CHAPTER III

SKEW RINGS OF RIGHT [LEFT| DIFFERENCES OF SEMIRINGS

when the semiring is

Definition 3.1. Let Emind g “ : N ring R is said to be

a skew ring of right flef i ffe; 3 l; i1ff there exists a
monomorphism-i : S it .' ' \ \ R there exist a,b € S

such that x = i(a) - i(P) [=x'="< i . A monomorphism i
satisfying the above prope: “to be a right [left] difference
embedding of S inte R

Vi '

Example 3.2, Let ﬂ { /X,z2 € Z and ﬁt Z} and A,B € S. Define

e a,ﬂ&w m 94 Bﬂj WRIFATe = comring. zer
{[a k) AN Ty

4 ¢ } Then (R,®,0) is a skew ring of right [1eft]

o>
D

=
n

differences of S..

Remark 3.3. In this chapter, we shall prove some theorems for skew
rings of right differences of a semiring S. The theorems are true for
skew rings of left differences of S and the proofs are similar so we

shall not give the proofs for skew rings of left differences.
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Remark 3.4. Let S be a semiring with an additive zero a. If a skew

ring R of right [left] differences of S exists then S = {a}.

Proof. Let 0 be an additive identity of Rand i : S > R a right
difference embedding. Then i(a) = i(a) + 0 = i(a) + i(a) - i(a) =

i(a + a) - i(a) = i(a) - i(a) = 0. Let x € S be arbitary. Then

i(x) = i(a) + i(x) = i(a + X = a and hence S.=.{al}.

From now on, :

m"semlrmg" means a semiring
without an addltlvez/ :

T
ire

Theorem 3.5. Let S a

differences of S exis

and  (ii) (S,+) sati “the rightylleft] Ore condition.

Proof. Assume t=(2)" and - > Consider S X S. Let

(a,b),(c,d) €8 .Ef -‘ by (a,b) v (c,d)

iff there exist x,yES su c .,.ﬁ and b+ x=4d +y.

A proof similar to the! ene given in Zheorem 2.4 shows that "V is an

e LI NENTHEANS
RS S =

A proof similar to the one given im Theorem 2.4 for (K,*) shows that
(R,+) is a group which having [(z,z)], where z € S, as an additive
identity which we denote by 0 and [(b,a)] = -[(a,b)] i.e. [(b,a)] is
the additive inverse of [(a,b)]

Define a * B = [(ac + bd,ad + bc)] . We must show that . is

well-defined. 1) Fix (a,b). Suppose that (c;d) v (c',d'). Then there
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- gil '
exist x,y € Ssuchthat c + x=c+yandd +x=4d +y.

Since S is A.C.,

(ac + ax) + (bd + bx)

n

(ac + bd) + (ax + bx)

(ac'+ ay) + (ba'+ by)

(a4 bd ) % (ay + by).

Similarly, (ad + be) + (ax + b ad'+ be' ) + (ay + by). Thus

1
(ac + bd,ad + be) Vv (ac ) Fix (c,d). Suppose

e one just given shows

\:fi:“ﬂ\ Hence . is well-defined.
\;::\\:,y € R. Choose

that (a,b) v (a ,b ).
that (ac + bd,ad +

To show th
(a,b) € a, (c,d) € af = [(ac + bd,ad + bc)]
and By

(aB)y

n
)
e
0
(0]
=1
[l
Hh

+ (ad + be)e)]

"
 gms
~~
T 3
4]
0
&+
o’

ade + bee)]

1

=
o
0
o
-+
o
o
o

ade + bece + bdf)]

"
Py
~~
[41]
0
o
+
41}
(ol
Fh
+
U‘
.
L'x.
$
:’

A

[(a(ce yd 2) # b(ce + df))]

«BY). VT

Hence - is associatgﬂe.

To's ﬂtha‘t fudt i ﬁlcatlon @istributes over addition, let
a,B,y € R

| U N I TS e e o
iﬁﬁ\aﬁﬁuumﬁ TRGER

[(a(c + x) + b(Af +y), alf +y) + b(c + x))]

al B +Y)'

[(ac + ax + bf + by, af + ay + bc + bx)].

There exist z,w € S such that ad + bc + z = ae + bf + w, so
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i}

0B + ay [(ac + bd,ad + be)] + [(ae + bf,af + be)]

1}

[(ac + bd + z,af + be + w)].
There exist u,v € S such that ax + bf + by + u = bd + z + v. Then
ad + ax + bf + by + ay + be + bx + u

= ad + ay + bec + bx + ax + bf + by + u

= ad + ay + be + bx + 1 v

= ad + ay + bc + be

= ay +

= ay + be

= ae + ay

=I ad + ax
so ay + be.t+ bx.+
(ac + ax + bf + by, "bd + z,af + be + w).

n show that (a + B)Y = ay + By

n
Q
™
'S

Thus a(B + Y) ;
(AT

so (R,+,*) is distribut ve-j:ﬁggﬂﬁi +,°) is a skew ring.

]

Definé .S g 5r-81Y % ' 8. To show

that i-is a homomu

[(ab + aigab)

[(ab + ab # @b + ab + abyab + ab + ab + ab)]

AUHINBATREND T
aﬁﬁéﬁﬁ%hmmma g

b+b+y, soila) + i(b) =

i(ab)

n

n

There ex1st X,y € 8 such that a + x

[(a + a,a)] + [(b b,b)] = [(a +a+ x,b+ w]. There exist z,w € §

-+

such that a+b+a+b+z=a+a+=x+w, so
a+b+a+b+z=a+b+b+y+w,thusa+b+z=Db+y+w
Hence (a + b + a +'b,a +b)v(a+a+x,b+y), soila+b) =i(a) + i(b).

Thus i is a homomorphism. Let a,b € S be such that i(a) = i(b). Then
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[(a + a,a)] = [(b + b,b)], so there exist x,y € S such that
at+t+a+x=b+b+yada+x=D>b+y, thus a = b, Hence i is a
‘monomorphism. Let o € R. Choose (a,b) € a. There exist x,y € S

b +y, so [(a + a,a)] + [(b,b o b)] =

such that a + x
[(a+a+xb+b+y)]. Let ze Sandw =a + x + z. Then
+b+y+2, so [(a,b)]=
[(a + a,a)] + [(bb+b)]

&g of right differences of S.

orem 2.4 shows that the

R

5 we can see that

a+w=a+a+x+2zandb +

[(a+a+x,b+b+y)].
i(a) - i(b).
A proof simi
converse is true.
Remark 3.6. Let S skew ring of right
[lef't] differences.
1) ifSis m tive then R is multiplicatively
commutative.
2) if S is additively commu | hen R is a ring and we shall
call it the ring o y
8) if 5 is Emmuta v S the %g of differences of S
given by P.Sinutoke inf fa]

A NENTNYINg
iﬁ%@ﬁﬁﬁﬁi&Lhmﬁeﬂﬁﬁﬁi:TR

T a skew ring and f : S > T a homomorphism. Then there exists a unique

homomorphism g : R * T such that g o 1 = £f. Furthermore, if f is a

monomorphism then g is a monomorphism.

Proof. Define g : R* T in the following way : Let x € R.
Then there exist a,b € S such that x = i(a) - i(b). Define

g(x) = f(a) - £b).
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A proof similar to the one given in Corollary 2.7 shows that g
is well-defined and g(x + y) = g(x) + g(y) for all x,y € R. Let
x,y € R. Then x = i(a) - i(b) and y = i(¢) - i(d) for some a,b,c,d € S.

Thus

g((i(a) - i(b))(i(e) - i(d)))
i(d) - i(b)i(e) + i(b)i(d))

g(xy)
= g(i(a)i(e) :

i(a)i(d) - i(b)i(e))

Hence g is a homomorphis o the one given in

Corollary 2.7 shows that g e i § unique and if f is a
monomorphism then g, is no! > weg-have the corollary.
< X
'!

Corollary 3.8. Let_g be a se g having R I‘ a skew ring of right

[lef’t] differﬁes. f86% is a skew ®ing and T contains an isomorphic

{11813 N ETINE A
s A ASDAUHRIAVHIRE .o,

Ay ¥
right or left differencesthen R = R .

copy of S the

Proof. The proof of this theorem is similar to the proof of

Corollary 2.9.
it
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Theorem 3.10. Let (S,<) be a partially ordered seémiring having R as

a skew ring of right [ left] differences and i : S > R a right [1eft]

difference embedding. Then there exists a unique partial order £ on
%

R such that (R,< ) is a partially ordered skew ring and i is an

increasing map iff

(i) < is additively re
and (ii) y < x and w <€ |
x’y’z ’w E S'

lar

,///t (xw + yz) € (xz + yw) for all
=
T ————

Furthermore, if < is

Proof. Ass Let
= {a € R|la = i(x) = some 'K,y € such that y < x}. Define
a relation < on R v : all o,B € R. A proof

similar to the one giv o s that € is a partial

s
-~

2 i ! &
order on R, o £ B impli 8 + y) and (y + a) € (y + B)

for all a,B,y € R and i is @ We shall now show that

ofa

aw’p wmd g :jgor all a,B,y € R.

A

Claim that if o,R%¢ B then this , let o,B € E.

Then o = i(x) - i(y¥ and B = i(z) - i(w) for me X,V,Z,W € S such that

o ¢ Dty ﬁ:ﬂm ViR D
2 S“C“azmmﬂ shram TNy,

By - ay § and YB - yo = y(B - a) € E, so ay <

YO \<' YB. Hence (R,\ ) is a partially ordered skew ring.
%
Conversely, assume that there exists a unique partial order <
%
on R such that (R, ) is a partially ordered skew ring and i is an increasing

map. To show (ii), let x,y,z,w € S be such that y € x and w < z. Then

o ol

i(y) € i(x) and i(w) < i(z), so 0O & LGS - ily))(i(z) - i(w)) =
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L.

i(xz + yw) - i(xw +>yz), thus i(xw + yz) <" i(xz + yw),;hence

(xw + y2) € (%2 + yw). Thus (ii) holds. A proof similaf to the one
given in Theorem 2.30 shows that (i) holds and if < is total then SJ
is total. |

A partial order on a semiring S satisfying condition (ii) in

Theoremr 3.10 will be calle

Corollary 3.11. Le red additively commutative

semiring having R : S » R a difference

embedding. Then t on R such that

B

(R,€ ) is a partial increasing map iff < is

L, : %
additively regular Lf < is total then < is
total.
Theorem 3.12. Let S be_ gz R _as a skew ring of right
[left] differences;ci—5s—

A the lower semilattﬂé of a _ sula ﬁ:ormal partial orders <

m-»# difference embedding,

on S such that (S,<) J‘s a partially %giered semiring and B the lower

oﬂ%g NN T RNHANT 12 » reretensy

ordered skew I‘l g and i is an increasmg ap. Then 't ere exists an order

seonerp QYRR FH I uvm NEIa EI

Proof. Define a map f : A > B in the following way : Let

" 5 %
< € A. Then Theorem 3.10 determines a unique ¢ g B, Define f(g) =

: 1
To show that f is a surjection, let < € B. Define a relation < on S

1
by x < y iff i(x) < i(y) for all x,y € S. Clearly < is an additively

regular partial order on S such that (S,<) is a partially ordered semiring.
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A proof similar to the one given in Theorem 3.9 shows that < is normal.
Hence € € A. By Theorem 3.10, S' — <*, so £(€) = <'. Therefore'f is
é surjection. A proof similar to the one given in Theorem 2.32 shows
that the remainder of this theorem is true.

#

Corollary 3.13. Let S be a semir aving R as a ring of differences,

i : 8 * R a difference emb semllattlce of additively

regular, normal partia t (S,<) is a partially

ordered semiring and ) sémi ce *partial orders < on R

such that (R,Sh) is a past -‘i::htt{\- d i is an increasing map.

Then there exists an ordé" ," .YY‘-‘\Q and B.

Theorem 3.14. Let S Be ‘@ skew ring of right

=8 \
[left] differences, i : ohi eft] difference embedding and

o

p a congruence on S. 2 unique congruence p on R

E
such that (i(x) p (iff p is additively

- regular.

Proof. The proof of this theorem is similar to the proof of
¢

Theorem 3.10 byﬁeuﬁka {Hﬁ%ﬁ wngﬂ F§11owmg way : Let

= {0 £ Rla = ) - i(y) for %?me R,V E 8 such that y p x}. Let

s 3 QUTTIRFRLEN TS R o

that p is ymmetrlc. Thus it remains to show thata p B implies

ay. p" By and ya ph YB for all a,B,y € R. Claim that oB,Ba € E for all
o € E,B € R. To prove this, let o € E and B € R. Then o = i(x) - i(y)
and B = i(z) - i(w) for some x,y,z,w € S such that y p x. Thus

Yz p X2, YW p XW, zy p zx and wy p wx. So (xz + yw) p (xw + yz) and
(zx + wy) p (zy + wx). Hence of = i(xz + yw) - i(xw + yz) and

Ba = i(zy + wx) - i(zx + wy) € E. So we have the claim. Let o,8,Y € R
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be such that o p% B. Then B - a € E, Thus By - ay = (B - @)y € E

and YB - Y@ = Y(B - o) € E. Therefore we have the theorem.

Corollary 3.15. Let S be anadditively commutative semiring having R

as a ring of differences of S, 1 : S > R a difference embedding and p

a congruence on S. Then ther a unique congruence p on R

such that (i(z) o i(y) ,y £ S) iff p is additively

regular.

Nhif a skew ring of right

[left] differences, \qflfference embedding,
A the lattice of addit : 2 o es on S and B the lattice
of congruences on R. ‘order isomorphism between

A and B.

m is similar to the proof of

Proof. The proofZBZAs/8

Theorem 2.38. -

# AN, )
Corollary 3.17. Let 8 he an additivw commutative semiring having R

as a ring of ﬂfu&l:q,m Bﬂ ?WH ’lnfe] %beddlng, A the lattice

of additively regular congruentes on S B the latqtfe of congruences

o n. At SN Sl WJ’Q‘H Bt ) e

Theorem 3.18. Let S be a semiring having R as a skew ring of right

[1eft] differences. Then R is multiplicatively cancellative iff S is

strongly multiplicatively cancellative.

Proof. Let i : S+ R be a right difference embedding.
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Assume that S is strongly multiplicatively cancellative. Let
0,B,Y € R be such that af = oy and a # 0. Theng = i(x) - i(y),
B = i(z) - i(w) and y = i(u) - i(v) for some X,¥,Z,W,u,v € S such that

x # y. There exist a,b € S such that w + a = v + b, so

B -+v=1i(z + a) - i(u + b). Thus

i(x(z + a) + y(u + b)) + b) + y(z + a))

= (i(x) - i(y))(i(z
= B V)
= G ~ oy 7
= O’ .
Since S is strongly

hence x(z + a) +

multiplicatively u+ b, 80 B.=Y,

Similarly, if Ba : Hence R is multiplicatively

cancellative.
Fadatae "' -

Conversely, assume that R is

7 i Qltiplicatively cancellative.

It suffices to show lifatively cancellative.

Let a,B,Y,8 € R A, hen BS - By = ad - ay,
so B(6 - v) = a(S -m). Suppose that § # v,

IR
T T e

Corollary 3.20. Let S be an additively commutative semiring having R

B = o. Thus R is

as a ring of differences. Then R is multiplicatively cancellative iff

S is strongly multiplicatively cancellative.
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Theorem 3.21. Let S be a semiring having R as a skew ring of right
[left] differences. Then the skew field of right [left] quotients of
R exists iff

(i) S is strongly multiplicatively cancéllative
and (ii) for all x,y,z,w € S with x # y and z # w there exist

that xc + yd + zb + wa =

Z.

a,b,c,d € S with a # b and ¢ # (

za + wb + xd + yec.

Proof, Let i_3 2 right difference embedding.
Assume that (i hold. By ‘Theorem 3.18, R has no left

zero divisorsand no ,B € R\{0}. Then

o = i(x) - i(y) and sZ,W € S such that

x # y and z # w. By €S witha#bandc#d

such that xc + yd + zb Let y = i(a) - i(b)

and 6 = i(e) - i(d). T : a8 = i(xec + yd) - i(xd + yc) =
i(za + wb) - i(zb + wa) = :) satisfies the right Ore condition.

A

By Theorem 2.12, -, kew field o: EhTSEUOEseRis of R exists,

] .‘i?j of right quotients of R

m Theorem 3. 18 that S is strongly multiplicatively

Conversely as

exists. It follows

cancellative, ﬂo‘”ﬁﬂ (39.{' E}ﬂfﬁzﬂﬁ'ﬁ}ﬁ;ﬁ that x # y and

z # w. Then i(¥) - i(y) and 1(z) - i(w) e R\{0}. By Theorem 2.12, (R,*)

satisfi € Swith a # b
AWIR &ﬂﬁfﬁﬁmﬂ SR iiLd

and ¢ # dfsuch that (i(x) - i(y))(i(e) - i(d)) = (i(z) - i(w))(i(a) - i(b)).

Thus i(xc + yd) - i(xd + yc) = i(za + wb) - i(zb + wa). Hence

i(xc + yd + zb + wa) = i(za + wb + xd + yec), so xc + yd + zb + wa =

za ¥wb + xd + ye.



63

Corollary 3.22. Let S be a semiring which is additively cancellative,

strongly multiplicatively cancellative and satisfies property ii) of

Theorem 3.21. Then S is additively commutative.

Proof. We can embed S into a skew field by Theorem 3.21 and

every skew field is additively commutative therefore S is additively

commutative.

#
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