CHAPTER I

PRELIMINARIES

In this chapter, we sha gcive some notations, definitions and
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Z~ is the

Q+ is the sej offfe _ itive r tiona: numbers,
Q¢ ='u {0}

R is the set of &

Defin¥ion 1.1. A tm@ﬁ, (S,+,°) is,said to be a semiring iff
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multlpllcatlon of the semiring, respectively.

Example 1.2. Let S be a nonempty set. Define x +y = y[x +y = x] and

x*y=y[x.y=x] forall x,y € S. Then (S,+,-) is a semiring.



Definition 1.3. A semiring (S,+,*) is said to be additively

[huitiplicatively] commutative iff (S,+)[§S,-)] is commutative. And
S is said to be commutative iff S is both additively and multiplicatively

commutative.

Example 1.4,

X
1) Let s = {
ommutative semiring.

addition and multiplida , Ve Ly
2) Let (S,: \;\ Define x + y = x

for all x € S. The . 2 H LD \\\ ely commutative semiring.
QS

id to be a skew ratio semiring

Then S with the usual

3) Z" with iplication is a

commutative semiring.

Definition 1.5. A semi

.iff (D,*) is a group.
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Example 1.6. Let :ﬁ: = x W y=x[x+y=y]

for all %,y € D, Then, (D,+,*) is a skew ratio semiring.
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Definition 1. 7 A semiring (D‘#, ) is Sald to be a ratlo semlrlng 1ry
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Example 1.8. Q+, R+ with the usual addition and multiplication are

ratio semirings.

Definition 1.9. An element x of a semigroup (S,*) is said to be a

left [right] zero of S iff x + y = x[y . x = x] for all ye€S. And



% is said to be a zero of S iff x is both a left and right zero of S.

Definition 1.10. An element a of a semiring (S,+,*) is said to be a

multiplicative [additive] zero of the semiring S iff a is the zero of

the semigroup (S,-) [(S,+)].

Definition 1.11. A semiri

"#g multlpllcatlve zero 0 is

(X\{ "a group.

\\‘\ Q}U{L O]}.

\\ a \ on is a skew semifield.

Definition 1.13. ¥ 2 e with'a multiplicative zero is said

said to be a skew semi

Example 1.12. Let

Then K with the usual

semifield.

Example 1.1, é: jal 777”:'- multiplications are

:

semifields. o7 m
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Example 1f16. Let (R,+) be an arbitrary group with 0 as its identity.

Define x « y = 0 for all x,y € R. Then (R,+,-) is a skew ring.

Definition 1.17. Let R be a skew ring and x € R\{0}. Then x is said

to be a left [right] zero divisor iff there exists a y € R0}

such that xy = 0 [yx = 0] . And x is said to be a zero divisor iff x is

both a left and a right zero divisor.



Example 1.18. Let R be the skew ring in Example 1.16 and x € R\{0}.

Then x is a zero divisor.

Definition 1.19. A semiring (S,+,*) is said to be additively

cancellative (A.C.)iff (x + z = y + 2z implies x = y) and (z +x =2 + y

implies x = y) for all x,y,z € plicatively cancellative (M.C.)

zy and z # 0 imply x = y)

"
<
N
g
N
o 8
o
5
=

iff (xz

for all x,y,z € S wherg heﬂicative zero of § if it

exists, cancellative (  adait: -~ ancellative and
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Example 1.20. Z , . and multiplication are

cancellative semirin

Proposition 1.21. Let S berz cancellative semiring. Then

Xy + zw = zw + xy £o

Proof. Let By,z, : .

zy + xy + zw Wz = (2 + xhp+ (2 + X)w
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2y + w) + 2y + w)

ammnimum:amma

Since S is A.C., Xy + zZWw = ZW + XYy.

#

Definition 1.22. A semiring (S,+,*) is said to be strongly

. multiplicatively cancellative (S.M.C.) iff (xz + yw = xw + yz implies

x=yorz=w)and (xz + yw = yz + xw implies x = y or z = w) for all

KT E B ([2])



Example 1.23. 7" with the usual addition and multiplication is a

strongly multiplicatively cancellative semiring.

Proposition 1.24., Let S be a strongly multiplicatively cancellative

semiring and x € S. Then x is a left multiplicative zero of S iff x

l’#

s a l

is a right multiplicative zer

Proof. Assume 1pllcat1ve zero of S, Let

y €S and z € $\{x} = yX + X, yXZ2 + XX = yXX + Xz.

Since § is S.M.C. ight multiplicative zero
of S.

© the above.

Proof. fiplicatively

Y

cancellative semiri

)

case 1 S has a mul licative zero 0. Let x@z € S be such that
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Xy = X2Z. roposition 1.24, x is not a right multiplicative zero, so there

exists a w € S such that wx # x. Since xy + wxz= xz + wxy and S is
S.M.C., y = z. Similarly, if yx = zx then y =

Hence S is a multiplicatively cancellative semiring.

#

Definition 1.26. A semiring S with a multiplicative identity 1 is said

‘to be precise iff (1 + xy = x + y implies x = 1-or y = 1) and



(1 +xy =y + x implies x = 1 or y = 1) for all x,y € S. ([2:])

Example 1.27. Z’+ with the usual addition and multiplication is a precise

semiring,

Definition 1.28. A semigroup said to satisfy the right [left:l

Ore condition iff for al exist x,y € S\{0} such that

= by [xa = yb] where We zewoweodwd if it exists. ([3])
Note that eve satlsfles the left and

right Ore conditions

Example 1.29. S = " ; e 2} with the usual

multiplication is a se

ad d+ec—bf

G

ad ad 4 -"—':.'j= = a - -
AX = \"Z —— "Hence (S,°) satisfies
5 i

the right Ore condrtlon and (S ) is noncomutﬁlve.
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Definition 1.304 Let S be a seénlrlng w1thout a multlpllcatlve zero
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ordered samlrlng iff x ¢ y implies (x + z) ¢ (y + 2), (2 + x) € (2 +¥y),

(xz) § (yz) and (2x) € (zy) for all x,y,Z & S.

Let S be a semiring with a multiplicative zero 0 and € a partial
order on S. Then (S,£) is said, to be a partially ordered semiring iff

for all x.y,2.€:5

(i) x< y implies (x + z) ¢ (y + 2z) and (z + x) < (2 +y)



and (ii) x < y and 0 € z imply %z € yz and zx < zZy.

Definition 1.31. A partial order < on a semiring S with a multiplicative

zero 0 is said to be multiplicatively regular (M.R.) iff (xz < yz and

0 <z imply x € y) and (2x € zy and 0 < z imply x < y) for all x,y,z € S.

and (zx < zy implies

A partial order : to be additively

regular (A.R.) iff ((

implies x < y) for al \

Definition 1.32. Le and y l ) 4be tlally ordered sets.

€y) and((z + x)<(z + y)

A function f : L > M is ep isomorphism iff
(i) fis a bijecg' ‘
(ii) x < Fhimpl - & €4
and (iii) z < : Bk 1) z,W E M.

A function ﬂ L > M is said to be an@:creasing map iff
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An eleme is sai a least upper bound of { x,y },

denoted byx v y,iff 1) x € z, 2) y € z and 3) x < wand y € w imply z < w
for all w € P. A greatest lower bound of {x,y} , denoted by x A y, is
defined dually.

P is said to be an upper [lower] semilattice iff x v y[x A y]
exists for all x,y € P. P is said to be a lattice iff P is both an

upper and a lower semilattice.
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Proposition 1.34. Let X be a set and P the set of all partial orders

on X. Then (P,S) is a lower semilattice.

Proof. The proof is obvious.

#

Example 1.35. Let X be a set of order > 1 and P the set of all partial

that x # y Define a relation

/ﬁ define a relation
_‘,

orders on X. There exist x,y ¢
< on Xby x<y and z < & f

ofa

£ on Xbyy < x and hen <, € P. Suppose
By

y and y € x but

),is not an upper

semilattice.

Definition 1.36. on a semiring S is said

+ z)-pAy +.8),

-(z +x) P(z2 +y), x2 p yz i‘,‘? ( Bar all x,y,z € S,

Definition 1.37. ?‘G; te e multiplicatively

i d

pyzandz#Olmplyx

regular (M.R.) iff (= ) and (zx p zy and

z # 0 imply x ﬂru Wi} the multiplicative

zero of S if itgexists, addlt:.vely re A.R.) ifF¥ ((x +2)p (y + 2)
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Proposition 1.38. Let C be the set of all congruences on a semiring S.

Then (C,C) is a lattice.

&

% %
Proof: - Leb P p € €, -:Then"p.A p: =p:0Dps - let

K %
={ceCqup':£:_o}. Since S x S e C,C# @. Then p v p =N g .
oel #
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Definition 1.39. Let S be a commutative éemiring with a multiplicative

zero 0 such that |S| > 1. Then a semifield K is said to be a semifield
of quotients of S iff there exists a monomorphism i : S + K such that
for all x € K there exist a € S,b € S\{0} such that x = i(a)i(b)-l.

A monomorphism i satisfying the above property is called a quotient

embedding of S into K. It follo rom the definition that i(0) =

because K has only two multip. i potents and |S| > 1. If K is

a field then we shall cai 5 Fi ents of S,

Example 1.40, Q:, / ] ‘addition, and multiplication are

a semifield of quot 1dsal field “of quotients of Z, reSpec‘civeiy.

Theorem 1.41, Let S with a multiplicative zero

0 such that |S| > g I fients of S exists iff S is

We shall *}—i——- —the—constructio mifield of quotients

of S which appears )ﬂ [1 . ﬁ

Assume that S ds.multiplicatiyvely cancellative. Define a relation

ven s < o E MG E SN E R

(%,y),(z,w) € S x (s\{0}). It i easily shown that " igsan equivalence

relamnﬂ RIANNIUUAINYTA

s x (s\{0}) S x (S\{o})

LetaBe—-—-—-——. Define + and * on o n the

following way : Choose (a,b) € a and (c,d) € B. Define
o+ B = [(ad ¥ bc,bd)] and o + B = [(ac,bd)]. 1In [1] it was shown that

( s x (s\{o})
n, y 3

+,-) is a semifield. of quotients of S.
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Remark 1.42. In the proof of Theorem 1.41, P. Sinutoke used the
commutativity of the addition of S only one time, to make -S——x—(-,%—\—{-g—}—)—
commutative with respect to addition. If the addition in the
definition of semifield is not assumed to be commutative and S is

multiplicatively commutative, then we can still use the construction

in Theorem 1.41 and the "semifield of quotients" so constructed will

not necessarily have commu /'n.

=

J.v
%all X,y € ZZ- Z: with this

icatively commutative

Example 1.43. Deflnw-'

addition and the usu
semiring which is Then Q: with the
addition already de ation is a "semifield
of quotients" of Z;.

Corollary 1.44, Let S ing K as a semifield of

quotients, i : § * K a quotis L a semifield and £ : S + L

a homomorphism sué h.a-"-‘----—-‘-_-——i==:—-—e--—-;; there exists a unique
h 5

wthermore, ir £ is &

sa

homomorphism g : K IDL S

monomorphism then g li- a monomorphls .

S UE NN TNENT, o o
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satisfies all properties of the corollary.

#

Corollary 1.45. If L is a semifield and L contains an isomorphic copy

of S then L contains an isomorphic copy of K.
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Corollary 1.46. If S is a semiring having K and K as semifields of

N
quotients then K = K ,

Cbrollary 1.47. Let R be a ring of order > 1. -Then a field of

quotients of R exists iff R is commutative and has no zero divisors.

Remark 1.48., If R is a ri iplicative identity 1 # O,

then a field of quotien an integral domain.

Corcllary 1.49. Le aving K'a field of quotients,

i : R~ K a quotient : R > L a monomorphism.

Then there exists a such that g o i = f.

Corollary 1.50. If L 3 1s an isomorphic copy of

R then L contains an iso

———

Ei‘, fields of quotienfs

Corollary 1.51. ﬁ_ —

then K = K'. m - 1

st 1] el D NS RN G « maristicas

zero, Then a ratlo semiring D ds said toghe a ratio sgmiring of quotients

or 5 15palt SN {hen-budi 3 ’s}‘iﬂ ubi e e o125 < 0

there exlst a,b € S such that x = 1(a)1(b) . A monomorphism i satisfying

the above property is called a quotient embedding of S into D.

Example 1.53, Q" with the usual addition and multiplication is a ratio

semiring of quotients of -
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Theorem 1.54, Let S be a commutative semiring without a multiplicative
zero. Then a ratio semiring of quotients of S exists iff S is

multiplicatively cancellative.

The construction of a ratio semiring of quotients is the same

as the construction of a semifield of quotients and all of the

remarks and corollarys about semifields of quotients already given are

Definition 1.55. A ring R is said to be

a ring of differen onomorphism i : S + R such

that for all x € R+ % = 3(a) - i(b)s

A monomorphism i s gy is called a difference

embedding of S into

Example 1.56. 2Z with {sidal additioh and multiplication is a ring

of differences of. Z

A
Theorem 1.57. Let 8| be & rinﬁ Then a ring of

differences of S exists.iff S is additively cancellative.

AUEINENINEINT

We shall now give the fconstructipgm of a ring @f differences of
s wnserbobiend 01 01 bowkd sl VI3 VIE 6 B)

Zssume that S is additively cancellative. Define a relation
von S X8 by (x,3y) v (z,w) iff x + w = 2 + y for all x,y,z,w € S,
It is easily shown that V is an equivalence relation.

b X
Letot,Bes,\‘S. Define+anc1-onS

S in the following

way : Choose (a,b) € @ and (c,d) € B. Define o + B = [(a + c,b + d)]

S X S

and o + B = [(ac + bd,ad + bc)]. In [1] it was shown that (Z——,+,*)
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is a ring of differences of S.

#

Remark 1.58. In the proof of Theorem 1.57, P. Sinutoke defined

58

X
6 3 ,\, 2 by 6(a) = [(a + x,x)] for fixed x € S and for all a € S
and she used the commutativity of multiplication of S to show that 6

essary as we shall show now. Define

is a homomorphism. This is no

X
i:8s>8 Sy a(x) = [ % xx) , x €S. Let a,b € 8S.
Then 1i(ab) = a =

ab + ab +ab)]

\\
b+a(b+b)]

'.76" + b,b)], so

and i(a + b)

Suppose that i(a) 3“'

a+a+b b+b+

monomorphism. _Let (ij ’.]Wl E] %%ﬁif ,] ﬁ Then
'anm éiﬂﬂj N8y

[(a + a,a)] - [(b + b,b)]

i(a) - i(b).

Py enCe & ﬁ Therefore i is a

8 .%x-8

. Hence ( sts®)

Hence i is a difference embedding of S into

S x S
~
is a ring of differences of S. Therefore, we still have Theorem 1.57 if

S is additively commutative but not multiplicatively commutative. In

this case,the ring of differences will not be multiplicatively commutative.

016110
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‘ : x 3 +
Example 1.59. Let S = {[ y]/x,y,z,w € Z} and
z w

Xy
R = {[ }/x,y,z,w e 2} Then S and R with the usual addition and
Z W
multiplication are additively commutative semirings, S is additively

cancellative and R is its ring of differences.

Corollary 1.60. Let S be commutative semiring having. R as
a ripng of differences, i : & embedding, T a ring and .

a unique homomorphism' g : R~ T

£ : S T a homomorphismes

such that gei = f. ymorphism then g is @ monomorphism.

Proof. The prg similar to the proof of

Corollary 1.4k4.

Corollary 1.61. ‘ an isomorphic copy of S,

then T contains

J" = semiring having R and
I'I!
i

Corollary 1.62. I 7% 15 20 aadith

. > - "
R as rings of diffemnces ‘then R K .

gt oSy AN A INEDD T
““”W“uaﬁﬁ%ﬂmﬁﬁmf”iaa

PRl Bt NE N and b Kow Sinee ke B, kT THOTY 60,

Similarly, k" hkh™l € K. Thus k™ *hkn™ e B Ak = {1} , so k"'mkn™? = 1,

hence hk = kh.
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