CHAPTER II

THEORIES AND METHODS

For the structural investigation of this work, the methodological study can be
classified into two parts of the theoretical treatments which are described by the
quantum chemical and statistical simulation methods (see Figure 2.1). The quantum
chemical theories are used in order to cox | an analytical intermolecular interaction
energy which is usually called in_term 'Potentia ction". Based on the potential
functions, then a Monte Carlo ) \ 1 ', cguired the handling of the statistical
' uate numerical value. The

thermodynamic treatment is
structural study of the interested eted unless these values are
interpreted with the physical-chemie: \» ons. In this chapter, it is, therefore,
involving about how thesefthegrics ¢an de ca and espond to the real system.
The goal of this chapter isgfo provide an o3 i cach method. Thus this text
gathers in one place several itgns/Wwilic L 1 ve been described in more details elsewhere
[14-16].
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Figure 2.1 The two mainly theoretical treatments for the study of MC method.
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The Monte Carlo (MC) and Molecular Dynamic (MD) simulation techniques
have been well established and are used by numerous scientists. The most important
factor, the results of such calculations depend undoubtedly on the potential function in
use. At the same time, it is necessary to evaluate energy and force values as rapidly as
f conomy of CPU time.

%on energy can be written as:
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Where the first term is thé tw erni, the second the e-body, and so on till the
oﬁ&fe ) stem he assumption that A E is equal
. ar nation; the remaining terms of
the series are often refered to ad = rections. The basic idea in Eq.(2.1) is

quantum mechanical appro ‘ ) - or_a molecule. In principle, the
interaction potential betw
chemistry assumptions. - o

y |
The general procediu‘:s for obtaining ab initio intermolecular potential function
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cognizable as molecules. It is the-swe-



1. Selection of Conformations

7

2. Ab initio Computations

N2

3. Selection of functional form

efficient as possible, both i
optimal usage of available ¢ H
used have to be concemed in®rder 1o « 1der an acceptable compromise between

ing a given task, and in its
tance, the size of basis set

2.1 Selection of Confonnatlbns
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geometric conformation can make the complex molecule (ion-molecule complex) easy
for lookmg and advise which geometry should be considered and chosen. A point to be
kept in mmd during the selection, is that both attractive and repulsive interaction

energy configurations must be available in ab initio performing.



Figure 2.3: Definition of geome:
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Table 2.1 Coofdinafes of hytroxylamine mol

¢

Atom z
Hy 0.00000
e 0.00000
N 0.00000
o 1.34079
Hy 1.15290
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Abo X posi d e 2.3 were
generated by varying distance (1<r(A)<12) and angle (0<6<180, -90<¢<90) whilst the
hydroxylamine molecule was fixed within the Cartesian coordinate. By regarding about
the molecular structure of hydroxylamine, this molecule can be separated into two
kinds of hydrogen atoms. The first one which is adjacent to oxygen atom has been
recognized as hydroxyl hydrogen (H,). Another which bonds with nitrogen atom has
been known as an amine group (Hy). The atomic coordinates of hydroxylamine
molecule (whose geometry will be presented in the next chapter) were collected in
Table 2.1. For the representation of the interaction energy surface, the complex
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geometries were selected with special regard to chemically representative

conformations and molecular symmetry.

With this selection of conformation, the configurations of Li*-NHon can be
produced as many as suitable, and the CPU time reduced to some extent due to the
symmetry of hydroxylamine molecule. In addition, the minimum interaction energy can

be easily observed by this way.
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2.2 Ab initio Computatm;u-.:L

For the second ste
to its configuration (from t

depends on the nuclear coordinates E par, m i.e. ®(r;R) = ¥Y(r,R) X(R). At all
;R) is built from molecular orbitals ¢

combinations of atomic ‘e tals %y avefunction is obtained by
solving the txme-mdependeg electron
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91H Y(r,;R)
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for a given R where H is the electronic Hamiltonian and E_, _ is the electronic energy.
The square of the wavefunction, ¥2 s interpreted as a measure of the probability

(2.2)

distribution of the particles within the molecule. The theoretical models presented here
are all based on molecular orbital (MO) theory. This approximate treatment of
electron distribution and motion assign individual electrons to one-electron functions
or simplify as the basis function which are the atomic orbitals for the atoms making up
the molecule is often described as the linear combination of atomic orbital (LCAO)
approximation, and is frequently used in qualitative descriptions of electronic structure.
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Given the basis set, the unknown coefficients are determined so that the total
electronic¢ energy calculated from the many-electron wavefunction is minimized and ,
according to the variational theorem, is as close as possible to the energy
corresponding to exact solution of the Schrédinger equation.

2.2.1 Theories and Energy Expressions
as Slater determinant, an

/ hich guarantees that the Pauli

=

The electronic wavefun:
antisymmetrized product of
exclusion principle is satisfi

_

where P is the permutation operato

Yok v

h-- 0, ()] (2.3)

among orbitals, and p is the
number of transpositions ermutation. Note that it is
important only whether p is an gven,or a closed shell system in which
each spatial orbital ¢ is associat trons with spin o0 and spin B , the

electronic energy is givenby
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nuclear repulsion

Eloth=Eelec+Enuc | (25)
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- Nuc
E. =3 Zafi | (2.6)

In Eq. (2.4), (i/h/i) is the matrix element over the orbital ¢ ; of the bare nucleus

operator

V- ' 2.7}
| ;,A o | | d, (2.8)
N ‘ \\\
and (ij/ij) is the electrostatic HO - ' d‘ « X0) j(l) charge distribution
II - " (2.9)
The mole@u orbi ressed as lin€ar combin f the atonruc orbitals
e— ummm'maﬁ‘ i)
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and are subject to the orthonomality condition :

ctsc = 1 : (2.11)
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where
s,, =, wx, war, (2.12)
From the application of the variational p iple [17], the C coefficients corresponding

(2.13)
with
(2.14)
in which -
4
H m
(uvipo) =lgh) x (D, 2 €2) x (2) dz, dr (2.15)
AuEY VIEJ‘MWEI’TTT‘E
(2.16)
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The matrix of orbital coefficients C is obtained by solving Eq. (2.1/3) which in turn
depends on C through F and D. This is the basis of the self-consistent-field (SCF)
method. Starting from an inital guess for the molecular orbitals (the bare nucleus
hamiltonian may be used, although better guesses can be generated), the density matrix
is constructed and combined with the electron repulsion integrals to from the Fock
matrix F.
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2.2.2 Basis Sets for Computations

The individual molecular orbital can be expressed as linear combinations of a
finite set of N prescribed one-electron known as basis Junctions in Eq. (2.10). The
molecular orbital expansion coefficients,C, provide the orbital description with some
flexibility, but clearly do not allow for complete freedom unless the ¥ define a complete
set. However, the problem of finding the orbitals is reduced from finding complete
descriptions of the three-dimensional function ¢ to finding only a finite set of linear
coefficients for each orbital.

Two types of atomic basis functio &e widespead use. The first one
is Slater-type atomic orbita@lxchﬂlav@al radial parts

(2.17)

Gaussian-type orbitals are df)"m"e' as:

ﬂ‘MEJ’mEm‘ﬁWEJ’]ﬂ‘ﬁ

GTO = Npe D exy( or ) I,m (2.18)
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where o is a constant determining the size, that is, radial extent, of the function.
Gaussian-type functions are less satisfactory than STOs as representations of atomic
orbitals, particularly because they do not have a cusp at the origin. Nevertheless, they
have the important advantage that all integrals in the computations can be evaluated
explicitly without recourse to numerical integration.

By LCAO-MO method the molecular orbitals will be constructed from basis
functions. A limiting Hartree-Fock treatment would involve an infinite set of basis
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functions . Moreover, the computational expense of Hartree-Fock molecular orbital
calculations is formally proportional to the large total number of basis functions.
Therefore, the ultimate choice of basis set size depends on a compromise between
accuracy and efficiency. The size of the basis sets became an important consideration
for theoretical chemists.

2.2.3 Effective Core Potenti

The tremendous cost of a }X

ECP)

as motivated many attempts to

find computational shortcuts. Om:;appjoac d on the observation that core
S A—

orbitals are relatively inert to changes in che mic: the so called "forzen core

approximation"). Another obsefV: : of core electrons on the

valence electron can be treatedthubug of ap ial energy term. Based on
2ttive core potentials (ECP) or
, @specially CPU times, to

these two assumptions, théy a
pseudopotentials",

The ECP approach w 1] to replace the inner shell
electrons of atoms by the effe e with the accepted idea that
in a molecule the electronic structuis tly by the valence electrons, -andé=
that the core orbitals resemble tﬁe’a;ieinﬁ herefore, ECP and all-

electron results are now acceptable in accurate even w e ‘ advantage to include
' ; .. Moreover, potential and
3 | for mosd)f the periodic table, and
are tabulated in the program jost like the regulas basis sets. In particular the potentials

s et of el 412) §4 4 AN b et 1w

for ease of use, although any other potenu s and assomated basis set can be used.

ammmm URIINYIAY
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2.2.4 Basis Set Superposition Error (BSSE)

When insufficient basis sets are used, an amficm] basis set improvement will
take place in the complex, leading to an error which has been known as basis set
superposition error, and the interaction energies are always overestimated [23]. The
intermolecular interaction AE is obtained as the difference of the separately calculated
complex and constituent energies

AE = E (2.19)

NN

4 - "a- \\
Here EA, EB, and EAB are enexgies yhstituént mo: A, B and the complex AB,
respectively. i 4 and i ent ™ b 8¢ ' nomers A and B. The
intermolecular interaction i P /) will contain, in addition to the

“real interaction", the ' :
superposition error", which : in completeness of the basis set.

LA
from the energy impro <$,:.._-:._: ------- gment-(monomes) of a molecule (complex)
' alculation. In other word,

(CP) correction" propo

when a "ghost" basis for i-': other fr: 1to
the monomer energies are-evaluated in a basis set,
used for both the monomers dndidimer as

AUEINENINYINS
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and the counterpoise corrected interaction energy is determined from

exactly the same basis is

AE?= AE+Ae (2.21)

where A E is interaction energy which calculate from truncated basis set
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2.2.5 Obtaining the Interaction Energy (AE¢ )

In SCF calculations of the interaction energy AE_ __ between two systems (A,
B) based on the molecular orbital method, the value of AEsa: is determined as the
difference between the supersystem energy E ap and the sum of the subsystem energies

E,,E,).

A Escp - E )x627.5 (2.22)
where E, = artree)
E,,E;, = energy A and B,

In this work the intéractic gy is always obtained by this expression, which
seems to be quite simple ./ cyer, seriows difficultics’ are encountered in the
numerical treatment. The most gmpertant difficulty lies in the fact that the supersystem
energy and the sum of the energi 3 : >' 1 subsystems are very large number
compared to.the.interaction energy. ¥ i€ determination of the energy of the

systems must be extremely accurate (10°% {artree). A further factor influencing the AE
value is the effect of the of_the SCHinteraction energy. In

.
B 1111 St
AMAINTBIM NS

general, the basis set employ

C ultipole moments and
the polarization functions wgld be neces
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2.2.6 Mulliken Population Analysis

The electron density function or electron probability distribution
Junction, p(r), is a three-dimensional function defined such that p(r) dr is the
probability of finding an electron in a small volume element, dr

fp(rydr = n (2.23)

where n is the total number
which the orbitals are expand,

by Eq. (2.24),
(2.24)
According to the Eq. (2.12), sugg : ow to calculate the electron density,

starting from the density matri

f uﬂ?ﬁﬁ‘mwmm
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various parts of a molecule (atoms, bonds, etc.). It will be useful, for example, to
define a total electronic charge on a particular atom in a molecule in order that
quantitative meaning may be given to such concepts as electron withdrawing or
donating ability. In addition, it will be used to represent the interaction potential of the
Coulombic force.
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2.3 Selection of Functional Form

For the computer simulation of liquids [26], realistic pair potentials between
the molecules involved are needed. In the third step, a suitable mathematical function is
selected. The analytic potential function can represent the interaction energy between
i called "pair wise additivity", so that

tten as a sum of atom-atom pair
ed to ion of the distance r; of the two

=

inter-atomip distance. It was assume
the total intermolecular interacti
potentials, each of which w.

atoms concemed, that is

: (2.26)
r“ L ‘ju
where i: atom i in first mol e
¢lh P '-?.IL,-
j:atomj in second m T
e 3
-.fi;i:_-"g;j-". L2

~is unknown, but the
a physical model in mind:

functlonalformofthep [ potentials V,
there should be a term to scnbe the Coulomblc interaction between the atom pairs,
and the Mulliken m f was used to get a
first estimate of ﬁpﬁﬁ ﬁ ﬂ\m terms of the form

m=2,...6, (se Eq. (2.27)) especially effectxv&at medium d ces, should be

e AR IR Y
mutual distuzbance of utions which results in induced dipole moments

and their interaction with the above points charges as well as between them. Finally,
there should be a term to represent the electronic repulsion at close distances and take

care of the Pauli exclusion principle, which effect increases nucleonic repulsion. This
term is typically represented by either a polynomial A/7", n = 8 ... 15 or an exponential,
exp{-rij} functional. Therefore a trial potential function A Ei]. was set up as
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m

with the coefficients Aij’ B'.j, and C,.j to be determined so that a best fit of the SCF
calculated energies is achieved. However, it should be emphasized that these
coefficients should be treated with some care and not only as mathematical objects,
especially if the obtained potential is to be used in a subsequent simulation study. For
instance, negative values for the A coe. may result in the corresponding atomic
potential function tuming ncganve at '% aances, and an arbitrary choice of

the C coefficients may not rep ‘Iﬁe co it of the electrostatic energy at
9 .

large d1stances

differences between the SCF'c
function, with respect to the
on a multidimensional non-lm,e_ﬂr;ﬂarytmenberg algorithm [27], which
changes softly from an Jhmal steepest descent to M approximation of the
potential parameters near ihe minimum. To yo‘ of the fit, especially in
the most important configii iations (which ]
SCF energy points) add1t1ona1 welght factors were introduced, and very repulsive

e g prY) ﬁ"i"?"ﬂﬁ'ﬁ NENT

The quality “of the fit for the obtamed potential function was Judged by its

e T T T B
energy mi fo ugo tic a graphical

representation of fitted energies versus their quantum mechanically calculated values.

¢ lowest lying values of the

Moreover, the predictive capabilities of the potential function were then tested
according to the procedure suggested by Beveridge et al [28]. Namely, the SCF
- energies (outside the original set) were calculated and compared with the values
predicted by the function. These points were then included in the fitting procedure and
the whole process was repeated until satisfactory results were obtained.
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The Monte Carlo (MC) techniques are generally used to evaluate numerically,
by means of random sampling (hence the term "Monte Carlo"), multidimensional
integrals which are too difficult to solve with analytical methods. These methods can
be applied also to study properties of condensed matters, where the thermodynamical

i ITW interesting.
The aim of Monte Carl iations &x the microscopic properties of
the solution, such as the structusal-and ene!getim; based on the knowledge of
> Influenc F

potential functions; for ex

averages obtained over probability

solvent structure or how a

solute is solvated by solv is particularly important for

the study of the systems

Most Monte Ca ‘
using the canonical or :Q | e of Gib which the number of N
molecules, the volume V vd the temperature T are fixed. Classical statistics is assumed
only two-body for im The total energy of
the system can &ﬁﬁ‘ﬁﬁﬁﬁw gﬁ}‘i‘ﬁnergies between the

individual particles 84 its system,

awm\mmumwmaﬂ

E(v)== ZZV (v) (2.28)

i-lw j=1

where v is a configuration coordinate of the particles in a system. The canonical
ensemble used for evaluating the average values <F> of the property F of the system
can be expressed as,
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<F> =  [.JFexp(-E(v JIkT)dv (2.29)

I.J exp (-E(v )ikT) av

The above was modified by Metropo is et al in 1953 [(4/]. In this method, the N

<F>=F (2.30)
The probability P(v) in this Métropalis Monte €arlo method is given by a Boltzmann
factor: : /3
(2.31)
AUYINBNINEINT
Then Eq.(2.30) canﬂ: reduced to a simple form of
ARIANN I URIINYIAY

F——ZF (2.32)

where F, is the value of the property F of the system after the i* configuration change.
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A key idea in this method is the use of periodic boundary conditions to enhance
the ability of small systems to simulate the behavior of large systems. This technique is
to consider a certain basic region, usually a cube, containing a certain number N of
molecules; and then to imagine the whole of space filled by periodic images of this
basic unit. In this way, one can consider configurations of an infinite system (which
must of course be periodic) while only considering a limited number N of molecules.
The great advantage is that surface effects, which would otherwise be very large for

nearest image distance convention"
w to interact only with that periodic

ct if the range of the molecular

small N, are avoided. Often one uses

according to which a given mole
image of another molecule j whi

interactions is less than half cludes all interactions; it is

convenient to force this by > poter ial af S6me distance.

2.6 Conditions of

atomic/molecular weigh u 8
l

ﬂuﬂqwsyﬁwa1ﬂi
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where D is the density of the solution in g .cm’ 3 for the simulation at temperature T and
pressure P.



2.6.2 The Amount of Particles for Simulation

The number of particle in the system investigated depend on the computer
efficiency. The result will be more accurate whenever an increasing number of particle
is performed. In addition, the CPU time has to be considered between accuracy and
time cost. For several studies, they have been shown that the system would consist of
about 200 particles for the most suitable condition.

For the beginning of

randomly. However, it wo
throughout the cube, for
Therefore, the system has

e :

c ion has offen been generated
m configuration should be
\ v : ibute around the container.

The position of each particle can
be evaluated by regarding

(2.34)

where [ . is the shortest distance betwqwx partic

.-.l‘_i _—_ _,. ;‘ ‘14'

264 Penocg Boundary Ce

The probl 'ﬁ lementing periodic
boundary condmom ﬁ:ﬁﬁﬁ%ﬂmﬁ to form an infinite
"lattice”. In the simu tlon as a moleculg moves in the orlgmal box, it perlodlc image
in each of ljﬁ:ﬁr a molecule
leaves the c‘ax mmmylﬁ ma . There are
no walls at the boundary of the central box, and no surface molecules. This box simply
forms a convenient axis system for measuring the coordinates of the N molecules. A

two-dimensional version of such a periodic system is shown in Figure 2.4.

The duplicate boxes are labeled A, B, C, etc. . As particle 1 moves through a
boundary, its images, 1,,1 etc. (where the subscript specifies in which box the image
lies) move across their corresponding boundaries. The number density in the central
box (and hence in the entife system) is conserved. It is not necessary to store the
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coordinates of all the images in a simulation (an infinite number), just that of the
molécules in the central box. When a molecule leaves the box by crossing a boundary,
attention may be switched to the image just entering. It is sometimes useful to picture
the basic simulation box (in the two dimensional examples) as being rolled up to form
the surface of a three-dimensional doughnut, when there is no need to consider an
infinite number of replicas of the system nor any image particles. This correctly
represents the topology of the system, if not the geometry A similar analogy exists for

a three-dimensional periodic system.
" \\\ '////
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2 6.5 Spherical Cut-off

In the minimal image convention, then, the calculation of the potential energy
due to pairwise-additive interactions involves %2 N(N-1) terms. This may still be a very
substantial calculation for a system of 1,000 particles. A further approximation

significantly improves this situation. The largest contribution to the potential comes
from neigbors close to the molecule of interest, and for short-range interactions, a
spherical cutoff can be applied. This means setting the pair potential V(rij) to zero for
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T 2r, where r_is the cutoff distance. The cutoff distance must be no greater than L/2

for consistency with the minimal image convention, and it is applicable only to rapidly
decreasing potential terms, e.g. 1/1® or exponential terms.

2.6.6 Long-range Interactions

one in which the spatial interaction falls

i of the system. In another meaning,
long-range interaction is one in ing outside the cutoff sphere of
a given particle. The cWe, .,pharm dipole-dipole and charge-
quardrupole interactions ofwg interaction. Long-range

h{np lator, since their range is

A long range interaction is defined

off no faster than r¢ where d is the

interactions are a seriou ¥

greater than half the box 1 SU ions [29] and the reaction
field method [30] have bee, e ods which can be employed to
handle the problem of lon ald summations procedure which
is perfectly consistent with dar; is a technique for efficiently
summing the interaction between a‘particie and‘all its periodic images. The reaction

field method introduced th ASSUMPHo; e periodicity is to treat all
molecules beyond the cutoff pl&ﬁci‘ivf radius
continuum with a given dielectric _gomtwn m any charge lying inside the cutoff

sphere will polarize the ‘_,bntmuum and cmaﬁe a ffjt the center.

M
2.7 Steps of Calculations

ﬂuEJ'J‘VlEJ‘V]iWEJ’]ﬂ‘ﬁ
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which were illustrated in Figure 2.5

om a center charge as forming a

1) Place the initial N particles in any configurations (0 ) according to random

numbers generated by computer.

2) Calculate the interaction energy (E(v )) based on the potential function obtained

from section 2.4 .
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3) Move each of the particles (v -->¥ ) in succession according to the following

prescription:
X—> X+adf |
Yo Y+»a§ 2
Z—> Z+at ,
where q is the maximum allowed cwsi“r ve vhich for the sake of this argument is

arbitrary, and § ;, & ,and & ;aré: x m nutnbers ;tween (-1) and 1. The maximal

displacement within the limit 0. 10sen with some concerning; if

it is too large, most of the mows t/“ - ‘f --: 0, iftee small, the configuration will

not change enough. In ei 16 woulg nger to reach equilibrium. If the

particles are moved to a newsPosific / e at , ., and 2 sphere after such a move

happens to overlap with anot} pliefe: The ‘particle ' De returned to its former
k"

position, and repeat this stgp.

4) Calculate the new configgfrin cfierg v 1)) and the change in energy of the
system A E, which is caused by ‘ -

\

6)IfA E > 0, the moveds

L

is the Boltzmann constant ﬁl
taken between 0 and 1.

rss ol iy www I WR—

by returning to step 3)

e <Q P STFIUAAR B HRE o o

particle again by repeating step 3)

v@ A random number € ;s



( Starting ]
Configuration

- Figure 2.5 Procedure Diagram for MC Simulation
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2.8 Radial Distribution Functions (RDFs) and the Integration Numbers

The most common way to analyze the structure of solution is to employ the
radial distribution functions (g(r)) and the corresponding-running integration number
n(r) around various atoms. The radial distribution gives information about the
configurationally averaged deviation of the local environment of particlé from the
values characteristic for the bulk. ' n for the N particle system in
configuration v is obtained with W

(2.35)

where N(r) is the average '
radial distance r from the
Based on the radial distribution'

1the, sphe ical shell of width dr at a
{ s the number density of the system.
ells can be derived from the

peaks pronounced over the stand: e fi it solvation number is obtained by
the intagration of the i P
Y e ;
The average numibé ¢_Of a given radius can be

determined by:

ﬂummmwmm‘

nr) = p | "stryn 1 dr
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where r_is often chosen as the radial value of the first or second minimum in g(r).
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