightarrow[k]$ be a total coloring of a graph G defined by

Then f^{\prime} is a proper total coloring from $V(G) \cup E(G)$ to $[k]$. Hence $\chi^{\prime \prime}(G) \leq k=$ $\Delta(G)+2$.

Lemma 3.1.5. Let v be a vertex with degree 2 of a graph G. If $\chi^{\prime \prime}(G-v) \leq$ $\Delta(G-v)+2$ then $\chi^{\prime \prime}(G) \leq \Delta(G)+2$.

Proof. Since v is a vertex with degree 2, let u_{1} and u_{2} be vertices which are adjacent to v. Assume that $\chi^{\prime \prime}(G-v) \leq \Delta(G-v)+2$. If $\Delta(G) \leq 2$, then G is a path or a cycle. So $x^{\prime \prime}(G) \leq \Delta(G)+2$. Assume that $\Delta(G) \geq 3$. Let $k=\Delta(G)+2$. It suffices to show that there is a proper total coloring from $V(G) \cup E(G)$ to $\{k\}$

Case 1. u_{1} or u_{2} is a yertex with maximum degree in $G-v$. Without loss of generality, assume that u_{1} is a vertex with maximum degree in $G-v$. Then $\Delta(G-v)+2=(\Delta(G)-1)+2=k-1$. Since $\chi^{\prime \prime}(G-v) \leq \Delta(G-v)+2$, there is a proper total coloring $f: V(G-v) \cup E(G-v) \rightarrow[k-1]$. Since $d_{G-v}\left(u_{2}\right)+1 \leq \Delta(G-v)+1=\Delta(G)=k-2$, we use at most $k-2$ colors to color u_{2} and edges incident to $u_{2} \operatorname{m-G}-v$, there is a remaining color in [k], say r. Since $\Delta(G) \geq 3$, we get $k \geq 5$. Let s be a color which differs from $f\left(u_{1}\right), f\left(u_{2}\right), r$ and k. Let $f^{\prime}: V(G) \cup E(G) \rightarrow|k|$ be a total coloring of a graph G defined by

$$
f^{\prime}(x)= \begin{cases}f(x) & \text { if } x \in V(G-v) \cup E(G-v), \\ k & \text { if } x=u_{1} v, \\ r & \text { if } x=u_{2} v, \\ s & \text { if } x=v .\end{cases}
$$

Then f^{\prime} is a proper total coloring from $V(G) \cup E(G)$ to $[k]$.
Case/2. t_{1} and u_{2} are not vertices with maximum degree in G ve Then
$\Delta(G-v)+2=\Delta(G)+2=k$. Since $x^{\prime \prime}(G-v) \leq \Delta(G-v)+2$, there is a proper total coloring $f: V(G-v) \cup E(G-v) \rightarrow[k]$. Since $d_{G-v}\left(u_{1}\right)+1 \leq \Delta(G-v)=$ $\Delta(G)=k-2$, we use at most $k-2$ colors to color u_{1} and edges incident to u_{1} in $G-v$. Then there are 2 remaining unused colors. Let one be r. Similarly for
u_{2}, there are 2 remaining colors. Pick the one which differs from r, say r^{\prime}. Since $\Delta(G) \geq 3$, we get $k \geq 5$. Let s be a color which differs from $f\left(u_{1}\right), f\left(u_{2}\right), r$ and r^{\prime}. Let $f^{\prime}: V(G) \cup E(G) \rightarrow[k]$ be a total coloring of a graph G defined by

Then f^{\prime} is a proper total coloring from $V(G) \cup E(G)$ to $[k]$. Hence $\chi^{\prime \prime}(G) \leq k=$ $\Delta(G)+2$.

Theorem 3.1.6. If a graph G^{-h} has a 2 -trimmed graph H such that $\chi^{\prime \prime}(H) \leq$ $\Delta(H)+2$ then $\chi^{\prime \prime}(G) \leq \Delta(G)+2$. In particular, if a graph G has a 1-trimmed graph K such that $\chi^{\prime \prime}(K) \leq \Delta(K)+2$ then $x^{\prime \prime}(G) \leq \Delta(G)+2$.

Proof. Assume that a grapty G has a 2-trimmed graph H such that $\chi^{\prime \prime}(H) \leq$ $\Delta(H)+2$. Without loss of generality, let H be obtained from G by successive removal vertices $v_{k}, v_{k-1}, \ldots, v_{1}$, respectively. Let $H_{0}=H$ and $H_{i}=G \mid V(H) \cup$ $\left.\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}\right]$. Let $P(n)$ be the statement that $\chi^{\prime \prime}\left(H_{n}\right) \leq \Delta\left(H_{n}\right)+2$.
Basic Step. By the assumption, $\chi^{\prime \prime}\left(H_{0}\right) \leq \Delta\left(H_{0}\right)+2$.
Inductive Step. 2 Assume that $x^{\prime \prime}\left(H_{O_{-}}\right) \leq \Delta\left(\hat{H}_{i}-7\right)+2$ when $\because \leq k$. By the definition of 2 -trimmed graph, $d_{H_{i}}\left(v_{i}\right) \leq 2$. If $d_{H_{i}}\left(v_{i}\right)=1$, by Lemma 3.1.4 and the induction hypothesis, $\chi^{\prime \prime}\left(H_{i}\right) \leq \Delta\left(H_{i}\right)+2$. $\mathbb{\int} d_{H_{i}}\left(v_{i}\right)=2$, by Lemfla 3.1.5 and the inguction hypothesis, $\chi^{\prime \prime}\left(H_{i}\right) \leq \Delta\left(H_{i}\right)+2$. By mathematical induction, we get $\chi^{\prime \prime}(G) \leq \Delta(G)+2$.

An outerplanar graph is a graph with an imbedding in the plane such that every vertex appears on the boundary of the exterior face.

Theorem 3.1 .8 shows that every outerplanar graph satisfies the Total Coloring Conjecture.

Proposition 3.1.7. [9] Every outerplanar graph has a vertex of degree at most 2.

Figure 3.1.2:An outerplanar graph

Theorem 3.1.8. For every outerplanar graph G, we have $\chi^{\prime \prime}(G) \leq \Delta(G)+2$.
Proof. By the fact that a subgraph of outerplanar graph is an outerplanar graph and Proposition 3.1.7, the spratlest 2-trimmed graph of every outerplanar graph is a trivial graph with one vertex. Sinee a trivial graph satisfies the Total Coloring Conjecture, by Theorem 3.1.6, every outerplanar graph satisfies the Total Coloring Conjecture.

Lemma 3.1.9. Let G be a graph with $\Delta(G) \geq 2$ and containing a vertex with degree 1 , say v. If $\chi^{\prime \prime}(G-v)=\Delta(G-v)+1$ then $\chi^{\prime \prime}(G)=\Delta(G)+1$. Proof Let G be a graph with $\Delta(G) \geq 2$ Since v is a vertex with degree 1, let u be the vertex which is adjacent, to v. Assume that $\chi^{\prime \prime}(G-v) \leq \Delta(G-v)+1$. Det $k=\Delta(G)+1$ Tl suffices to show that there is a proper total coloring from
$V(G) \cup E(G)$ to $[k]$.

Case 1. u is a vertex with maximum degree in $G-v$. We get $\Delta(G-v)=\Delta(G)-1$. Then $\Delta(G-v)+1=\Delta(G)=k-1$. Since $\chi^{\prime \prime}(G-v) \leq \Delta(G-v)+1$, there is a proper total coloring $f: V(G-v) \cup E(G-v) \rightarrow[k-1]$. Since $k-1=\Delta(G) \geq 2$.
there is a color s which differs from $f(u)$. Let $f^{\prime}: V(G) \cup E(G) \rightarrow[k]$ be a total coloring of a graph G defined by

Then f^{\prime} is a proper total coloring from $V(G) \cup E(G)$ to $[k]$.
Case 2. u is not a vertex with maximum degree in G_{v}. We get $\Delta(G-v)=\Delta(G)$. Then $\Delta(G-v)+1=\Delta(G)+1=k$, Since $\chi^{\prime \prime}(G-v) \leq \Delta(G-v)+1$, there is a proper total coloring $f: V(G-v) \cup E(G-v) \rightarrow[k]$. Since $d_{G-v}(u)+1 \leq$ $\Delta(G-v)=\Delta(G)=k-1$, we use at most $k-1$ colors to color u and edges incident to u in $G-v$, there is a remaining color in $\{k\}$, say r. Since $k=\Delta(G)+1 \geq 3$, there is a color which differs from $f(u)$ and r, say s. Let $f^{\prime}: V(G) \cup E(G) \rightarrow[k]$ be a total coloring of a graph G defined by

Then f^{\prime} is a proper total coloring from $V(G) \cup E(G)$ to $[k]$. Hence $\chi^{\prime \prime}(G) \leq k=$

$\Delta(G) \geq 2$ is a sufficient condition in Lemma 3.1.9. Since G is connected, when $\Delta(G)=1 \cap G$ is K_{20} Then $\chi^{\prime \prime}(G)=3=\Delta(G)+2 \cap$ Hnwever, for any vertex

Theorem 3.1.10. If a graph G has a 1-trimmed graph K such that K is of type 1 then G is of type 1 .

Proof. Assume that a graph G has a 1-trimmed graph K such that $\chi^{\prime \prime}(K)=$ $\Delta(K)+1$. Without loss of generality, let K be obtained from G by successive removal vertices $v_{k}, v_{k-1}, \ldots, v_{1}$, respectively. Let $K_{0}=K$ and $K_{i}=G[V(K) \cup$ $\left.\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}\right\}$. Let $P(n)$ be the statement that $\chi^{\prime \prime}\left(K_{n}\right)=\Delta\left(K_{n}\right)+1$.
Basic Step. By the assumption, $\chi^{\prime \prime}\left(K_{0}\right)=\Delta\left(K_{0}\right)+1$.
Inductive Step. Assume that $\chi^{\prime \prime}\left(K_{i-1}\right)=\Delta\left(K_{i-1}\right)+1$ when $i \leq k$. By the definition of 1-trimmed graph, $d_{F_{i}}\left(v_{i}\right)=1$. From Lemma 3.1.9 and the induction hypothesis, $\chi^{\prime \prime}\left(K_{i}\right)=\Delta\left(K_{i}\right)+1$. By mathemaical induction, we get $\chi^{\prime \prime}(G)=$ $\Delta(G)+1$.

In other words, let K be a 1-trimmed graph of G. If K is of type 1 , so is G. However, if K is of type 2, G can be both of type 1 and type 2 as illustrated in Example 3.1.13 and Example 3.1.14.

Lemma 3.1.11. Let G be a graph with $\Delta(G) \geq 2$ and v be a vertex with degree

1. If $\chi^{\prime \prime}(G-v) \leq \Delta(G-v)+t$ then $\chi^{\prime \prime}(G) \leq \Delta(G)+t$ for each positive integer t.

Proof. Let G be a graph with $\Delta(G) \geq 2$ and v be a vertex with degree 1 of G. Since v is a vertex with degree 1 , let u be the vertex which is adjacent to v. Assume that $\chi^{\prime \prime}(G-v) \leq \Delta(G-v)+t$. If $t=1$, by Lemma 3.1.4, $x^{\prime \prime}(G) \leq \Delta(G)+1$. If $t=2$, by Lemma $3.1 .5, \chi^{\prime \prime}(G) \subseteq \Delta(G) \neq 2$. Assume that $t \geq 3$. Let $k=\Delta(G)+t$. It suffices to show that there is a proper total coloring from $V(G) \cup E(G)$ to $[k]$.
, Then $\Delta(G-v)+t \leqslant \Delta(G)+t=k$. Since $x^{\prime \prime}(G-v) \leq \Delta(G-8)+t$, there is a proper total coloring $f: V(G-v) \cup E(G-v) \rightarrow[k]$. Since $d_{G-v}(u)+1 \leq$ $\Delta(G-v)+1 \leq \Delta(G)+1 \leq k-1$, we use at most $k-1$ colors to color u and edges incident to u in $G-v$, there is a remaining color in $[k]$, say r. Since
$k=\Delta(G)+t \geq 3$, there is a color which differs from $f(u)$ and r, say s. Let $f^{\prime}: V(G) \cup E(G) \rightarrow[k]$ be a total coloring of a graph G defined by

Then f^{\prime} is a proper total coloning from $V(G) \cup E(G)$ to $[k]$. Hence $\chi^{\prime \prime}(G) \leq k=$ $\Delta(G)+t$.

Theorem 3.1.12. If a graph G has a 1 -trimmed graph K such that $\chi^{\prime \prime}(K) \leq$ $\Delta(K)+t$ then $\chi^{\prime \prime}(G) \leq \Delta(G)+t$

Proof. Assume that a graph G has a 1-trimmed grpah K such that $\chi^{\prime \prime}(K) \leq$ $\Delta(K)+t$. Without loss of generality, let K be obtained from G by successive removal vertices v_{k}, v_{k-1}, , respectively. Let $K_{0}=K$ and $K_{1}=G[V(K) \cup$ $\left.\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}\right]$. Let $P(n)$ be the statement that $\chi^{\prime \prime}\left(K_{n}\right)=\Delta\left(K_{n}\right)+t$. Basic Step. By the assumption, $\chi^{\prime \prime}\left(K_{0}\right)=\Delta\left(K_{0}\right)+t$.

Inductive Step. Assume that $x^{\prime \prime}\left(K_{i-1}\right)=\Delta\left(K_{i-1}\right)+t$ when $i \leq k$. By the definition of 1 -trimmed graph, $d_{K_{i}}\left(v_{i}\right)=1$. By Lemma 3.1.11 and the induction hypothesis, $\chi^{\prime \prime}\left(K_{i}\right)=\Delta\left(K_{i}\right)+t$. By mathematical induction, we get $\chi^{\prime \prime}(G)=$

Example 3.1.13. Let G be a graph as in Figure 3.1.3. As the given proper total coloring shown in the figure, $x^{\prime \prime}(G)=\Delta(G)+1$. Hence G is of type 1 Moreover, K_{4} is a 1-trimmed graph of G Since $\chi^{\prime \prime}\left(K_{4}\right)=5, K_{4}$ is of type 2.6)

Cycles whose length are not divisible by 3 and complete graphs with even vertices are of type $2[7][11]$. Fews other type 2 graphs are found. In 1992, BorLiang Chen and Hung-Lin Fu found nonregular type 2 graphs [17]. Their results

Figure 3.1.3: A type 1 graph having a 1-trimmed graph of type 2
and Theorem 3.1.6 yield a coustruction of type 2 graphs whose 1-trimmed graphs are of type 2 .

Figure 3.1.4: A type 2 graph which is constructed by Chen and Fu[17]

Example 3.1.14. Let K be agraph in Figure 3.1 .4 and let G be a graph whose the smallest 1-trimmed graph K and $\Delta(G)=\Delta(K)$. Figure 3.1.5 shows an example of such a graph.

Since K is of type 2 and K is a subgraph of a graph $G, \chi^{\prime \prime}(G) \geq \chi^{\prime \prime}(K)=$ $\Delta(K)+2=\Delta(G)+2$. Since the smallest 1-trimmed graph of a graph G in Figure 3.1.5 is K^{6} and $\chi^{\prime \prime}(K)=\Delta(K) \not 2^{\prime}$, by Theorem 3.1.6, we get $\chi^{\prime \prime}(G) \leq$ $\Delta(G)+2$. Then we get $\chi^{\prime \prime}(G)=\Delta(G)+2$. Hence G is of type 2 .

Figure 3.1.5: A type 2 graph which has a 1-trimmed graph of type 2

Theorem 3.1.15. Let G be a graph with $\Delta(G) \geq 2$, Let K be a 1 -trimmed graph of type 2 of G. Then G is of type 1 if and only if $\Delta(G)>\Delta(K)$.

Proof. Let G be a graph with $\Delta(G) \geq 2$ and K a 1-trimmed graph of G. Assume that K is of type 2.

Necessity. Assume that $\Delta(G) \leq \Delta(K)$. Since K is a subgraph of $G, \Delta(K)=$ $\Delta(G)$. Since K is of type 2, we get $\chi^{\prime \prime}(K)=\Delta(K)+2$. Also $\chi^{\prime \prime}(G) \geq \chi^{\prime \prime}(K)=$ $\Delta(K)+2=\Delta(G)+2$. Hence G is not of type 1

Sufficiency. Assume that $\Delta(G)>\Delta(K)$. Let K be obtained from successive removal vertices $v_{1}, v_{2}, \ldots, v_{k}$, respectively. Let $j \in[k]$ be the smallest number such that $\Delta\left(G-\left\{v_{1}, v_{2}, \ldots, v_{j}\right\}\right)<\Delta(G)$. If $j=1$, by Lemma 3.1.3, $\chi^{\prime \prime}(G) \leq \Delta(G)+1$. Assume that $j \geq 2$. Let $K_{1}=G-\left\{v_{1}, v_{2}, \ldots, v_{j}\right\}$ and $K_{2}=G-\left\{v_{1}, v_{2}, \ldots, v_{j-1}\right\}$. Since $\chi^{\prime \prime}(K)=\Delta(K)+2$ and K is a 1-trimmed graph of K_{1}, by Theorem 3.1.6, we get $\chi^{\prime \prime}\left(K_{1}\right) \leq \Delta\left(K_{1}\right)+2$. Since $\Delta\left(K_{1}\right) \leq \Delta\left(K_{2}\right)+1$, by Lemma 3.1.3, K_{2} is of type 1. Since K_{2} is a 1-timmed graph of G, by Theorem 3.1.10, G is of type 1.

Proposition 3.1.16. If a graph G has a regular 1-trimmed graph K such that $\chi^{\prime \prime}(K) \leq \Delta(K)+2$ and $K \neq G$, then G is of type

Proof. Assume that a graph G has a regular 1-trimmed graph K such that $\chi^{\prime \prime}(K) \leqslant \Delta(K)+2$ and $K \neq G$. If K is of type 1 by Theorcm 3.1.6, G is of type 1. If K is of type 2, since K is regular, we get $\Delta(G)>\Delta(K)$. By Theorem 3.1.15, G is of type 1.

3.2 Trimmed Graphs and Glued Graphs

Remark 3.2.1. Let K be a 1-trimmed graph of a connected graph G. Then there is a tree T such that $K \triangleright T=G$.

Proof. Let a graph K be a 1-trimmed graph of a connected graph G. Since G is connected, G has a spanning tree $T=$ Thus $K \varnothing T=G$.

Remark 3.2.2. Let G be a graph and T be a tree. Then G is a 1 -trimmed graph of $G \varnothing T$.

Theorem 3.2.3. Let G be a graph and T be a tree. If G is of type 1 , so is $G \triangleleft T$.

Proof. Let G be a graph and T be a tree, Assume that G is of type 1. Since G is a 1-trimmed graph of $G \Phi T$, by Theorem 3.1.10, $G \otimes T$ is of type 1 .

Theorem 3.2.4. Let G be a graph and T be a tree, if G satisfies the Total Coloring conjecture, so is $G \$ T$.

Proof. Let G be a graph and T be a tree. Assume that $\chi^{\prime \prime}(G) \leq \Delta(G)+2$. Since G is a 1-trimmed graph of $G \Phi T$, by Theorem 3.1.6, $\chi^{\bar{\mu}(G \Phi T) \leq \Delta(G \Phi T)+}$ 2. Theorem 3.2.5. Let G be a type 2 graph and T be a tree, $G \Phi T$ is of type 1 if
and only if $\Delta(G \triangleleft T)>\Delta(G)$ Proof Let G be a type 2 graph and T be a/tree Since G is h/-trimmed graph of $G \oplus T$, by Theorem 3.1.15, this theorem holds.

Theorem 3.2.6. Let T be a tree and G a regular graph. If $G \neq G \bowtie T$ and $\chi^{\prime \prime}(G) \leq \Delta(G)+2$ then $G \Phi T$ is of type 1.

Proof. This theorem follows from the fact that G is a 1-trimmed graph of $G \bowtie T$ and Proposition 3.1.16.

Theorem 3.2.7. Let G be a graph and T be a tree. If $\chi^{\prime \prime}(G) \leq \Delta(G)+t$ then $\chi^{\prime \prime}(G \triangleright T) \leq \Delta(G \triangleright T)+t$.

Proof. This theorem follows from the fact that G is a 1-trimmed graph of $G \Phi T$ and Theorem 3.1.12.

Recall that for any graph T if $T \not \approx P_{2}$ then $\chi^{\prime \prime}(T)=\Delta(T)+1$.

Theorem 3.2.8. Let G be a graph and T be a tree. $\chi^{\prime \prime}(G \triangleleft T) \leq \chi^{\prime \prime}(G)+\chi^{\prime \prime}(T)-$ 2.

Proof. Let G be a graph and T be a tree. If $T \cong P_{2}$ then $\chi^{\prime \prime}(T)=3$ and $G \Phi T=G$. Hence $\chi^{\prime \prime}(G \oplus T)=\chi^{\prime \prime}(G)<\chi^{\prime \prime}(G)+\chi^{\prime \prime}(T)-2$. Assume that T is not P_{2}. Let k be an integer such that $X^{\prime \prime}(G)=\Delta(G)+k$.

 $\chi^{\prime \prime}(T)-2$ if and only if $\chi^{\prime \prime}(G \triangleright T)-\Delta(\Phi T)=\alpha^{\prime \prime}(G)-\Delta(T)$ and $\Delta(G \triangleright T)=$

Proof. This theorem follows from the proof in Theorem 3.2.8.

Figure 3.2.1 and Figure 3.2.2 show a graph G and a tree T such that $\chi^{\prime \prime}(G \Phi T)=$ $\chi^{\prime \prime}(G)+\chi^{\prime \prime}(T)-2$.

Figure 3.2.1: Total colorings of K_{3} and $K_{1,3}$

Figure 3.2.2: A total coloring of $K_{3} \triangleleft K_{1,3}$ when its clone is P_{2}

As the proper total coloring shown in Figure 3.2.1, we get $\chi^{\prime \prime}\left(K_{3}\right) \leq 3$. Since $\chi^{\prime \prime}\left(K_{3}\right) \geq \Delta\left(K_{3}\right)+1=3$, $\chi^{\prime \prime}\left(K_{3}\right)=3$. Similarly, $\chi^{\prime \prime}\left(K_{1,3}\right)=4$ and $\chi^{\prime \prime}\left(K_{3} \triangleright K_{1,3}\right)=5$. Hence we get $\chi^{\prime \prime}\left(K_{3} \triangleleft K_{1,3}\right)=\chi^{\prime \prime}\left(K_{3}\right)+\chi^{\prime \prime}\left(K_{1,3}\right)-2$.

Theorem 3.2.10. Let G be a graph. If $\chi^{\prime \prime}(G) \leq \Delta(G)+2$ and $n\left(G \Phi C_{n}\right)>n(G)$. Then $\chi^{\prime \prime}\left(G \Phi \Theta_{n}\right) \leq \Delta\left(G \Phi C_{n}\right)+2$.

Proof. Assume that $\chi^{\prime \prime}(G) \leq \Delta(G)+2$ and $n(G \Phi C) \geq n(G)$ then G is a $2-$ trimmed graph of $G \Phi C$. By Theorem 3』1.6, we get $\chi^{\prime \prime}(G \Phi C) \leq \Delta(G \Phi C)+$ * ศูนยวิทยทรพยากร

CHAPTER IV

CONCLUSIONS AND OPEN PROBLEMS

4.1 Conclusions

In this section, we conclude main results in this thesis.
Equality of the chromatic number, the edge-chromatic number and the total chromatic number

Let G be a graph with n vertices. Then $\chi(G)=\chi^{\prime}(G)=\chi^{\prime \prime}(G)$ if and only if G is C_{n} where $n \equiv 3(\bmod 6)$-or K_{n} where n is odd.

Upper bounds of the total chromatic numbers of glued graphs

1. Let G_{1} and G_{2} be graphs. If $x^{\prime \prime}\left(G_{1} \Phi G_{2}\right) \leq \Delta\left(G_{1} \triangleright G_{2}\right)+2$ then $\chi^{\prime \prime}\left(G_{1} \Phi G_{2}\right) \leq$ $\chi^{\prime \prime}\left(G_{1}\right)+\chi^{\prime \prime}\left(G_{2}\right)-1=$
2. Let G be a graph and T be a tree. Then $\chi^{\prime \prime}(G \otimes T) \leq \chi^{\prime \prime}(G)+\chi^{\prime \prime}(T)-2$.
3. $\chi^{\prime \prime}\left(C_{m} \Phi C_{n}\right) \leq \chi^{\prime \prime}\left(C_{m}\right)+\chi^{\prime \prime}\left(C_{n}\right)-2$.
4. $\chi^{\prime \prime}\left(K_{m} \Phi K_{n}\right) \leq x^{\prime \prime}\left(K_{m}\right)+\chi^{\prime \prime}\left(K_{n}\right)-2 /$

Colorability of the glued graphs of cycles $? \cap \square$

2. $\chi^{\prime}\left(C_{m} \triangleleft C_{n}\right)= \begin{cases}2 & \text { if } C_{m} \bowtie C_{n} \text { is an even cycle, } \\ 3 & \text { otherwise. }\end{cases}$
3. $\chi^{\prime \prime}\left(C_{m} \triangleright C_{n}\right)= \begin{cases}3 & \text { if } C_{m} \Phi C_{n} \text { is a cycle and } m=n \equiv 0(\bmod 3), \\ 4 & \text { otherwise. }\end{cases}$
4. Any glued graph of cycles satisfies the Total Coloring Conjecture.
5. $\quad C_{m} \triangleright C_{n}$ is of type 2 if $C_{m} \triangleright C_{n}$ is a cycle and $m=n \equiv 1,2(\bmod 3)$. Otherwise, $C_{m} \Phi C_{n}$ is of type 1 ,

- $C_{m} \Phi C_{n}$ is of type 1 if and only if $C_{m} \Phi C_{n}$ is not a cycle or $m=n \equiv 0$ $(\bmod 3)$,
- $C_{m} \Phi C_{n}$ is of type 2 if and only if $C_{m} \triangleleft C_{n}$ is a cycle and $m=n \equiv 1,2$ $(\bmod 3)$.

Colorability of the glued graphs of nontrivial bipartite graphs G_{1} and G_{2}

1. $\chi\left(G_{1} \triangleright G_{2}\right)=2$.
2. $\chi^{\prime}\left(G_{1} \Phi G_{2}\right)=\Delta\left(G_{1} \Phi G_{2}\right)$.
3. The glued graph of bipartite graphs satisfies the Total Coloring Conjecture.
4. $\chi^{\prime \prime}\left(G_{1} \triangleright G_{2}\right) \leq \chi^{\prime \prime}\left(G_{1}\right)+\chi^{\prime \prime}\left(G_{2}\right)-1$.

Colorability of the glued graphs of nontrivial trees T_{1} and T_{2}

1. $x\left(T_{1} \triangleright T_{2}\right)=2$.

2. $T_{1} \triangleright T_{2}$ is of type 1 unless $T_{1} \cong T_{2} \cong P_{2}$.
3. Any glued graph of trees satisfies the Total Coloring Conjecture.
4. $\chi^{\prime}\left(T_{1} \triangleright T_{2}\right) \leq \chi^{\prime}\left(T_{1}\right)+\chi^{\prime}\left(T_{2}\right)-1$. The equality holds if and only if $\Delta\left(T_{1} \triangleright T_{2}\right)=$ $\Delta\left(T_{1}\right)+\Delta\left(T_{2}\right)-1$.
5. $\chi^{\prime \prime}\left(T_{1} \triangleright T_{2}\right) \leq \chi^{\prime \prime}\left(T_{1}\right)+\chi^{\prime \prime}\left(T_{2}\right)-2$. The equality holds if and only if $\Delta\left(T_{1} \triangleright T_{2}\right)=\Delta\left(T_{1}\right)+\Delta\left(T_{2}\right)-1$ and $T_{1} \triangleright T_{2} \neq P_{2}$.

Colorability of the glued graphs of complete graphs

1. Any glued graph of complete graphs satisfies the Total Coloring Conjecture.

- Let $m \geq n$. If $m+n-r$ is even and $m<r+\frac{2 r-n}{2 n-2 r-1}$ then $K_{m_{K}} \Phi K_{n}$ is of type 2. Otherwise, $K_{m_{r}} \triangleleft K_{n}$ is of type 1,
- $K_{m} \triangleright K_{n}$ is of type 1 if and only if $m+n-r$ is odd or $m \geq r+\frac{2 r-n}{2 n-2 r-1}$,
- $K_{m} \triangleright K_{n}$ is of type 2 if and only if $m+n-r$ is even and $m<r+\frac{2 r-n}{2 n-2 r-1}$.

2. $\chi^{\prime \prime}\left(K_{m} \odot K_{n}\right) \leq \chi^{\prime \prime}\left(K_{m}\right)+\chi^{\prime \prime}\left(K_{n}\right)-2$.
3. $\chi^{\prime \prime}\left(K_{m} \triangleright K_{n}\right)=\chi^{\prime \prime}\left(K_{m}\right) \not \chi^{\prime \prime}\left(K_{n}\right)-2$ if and only if m, n are odd and the clone of $K_{m} \triangleright K_{n}$ is K_{2}.

Colorability of the glued graphs of a graph G and a tree T

1. $\chi^{\prime \prime}(G \triangleright T) \leq \chi^{\prime \prime}(G)+\chi^{\prime \prime}(T)-2$.

2. If G is of type 1, so is $G \Phi T$.
3. If G is a type 2 graph, then $G \Phi T$ is of type 1 if and only if $\Delta(G \Phi T)>$ $\Delta(G)$.
4. If G is a regular graph such that $\chi^{\prime \prime}(G) \leq \Delta(G)+2$ and $G \varnothing T \neq G$, then $G \Phi T$ is of type 1.

Colorability of the glued graph of a graph G and a cycle C_{n} If $\chi^{\prime \prime}(G) \leq \Delta(G)+2$ and $n\left(G \Phi C_{n}\right)>n(G)$, then $\chi^{\prime \prime}\left(G \Phi C_{n}\right) \leq \Delta\left(G \Phi C_{n}\right)+2$.

Applications of 2-trimmed graphs

1. If a graph G has a 2 -trimmed graph H such that $\chi^{\prime \prime}(H) \leq \Delta(H)+2$ then

$$
\chi^{\prime \prime}(G) \leq \Delta(G)+2
$$

2. Every outerplanar graph $G, \mathcal{X}^{\prime \prime}(G) \leq \Delta(G)+2$.

Applications of 1-trimmed graphs

1. If a graph G has a 1 -trimmed graph K such that $\chi^{\prime \prime}(K) \leq \Delta(K)+2$ then

$$
\chi^{\prime \prime}(G) \leq \Delta(G)+2 .
$$

2. If a graph G has a 1-trimmed graph K such that K is of type 1 then G is of type 1 .
3. Let G be a graph with $\Delta(G) \geq 2$. Let K a 1-trimmed graph of type 2 of G. Then G is of type 1 if and only if $\Delta(G)>\Delta(K)$.
4. If a graph G has a regular 1-trimmed graph K such that $\chi^{\prime \prime}(K) \leq \Delta(K)+2$, then G is of type $10 \cap ? 19 \cap$ \&AN? ? ?

4.2 Open Problems

We propose some open problems in this thesis for further research as follows.

1. In Chapter 2, we obtained an upper bound of the total chromatic numbers of glued graphs in terms of the total chromatic number of original graphs. Theorem 2.1.1 states that for any graphs G_{1} and G_{2}, if $\chi^{\prime \prime}\left(G_{1} \Phi G_{2}\right) \leq \Delta\left(G_{1} \Phi G_{2}\right)+2$,
then $\chi^{\prime \prime}\left(G_{1} \triangleleft G_{2}\right) \leq \chi^{\prime \prime}\left(G_{1}\right)+\chi^{\prime \prime}\left(G_{2}\right)-1$. Note that if graphs G_{1} and G_{2} with $\chi^{\prime \prime}\left(G_{1} \Phi G_{2}\right) \leq \Delta\left(G_{1} \Phi G_{2}\right)+2$ satisfy following conditions
(a) a vertex with maximum degree of G_{1} is glued to a vertex with maximum degree of G_{2} and the corresponding vertex in the clone has degree 1,
(b) G_{1} and G_{2} are of type 1,
(c) $G_{1} \bowtie G_{2}$ is of type 2 .

Then we have $\chi^{\prime \prime}\left(G_{1} \Phi G_{2}\right)=\chi^{\prime \prime}\left(G_{1}\right)+\chi^{\prime \prime}\left(G_{2}\right)-1$.
However, any two conditions among above three conditions yield $\chi^{\prime \prime}\left(G_{1} \oplus G_{2}\right) \leq$ $\chi^{\prime \prime}\left(G_{1}\right)+\chi^{\prime \prime}\left(G_{2}\right)-2$. We conjecture that no graph satisfies all of the above conditions; hence, we have the following conjecture.

$$
\text { For graphs } G_{1}, G_{2}, \chi^{\prime \prime}\left(G_{1} \Phi G_{2}\right) \leq \chi^{\prime \prime}\left(G_{1}\right)+\chi^{\prime \prime}\left(G_{2}\right)-2 \text {. }
$$

2. we have already investigated necessary and sufficient conditions to be either of type 1 or of type 2 of ghued graphs of trees, cycles and complete graphs. It is an open problem to find a neeessary and sufficient condition of the glued graph of bipartite graphs to be either of type 1 or of type 2.
3. In Chapter 3, we have already proved that if there is a 2-trimmed graph H of a graph G such that $\chi^{\prime \prime}(H) \leq \Delta(H)+2$ then $\chi^{\prime \prime}(G) \leq \Delta(G)+2$. It is interested to prove that for each positive integer $t \geq 3$, if there is a t-trimmed graph H of a graph G such that $\chi^{\prime \prime}(H) \leq \Delta(H)+2$ then- $x^{\prime \prime}(G) \leq \Delta(G)+2$. This conjecture has some advantages. Forexample, the conjectute for case $t=5$

yields that every planar graph satisfies the Total Coloring Conjecture:

REFERENCES

[1] Uiyyasathain C.: Maximal-Clique Partition, PhD Thesis, University of Colorado at Denver, (2003).
[2] Promsakon C.: Colorability of Glued Graphs, Master Thesis Chulalongkorn University Thailand, (2006).
[3] Promsakon C., Uiyyasathian C.: Chromatic numbers of glued graphs, Thai J. Math. (special issued), 75-81 (2006)
[4] Promsakon C., Uiyyasathian C.: Edge-Chromatic numbers of glued graphs, Thai J. Math. 4, 395-401 (2006)
[5] Behzad M.: The total chromatic number of a graph, Combinatorial Mathematics and its Applications, Proceedings of the Conference Oxford 1969 Academic Press N.Y., 1-9 (1971).
[6] Vizing V.G.: On evalution of chromatic number of a p-graph (in Russian), Discrete Analysis, Collection of works of Sobolev Institute of Mathematics SB RAS 3, 3-24 (1964).
[7] Yap H.P.: Total coloring of graphs, Lecture Note in Mathematics Vol. 1623. Springer Berlin (1996).
[8] Brooks R.L.: On coloring the nodes of a network, Proc. Cambridge Phil. Soc. 37, 194-197 (1941).
[9] West, D. B.: Introduction to Graph Theory, Prentice Hall, New Jersey, (2001).
[10] Fiorini S. Wilson R.J. Edgc Cotoring of Graphs, Pitman London, (1977).
[11] Bezhad M. Chartrand G., Cooper J.K.: The colors numbers of complete graphs, J. London Math. Soc 42, 225-228 (1967).
[12] Jensen T.R., Toft B.: Graph Coloring Problems, John Wiley \& Sons, New York, (1995).
[13] Szekeres G., Wilf H.: An inequality for the chromatic number of a graph, J. Combinatorial Theory 4, 1-3 (1968).
[14] Kostochka A.V., Mazurova N.P.: An inequality in the theory of graph color-
[15] König D.: Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre, Math. Ann. 77, 453-465 (1961.)
[16] Hilton A.J.W.: A total chromatic number analogue of Plantholt's theorem, Discrete Math 79, 169-175 (1989).
[17] Chen B.L. and Fu H.L.: Total colorings of graphs of order $2 n$ Having Maximum Degree $2 n-2^{*}$, Graphs and Combinatorics 8, 119-123 (1992).

A graph G is a triple consisting of a vertex set $V(G)$, an edge set $E(G)$, and a relation that associates with each edge two vertices (not necessary to be distinct) called its endpoints. The number of elements in $V(G)$ is represented by $n(G)$ and the number of elements in $E(G)$ is represented by $e(G)$.

The degree of a vertex v in a graph G is the number of edges incident with v and is denoted by $d_{G}(v)$ or simply by $d(v)$ if the graph G is clear from the context. The maximum degree of G is the maximum degree among the vertices of G and is denoted by $\Delta(G)$, the minimum degree of G is denoted by $\delta(G)$.

The complement \bar{G} of a simple graph G is the simple graph with vertex set $V(G)$ defined by $u v \in E(\bar{G})$ if and only if $u v \notin E(G)$.

A graph G is bipartite if $V(G)$ is the tumion of two disjoint (possible empty) independent sets called partite set of G.

A component graph is trivial if it has no edge; otherwise it is nontrivial. An isolated vertex is a vertex of degree 0

A path is a simple graph whose vertices can be ordered so that two vertices are adjecent if and only if they are consecutive in the list. A cycle is a graph with an equal number of vertices and edges whose vertices can be placed around a circle so that two vertices are adjacent if and only if they appear consecutive along the circle.

The (unlabeled) path and cycle with $\frac{B}{n}$ yertices are denoted P_{n} and C_{n} respectively; an n-cycledis a cycle with n-certices. A complete $g r a p h$ is a simple graph whose vertices are pairwise adjacent; the (unlabeled) complete graph with
 bipartite graph such that two vertices are adjacent if and only if they are in different partite sets. When the set has size r and s, the (unlabeled) biclique is denoted $K_{r, s}$.

A graph with no cycle is acyclic. A forest is an acyclic graph. A tree is a connected acyclic graph.

An outerplanar graph is a graph with an imbedding in the plane such that every vertex appears on the boundary of the exterior face.

The line graph of G, written $L(G)$, is the simple graph whose vertices are the edges of G, with ef $\in E(L(G))$ when e and f have a common endpoint in G.

An induced subgraph is a subgraph obtained by deleting a set of vertices. We write $G[T]$ for $G-\bar{T}$, where $\bar{T}=V(G)-T$; this is the subgraph of G induced by T.

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

VITA

Mr. Wongsakorn Charoenpanitseri was born on May 7, 1984 in Suphanburi, Thailand. In primary school, he studied in Anubarn Suphanburi School. In grade 7-9 he had studied in Kannasoot suksalai school. When he was 15 years old, he went to Bangkok to study grade 10-12 in Triamudomsuksa school. He got a Bachelor of Science in Mathematics from Chulalongkorn University in 2006 and he has furthered his master program in Mathematics at Chulalongkorn University.

