การใช้หน่วยชดเชยดิสเพอร์ชันและอุปกรณ์ชดเชยการกระจายโหมดโพลาไรซ์ที่เหมาะสมที่สุด โดยไม่เพิ่มผลกระทบปรากฏการณ์เคอร์ สำหรับโครงข่ายเส้นใยแสง แบบ wavelength-routed ที่ใช้อัตราการรับส่งข้อมูลที่ 40 Gb/s

นางสาวทรรศมล เอี้ยบศิริเมธี

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมไฟฟ้า ภาควิชาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2554 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

บทกัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในกลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR)

are the thesis authors' files submitted through the Graduate School.

THE OPTIMAL EMPLOYMENT OF DISPERSION-COMPENSATING UNITS AND POLARIZATION-MODE DISPERSION COMPENSATORS WITHOUT ENHANCING KERR EFFECT ON 40 GB/S WAVELENGTH-ROUTED OPTICAL FIBER NETWORKS

Miss Tassamon Yipsirimetee

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Program in Electrical Engineering Department of Electrical Engineering Faculty of Engineering Chulalongkorn University Academic Year 2011 Copyright of Chulalongkorn University

หัวข้อวิทยานิพนธ์	การใช้หน่วยชดเชยดิสเพอร์ชันและอุปกรณ์ชดเชย
	การกระจายโหมดโพลาไรซ์ที่เหมาะสมที่สุด โดยไม่
	เพิ่มผลกระทบปรากฏการณ์เคอร์ สำหรับโครงข่าย
	เส้นใยแสงแบบ wavelength-routed ที่ใช้อัตราการ
	รับส่งข้อมูลที่ 40 Gb/s
โดย	นางสาวทรรศมล เอี้ยบศิริเมธี
สาขาวิชา	วิศวกรรมไฟฟ้า
อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก	ผู้ช่วยศาสตราจารย์ ดร.พสุ แก้วปลั่ง

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็น ส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

> _____คณบดีคณะวิศวกรรมศาสตร์ (รองศาสตราจารย์ ดร.บุญสม เลิศหิรัญวงศ์)

คณะกรรมการสอบวิทยานิพนธ์

_____ประธานกรรมการ

(ผู้ช่วยศาสตราจารย์ ดร.ทับทิม อ่างแก้ว)

.....อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก

(ผู้ช่วยศาสตราจารย์ ดร.พสุ แก้วปลั่ง)

____กรรมการ

(รองศาสตราจารย์ ดร.ลัญฉกร วุฒิสิทธิกุลกิจ)

กรรมการภายนอกมหาวิทยาลัย

(ผู้ช่วยศาสตราจารย์ ดร.ภูมิพัฒ แสงอุดมเลิศ)

ทรรศมล เอี้ยบศิริเมธี : การใช้หน่วยชดเชยดิสเพอร์ชันและอุปกรณ์ชดเชยการกระจาย โหมดโพลาไรซ์ที่เหมาะสมที่สุด โดยไม่เพิ่มผลกระทบปรากฏการณ์เคอร์ สำหรับโครงข่าย เส้นใยแสงแบบ wavelength-routed ที่ใช้อัตราการรับส่งข้อมูลที่ 40 Gb/s.(THE OPTIMAL EMPLOYMENT OF DISPERSION-COMPENSATING UNITS AND POLARIZATION-MODE DISPERSION COMPENSATORS WITHOUT ENHANCING KERR EFFECT ON 40 GB/S WAVELENGTH-ROUTED OPTICAL FIBER NETWORKS) อ.ที่ปรึกษาวิทยานิพนธ์หลัก : ผศ.ดร.พสุ แก้วปลั่ง, 185 หน้า.

ดิสเพอร์ชันหรือการขยายออกของพัลส์สัญญาณทางแกนเวลาเป็นปัญหาหลักที่จำกัด สมรรถนะของการสื่อสัญญาณผ่านเส้นใยแสงระยะทางไกล ดิสเพอร์ชันสามารถถูกชดเซยได้โดย ใช้หน่วยชดเซยดิสเพอร์ชัน (DCU) ซึ่งมี 2 ชนิดคือ NS-DCU และ SC-DCU ในปัจจุบันมีการ พัฒนาอัตราการรับส่งข้อมูลเป็น 40 Gbps ต่อช่องสัญญาณ ในการสื่อสัญญาณระดับอัตราการ รับส่งข้อมูล 40 Gbps แล้ว ปัญหาการกระจายโหมดโพลาไรซ์ (PMD) และความไม่เป็นเชิงเส้น ของเส้นใยแสงหรือปรากฏการณ์เคอร์จะส่งให้เกิดความผิดเพี้ยนรุนแรงขึ้นตามไปด้วย PMD นั้น สามารถถูกชดเซยได้โดยการใช้อุปกรณ์ชดเชยการกระจายโหมดโพลาไรซ์ (PMDC) ในขณะที่ ปรากฏการณ์เคอร์สามารถถูกลดความรุนแรงได้โดยเลือกตำแหน่งการวางหน่วยชดเชยดิสเพอร์ชัน ให้อยู่ในระยะที่ผลจากความไม่เป็นเชิงเส้นของเส้นใยแสง (nonlinear length) ยังไม่ส่งผลกระทบ วิทยานิพนธ์ฉบับนี้จึงนำเสนออัลกอริทึมสำหรับวาง DCU PMDC และในขณะเดียวกันสามารถลด ผลจากปรากฏการณ์เคอร์ อย่างเหมาะสมที่สุดในโครงข่ายที่มีอัตราการส่งข้อมูล 40 Gbps ต่อ ช่องสัญญาณบนช่วงความยาวคลื่นทั้ง C band ซึ่งพิจารณาทั้งกรณีทำงานปกติและกรณีเกิด ความเสียหายแก่ข่ายเชื่อมโยงหนึ่งบนโครงข่าย โดยเลือกใช้โปรแกรม Xpress.MP ในการ optimization ผลเฉลย เมื่อใช้อัลกอริทึมดังกล่าวผลเฉลยที่ได้คือจำนวน DCU ที่น้อยที่สุด จำนวน PMDC และตำแหน่งที่วาง DCU ในโครงข่าย

ภาควิชา	วิศกรรมไฟฟ้า	ลายมือชื่อนิสิต
สาขาวิชา	วิศวกรรมไฟฟ้า	ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก
ปีการศึกษา	2554	

5370244021 : MAJOR ELECTRICAL ENGINEERING

KEYWORDS : FLUIDISATION SUPERHEATED STEAM / NATIVE RICE / INSTANT RICE / PROPERTIES STEAM

TASSAMON YIPSIRIMETEE : THE OPTIMAL EMPLOYMENT OF DISPERSION-COMPENSATING UNITS AND POLARIZATION-MODE DISPERSION COMPENSATORS WITHOUT ENHANCING KERR EFFECT ON 40 GB/S WAVELENGTH-ROUTED OPTICAL FIBER NETWORKS.ADVISOR : ASSOC.PROF.PASU KAEWPLUNG, Ph.D., 185 pp.

The fiber dispersion, which causes pulse broadening in time axis, is the main problem that limits the performance of long-haul optical transmission. The fiber dispersion can be compensated by using dispersion compensated units (DCUs), which are available in 2 types: the non-slope compensating DCU (NS-DCU) and the slopecompensating DCU (SC-DCU). Currently, the data rate of 40 Gbps per channel has become available. For transmission of the 40 Gbps, not only the chromatic dispersion, but the polarization-mode dispersion (PMD) and the fiber nonlinearities or the Kerr effect also manifest to be the other main problems. The PMD can be compensated by PMD compensators (PMDCs) and the Kerr effect can be reduced by placing the DCUs before the nonlinear length. This thesis proposes an algorithm for the placing of both DCUs and PMDCs at where the Kerr effect can also be reduced on 40-Gbps-per-channel-based wavelength-routed optical fiber network using all wavelengths in the entire C band. Moreover, this algorithm is capable for taking into account of single-link failure network protection. After solving the mixed integer linear programing problem by the Xpress.MP program, we obtain the minimum number of DCUs and PMDCs, and the position for placing DCUs in the network.

 Department :
 Electrical Engineering
 Student's Signature

 Field of Study :
 Electrical Engineering
 Advisor's Signature

 Academic Year :
 2011

กิตติกรรมประกาศ

งานวิจัยและวิทยานิพนธ์ฉบับนี้ประสบความสำเร็จได้เนื่องด้วยความเอาใจใส่และความ กรุณาของอาจารย์ที่ปรึกษาปรึกษา ผศ.ดร.พสุ แก้วปลั่ง ที่ประสิทธิ์ประสาทวิชาความรู้รวมไปถึง แนวคิดต่างๆซึ่งเป็นส่วนสำคัญอย่างยิ่งในการทำงานวิจัย อีกทั้งคอยดูแลเอาใจใส่ให้คำปรึกษา ตลอดเวลา

งานวิจัยทั้งหมดสำเร็จได้ด้วยความอนุเคราะห์อุปกรณ์และสถานที่จาก ห้องปฏิบัติการ ศูนย์เชี่ยวชาญเฉพาะด้านเทคโนโลยีโทรคมนาคม ภาควิชาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาตร์ จุฬาลงกรณ์มหาวิทยาลัย และโครงการทุนศิษย์ก้นกุฏิ ที่ให้ความสนับสนุนในการทำงานวิจัย ตลอดระยะเวลา 2 ปี

ขอบคุณเพื่อน พี่ และน้องในห้องปฏิบัติการวิจัย สำหรับความช่วยเหลือในเรื่องงานวิจัย กำลังใจในการทำงานและบรรยากาศการทำงานที่เป็นเสมือนครอบครัว สุดท้ายนี้ที่ขาดไม่ได้ ขอบพระคุณคุณพ่อ คุณแม่ และทุกคนในครอบครัวที่เป็นกำลังใจและแรงผลักดันสำคัญตลอดมา หากขาดทุกคนที่กล่าวมาข้างต้นงานวิจัยและวิทยานิพนธ์ฉบับนี้คงไม่สามารถสำเร็จลุล่วงได้ ขอบพระคุณจากใจค่ะ

สารบัญ

หน้า
บทคัดย่อภาษาไทยง
บทคัดย่อภาษาอังกฤษจ
กิตติกรรมประกาศฉ
สารบัญช
สารบัญตารางฐ
สารบัญภาพณ
บทที่ 1 บทนำ1
1.1 ความเป็นมาและความสำคัญของปัญหา1
1.2 วัตถุประสงค์ของวิทยานิพนธ์6
1.3 ขอบเขตของวิทยานิพนธ์6
1.4 ขั้นตอนการดำเนินงาน7
1.5 ประโยชน์ที่คาดว่าจะได้รับ8
บทที่ 2 ทฤษฏีพื้นฐาน9
2.1 ระบบสื่อสารผ่านเส้นใยแสง9
2.2 ทฤษฎีการส่งสัญญาณผ่านเส้นใยแสง10
2.3 ปัจจัยที่ส่งผลต่อพัลส์สัญญาณ11
2.3.1 การสูญเสียกำลังสัญญาณ (attenuation loss)11
2.3.2 ดิสเพอร์ชันของเส้นใยแสง (fiber dispersion)11
2.3.3 ความไม่เป็นเชิงเส้นของเส้นใยแสง (fiber nonlinearity)16
2.3.3.1 Self-phase modulation (SPM)16
2.3.3.2 Cross-phase modulation (XPM)17
2.3.3.3 Four wave mixing (FWM)18
2.3.4.ปัญหาการกระจายโหมดโพลาไรซ์ (polarization mode dispersion : PMD)20
2.4 ระบบการมัลติเพลกซ์สัญญาณทางแสง21
2.4.1 ระบบการมัลติเพลกซ์สัญญาณเชิงความยาวคลื่น (wavelength division
multiplexing)21

v	าน้า
2.4.2 ระบบการมัลติเพลกซ์สัญญาณเชิงความยาวคลื่นอย่างหนาแน่น	. 22
2.4.3 โครงสร้างโครงข่ายดีดับเบิ้ลยูดีเอ็มประเภท wavelength-routed optical	
network	. 24
2.5.โครงข่าย SDH	. 26
2.5.1 basic building block ของมาตรฐาน SONET	. 26
2.5.2 basic building block ของมาตรฐาน SDH	. 27
2.6 Optical transport network (OTN)	. 29
2.7 การป้องกันความเสียหายในโครงข่าย SDH ลักษณะเมช	. 32
2.7.1 การป้องกันความเสียหายที่ใช้จำลองในวิทยานิพนธ์	. 35
2.8 เทคนิคการแก้ไขสัญญาณความผิดเพี้ยนที่เกิดจากปรากฏการณ์ดิสเพอร์ชัน	. 36
2.9 เทคนิคการแก้ไขสัญญาณความผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมดโพลาไรซ์	. 36
บทที่ 3 ความผิดเพี้ยนของสัญญาณในเส้นใยแสง	. 38
3.1 ความผิดเพี้ยนของสัญญาณในเส้นใยแสงจากผลจากปรากฏการณ์ดิสเพอร์ชันเมื่อ	
เพิ่มอัตราการส่งข้อมูลเป็น 40 Gb/s ต่อช่องสัญญาณ	. 40
3.2 ระยะทางสูงสุดที่สามารถส่งสัญญาณผ่านเส้นใยแสงได้ เนื่องจากผลของดิสเพอร์ชัน	
ตามขอบเขตจำกัดของอัตราบิตผิดพลาดของระบบ (BER)	.41
3.3 ระยะทางสูงสุดที่สามารถส่งสัญญาณผ่านเส้นใยแสงได้ เนื่องจากผลของ PMD ตาม	
ขอบเขตจำกัดของอัตราบิตผิดพลาดของระบบ (BER)	. 42
3.4 การชดเซยปัญหาดิสเพอร์ชันและปัญหาการกระจายโหมดโพลาไรซ์ในโครงข่ายที่มี	
อัตราการรับส่งข้อมูลที่ 40 Gbps	. 44
3.5 การชดเชยปัญหาการลดทอนของกำลังสัญญาณ (attenuation)	. 45
3.6 ระยะทางสูงสุดที่สามารถส่งสัญญาณผ่านเส้นใยแสงได้เนื่องจากผลของ Kerr effect	. 46
3.7 การจำลองระบบส่งสัญญาณเพื่อศึกษาผลกระทบของ Kerr effect เมื่อได้ชดเชย	
ความผิดเพี้ยนของสัญญาณจากปัจจัยอื่นๆแล้ว	. 47
บทที่ 4 อัลกอริทึมสำหรับการใช้หน่วยชดเชยดิสเพอร์ชัน	. 50
4.1 ระบุเส้นทางการส่งผ่านสัญญาณจากโนดต้นทางไปสู่โนดปลายทาง	. 50
4.2 การสร้างสมการและอสมการเงื่อนไขขอบเขต	. 50
4.2.1 สมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณระหว่างโนด	. 51

	หน้า
4.2.2 เงื่อนไขขอบเขตของค่าดิสเพอร์ชัน	52
4.2.3 เงื่อนไขขอบเขตจำนวนเต็ม	52
4.2.4 ฟังก์ชันวัตถุประสงค์	52
4.3 การแก้สมการและอสมการเงื่อนไขขอบเขต	52
บทที่ 5 อัลกอริทึมสำหรับการใช้อุปกรณ์ชดเชยปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการ	
กระจายโหมดโพลาไรซ์	54
5.1 ระบุเส้นทางการส่งผ่านสัญญาณจากโนดต้นทางไปสู่โนดปลายทาง	54
5.2 การสร้างสมการและอสมการเงื่อนไขขอบเขต	54
5.2.1 สมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณระหว่างโนด	54
5.2.2 เงื่อนไขขอบเขตของค่าความผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมด	
โพลาไรซ์	55
5.2.3 เงื่อนไขขอบเขตจำนวนเต็ม	56
5.2.4 ฟังก์ชันวัตถุประสงค์	56
5.3 การแก้สมการและอสมการเงื่อนไขขอบเขต	56
บทที่ 6 อัลกอริทึมสำหรับการใช้หน่วยชดเชยดิสเพอร์ชัน เมื่อคำนึงผลของความไม่เป็นเชิง	
เส้นของเส้นใยแลง	57
6.1 ระยะทางที่ถูกจำกัดด้วยผลของความไม่เป็นเชิงเส้นของเส้นใยแสง (Nonlinear	
Length)	57
6.2 ระบุเส้นทางการส่งผ่านสัญญาณจากโนดต้นทางไปสู่โนดปลายทาง	58
6.3 การสร้างสมการและอสมการเงื่อนไขขอบเขต	58
6.3.1 สมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณระหว่างโนด	58
6.3.2 เงื่อนไขขอบเขตของค่าดิสเพอร์ชัน	59
6.3.3 เงื่อนไขขอบเขตจำนวนเต็ม	59
6.3.4 ฟังก์ชันวัตถุประสงค์	60
6.3.5 อสมการเงื่อนไขระยะทางที่ถูกจำกัดด้วยผลของความไม่เป็นเชิงเส้น	
(Nonlinear Length Constraints)	60
6.4 การแก้สมการและอสมการเงื่อนไขขอบเขต	61

	หน้า
บทที่ 7 การใช้อัลกอริทึมสำหรับใช้หน่วยชดเชยดิสเพอร์ชันในกรณีทำงานปกติและกรณีเกิด	
ความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย	62
7.1 การจำลองการใช้หน่วยชดเชยดิสเพอร์ชันที่น้อยที่สุดบนโครงข่ายตัวอย่าง	62
7.1.1 ประเภทของหน่วยชดเชยดิสเพอร์ชันที่ใช้ในการจำลองโครงข่าย	63
7.2 โครงข่ายตัวอย่างกรณีทำงานปกติ	66
7.2.1 ระบุเส้นทางการส่งผ่านสัญญาณจากโนดต้นทางไปสู่โนดปลายทาง	69
7.2.2 การสร้างสมการและอสมการเงื่อนไขขอบเขต	69
7.2.2.1 สมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณระหว่างโนดต้นทางและโนด	
ปลายทาง	69
7.2.2.2 เงื่อนไขขอบเขตของค่าดิสเพอร์ชัน	74
7.2.2.3 เงื่อนไขขอบเขตจำนวนเต็ม	76
7.2.2.4 ฟังก์ชันวัตถุประสงค์	76
7.3 โครงข่าย Optical Pan European Network กรณีทำงานปกติ	79
7.4 โครงข่าย North-American Reference Network กรณีทำงานปกติ	84
7.5 โครงข่ายตัวอย่างในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย	92
7.5.1 ระบุเส้นทางการส่งผ่านสัญญาณจากโนดต้นทางไปสู่โนดปลายทาง	92
7.5.2 การสร้างสมการและอสมการเงื่อนไขขอบเขต	92
7.5.2.1 สมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณระหว่างโนด	92
7.5.2.2 เงื่อนไขขอบเขตของค่าดิสเพอร์ชัน	96
7.5.2.3 เงื่อนไขขอบเขตจำนวนเต็ม	97
7.5.2.4 ฟังก์ชันวัตถุประสงค์	97
7.5.3 การแก้สมการและอสมการเงื่อนไขขอบเขต	98
7.6 โครงข่าย OPEN ในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย	99
7.7 โครงข่าย NARNET ในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย	. 101
บทที่ 8 การใช้อัลกอริทึมสำหรับใช้อุปกรณ์ชดเชยปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการ	
กระจายโหมดโพลาไรซ์ในกรณีทำงานปกติและกรณีเกิดความเสียหายแก่ข่าย	

เชื่อมโยงหนึ่งภายในโครงข่าย104

	หน้า
8.1 การจำลองการใช้อุปกรณ์ชดเชยปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการกระจาย	
โหมดโพลาไรซ์ที่น้อยที่สุดบนโครงข่ายตัวอย่าง	. 104
8.1.1 อุปกรณ์ชดเชยปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมด	
โพลาไรซ์	. 104
8.2 โครงข่ายตัวอย่างกรณีทำงานปกติ	. 105
8.2.1 ระบุเส้นทางการส่งผ่านสัญญาณจากโนดต้นทางไปสู่โนดปลายทาง	. 105
8.2.2 การสร้างสมการและอสมการเงื่อนไขขอบเขต	. 105
8.2.2.1 สมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณระหว่างโนดต้นทางและโนด	
ปลายทาง	. 106
8.2.2.2 เงื่อนไขขอบเขตของค่าความผิดเพี้ยนที่เกิดจากปัญหาการกระจาย	
โพลาไรซ์	. 107
8.2.2.3 เงื่อนไขขอบเขตจำนวนเต็ม	. 108
8.2.2.4 ฟังก์ชันวัตถุประสงค์	. 108
8.3 โครงข่าย OPEN ในกรณีทำงานปกติ	. 113
8.4 โครงข่าย NARNET ในกรณีทำงานปกติ	. 116
8.5 โครงข่ายตัวอย่างในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย	. 122
8.5.1 การสร้างสมการและอสมการเงื่อนไขขอบเขต	. 122
8.5.1.1 สมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณระหว่างโนด	. 122
8.5.1.2 เงื่อนไขขอบเขตของค่าความผิดเพี้ยนที่เกิดจากปัญหาการกระจาย	
โพลาไรซ์	. 126
8.5.1.3 เงื่อนไขขอบเขตจำนวนเต็ม	. 127
8.5.1.4 ฟังก์ชันวัตถุประสงค์	. 127
8.6 โครงข่าย OPEN ในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย	. 130
8.7 โครงข่าย NARNET ในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย	. 134
บทที่ 9 การใช้อัลกอริทึมสำหรับการวางหน่วยชดเชยดิสเพอร์ชันในกรณีทำงานปกติและกรณี	
เกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย เมื่อคำนึงผลของความไม่เป็น	
เชิงเส้นของเส้นใยแสง	. 146
9.1 โครงข่ายตัวอย่างกรณีทำงานปกติ	. 146

ห	น้า
9.1.1 ระบุเส้นทางการส่งผ่านสัญญาณจากโนดต้นทางไปสู่โนดปลายทาง	46
9.1.2 การสร้างสมการและอสมการเงื่อนไขขอบเขต1	46
9.1.2.1 สมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณระหว่างโนดต้นทางและโนด	
ปลายทาง1	47
9.1.2.2 เงื่อนไขขอบเขตของค่าดิสเพอร์ชัน1	48
9.1.2.3 เงื่อนไขขอบเขตจำนวนเต็ม1	48
9.1.2.4 ฟังก์ชันวัตถุประสงค์1	49
9.1.2.5 อสมการเงื่อนไขระยะทางที่ถูกจำกัดด้วยผลของความไม่เป็นเชิงเส้น 1	49
9.2 โครงข่าย OPEN กรณีทำงานปกติ1	54
9.3 โครงข่าย NARNET กรณีทำงานปกติ1	58
9.4 โครงข่ายตัวอย่างในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย1	67
9.4.1 ระบุเส้นทางการส่งผ่านสัญญาณจากโนดต้นทางไปสู่โนดปลายทาง	67
9.4.2 การสร้างสมการและอสมการเงื่อนไขขอบเขต	67
9.4.2.1 สมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณระหว่างโนด	67
9.4.2.2 เงื่อนไขขอบเขตของค่าดิสเพอร์ชัน1	70
9.4.2.3 เงื่อนไขขอบเขตจำนวนเต็ม1	70
9.4.2.4 ฟังก์ชันวัตถุประสงค์1	70
9.4.2.5 อสมการเงื่อนไขระยะทางที่ถูกจำกัดด้วยผลของความไม่เป็นเชิงเส้น 1	71
9.5 โครงข่าย OPEN ในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย1	73
9.6 โครงข่าย NARNET ในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย 1	74
บทที่ 10 สรุปผลวิจัยและข้อเสนอแนะ1	77
10.1 สรุปผลวิจัย1	77
10.2 ข้อเสนอแนะ	80
รายการอ้างอิง1	81
ประวัติผู้เขียนวิทยานิพนธ์1	85

สารบัญตาราง

หน้า
ตารางที่ 2.1 การเปรียบเทียบระหว่างมาตรฐานแบบ SONET และ SDH
ตารางที่ 3.1 แสดงความสัมพันธ์ของสัญญาณที่ถูกมอดูเลตกับเฟลของสัญญาณ
ตารางที่ 3.2 11 channels จาก ITU GRID SPECIFICATION40
ตารางที่ 3.3 Optical and Geometric specifications for optical fiber G.652.D41
ตารางที่ 3.4 แสดงระยะทางสูงสุดในการส่งสัญญาณที่ขอบบนและขอบล่าง
ตารางที่ 3.5 แสดงความสัมพันธ์ระหว่างระยะทางในการส่งสัญญาณ
ตารางที่ 3.6 มาตรฐานของเส้นใยแสงชนิด G.652d (SMF)
ตารางที่ 3.7ค่าความยาวของหน่วยชดเชยที่ความยาวของเส้นใยแสงต่างๆ
ตารางที่ 3.8 gain ของ optical amplifier ที่ระยะต่างๆ45
ตารางที่ 3.9 ระยะทางสูงสุดในการส่งสัญญาณโดยอัตราบิตข้อมูล BER<10 ⁻¹²
ตารางที่ 3.10 ค่าของกำลังในการส่งสัญญาณที่ span ต่างๆกัน
ตารางที่ 7.1 ค่าดิสเพอร์ชันสำหรับมอดูลความยาวต่างๆ65
ตารางที่ 7.2 เส้นทางการส่งผ่านสัญญาณบนเส้นใยแสงทำงานกรณีโครงข่ายตัวอย่างทำงาน
ปกติ
ตารางที่ 7.3 เส้นทางการส่งสัญญาณที่จัดสรรขึ้นใหม่บนเส้นใยแสงสำรองโดยกลไกการกู้คืน
สัญญาณแบบ Path Protection เมื่อเกิดความข่ายเสียหายขึ้นกับข่ายเชื่อมโยง
12 และ 21
ตารางที่ 7.4 เส้นทางการส่งสัญญาณที่จัดสรรขึ้นใหม่บนเส้นใยแสงสำรองโดยกลไกการกู้คืน
สัญญาณแบบ Path Protection เมื่อเกิดความข่ายเสียหายขึ้นกับข่ายเชื่อมโยง
13 และ 3167
ตารางที่ 7.5 เส้นทางการส่งสัญญาณที่จัดสรรขึ้นใหม่บนเส้นใยแสงสำรองโดยกลไกการกู้คืน
สัญญาณแบบ Path Protection เมื่อเกิดความข่ายเสียหายขึ้นกับข่ายเชื่อมโยง
24 และ 4267
ตารางที่ 7.6 เส้นทางการส่งสัญญาณที่จัดสรรขึ้นใหม่บนเส้นใยแสงสำรองโดยกลไกการกู้คืน
สัญญาณแบบ Path Protection เมื่อเกิดความข่ายเสียหายขึ้นกับข่ายเชื่อมโยง
25 และ 52

หน้า

ו געוע ער ער א
ตารางที่ 7.7 เส้นทางการส่งสัญญาณที่จัดสรรขึ้นใหม่บนเส้นใยแสงสำรองโดยกลไกการกู้คืน
สัญญาณแบบ Path Protection เมื่อเกิดความข่ายเสียหายขึ้นกับข่ายเชื่อมโยง
34 และ 43
ตารางที่ 7.8 เส้นทางการส่งสัญญาณที่จัดสรรขึ้นใหม่บนเส้นใยแสงสำรองโดยกลไกการกู้คืน
สัญญาณแบบ Path Protection เมื่อเกิดความข่ายเสียหายขึ้นกับข่ายเชื่อมโยง
54 และ 45
ตารางที่ 7.9 ช่องสัญญาณใน Wave Division Multiplexing (WDM) ITU Grid C-Band [34]70
ตารางที่ 7.10 ค่าดิสเพอร์ชันของ SMF, NS-DCU และ SC-DCU72
ตารางที่ 7.11 สมการเงื่อนไขขอบเขตชดเชยค่าดิสเพอร์ชันการส่งผ่านสัญญาณ 2 ความยาว
คลื่น73
ตารางที่ 7.12 เงื่อนไขขอบเขตของค่าดิสเพอร์ชันในการส่งผ่านสัญญาณ 2 ความยาวคลื่น75
ตารางที่ 7.13 ผลเฉลยจำนวน SC-DCU จากการทำ MILP optimization
ตารางที่ 7.14 ผลเฉลยค่าดิสเพอร์ชันสะสม จากการทำ MILP Optimization78
ตารางที่ 7.15 ค่าดิสเพอร์ชันของ SC-DCU ที่มอดูลต่างๆ81
ตารางที่ 7.16 ผลเฉลยจำนวน SC-DCU แต่ละ Module จากการทำ MILP optimization81
ตารางที่ 7.17 ผลเฉลยจำนวน SC-DCU (DCM-30-SMF-C) จากการทำ MILP optimization81
ตารางที่ 7.18 ผลเฉลยค่าดิสเพอร์ชันสะสม จากการทำ MILP Optimization
ตารางที่ 7.19 ค่าดิสเพอร์ชันของ NS-DCU ที่มีระยะทางการชดเชยดิสเพอร์ชันที่ชดเชยได้
พอดีเมื่อเปรียบเทียบกับเส้นใยแสงชนิด SMF ITU-T G.652 ที่ระยะทางต่างๆ85
ตารางที่ 7.20 ผลเฉลยจำนวน SC-DCU (DCM-20-SMF-C)
ตารางที่ 7.21 ผลเฉลยค่าดิสเพอร์ชันสะสม จากการทำ MILP Optimization
ตารางที่ 7.22 เงื่อนไขขอบเขตของค่าดิสเพอร์ชันในการส่งผ่านสัญญาณด้วย
ตารางที่ 7.23 ผลเฉลยจำนวน NS-DCU และ SC-DCU โครงข่ายตัวอย่าง
ตารางที่ 7.24 ผลเฉลยจำนวน NS-DCU และ SC-DCU โครงข่าย OPEN
ตารางที่ 7.25 ผลเฉลยจำนวน NS-DCU และ SC-DCU โครงข่าย NARNET
ตารางที่ 8.1 เงื่อนไขขอบเขตของค่าความผิดเพี้ยนที่เกิดจากปัญหาการกระจายโพลาไรซ์ 107
ตารางที่ 8.2 ผลเฉลยจำนวน PMDC จาการทำ MILP optimization 111
ตารางที่ 8.3 ผลเฉลยผลรวมของค่า DGD จากการทำ MILP Optimization

ฑ

หน้า
ตารางที่ 8.4 ผลเฉลยจำนวน PMDC จาการทำ MILP optimization
ตารางที่ 8.5 ผลเฉลยผลรวมของค่า DGD จากการทำ MILP Optimization
ตารางที่ 8.6 ผลเฉลยจำนวน PMDC จาการทำ MILP optimization
ตารางที่ 8.7 ผลเฉลยผลรวมของค่า DGD จากการทำ MILP Optimization
ตารางที่ 8.8 เงื่อนไขขอบเขตของค่าความผิดเพี้ยนที่เกิดจากปัญหาการกระจายโพลาไรซ์ 126
ตารางที่ 8.9 ผลเฉลยจำนวน PMDC จาการทำ MILP optimization
ตารางที่ 8.10 ผลเฉลยผลรวมของค่า DGD จากการทำ MILP Optimization
ตารางที่ 8.11 ผลเฉลยจำนวน PMDC จาการทำ MILP optimization
ตารางที่ 8.12 ผลเฉลยผลรวมของค่า DGD จากการทำ MILP Optimization
ตารางที่ 8.13 ผลเฉลยจำนวน PMDC จาการทำ MILP optimization
ตารางที่ 8.14 ผลเฉลยผลรวมของค่า DGD จากการทำ MILP Optimization
ตารางที่ 9.1 อสมการเงื่อนไขระยะทางที่ถูกจำกัดด้วยผลของความไม่เป็นเชิงเส้น
ตารางที่ 9.2 ผลเฉลยจำนวน SC-DCU จากการทำ MILP optimization
ตารางที่ 9.3 ผลเฉลยค่าดิสเพอร์ชันสะสม จากการทำ MILP Optimization
ตารางที่ 9.4 ผลเฉลยจำนวน SC-DCU (DCM-30-SMF-C)154
ตารางที่ 9.5 ผลเฉลยค่าดิสเพอร์ชันสะสม จากการทำ MILP Optimization
ตารางที่ 9.6 ผลเฉลยจำนวน SC-DCU (DCM-20-SMF-C)158
ตารางที่ 9.7 ผลเฉลยค่าดิสเพอร์ชันสะสม จากการทำ MILP Optimization
ตารางที่ 9.8 ผลเฉลยจำนวน SC-DCU โครงข่ายตัวอย่าง
ตารางที่ 9.9 ดิสเพอร์ชันของ SC-DCU- 5 km
ตารางที่ 9.10 ผลเฉลยจำนวน SC-DCU โครงข่าย OPEN
ตารางที่ 9.11 ผลเฉลยจำนวน SC-DCU โครงข่าย NARNET

สารบัญภาพ

	หน้า
ภาพที่ 1.1 Optical transport network (OTN)	4
ภาพที่ 2.1 ระบบสื่อสารผ่านเส้นใยแสง	9
ภาพที่ 2.2 ความสัมพันธ์ระหว่างการลดทอนสัญญาณของเส้นใยแสงกับความยาวคลื่น [14]	12
ภาพที่ 2.3 ความสัมพันธ์ระหว่างความเร็วกลุ่มและการกระจายของความเร็วกลุ่ม [14]	12
ภาพที่ 2.4 chromatic dispersion	14
ภาพที่ 2.5 การเกิด Inter-symbol interference	15
ภาพที่ 2.6 ความสัมพันธ์ระหว่าง eta_2 และ D ในช่วงของดิสเพอร์ชัน	16
ภาพที่ 2.7 ผลของ SPM ต่อสัญญาณที่เดินทางในเส้นใยแสงทาง	17
ภาพที่ 2.8 ผลของ XPM ต่อสัญญาณที่เดินทางในเส้นใยแสง	18
ภาพที่ 2.9 ผลของ FWM ต่อสัญญาณที่เดินทางในเส้นใยแสง	19
ภาพที่ 2.10 ผลของการกระจายโหมดโพลาไรซ์ PMD	20
ภาพที่ 2.11 ระบบการมัลติเพลกซ์สัญญาณเชิงความยาวคลื่นบนเส้นใยแสง	22
ภาพที่ 2.12 โครงสร้างพื้นฐานของระบบสื่อสารแบบ DWDM	24
ภาพที่ 2.13 wavelength-routed (wide-area) optical WDM network	25
ภาพที่ 2.14 basic SONET building block	27
ภาพที่ 2.15 basic SDH building block	28
ภาพที่ 2.16 เปรียบเทียบข้อมูลแบบ burst กับการตอบสนองแบบระบบ TDM แบบ SDH	29
ภาพที่ 2.17 โครงสร้างของ Ethernet packet	30
ภาพที่ 2.18 Optical transport network (OTN)	30
ภาพที่ 2.19 การส่ง Ethernet packet ผ่าน OTN	31
ภาพที่ 2.20 มาตรฐานซึ่งกำหนดการส่ง packet ผ่าน OTN	31
ภาพที่ 2.21 โครงข่ายลักษณะเมชประกอบไปด้วยเส้นใยแสงทำงานแทนด้วยเส้นทึบและเส้น	
ใยแสงสำรองแทนด้วยเส้นประ	32
ภาพที่ 2.22 เทคนิคการป้องกันความเสียหายแบบ (ก) 1 + 1 (ข) 1:1 (ค) 1:N	34
ภาพที่ 2.23 Path switching และ line switching ในโครงข่ายลักษณะเมช	35
ภาพที่ 3.1 DQPSK encoder	38
ภาพที่ 3.2 DQPSK receiver	39

ภาพที่ 3.3 eye diagram ของ DQPSK modulation (a) ของสัญญาณ I _k (b) ของสัญญา	ณ
Q _k	39
ภาพที่ 3.4 กราฟแสดงความสัมพันธ์ระหว่างความยาวคลื่น	41
ภาพที่ 3.5 กราฟแสดงความสัมพันธ์ระหว่างความยาวคลื่นและระยะทางสูงสุดของ	42
ภาพที่ 3.6 กราฟแสดงความสัมพันธ์ระหว่างกำลังในการส่งสัญญาณ	47
ภาพที่ 3.7 แบบจำลองการส่งสัญญาณ	48
ภาพที่ 3.8 ความสัมพันธ์ของกำลังในการส่งสัญญาณกับค่า log ของอัตราตัวอย่างผิดพลาเ	ด 49
ภาพที่ 4.1 การส่งผ่านสัญญาณระหว่างโนดต้นทางและปลายทาง	51
ภาพที่ 4.2 โปรแกรม XPress.MP MP	53
ภาพที่ 5.1 การส่งผ่านสัญญาณระหว่างโนดต้นทางและปลายทาง	55
ภาพที่ 6.1 (ก) (ข) ช่วงการวางหน่วยชดเชยดิสเพอร์ชันระหว่างโนดต้นทางและปลายทาง	60
ภาพที่ 7.1 ดิสเพอร์ชันของ SMF ITU-T G.652	62
ภาพที่ 7.2 ดิสเพอร์ชันของ NS-DCU	63
ภาพที่ 7.3 Avanex's SC-DCU	64
ภาพที่ 7.4 ความสัมพันธ์ระหว่างของความยาวคลื่นและค่าดิสเพอร์ชันสะสมของ SC-DCU	65
ภาพที่ 7.5 โครงข่ายตัวอย่าง	66
ภาพที่ 7. 6 ดิสเพอร์ชันสะสมระหว่างโนด 1 และ 5 เมื่อใช้ NS-DCU	78
ภาพที่ 7.7 โครงข่าย OPEN	79
ภาพที่ 7.8 โครงข่าย OPEN	79
ภาพที่ 7.9 ดิสเพอร์ชันสะสมระหว่างโนด 1 และ 10 เมื่อใช้ NS-DCU	80
ภาพที่ 7.10 โครงข่าย NARNET	84
ภาพที่ 7.11 เส้นใยแสงทำงานและเส้นใยแสงสำรองบนโครงข่าย OPEN	99
ภาพที่ 7.12 เส้นใยแสงทำงานและเส้นใยแสงสำรองบนโครงข่าย NARNET	101
ภาพที่ 8.1 PMD Compensator–PMDBuster™	105
ภาพที่ 8.2 แสดงผลรวมของค่า DGD ที่ทุกโนดปลายทางบนโครงข่ายตัวอย่าง	109
ภาพที่ 8.3 ผลรวมของค่า DGD ทุกเส้นทางบนโครงข่ายตัวอย่างเมื่อใช้ PMDC	112
ภาพที่ 8.4 ความสัมพันธ์ระหว่างจำนวน PMDC กับจำนวนเท่าที่ขยายขนาดโครงข่าย	114
ภาพที่ 8.5 ผลรวมของค่า DGD ทุกเส้นทางบนโครงข่าย OPEN เมื่อใช้ PMDC	116

หน้า

ภาพที่ 8.6 ผลรวมของค่า DGD ทุกเส้นทางบนโครงข่าย NARNET เมื่อใช้ PMDC122
ภาพที่ 8.7 ผลรวมของค่า DGD ทุกเส้นทางบนโครงข่ายตัวอย่างขยาย4เท่า
ภาพที่ 8.8 ผลรวมของค่า DGD ทุกเส้นทางบนโครงข่าย OPEN ขยาย 5 เท่า
ภาพที่ 8.9 แสดงว่าไม่มีผลรวมของค่า DGD ที่โนดปลายทางใดๆ
ภาพที่ 9.1 ดิสเพอร์ชันสะสมแต่ละโนดในโครงข่ายตัวอย่างที่ความยาวคลื่น 1577.03 nm 151
ภาพที่ 9.2 Eye Pattern จากการจำลองผลบน Optisys ของเส้นทางการสื่อสารที่ยาวที่สุด
(ก) กรณีโครงข่ายตัวอย่างในกรณีไม่คำนึงถึงผลของความไม่เป็นเชิงเส้นของเส้น
ใยแสง
ภาพที่ 9.3 ความสัมพันธ์ระหว่าง log(BER) กับกำลังขาเข้าของสัญญาณ
ภาพที่ 9.4 Eye Pattern จากการจำลองผลบน Optisys ของเส้นทางการสื่อสารที่ยาวที่สุด
(n) กรณีโครงข่าย OPEN ในกรณีไม่คำนึงถึงผลของความไม่เป็นเชิงเส้นของเส้น
ใยแสง (ข) กรณีโครงข่าย OPEN ในกรณีคำนึงถึงผลของความไม่เป็นเชิงเส้น
ของเส้นใยแสง157
ภาพที่ 9.5 ความสัมพันธ์ระหว่าง log(BER) กับกำลังขาเข้าของสัญญาณ
ภาพที่ 9.6 Eye Pattern จากการจำลองผลบน Optisys ของเส้นทางการสื่อสารที่ยาวที่สุด
(n) กรณีโครงข่าย OPEN ในกรณีไม่คำนึงถึงผลของความไม่เป็นเชิงเส้นของเส้น
ใยแสง
ภาพที่ 9.7 ความสัมพันธ์ระหว่าง log(BER) กับกำลังขาเข้าของสัญญาณ

୭

บทที่ 1 บทนำ

1.1 ความเป็นมาและความสำคัญของปัญหา

การสื่อสารเป็นสิ่งสำคัญต่อมนุษย์ตั้งแต่อดีตจนกระทั่งปัจจุบัน โดยรูปแบบการสื่อสารใน อดีตใช้การสื่อสารทางไฟฟ้าโดยส่งสัญญาณผ่านสายทองแดงชนิดคู่พันเกลียว (twisted pair) หรือ สายเคเบิลแกนร่วม (coaxial cable) การส่งสัญญาณลักษณะนี้มีแบนด์วิดท์ (bandwidth) ไม่ เพียงพอต่อการใช้งานที่มากขึ้นในปัจจุบัน จึงมีการพัฒนารูปแบบการสื่อสารจากการสื่อสารทาง ไฟฟ้าเป็นการสื่อสารทางแสง (optical communication) ผ่านเส้นใยแสง (optical fiber) ซึ่ง สามารถรองรับแบนด์วิดท์ได้มากกว่า สามารถส่งสัญญาณไปได้ในระยะทางที่ไกลกว่า และมี ความสูญเสียกำลังของสัญญาณน้อยกว่า เส้นใยแสงมีประสิทธิภาพสูงกว่าตัวกลางชนิดอื่นดังนี้

- เส้นใยแสงมีอัตราการสูญเสียกำลังสัญญาณน้อยกว่าสายตีเกลียวคู่หรือสายทองแดง ซึ่งมีอัตราสูญเสียกำลังของสัญญาณประมาณ 0.2 dB/km ส่งผลให้สามารถส่ง สัญญาณได้ระยะทางไกลกว่าและใช้อุปกรณ์ทวนสัญญาณ (repeater) และอุปกรณ์ ขยายสัญญาณ (amplifier) น้อยกว่าการสื่อสารแบบอื่น
- เส้นใยแสงมีขนาดแบนด์วิดท์กว้างเมื่อเทียบกับความถี่ของคลื่นวิทยุซึ่งมีความถี่ 10⁶-10⁹ Hz เพราะความถี่ของคลื่นพาห์แสงจะอยู่ในช่วง 10¹³-10¹⁴ Hz
- เส้นใยแสงมีน้ำหนักเบาและมีขนาดเล็ก โดยขนาดเส้นผ่าศูนย์กลางของเส้นใยแสง ทั่วไปนั้น อยู่ที่ 125 μm เท่านั้นซึ่งง่ายต่อการติดตั้งและสามารถรวมเส้นใยแสงหลาย เส้นเข้าด้วยกันได้
- เส้นใยแสงเป็นฉนวนไฟฟ้า จึงปราศจากสัญญาณรบกวนทางคลื่นแม่เหล็กไฟฟ้า ทำให้ มีความถูกต้องของสัญญาณสูงเมื่อเปรียบเทียบกับสื่อประเภทอื่น ไม่สามารถลักลอบ สัญญาณได้จึงมีความปลอดภัยสูง
- รับ เส้นใยแสงทนต่อความชื้นและอุณหภูมิ มีอายุการใช้งานที่ยาวนานและต้องการการ บำรุงรักษาน้อย

โครงข่ายโทรคมนาคม (telecommunication networks) สามารถแบ่งออกได้เป็น 2 ประเภทคือ โครงข่ายหลัก (core network) และโครงข่ายเข้าถึง (access network) โดยโครงข่าย หลักทำหน้าที่เป็นศูนย์กลางของการสื่อสารโดยทำการเชื่อมต่อกับผู้ใช้โดยผ่านโครงข่ายเข้าถึง ซึ่ง โครงข่ายหลักภายในเมืองใช้การเชื่อมต่อแบบวงแหวน (ring) และการเชื่อมต่อโครงข่ายระหว่างแต่ ละเมืองใช้การเชื่อมต่อแบบเมช (mesh) และการเชื่อมต่อระหว่างประเทศซึ่งมีระยะทางไกลๆใช้ การเชื่อมต่อแบบ long-haul point-to-point ประเภทการเชื่อมโยงของโครงข่ายมีหลายประเภทคือ หากผู้ใช้บริการอยู่ในแต่ละโครงข่ายที่อยู่ไกลกันใช้การเชื่อมโยงแบบ wide-area network (WAN) และถ้าโครงข่ายมีระยะห่างไม่มากนักใช้การเชื่อมโยงแบบ metro-area network (MAN) โดย MAN จะเชื่อมโยงกันเองเป็นแบบวงแหวน หรือโครงข่ายหลัก (backbone network) ซึ่งเป็น ลักษณะเมช โดยโครงข่ายทั้งหมดที่กล่าวมาต้องการแบนด์วิดท์มากเพื่อรองรับการส่งข้อมูล จำนวนมากและส่งด้วยความเร็วสูงจึงนำการสื่อสารทางแสงมาใช้

เทคโนโลยีการมัลติเพลกซ์แบบแบ่งความยาวคลื่น (wavelength division multiplexing : WDM) คือการรวมสัญญาณแสงหลายความยาวคลื่นแล้วส่งไปในเส้นใยแสงเพียงเส้นเดียว เป็น การใช้ประโยชน์แบนด์วิดท์ที่มีอยู่ของเส้นใยแสงให้คุ้มค่า ซึ่งจะนำมาใช้ในโครงข่ายระดับ WAN (wide-area network) และ MAN (metro-area network) โดยความเร็วในการรับส่งข้อมูลในแต่ละ โครงข่ายมีอัตราเร็วไม่เท่ากันขึ้นกับปริมาณข้อมูลที่จะส่งในแต่ละโครงข่ายซึ่งจะเป็นไปตาม มาตรฐาน synchronous optical network / synchronous digital hierarchy (SONET/SDH) ใน ปัจจุบันมาตรฐาน SONET/SDH กำหนดอัตราข้อมูลที่ OC-768 หรือที่อัตราการส่งข้อมูล 160 Gb/s ต่อมาได้มีการพัฒนาวิธีการมัลติเพลกซ์เพื่อที่จะเพิ่มประสิทธิภาพขึ้นโดยการแบ่งช่องความ ยาวคลื่นที่มีอยู่ให้หนาแน่นขึ้น โดยจะเรียกว่าเทคโนโลยีการมัลติเพลกซ์แบบแบ่งความยาวคลื่น อย่างหนาแน่น (dense wavelength division multiplexing : DWDM) โดยการมัลติเพลกซ์แบบ แบ่งความยาวอย่างหนาแน่นจำนวน 192 ช่องสัญญาณแต่ละช่องสัญญาณจะมีอัตราเร็ว 10 Gb/s และการมัลติเพลกซ์แบบแบ่งความยาวคลื่นอย่างหนาแน่นจำนวน 80 ช่องสัญญาณแต่ละ ช่องสัญญาณจะมีอัตราเร็ว 40 Gb/s โดยผลิตภัณฑ์เส้นใยแสงในตลาดปัจจุบันมีความสามารถใน การส่งสัญญาณความเร็วสูงสุด 2-3 Tb/s แต่เส้นใยแสงชนิด G.652D : zero-water-peak ที่ได้รับ ความนิยมอย่างแพร่หลายในปัจจุบันนี้สามารถให้แบนด์วิดท์ที่มีอัตราการสูญเสียพลังงานต่ำกว้าง ์ ตั้งแต่ 1300 nm ถึง 1700 nm (400 nm) และสามารถรองรับจำนวนช่องสัญญาณได้มากกว่าเส้น ใยแสงที่ใช้อยู่ในปัจจุบัน แต่การเพิ่มจำนวนช่องสัญญาณมีผลต่อต้นทุนของระบบเนื่องจากต้องใช้ อุปกรณ์อิเล็กทรอนิกส์ความเร็วสูง (ultra-high-speed electronic switching equipments) ที่ สามารถรองรับจำนวนซ่องสัญญาณหรือความเร็วของซ่องสัญญาณเพิ่มมากขึ้นซึ่งอุปกรณ์ ้ดังกล่าวมีราคาสูง หากจะลดต้นทุนในส่วนนี้จะต้องให้สัญญาณอยู่ในรูปของแสงตั้งแต่ต้นทาง จนกระทั่งถึงปลายทาง (transparent)

เมื่อส่งสัญญาณแสงผ่านเส้นใยแสงเป็นระยะทางไกลจะเกิดปัญหาความผิดเพี้ยนต่อ สัญญาณแสงได้แก่ การลดทอนกำลังของสัญญาณแสง (attenuation) ซึ่งจะส่งผลให้เกิดการลด คุณภาพของสัญญาณเมื่อสัญญาณเดินทางผ่านเส้นใยแสง โดยปัญหาการลดทอนกำลังของ สัญญาณแสงนั้นสามารถแก้ไขได้โดยใช้อุปกรณ์ขยายสัญญาณ

อีกปัญหาหนึ่งคือปัญหาการขยายออกของพัลส์สัญญาณ (pulse broadening) ที่เกิด จากดิสเพอร์ชัน (dispersion) ของเส้นใยแสง ทำให้เกิดการซ้อนทับกันของพัลส์สัญญาณ(intersymbol interference: ISI) เมื่อสัญญาณแสงเกิดความผิดเพี้ยนทำให้ไม่สามารถรับสัญญาณที่ ถูกต้องได้ หากสัญญาณแสงเดินทางไปในเส้นใยแสงโดยไม่มีการแปลงสัญญาณจากสัญญาณ แสงเป็นสัญญาณไฟฟ้า (O-E conversion) ที่โนดใดๆที่ผ่าน สัญญาณที่ส่งไปจะไม่สามารถแก้ผล ที่เกิดจากดิสเพอร์ชันที่แต่ละโนดได้

ความผิดเพี้ยนของสัญญาณที่เกิดจากปัญหาดิสเพอร์ชันสามารถแก้ไขโดยการใช้หน่วย ชดเชยดิสเพอร์ชัน (dispersion-compensating unit : DCU) ซึ่งหน่วยชดเชยดิสเพอร์ชันมักจะมี ส่วนประกอบหลักคือ dispersion-compensating fiber (DCF) ที่สามารถปรับค่าดิสเพอร์ชันให้ สามารถหักล้างกับค่าดิสเพอร์ชันสะสมของเส้นใยแสงประเภทโหมดเดียวได้ เส้นใยแสงดัง กล่าวคือ ซึ่งแบ่งออกเป็น 2 ชนิดคือ

- Non-slope compensated dispersion-compensating unit (NS-DCU) เครื่องหมาย ของความชันค่าดิสเพอร์ชันของ NS-DCU กับเครื่องหมายของความชันค่าดิสเพอร์ชันของ SMF มีค่าเป็นบวกเหมือนกัน
- Slope-compensated dispersion-compensating unit (SC-DCU) เครื่องหมายของ ความชั้นค่าดิสเพอร์ชันของ SC-DCU มีค่าเป็นฉบตรงข้ามกับเครื่องหมายของความชัน ค่าดิสเพอร์ชันของ SMF ซึ่งมีค่าเป็นบวก

ในปี 2010 มีงานวิจัยที่บ่งบอกว่าการส่งสัญญาณด้วยการใช้เทคนิคการมอดูเลตบางวิธี ร่วมด้วยการชดเชยดิสเพอร์ชันด้วยหน่วยชดเชยดิสเพอร์สามารถให้อัตราข้อมูลสูงมาก ตัวอย่างเช่น ให้อัตราสูงสุด 1.6 Tb/s บนความยาว 1335 km หรือ 1.4 Tb/s บนความยาว 2000 km และ 32 Tb/s บนความยาว 580 km [1] - [3]

ในการออกแบบโครงข่ายนั้นจำเป็นต้องออกแบบให้ที่ภาครับสามารถตรวจจับสัญญาณที่ ถูกต้องได้ โดยอาศัยอุปกรณ์ขยายสัญญาณทางแสง การวางหน่วยชดเชยดิสเพอร์ชัน โดยปกติใน โครงข่ายแบบเดิม การเชื่อมต่อระหว่างโนดต่อโนดนั้นอาศัยการเชื่อมต่อแบบจุดต่อจุดเพียงอย่าง เดียว หากจำเป็น หน่วยชดเชยดิสเพอร์ชันจึงถูกติดตั้งที่ขาเข้าของอุปกรณ์ขยายสัญญาณ การ ออกแบบ และคำนวณหาจำนวนอุปกรณ์ขยายสัญญาณ และจำนวนหน่วยชดเชยดิสเพอร์ชันจึง เป็นไปตามหลักการของการออกแบบระบบเชื่อมโยงแบบจุดต่อจุด ซึ่งหากใช้วิธีดังกล่าวจะต้องใช้ อุปกรณ์ขยายสัญญาณ หน่วยชดเซยดิสเพอร์ชันจำนวนมาก อุปกรณ์ทั้งคู่เป็นอุปกรณ์ที่มีราคาสูง อาจส่งผลต่อราคาระบบ จึงมีความจำเป็นต้องลดจำนวนอุปกรณ์ดังกล่าวโดยการ optimization หาจำนวนที่น้อยที่สุดที่สามารถให้สัญญาณที่ปลายทางมีคุณภาพตามที่กำหนดได้

ในงานวิจัยก่อนหน้านี้เสนอระเบียบขั้นตอนสำหรับลดจำนวนหน่วยชดเชยดิสเพอร์ชันให้ น้อยที่สุดในโครงข่าย wavelength-routed ที่สามารถใช้ได้กับกรณีที่จำนวนของความยาวคลื่นมี ค่ามากกว่าจำนวนความยาวคลื่นน้อยสุดที่เพียงพอในการส่งผ่านสัญญาณในกรณีที่โครงข่าย ทำงานปกติและกรณีที่มีความเสียหายเกิดขึ้นกับข่ายเชื่อมโยงหนึ่งภายในโครงข่าย บนโครงข่ายที่ มีอัตราการส่งข้อมูล 10 Gb/s โดยผลเฉลยในโครงข่าย optical pan European network (OPEN) กรณีโครงข่ายทำงานปกติ คือ จำนวนหน่วย SC-DCU มอดูล DCM - 60 - SMF - C 44 ตัว และ ผลเฉลยในโครงข่าย north America reference network (NARNET) กรณีใช้หน่วยชดเชยดิส เพอร์ชันเพียงชนิดเดียว คือ SC-DCU มอดูล DCM - 40 - SMF – C จำนวน ตัว 288 กรณีใช้หน่วย ชดเชยดิสเพอร์ชันสองชนิดร่วมกัน คือ SC-DCU มอดูล DCM - 40 - SMF – C จำนวน ตัว 169 และ NS-DCU ที่ชดเชยได้พอดีเมื่อเปรียบเทียบกับเส้นใยแสงชนิด SMF ITU-T G.652 ที่ระยะทาง 80 km จำนวน 12 ตัว [4]

การส่งข้อมูลแบบลักษณะเปลี่ยนไปตามเวลา (burst) ที่เหมาะสมคือวิธีการแพกเกตสวิ ตชิง (packet switching) กล่าวคือ การใช้ packet ที่ปรับเปลี่ยนความยาวได้และไม่กำหนดเวลา ในการส่ง ประเภทของ packet ที่นิยมใช้ในปัจจุบันคือ Ethernet packet โดยเทคโนโลยีที่ใช้ใน โครงข่ายหลักที่สามารถสื่อสาร Ethernet packet หรือ packet อื่นไปในลักษณะของ packet ก็คือ optical transport network (OTN) ซึ่งแสดงได้ในภาพที่ 1.1 จากรูปแสดงว่า OTN ต่างโครงข่าย กัน เมื่อส่ง packet และ frame ชนิดใดก็ตามสามารถส่งไปยังปลายทางได้ในลักษณะเดิม โดยไม่ ต้องแบ่งย่อยลงใน frame แบบ TDM

ภาพที่ 1.1 Optical transport network (OTN)

บัจจุบันได้มีการพัฒนาอัตราเร็วการส่งข้อมูลเพิ่มขึ้นเป็น 40 Gb/s มาตรฐานของ OTN หากต้องการจะส่งข้อมูลจาก LAN ความเร็วสูงเช่น 40 Gb/s LAN นั้นอยู่ในมาตรฐาน IEEE 802.3ba ส่วนการ mapping ของ Ethernet packet ลงบน OTN frame และส่งไปใน OTN นั้น ถูก กำหนดโดย ITU-T SG15 ภายใต้มาตรฐาน ITU-T G.709 ซึ่งรองรับสื่อสัญญาณที่เป็นระบบเส้นใย แสงถึงระดับ DWDM และการมอดูเลตสัญญาณความเร็วสูงระดับ 40 Gb/s ขึ้นไปนั้น ก็เปลี่ยน จาก on-off keying (OOK) ไปเป็น differential quadrature phase-shift keying (DQPSK) ซึ่ง สามารถส่งข้อมูลต่อแบนด์วิดท์ได้มากกว่าถึง 2 เท่า เมื่อเปลี่ยนอัตราเร็วดังกล่าวแล้วจะส่งผลต่อ ระบบคือปัญหาดิสเพอร์ชันและPMD ส่งผลรุนแรงมากขึ้น โดยขีดจำกัดค่าดิสเพอร์ชันที่สามารถ ทนได้มีค่าลดลงจาก 1600 ps/nm เป็น 800 ps/nm และผลกระทบจากปัญหาการกระจายโหมด โพลาไรซ์เท่ากับ 8 ps/√km

ในงานวิจัยที่ผ่านมามีการศึกษาผลกระทบเมื่อเพิ่มอัตราเร็วเป็น 40 Gb/s พบว่าที่ ระยะทาง 1000 km หรือต่ำกว่านั้นปัญหาดิสเพอร์ชันจะเพิ่มขึ้นเป็น 16 เท่า และค่าPMD เพิ่มเป็น 4 เท่าจาก 10Gb/s [5] และมีงานวิจัยที่ทดลองชดเชยดิสเพอร์ชันบนโครงข่าย 40 Gb/s ระยะทาง 1,614 km พบว่าเมื่อวางตัวชดเชยดิสเพอร์ชันทุกระยะ 160 km ดิสเพอร์ชันสะสมที่โนดมีค่าอยู่ใน ขอบเขตที่สามารถรับได้คือ ช่วง – 800 ps/nm ถึง 800 ps/nm [6] ซึ่งจะใช้จำนวนตัวชดเชยดิส เพอร์ชันจำนวนมาก

นอกจากนี้เมื่อส่งสัญญาณแสงไปด้วยอัตราข้อมูลสูงขึ้น จำเป็นต้องใช้กำลังของสัญญาณ ที่มีค่าสูงขึ้นตามไปด้วย จึงส่งผลให้ปัญหาความไม่เป็นเชิงเส้นของเส้นใยแสงหรือปรากฏการณ์ เคอร์ (Kerr effect) ส่งผลกระทบรุนแรงเพิ่มขึ้น จากงานวิจัยพบว่าในระบบที่ใช้อัตราข้อมูล 40 Gb/s ที่ใช้วิธีมอดูเลตแบบ RZ-OOK จะได้รับผลกระทบจากปัญหาความไม่เป็นเชิงเส้นของเส้นใย แสงประเภท intra-channel four-wave mixing (FWM) และ intra-channel cross-phase modulation (XPM) อย่างรุนแรง [7] - [11]

อีกบัญหาหนึ่งที่มีผลกระทบคือการกระจายโหมดโพลาไรซ์ (PMD) เกิดจากองค์ประกอบ ของแสงสองโหมดโพลาไรซ์ โดยเวกเตอร์สนามไฟฟ้าตั้งฉากกัน (orthogonal) เดินทางผ่านเส้นใย แสงด้วยความเร็วที่ต่างกัน (differential group delay : DGD) เล็กน้อย โดยมีสาเหตุมาจาก คุณสมบัติของแก้ว (birefringence) ของเส้นใยแสง ซึ่งจะส่งผลกระทบมากในโครงข่ายที่ส่งไปใน ระยะทางไกล ที่มีอัตราการส่งข้อมูลมากกว่า 10 Gb/s

ความผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมดโพลาไรซ์สามารถแก้ได้โดยใช้เส้นใยแสง เฉพาะ (highly birefringent photonic crystal fibers) ซึ่งมีหลายชนิดเช่น bow-tie, panda เป็น ต้น ในปัจจุบันมีอุปกรณ์ที่เรียกว่า polarization-mode dispersion compensation module (PMDC) ซึ่งสามารถชดเชยการกระจายโหมดโพลาไรซ์ได้ โดยงานวิจัยที่ผ่านมา [11] พบว่าเมื่อ ชดเชยค่า PMD ด้วยวิธีเปลี่ยนลักษณะของการโพลาไรซ์อย่างรวดเร็ว (fast changing state of polarization) และการเพิ่ม DGD (jumping differential group delay) บนโครงข่ายที่มีระยะทาง 1200 km พบว่าความสามารถในการทนต่อ PMD เพิ่มขึ้นจาก 17 ps เป็น 43 ps

เนื่องจากยังไม่งานวิจัยใดได้เสนอระเบียบขั้นตอนสำหรับการลดจำนวนหน่วยชดเซยดิส เพอร์ชันบนโครงข่ายหลักที่มีอัตราการส่งข้อมูล 40 Gb/s ต่อช่องสัญญาณ ดังนั้นในวิทยานิพนธ์นี้ จึงมีจุดประสงค์ที่จะนำเสนออัลกอริทึมสำหรับใช้หน่วยชดเชยค่าดิสเพอร์ชันและอุปกรณ์ชดเชย ปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมดโพลาไรซ์ที่เหมาะสมที่สุดในโครงข่ายที่มี อัตราการส่งข้อมูล 40 Gb/s ต่อช่องสัญญาณบนช่วงความยาวคลื่นทั้ง C band โดยลดผลจาก ปรากฏการณ์เคอร์เป็นครั้งแรก โดยจะพิจารณาทั้งกรณีที่ทำงานปกติและกรณีที่มีความเสียหาย เกิดขึ้นกับข่ายเชื่อมโยงหนึ่งภายในโครงข่าย โดยใช้การป้องกันแบบ path protection ที่เป็นแบบ shortest path

1.2 วัตถุประสงค์ของวิทยานิพนธ์

- น้ำเสนออัลกอริทึมสำหรับใช้หน่วยชดเชยค่าดิสเพอร์ชันและอุปกรณ์ชดเชยปัญหาความ ผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมดโพลาไรซ์อย่างเหมาะสมที่สุดในโครงข่ายที่มี อัตราการส่งข้อมูล 40 Gb/s ต่อช่องสัญญาณบนช่วงความยาวคลื่นทั้ง C band โดย สามารถลดผลจากปรากฏการณ์เคอร์ด้วยเป็นครั้งแรก
- พัฒนาอัลกอริทึมต่อเพื่อใช้ในกรณีที่มีความเสียหายเกิดขึ้นกับข่ายเชื่อมโยงหนึ่งภายใน โครงข่าย โดยใช้การป้องกันแบบ path protection ที่เป็นแบบ shortest path

1.3 ขอบเขตของวิทยานิพนธ์

- 1. โครงข่ายที่ใช้ศึกษามีการเชื่อมต่อแบบเมช และใช้เฉพาะเส้นใยแสงแบบ SMF ITU-T G.652 สื่อสัญญาณ
- พิจารณาผลของดิสเพอร์ขันและปัญหาการกระจายโหมดโพลาไรซ์ของทุกช่วงสัญญาณ บนความยาวคลื่นเฉพาะ C band เท่านั้น
- หน่วยชดเชยดิสเพอร์ชันที่นำมาใช้ในงานวิจัยเป็นแบบ NSC-DCU และ SC-DCU เพียง 2 ชนิดเท่านั้น

- 4. ไม่มีการทดลองจริงบนโครงข่าย
- ใช้อุปกรณ์ชดเชยบัญหาความผิดเพี้ยนที่เกิดจากบัญหาการกระจายโหมดโพลาไรซ์ที่มี จำหน่ายจริงในตลาดโทรคมนาคมปัจจุบัน
- 6. ปรากฏการณ์ความไม่เป็นเชิงเส้นของเส้นใยแสงจะคำนึงเฉพาะปรากฏการณ์เคอร์
- 7. โครงข่ายที่นำมาทดลองใช้ NARNET และ OPEN เพียง 2 โครงข่ายเท่านั้น
- 8. อัตราข้อมูล 40 Gb/s ต่อช่องสัญญาณ
- อุปกรณ์ชดเชยปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมดโพลาไรซ์ที่ สามารถชดเชย DGD ได้ตั้งแต่ 0 – 50 ps และมีค่าเฉลี่ยอยู่ที่ 17 ps
- 10. กรณีที่มีความเสียหายเกิดขึ้นกับข่ายเชื่อมโยงหนึ่งภายในโครงข่าย โดยใช้การป้องกัน แบบ path protection ที่เป็นแบบ shortest path เท่านั้น

1.4 ขั้นตอนการดำเนินงาน

- ศึกษาความรู้พื้นฐานของระบบสื่อสารผ่านเส้นใยแสงและความผิดเพี้ยนของสัญญาณใน เส้นใยแสงบนโครงข่าย wavelength-routed ที่มีอัตราการส่งข้อมูล 10 Gb/s ต่อ ช่องสัญญาณ เช่นผลจากปรากฏการณ์ดิสเพอร์ชัน
- ศึกษาและวิเคราะห์ความผิดเพี้ยนของสัญญาณในเส้นใยแสงเมื่อเพิ่มอัตราการส่งข้อมูล เป็น 40 Gb/s ต่อช่องสัญญาณเช่นผลจากปรากฏการณ์ดิสเพอร์ชัน ความไม่เป็นเชิงเส้น ของเส้นใยแสง และปัญหาการกระจายโหมดโพลาไรซ์ด้วยโปรแกรม OptiSys 8.0
- ศึกษาอัลกอริทึมสำหรับการวางหน่วยชดเชยดิสเพอร์ชันอย่างเหมาะสมที่สุดบนโครงข่าย wavelength-routed ที่มีอัตราการส่งข้อมูล 10 Gb/s ต่อช่องสัญญาณ
- นำอัลกอริทึมสำหรับการวางหน่วยชดเชยดิสเพอร์ชันอย่างเหมาะสมที่สุดบนโครงข่าย wavelength-routed ที่มีอัตราการส่งข้อมูล 10 Gb/s ต่อช่องสัญญาณมาปรับปรุงเพื่อใช้ กับโครงข่าย wavelength-routed ที่เพิ่มอัตราการส่งข้อมูลเป็น 40 Gb/s ต่อช่องสัญญาณ โดยลดผลจากปรากฏการณ์เคอร์ด้วย
- ศึกษาอัลกอริทึมสำหรับชดเชยปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมด โพลาไรซ์บนโครงข่าย wavelength-routed ที่มีอัตราการส่งข้อมูล 40 Gb/s ต่อ ช่องสัญญาณ
- น ำอัลกอริทึมที่สร้างขึ้นมาทดลองใช้กับโครงข่ายที่ใช้งานจริงคือ โครงข่าย NARNET และ OPEN

- พัฒนาอัลกอริทึมต่อเพื่อใช้ในกรณีที่มีความเสียหายเกิดขึ้นกับข่ายเชื่อมโยงหนึ่งภายใน โครงข่าย โดยใช้การป้องกันแบบ path protection ที่เป็นแบบ shortest path
- จำลองเส้นทางที่ยาวที่สุดในโครงข่ายที่ใช้ทดลองหลังจากวางหน่วยชดเชยดิสเพอร์ชันและ วางอุปกรณ์ชดเชยปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมดโพลาไรซ์ด้วย โปรแกรม OptiSys 8.0
- 9. จัดทำวิทยานิพนธ์ฉบับสมบูรณ์

1.5 ประโยชน์ที่คาดว่าจะได้รับ

- ความรู้พื้นฐานเกี่ยวกับระบบสื่อสารผ่านเส้นใยแสงและความผิดเพี้ยนของสัญญาณใน เส้นใยแสงเมื่อเพิ่มอัตราการส่งข้อมูลเป็น 40 Gb/s ต่อช่องสัญญาณ
- อัลกอริทึมสำหรับการใช้หน่วยชดเชยดิสเพอร์ชันและอุปกรณ์ชดเชยปัญหาความผิดเพี้ยน ที่เกิดจากปัญหาการกระจายโหมดโพลาไรซ์อย่างเหมาะสมที่สุดบนโครงข่าย wavelength-routed ที่มีอัตราการส่งข้อมูล 40 Gb/s ต่อช่องสัญญาณ บนช่วงความยาว คลื่นทั้ง C band โดยลดผลจากปรากฏการณ์เคอร์
- 3. ผลงานตีพิมพ์และนำเสนอในที่ประชุมวิชาการนานาชาติ

บทที่ 2 ทฤษฏีพื้นฐาน

2.1 ระบบสื่อสารผ่านเส้นใยแสง

ระบบสื่อสารผ่านเส้นใยแสงประกอบด้วยส่วนประกอบ 3 ส่วนหลักคือ ภาคส่ง (transmitter) ตัวกลางหรือเส้นใยแสง (optical fiber) และภาครับ (receiver) โดยทางภาคส่งจะส่ง สัญญาณไฟฟ้าผ่าน optical modulator โดยจะทำการแปลงสัญญาณไฟฟ้าเป็นสัญญาณแสง (O-E) โดยการมอดูเลตสัญญาณนั้นมี 2 ประเภทคือ การมอดูเลตภายนอก (external modulation) ซึ่ง ประกอบด้วยแหล่งกำเนิดแสง (light source) และอุปกรณ์มอดูเลตสัญญาณ (modulator) แยก ้ออกจากกัน และการมอดูเลตโดยตรง (direct modulation) นั้นแหล่งกำเนิดแสงและอุปกรณ์มอดู เลตสัญญาณจะรวมเป็นชุดเดียวกัน เมื่อทำการมอดูเลตแล้วจากนั้นจะส่งผ่านเส้นใยแสง เส้นใย แสงมีรูปแบบให้เลือกใช้งานหลากหลายคือ เส้นใยแสงแบบโหมดเดียว (single mode fiber :SMF) ซึ่งมีราคาสูง แต่มีค่าสัมประสิทธิ์การลดทอนต่ำ (attenuation coefficient) เมื่อเปรียบเทียบกับเส้น ใยแสงแบบหลายแผนคลื่น (multi-mode fiber : MMF) ที่มีราคาถูกกว่า เส้นใยแสงแบบเลื่อน ค่าดิสเพอร์ชัน (dispersion-shifted fiber : DSF) มีคุณสมบัติพิเศษคือ ให้ค่าสัมประสิทธิ์การ ็ลดทอนต่ำสุดที่ความยาวคลื่น zero dispersion (1550 nm) และเส้นใยแสงแบบเลื่อนค่าดิสเพอร์ ชั้นที่ความยาวคลื่น 1550 nm ค่าดิสเพอร์ชันไม่เป็นศูนย์ (non-zero dispersion-shifted fiber : NZ-DSF) ซึ่งมีคุณสมบัติเหมาะที่จะใช้ในระบบมัลติเพลกซ์หลายช่องสัญญาณทางความยาวคลื่น เมื่อภาครับได้รับสัญญาณแสงแล้ว เครื่องรับสัญญาณแสงที่ประกอบด้วยอุปกรณ์ตรวจจับ ้สัญญาณแสง (Photo detector) และวงจรตัดสิน (Decision circuit) อุปกรณ์ตรวจจับสัญญาณ แสงทำหน้าที่แปลงสัญญาณแสงเป็นสัญญาณไฟฟ้าดังภาพที่ 2.1 โดยทั่วไปจะใช้เป็น positive intrinsic negative junctions (PIN) และ avalanche photodiode (APD) ส่วนวงจรตัดสินทำ หน้าที่ตัดสินว่าสัญญาณขาออกควรจะเป็นบิต '0' หรือ '1' ซึ่งขึ้นอยู่กับค่ากำหนดภายในวงจร ตัดสิน

2.2 ทฤษฎีการส่งสัญญาณผ่านเส้นใยแสง

สัญญาณแสงเป็นคลื่นแม่เหล็กไฟฟ้า ดังนั้นสมการที่เกี่ยวข้องกับสัญญาณแสงคือสมการ แมกซ์เวลล์ (Maxwell's equation) พิจารณาจากสมการความหนาแน่นกระแสและสมการความ หนาแน่นสนามแม่เหล็ก จะได้สมการการเดินทางของสัญญาณแสงในเส้นใยแสงดังสมการที่ (2.1) ซึ่งมีชื่อว่า สมการความไม่เป็นเชิงเส้นของชโรดิงเจอร์ (nonlinear schrödinger equation, NLSE) [13]

$$\frac{\partial A}{\partial Z} = -\frac{1}{2}\alpha A - \frac{i}{2}\beta_2 \frac{\partial^2 A}{\partial T^2} + i\gamma |A|^2 A \qquad (2.1)$$

โดยที่ A กรอบคลื่นของสัญญาณ

α ค่าสัมประสิทธิ์การลดทอน (attenuation constant)

 eta_2 ค่าที่บ่งบอกถึงค่า GVD (group-velocity dispersion, GVD)

γ ค่าสัมประสิทธ์ความไม่เป็นเชิงเส้น (nonlinear coefficient)

Z ระยะทางที่สัญญาณแสงเดินทางในเส้นใยแสง

- *T* กรอบอ้างอิงเวลาที่เคลื่อนที่ไปพร้อมกับความเร็วกลุ่ม (*v_g*) ดังแสดงใน สมการที่ (2.2)
- *t* เวลาที่ใช้จริง

$$T = t - \frac{z}{v_g} \tag{2.2}$$

เมื่อพิจารณาสมการที่ (2.1) พบว่าด้านขวาของสมการมี 3 พจน์คือ พจน์การสูญเสียของ กำลังสัญญาณซึ่งเพิ่มขึ้นตามระยะทางของเส้นใยแสง, พจน์ GVD ($m{eta}_2$) ส่งผลให้พัลส์สัญญาณ ขยายกว้างออก และพจน์สุดท้ายคือผลของปรากฏการณ์ความไม่เป็นเชิงเส้นภายในเส้นใยแสง หรือปรากฏการณ์เคอร์ (Kerr effect) ซึ่งส่งผลให้เฟสของสัญญาณแสงเปลี่ยนแปลงไปตาม ระยะทางและสเปกตรัมของสัญญาณขยายออกด้วย โดยความรุนแรงของปรากฏการณ์ดังกล่าว ขึ้นกับกำลังงานสูงสุด (peak power) ของสัญญาณ

2.3 ปัจจัยที่ส่งผลต่อพัลส์สัญญาณ

2.3.1 การสูญเสียกำลังสัญญาณ (attenuation loss)

เมื่อสัญญาณแสงเดินทางไปในเส้นใยแสงเป็นระยะทางใดๆจะเกิดการสูญเสียค่ากำลัง ของสัญญาณดังสมการ [14]

$$P(L) = P(0) - \alpha L \tag{2.3}$$

โดยที่ P(L) คือ กำลังของสัญญาณพัลส์ทางแสงที่ระยะจากอุปกรณ์ส่งสัญญาณ [dB]

- P(0) คือ กำลังสัญญาณพัลส์ทางแสงที่อุปกรณ์ส่งสัญญาณ [dB]
- α คือ ค่าคงตัวของการลดทอน [dB/km]

ค่าคงตัวการลดทอน (**α**) ต่างกันไปในแต่ละความยาวคลื่นซึ่งแสดงออกตามเส้นโค้ง 4 เส้นโดยแบ่งตามยุคของการสื่อสารในภาพที่ 2.2 ระบบเส้นใยแสงในยุคแรก (first window) จะ ทำงานที่ช่วงความยาวคลื่น 850 nm ในยุคนี้จะมีอัตราการสูญเสียสัญญาณมีค่าสูง ซึ่งหลักจาก อุปกรณ์ได้รับการพัฒนาขึ้นส่งผลให้ในยุคที่สอง (second window) ที่ช่วงความยาวคลื่น 1310 nm มีอัตราการลดทอนสัญญาณต่ำกว่า 0.5 dB/km ต่อมา NTT (nippon telegraph and telephone) ได้พัฒนาระบบเส้นใยแสงมาสู่ยุคที่ 3 (third window) ที่ความยาวคลื่น 1550 nm มี อัตราการลดทอนสัญญาณต่ำสุดที่ 0.2 dB/km โดยปัจจุบันมีการพัฒนาสู่ยุคที่ 4 ซึ่งใช้ความยาว คลื่นช่วง 1625 nm [15]

2.3.2 ดิสเพอร์ชันของเส้นใยแสง (fiber dispersion)

เมื่อแสงเดินทางระยะทางไกลส่งผลให้เกิดการผิดเพี้ยนของสัญญาณแสง ซึ่งเป็นผลมา จากดิสเพอร์ชันแบบภายในแผนคลื่น (intra-modal dispersion) และผลการประวิงระหว่างโหมด (intra-modal delay effect) สามารถตรวจสอบได้ด้วยการตรวจสอบความเร็วกลุ่ม (group velocity) ของโหมดการเดินทาง (guided modes) ซึ่งความเร็วกลุ่มคือความเร็วของพลังงานแต่ละ โหมดที่เดินทางในเส้นใยแสง ภาพที่ 2.3 แสดงตัวอย่างของความเร็วกลุ่มและการกระจายของ ความเร็วกลุ่ม (group velocity dispersion, GVD) เทียบกับค่าความยาวคลื่น แสดงให้เห็นว่าที่ ค่าความยาวคลื่นแตกต่างกันจะมีค่าความเร็วกลุ่มต่างกันเช่นกัน จะมีค่าสูงสุดที่ค่าดิสเพอร์ชัน เป็นศูนย์ GVD เป็นปรากฏการณ์ที่สัญญาณแสงประกอบด้วยหลายความถี่ที่มีความเร็วกลุ่ม ต่างกัน ส่งผลให้แต่ละองค์ประกอบของสัญญาณแสงใช้เวลาแตกต่างกันในการเดินทางซึ่งทำให้ สัญญาณแสงขยายความกว้างออกไปเมื่อถึงปลายทาง

ภาพที่ 2.2 ความสัมพันธ์ระหว่างการลดทอนสัญญาณของเส้นใยแสงกับความยาวคลื่น [14]

ภาพที่ 2.3 ความสัมพันธ์ระหว่างความเร็วกลุ่มและการกระจายของความเร็วกลุ่ม [14] ในแต่ละความยาวคลื่น

ดิสเพอร์ชันภายในแผนคลื่นเป็นการบานออกของพัลส์สัญญาณที่เกิดขึ้นในโหมดเดียว (single mode) เมื่อส่งสัญญาณผ่านเส้นใยแสงแบบโหมดเดียวผลของดิสเพอร์ชันของเส้นใยแสง จะชัดเนื่องจากสัญญาณแสงประกอบขึ้นด้วยหลายความถี่ซึ่งแต่ละความถี่มีค่าของดัชนีหักเหของ เส้นใยแสงที่ต่างกัน ผลของค่าดัชนีหักเหที่ต่างกันนี้จะทำให้แสงแต่ละความถี่เดินทางด้วยความเร็ว ที่ไม่เท่ากัน ซึ่งจะทำให้พัลส์สัญญาณมีการบานออก (broadening) และเดินทางมาถึงปลายทาง ไม่พร้อมกัน โดยเวลาที่ใช้ในการเดินทางคือ

$$\tau = \frac{L}{v_{g}} = L \frac{\partial \beta}{\partial \omega} = \frac{L}{C} \frac{\partial \beta}{\partial K}, \quad K = \frac{2\pi}{\lambda}$$
(2.4)

โดย L คือ ระยะทาง [km]

 \mathcal{V}_{g} คือ group velocity

จากสมการที่ (2.4) จะได้ความเร็วกลุ่มเท่ากับ

$$\Delta \tau = L \beta_2 \Delta \omega$$
(2.5)
$$\beta_2 = \frac{\partial^2 \beta}{\partial \omega^2} = \frac{\partial \beta_1}{\partial \omega} = \frac{\partial \left(\frac{1}{v_s}\right)}{\partial \omega}$$
(2.6)

โดย eta_2 คือ group velocity dispersion : GVD parameter

เมื่อเขียนในรูปความยาวคลื่น

$$D = \frac{\partial \left(\frac{1}{v_s}\right)}{\partial \lambda} = -\frac{2\pi c}{\lambda^2} \beta_2$$
(2.7)

โดยที่ D คือ dispersion (ps/nm/km)

ภาพที่ 2.4 chromatic dispersion

ในภาพที่ 2.4 แสดงค่าดิสเพอร์ชันที่แตกต่างกันไปตามความยาวคลื่นของแสง การส่ง สัญญาณที่ความยาวคลื่น 1310 nm สำหรับ single mode fiber (SMF: ITU-T G.652) ซึ่งมีค่าดิส เพอร์ชันเป็นศูนย์ (zero-dispersion point) จะสามารถหลีกเลี่ยงผลของดิสเพอร์ชันได้ และได้มี การปรับปรุงเพื่อให้เกิดค่าดิสเพอร์ชันเป็นศูนย์ที่ความยาวคลื่นแถบ 1550 nm ซึ่งเป็นจุดที่มีอัตรา การลดทอนต่ำ เรียกเส้นใยแสงประเภทนี้ว่า dispersion shifted fiber (DSF: ITU-T G.653) และ เส้นใยแสงที่มีค่าดิสเพอร์ชันไม่เป็นศูนย์ที่ความยาวคลื่นแถบ 1550 nm เราเรียกเส้นใยแสง ประเภทนี้ว่า non-zero dispersion shift fiber (NZDSF: ITU-T G.655)

การมัลติเพลกซ์สัญญาณเชิงความยาวคลื่นซึ่งประกอบด้วยหลายความยาวคลื่นรวมอยู่ ด้วยกัน แม้จะมีการเลือกความยาวคลื่นหนึ่งให้เกิดค่าดิสเพอร์ชันเป็นศูนย์ แต่ความยาวคลื่นที่ เหลือย่อมได้รับผลจากดิสเพอร์ชันค่าต่างๆ แตกต่างกันไปทำให้เกิดการผิดเพี้ยนของสัญญาณใน ช่องสัญญาณที่ต่างกัน (signal distortion) และรุนแรงไม่เท่ากันเนื่องมาจากค่าความชันของดิส เพอร์ชัน (dispersion slope) การผิดเพี้ยนของสัญญาณที่เกิดขึ้นจะทำให้เกิดการซ้อนทับกันของ พัลส์สัญญาณซึ่งถ้าไม่ทำการแก้ไข หากไปถึงภาครับจะทำให้การตรวจจับข้อมูลเกิดการผิดพลาด ได้ ภาพที่ 2.5 แสดงการเกิด inter-symbol interference (ISI) จากผลของดิสเพอร์ชัน

การประวิงระหว่างโหมด (intermodal delay) เป็นผลของแต่ละโหมดการเดินทางของแสง ในตัวกลางมีความแตกต่างกันของค่าความเร็วกลุ่มที่ความถี่เดียวกันซึ่งเกิดในเส้นใยแสงแบบ หลายโหมด (multi-mode fiber : MMF) จะมีผลรุนแรงกว่าเส้นใยแสงแบบโหมดเดียว ช่วงของดิส เพอร์ชันสามารถแบ่งออกเป็น 2 ช่วงคือ normal dispersion และ anomalous dispersion ดังภาพ ที่ 2.6 คือ

- 1. normal dispersion region คือบริเวณที่ส่วนประกอบของความยาวคลื่นยาวสามารถ เคลื่อนที่ได้เร็วกว่าส่วนที่มีความยาวคลื่นสั้นกว่า จะมีค่า D < 0 และ $eta_2 > 0$
- 2. anomalous dispersion region คือบริเวณที่ส่วนประกอบของความยาวคลื่นสั้นสามารถ เคลื่อนที่ได้เร็วกว่าส่วนที่มีความยาวคลื่นยาวกว่า จะมีค่า D>0 และ $~eta_{_2}<0$

Zero dispersion wavelength คือ จุดที่ดิสเพอร์ชันเท่ากับศูนย์ D=0 และ $eta_2=0$ ใน single mode fiber ซึ่งจะอยู่ที่ 1310 nm และใน dispersion-shifted fiber จะมี zero dispersion wavelength อยู่ที่ 1550 nm

2.3.3 ความไม่เป็นเชิงเส้นของเส้นใยแสง (fiber nonlinearity)

ผลของเคอร์เป็นปรากฏการณ์ที่ทำให้ค่าดัชนีหักเหเปลี่ยนแปลงไปตามกำลังงานของ สัญญาณ ทำให้เฟสของสัญญาณที่ปลายทางเปลี่ยนแปลงไปโดยขึ้นกับกำลังงานของสัญญาณ เรียกว่า การเลื่อนเฟสอย่างไม่เป็นเชิงเส้น (nonlinear phase shift) เราสามารถแบ่งปรากฏการณ์ เคอร์ที่มีผลต่อสัญญาณเดินทางในระบบเส้นใยแสงออกเป็นสามประเภทดังนี้

2.3.3.1 Self-phase modulation (SPM)

เกิดจากการเปลี่ยนแปลงเฟสของสัญญาณโดยกำลังของสัญญาณที่ความถี่เดียวกันกับ สัญญาณเอง ทำให้เกิดการเลื่อนเฟสของสัญญาณแสงด้วยกำลังของตัวสัญญาณเองซึ่งเฟสที่ เลื่อนไปนั่นมีค่าเท่ากับ

$$\phi_{NL} = n_2 \left(\frac{2\pi}{\lambda}\right) L \left|E_0\right|^2 = n_2 k_0 L \left|E_0\right|^2$$
(2.8)

โดยที่ **n**, คือ สัมประสิทธิ์ดัชนีหักเหที่ไม่เป็นเชิงเส้น (nonlinear-index coefficient)

L คือ ความยาวของเส้นใยแสง [km]

 $\left|E_{_{0}}
ight|^{2}$ คือ ความเข้มของสัญญาณแสง

 k_0 คือ เลขคลื่นในที่ว่าง (free space wave number)

SPM ทำให้สเปกตรัม (spectrum) ของสัญญาณขยายออกและเฟสของสัญญาณที่ เปลี่ยนไปจะถูกเหนี่ยวนำมากที่สุดบริเวณตรงกลางสัญญาณพัลส์ซึ่งเป็นบริเวณที่มีปริมาณกำลัง งานแสงสูงสุด

(ก) ความถี่ (ข) สเปกตรัมสัญญาณ

2.3.3.2 Cross-phase modulation (XPM)

เกิดขึ้นเมื่อ 2 สัญญาณแสงที่มีความถี่คลื่นพาห์ที่มีค่าต่างกันคือ ω_1 และ ω_2 เดินทาง ไปในเส้นใยแสงเส้นเดียว โดยแต่ละสัญญาณพัลส์ ณ ช่องสัญญาณหนึ่งจะถูกเหนี่ยวนำให้เฟส เปลี่ยนไป เนื่องจากกำลังงานของสัญญาณแสงอื่นที่อยู่ที่คลื่นพาห์มีความถี่ที่ต่างออกไปเหนี่ยวนำ ให้เฟสของสัญญาณแสงเปลี่ยนไปจากเดิม โดยทั่วไปเมื่อมี 2 สัญญาณแสงที่มีความถี่คลื่นพาห์ เป็น ω_1 และ ω_2 ร่วมเดินทางไปในเส้นใยแสง สัญญาณแสงทั้งสองจะมีความเร็วกลุ่มที่แตกต่าง กัน ซึ่งการที่ความเร็วกลุ่มไม่ตรงกันนี้จะเป็นปัจจัยที่กำหนดการเหลื่อมล้ำของสัญญาณแสงทั้งสอง ในปรากฏการณ์ XPM โดยปรากฏการณ์นี้จะเกิดขึ้นช่วงที่สัญญาณแสงทั้งสองวิ่งตัดกัน ผลของ XPM มีค่ามากกว่าของ SPM ถึง 2 เท่าโดยมีเฟสของสัญญาณที่เลื่อนไปเนื่องจาก SPM และ XPM [16] ดังนี้

$$\varphi_{NL} = n_2 k_0 L \left(\left| E_0 \right|^2 + 2 \left| E_1 \right|^2 \right)$$
(2.9)

โดยที่ $\left|E_{_0}
ight|^2$ คือ ความเข้มของสัญญาณแสงที่ความถี่คลื่นพาห์ $arnothing_1$ $\left|E_{_1}
ight|^2$ คือ ความเข้มของสัญญาณแสงที่ความถี่คลื่นพาห์ $arnothing_2$

ภาพที่ 2.8 ผลของ XPM ต่อสัญญาณที่เดินทางในเส้นใยแสง

ภาพที่ 2.8 แสดงถึงผลของ XPM ที่มีต่อสัญญาณแสง 2 สัญญาณแสงที่มีกำลังสัญญาณ ต่างกันเดินทางในเส้นใยแสงเส้นเดียวกัน โดยกำลังสัญญาณของพัลส์ที่ 1 มากกว่ากำลังสัญญาณ ของพัลส์ที่ 2 ลักษณะการเปลี่ยนแปลงของสเปกตรัมสัญญาณจะคล้ายกันกับลักษณะการ เปลี่ยนแปลงของสเปกตรัมสัญญาณที่เกิดจากผลของ SPM ต่างกันที่สเปกตรัมของสัญญาณที่ ได้รับผลจาก XPM จะขยายออกมากกว่าและการขยายออกยังเป็นแบบไม่สมมาตร โดยสัญญาณ พัลส์ที่ 2 จะมีลักษณะการขยายออกของสเปกตรัมที่ไม่สมมาตรกว่าสัญญาณพัลส์ที่ 1 เนื่องจาก กำลังสัญญาณของพัลส์ที่ 1 มากกว่าส่งผลให้สัญญาณที่พัลส์ที่ 2 ได้รับผลจาก XPM มากกว่า

2.3.3.3 Four wave mixing (FWM)

เกิดจากสัญญาณที่มีความถี่ต่างกัน 4 ความถี่มีความสัมพันธ์ตามเงื่อนไข การจับคู่ ความถี่ (frequency matching) จะทำให้เกิดการถ่ายเทพลังข้ามให้แก่กันและกัน การกำเนิด สัญญาณพัลส์ความถี่ใหม่ขึ้นมา โดยเกิดจากสัญญาณพัลส์หลายๆ ช่องสัญญาณที่มีความถี่
ต่างๆกันมาผสมผสานกัน สำหรับการเกิดสัญญาณความถี่ใหม่ (f_4) จากสัญญาณความถี่ f_1 f_2 และ f_3 ซึ่งเป็นไปตามสมการ (2.10)

$$f_4 = f_1 + f_2 - f_3 \tag{2.10}$$

และเงื่อนไขของการจับคู่เฟส (phase matching condition) ดังนี้

$$k_4 = k_1 + k_2 - k_3 \tag{2.11}$$

โดยที่ $k_{_n}$ คือ ค่าคงตัวเฟสที่ความถี่ n

ผลของ FWM ในกรณีของช่องสัญญาณเดียวเรียกว่า intra-channel FWM (IFWM) จะทำ ให้สัญญาณพัลส์ที่กระจายออกมาถ่ายเทกำลังงานซึ่งกันและกันจนทำให้เกิดพัลส์เงา (ghost pulse) ขึ้นมาในสัญญาณที่มอดูเลตสัญญาณเชิงเลขแบบออน-ออฟ (ON-OFF keying: OOK) สำหรับผลของ FWM ในกรณีของหลายช่องสัญญาณ จะมีสัญญาณความถี่ใหม่เกิดขึ้นมา และจะ มีความรุนแรงเมื่อความถี่ใหม่ที่เกิดขึ้นมาทับซ้อนหรือว่าเลื่อมกับความถี่ของสัญญาณข้อมูลที่มีอยู่ ซึ่งจะทำให้เกิดความผิดพลาดของข้อมูลขึ้น แต่ว่าผลที่เกิดขึ้นเนื่องจาก FWM จะมีความรุนแรง น้อยกว่า XPM

การลดปัญหาจากความไม่เป็นเชิงเส้นของเส้นใยแสงสามารถทำได้โดยการจัดสรรความ ยาวคลื่นในแต่ละข่ายเชื่อมโยงให้มีระยะห่างของแต่ละความยาวคลื่นมากที่สุดเพื่อทำให้การวิ่งตัด กันของสัญญาณเนื่องจากความเร็วกลุ่มของสัญญาณที่แตกต่างกันเป็นไปได้ยากขึ้นพร้อมทั้งทำ ให้การจับคู่ความถี่เป็นไปได้ยากขึ้นด้วยเช่นกัน

2.3.4.ปัญหาการกระจายโหมดโพลาไรซ์ (polarization mode dispersion : PMD)

ปัญหาการกระจายโหมดโพลาไรซ์ (polarization mode dispersion : PMD) อธิบายได้ดัง ในภาพที่ 2.10 องค์ประกอบของแสง 2 โหมดโพลาไรซ์ซึ่งตั้งฉากกัน (orthogonal) เดินทางผ่าน เส้นใยแสงด้วยความเร็วที่ต่างกัน (differential group delay : DGD) เล็กน้อย โดยมีสาเหตุมาจาก คุณสมบัติ (birefringence) ของเส้นใยแสง ซึ่งเกิดจากธรรมชาติของเส้นใยแสง เช่น ความไม่เรียบ ในบริเวณแกน (core) หรือความเครียดภายในเส้นใยแสง (internal stresses) รวมไปถึงผลกระทบ จากภายนอกเช่น การโค้งงอ (bending) และการบิดเกลียว (twisting) ของเส้นใยแสง โดยจะส่งผล กระทบมากในโครงข่ายที่ส่งไปในระยะทางไกล ที่มีอัตราการส่งข้อมูลมากกว่า 10 Gb/s โดย สามารถคำนวณความเร็วที่ต่างกันได้จากสมการ(2.12) และสมการที่ (2.13)

ภาพที่ 2.10 ผลของการกระจายโหมดโพลาไรซ์ PMD [14]

$$\Delta \tau = \left| \frac{L}{v_{gx}} - \frac{L}{v_{gy}} \right|$$
(2.12)

โดยที่ Δau คือ differential group delay : DGD [ps]

L คือ ระยะทาง [km]

 $\mathcal{V}_{_{gx}},\mathcal{V}_{_{gy}}$ คือ ความเร็วกลุ่มของแต่ละโหมด [m/s]

$$\langle \Delta \tau \rangle = D_{_{PMD}} \sqrt{L}$$
 (2.13)

โดยที่ $\langle \Delta au
angle$ คือ ค่าเฉลี่ยของ differential group delay : DGD [ps] $D_{_{PMD}}$ คือ ค่าเฉลี่ยของพารามิเตอร์ PMD [ps/\sqrt{km}]

ผลของการกระจายโหมดโพลาไรซ์ต่อความผิดเพี้ยนของสัญญาณคือ โหมดโพลาไรซ์ของ แสงที่ตั้งฉากกันทั้ง 2 แกนจะเดินทางไปถึงปลายทางไม่พร้อมกันและบิดไปจากแกนเดิมอย่างไม่มี แบบแผน (random) จึงส่งผลให้พัลส์ของสัญญาณขยายกว้างออก เมื่อไปถึงภาครับจึงไม่สามารถ ตรวจจับสัญญาณที่ถูกต้องได้

2.4 ระบบการมัลติเพลกซ์สัญญาณทางแสง

2.4.1 ระบบการมัลติเพลกซ์สัญญาณเชิงความยาวคลื่น (wavelength division multiplexing)

เส้นใยแสงมีแบนด์วิดท์ในการใช้งานในช่วงความยาวคลื่น 800 nm ถึง 1,600 nm ซึ่ง เพียงพอต่อการใช้งานบริการวิดีโอความละเอียดสูงบริการโทรศัพท์ผ่านอินเตอร์เน็ต (voice over IP: VoIP) และบริการอินเตอร์เน็ตความเร็วสูง ทำให้มีแนวความคิดให้ข้อมูลแต่ละซุดจะถูก ครอบครองโดยสัญญาณแสงที่มีความยาวคลื่นต่างกันส่งสัญญาณแสงหลายความยาวคลื่น สำหรับแต่ละช่องสัญญาณไปพร้อมกันบนเส้นใยแสง ดังภาพที่ 2.11 ระบบการมัลติเพลกซ์ สัญญาณเชิงความยาวคลื่นมีสัญญาณจำนวน *n* ความยาวคลื่นถูกมัลติเพลกซ์และส่งไปตามเส้น ใยแสงเส้นเดียว การส่งผ่านสัญญาณในระยะทางไกลสามารถส่งสัญญาณไปได้หลายพันกิโลเมตร โดยใช้อุปกรณ์ขยายสัญญาณ ส่วนระยะห่างของอุปกรณ์ขยายสัญญาณทางแสง (span) ต้อง ไม่ให้มีระยะทางมากเกินไปจนกำลังสัญญาณที่ถูกลดทอนลงไม่สามารถตรวจจับได้หรือทำให้ อัตราส่วนระหว่างกำลังสัญญาณและกำลังของสัญญาณรบกวนทางแสง (optical signal-tonoise ratio: OSNR) มีค่าต่ำแสดงถึงประสิทธิภาพที่ไม่ดีของระบบ [17],[18]

และ

ภาพที่ 2.11 ระบบการมัลติเพลกซ์สัญญาณเชิงความยาวคลื่นบนเส้นใยแสง

ช่วงแรกของเทคโนโลยีระบบ WDM จะเป็นการส่งความยาวคลื่นเพียง 2, 4, 8, 12, และ 16 ความยาวคลื่นโดยใช้ส่งสัญญาณในระยะทางสั้นๆ เทคโนโลยีในระยะถัดมาคือ coarse WDM (CWDM) มีระยะห่างของความยาวคลื่นอยู่ที่ 20 nm (3000 GHz) มีจำนวนความยาวคลื่นอยู่ที่ ่ 18 ความยาวคลื่นและถูกจำกัดอยู่ที่พิสัยความยาวคลื่น 1270 nm ถึง 1610 nm ตามมาตรฐาน ITU-T G.694.2 และ dense WDM (DWDM) มีระยะห่างของแต่ละความยาวคลื่นอาจจะอยู่ที่ 200, 100, 50, หรือ 25 GHz และมีจำนวนช่องสัญญาณ 80 ช่องสัญญาณที่อัตราความเร็ว 40 Gb/s ตามมาตรฐาน ITU-T G.694.1 [19]

2.4.2 ระบบการมัลติเพลกซ์สัญญาณเชิงความยาวคลื่นอย่างหนาแน่น (dense WDM)

ระบบการมัลติเพลกซ์สัญญาณเชิงความยาวคลื่นอย่าหนาแน่น (DWDM) พัฒนามาจาก ระบบสื่อสารทางแสงด้วยเส้นใยแสงที่แต่เดิมใช้เพียงแสงสีเดียวหรือแสงที่มีค่าความยาวคลื่นคงที่ เพียงค่าเดียว เช่น 1330 nm หรือ 1550 nm เป็นต้น ระบบสื่อสารข้อมูลหลายช่องสัญญาณใน ระบบสื่อสารด้วยเส้นใยแสงที่ผ่านมาช่วงปี ค.ศ.1900-1999 คือระบบ TDM/PCM (time division ที่ใช้ระบบสายส่งที่เป็นสายทองแดง และระบบ multiplex / pulse-code modulation) SDH/SONET ที่ใช้เส้นใยแสงสามารถส่งข้อมูลได้ด้วยความเร็วหลายระดับ ตัวอย่างเช่น ความเร็ว ์ ที่อัตรา 2.5 Gb/s ซึ่งเป็นของระบบ STM-16 ที่ใช้ระบบสายส่ง OC-48 เป็นต้น ถือได้ว่ามีความเร็ว ้สูงมากเมื่อเปรียบเทียบกับระบบสื่อสารแบบดั้งเดิม STM-16 นี้ใช้เส้นใยแสงเพียงเส้นเดียวและใช้ แสงเพียงความยาวคลื่นเดียวเป็นคลื่นพาห์สำหรับส่งข้อมูลหลายช่องสัญญาณที่ถูกรวมกันด้วย เทคนิคการมัลติเพลกซ์ (multiplex) ด้วยวงจรอิเล็กทรอนิกส์ แม้ว่าระบบสื่อสารจะส่งข้อมูลได้เร็ว

ถึง 2.5 Gb/s เทคนิคนี้สามารถกระทำได้โดยอาศัยเทคโนโลยีที่มีอยู่เดิม อีกทั้งเส้นใยแสงเดิมใน ระบบก็ยังพอสามารถรองรับขีดการทำงานนี้ได้ซึ่งจากแนวคิดนี้เป็นจุดเริ่มต้นของระบบสื่อ สัญญาณแบบ WDM ซึ่งพัฒนามาเป็น DWDM ในปัจจุบัน [20]

ในระบบ WDM ใช้แสงที่ความยาวคลื่น 1330 nm และ 1550 nm แทนซ่องสัญญาณอิสระ รวมกันทางแสงแล้วส่งไปในเส้นใยแสงเส้นเดียวกัน ซึ่งวิธีนี้ทำให้ไม่สามารถเพิ่มซ่องสัญญาณที่อยู่ ในเทอมของความยาวคลื่นแสงได้มากนักเพราะแสงในแต่ละซ่องสัญญาณมีความยาวคลื่นต่างกัน มากจะมีค่าการลดทอนสัญญาณไม่เท่ากัน ทำให้ระยะทางสูงสุดที่สามารถส่งข้อมูลได้มีค่าไม่ เท่ากัน ผลลัพธ์คือ ในระบบสื่อสารทางไกลต้องใช้สถานีทวนสัญญาณ (repeater) แยกกันสำหรับ แต่ละความยาวคลื่นเป็นผลทำให้มีค่าใช้จ่ายเพิ่มขึ้นและทำให้ระบบมีความยุ่งยาก การแก้ปัญหา ทำได้โดยเลือกช่องสัญญาณให้มีค่าความยาวคลื่นแสงใกล้กัน โดยเป็นแสงในช่วงของหน้าต่าง ความยาวคลื่นแสงค่าหนึ่ง เช่น ในระบบปัจจุบัน มักจะเลือกช่องหน้าต่างความยาวคลื่นแสงในช่วง 1.55 ไมครอน และความยาวคลื่นแสงของแต่ละช่องสัญญาณจะมีช่วงห่างกัน (channel spacing : CS) ประมาณ 1 ไมครอน การกำหนดให้ CS มีค่าน้อย หมายถึงการเพิ่มโอกาสให้มีอัตราการส่ง ข้อมูลเพิ่มขึ้นด้วย

โครงสร้างพื้นฐานของระบบสื่อสารด้วยเส้นใยแสงแบบ DWDM ประเภทระบบสื่อสารแบบ ทางเดียว (simplex) แสดงได้ดังภาพที่ 2.12 โดยเครื่องส่งสัญญาณแสงทำหน้าที่เปลี่ยนข้อมูลทาง ไฟฟ้าเป็นสัญญาณแสงแล้วส่งไปในเส้นใยแสง เครื่องส่งสัญญาณแสงหนึ่งชุดจะส่งแสงออกมา 1 ความยาวคลื่นเรียกว่า 1 ช่องสัญญาณ จากนั้นแสงจากช่องสัญญาณต่างๆ จะถูกรวมเข้าด้วยกัน โดยกระบวนการทางแสงด้วย optical multiplexer ส่งไปยังปลายทางด้วยเส้นใยแสงเพียงเส้น เดียว ข้อมูลที่เดินทางไปในเส้นใยแสงจะถูกลดทอนสัญญาณทำให้สัญญาณแสงมีความเข้มแสง น้อยลงจึงจำเป็นต้องมีเครื่องขยายสัญญาณทางแสงทำหน้าที่ขยายสัญญาณแสงทุกๆ ช่องสัญญาณให้มีความเข้มแสงมากพอที่จะเดินทางต่อไปได้ สัญญาณข้อมูลที่ส่งโดยทั่วไปเป็น สัญญาณดิจิตอลในลักษณะของพัลส์ข้อมูล เมื่อสัญญาณพัลส์เดินทางในเส้นใยแสงจะ เกิดปรากฏการณ์ดิสเพอร์ชันทำให้สัญญาณพัลส์บานออก ส่งผลให้ปริมาณข้อมูลหรือบิตเรตสูงสุด ของระบบลดลง ดังนั้นการส่งสัญญาณในระบบ DWDM จึงต้องมีอุปกรณ์ dispersion compensator ที่ทำหน้าที่ปรับสัญญาณพัลส์ที่บานออกให้อยู่ในช่วงที่เหมาะสม ผลของ ปรากฏการณ์ดิสเพอร์ชันระบบ DWDM มีผลกระทบทุกช่องสัญญาณหรือทุกความยาวคลื่น โดยที่ ระบบที่มีจำนวนช่องสัญญาณมากผลกระทบของปรากฏการณ์ดิสเพอร์ชันยิ่งมีมากด้วย ในระบบ โครงข่ายสื่อสารขนาดใหญ่ตัวอย่างเช่น โครงข่ายแบบ SDH/SONET มีโครงสร้างเป็นวงแหวน (ring) หรือเมซ (mesh) ในระบบ DWDM มีอุปกรณ์ add / drop เพื่อให้ระบบสามารถขยายการ ติดต่อเข้ากับสื่อสถานีอื่นได้โดยนำไปใช้กับระบบเดิมด้วย OADM (optical add / drop multiplexer) โดยการทำงานของอุปกรณ์ชนิดนี้เป็นการจัดการทางแสงและในระบบ DWDM สถานีที่ทำหน้าทีเป็นชุมสายขนาดใหญ่มีอุปกรณ์ cross connect ทำหน้าที่ตัดต่อหรือเลือก เส้นทางของข้อมูลในระบบที่มีความซับซ้อนมากขึ้นด้วย OXC (optical cross connect) เมื่อ สัญญาณเดินทางถึงปลายทาง สัญญาณแสงทุกช่องสัญญาณที่รวมกันอยู่จะถูกแยกออกเป็น ช่องสัญญาณเดี่ยวตามค่าความยาวคลื่นแสงด้วยอุปกรณ์ที่เรียกว่า optical demultiplexer ซึ่งมี หลักการทำงานตรงข้ามกับ optical multiplexer

ภาพที่ 2.12 โครงสร้างพื้นฐานของระบบสื่อสารแบบ DWDM

ระบบ DWDM สามารถใช้กับระบบสื่อสารได้ทั้งขนาดเล็กเช่น การสื่อสารกันแบบ pointto-point หรือขนาดใหญ่อย่าง backbone network โดยมีอุปกรณ์มากน้อยขึ้นกับขนาดของ โครงข่ายทั้งที่เป็นอุปกรณ์ประเภทแอ็กทีฟ (active component) ที่ต้องมีการป้อนพลังงานจาก ภายนอกและอุปกรณ์ประเภทแพสซีฟ (passive component) ที่สามารถทำงานได้โดยไม่ต้องการ พลังงานจากภายนอก

2.4.3 โครงสร้างโครงข่ายดีดับเบิ้ลยูดีเอ็มประเภท wavelength-routed optical network

wavelength-routed optical network ประกอบด้วย optical switching เชื่อมต่อกับเส้น ใยแสงในลักษณะเมชโดยผู้ใช้บริการเชื่อมต่อกับสวิตช์โดยเส้นใยแสง เมื่อรวมผู้ใช้หนึ่งคนเข้ากับ สวิตช์เราจะเรียกว่า โนด แต่ละโนดมีตัวส่งสัญญาณและตัวรับสัญญาณที่สามารถปรับความยาว คลื่นได้ แต่ในความเป็นจริงแล้วสวิตช์หนึ่งตัวสามารถรองรับผู้ใช้บริการได้หลายคน

กลไกลพื้นฐานของการสื่อสารใน wavelength-routed network คือ light path หมายถึง ช่องทางการสื่อสารทางแสงระหว่างคู่โนดใดๆ ในโครงข่ายซึ่งอาจครอบคลุมมากกว่า 1 ข่าย เชื่อมโยง โนดที่ปลายทางของ light path เข้าถึง light path ได้ด้วยตัวส่งสัญญาณและตัวรับ สัญญาณที่ปรับความยาวคลื่นเป็นความยาวคลื่นของ light path นั้น ตัวอย่างเช่น ในภาพที่ 2.13 light path ถูกสร้างขึ้นระหว่างโนด A และ โนด C บนความยาวคลื่น λ₁ หรือ light path ถูกสร้าง ขึ้นระหว่างโนด B และ โนด F บนความยาวคลื่น λ_2 และ light path ถูกสร้างขึ้นระหว่างโนด H และ โนด G บนความยาวคลื่น λ_1 light path ระหว่างโนด A และโนด C วิ่งผ่านสวิตซ์ 1, 6 และ 7 ตามลำดับ ในกรณีที่ไม่มีอุปกรณ์แปลงความยาวคลื่น light path จะวิ่งบนความยาวคลื่นเดียว ตลอดทั้งเส้นทางบนโครงข่ายซึ่งเรียกว่า wavelength-continuity property ของ light path ความ ต้องการนี้อาจไม่จำเป็นถ้าเรามีอุปกรณ์แปลงความยาวคลื่นในระบบ ตัวอย่างเช่น ในภาพที่ 14 light path ระหว่างโนด D และโนด E เดินทางบนเส้นใยแสงจากโนด D ไปยังสวิตซ์10 บนความ ยาวคลื่น λ_1 จากนั้นถูกเปลี่ยนเป็นความยาวคลื่น λ_2 ที่ สวิตซ์ 10 และเดินทางต่อไปในเส้นใยแสง ระหว่างสวิตซ์ 10 และสวิตซ์ 9 บนความยาวคลื่น λ_2 และถูกเปลี่ยนกลับมาเป็นความยาวคลื่น λ_1 อีกครั้งที่สวิตซ์ 9 จากนั้นเดินทางต่อไปบนเส้นใยแสงจากสวิตซ์ 9 ไปยังโนด E บนความยาวคลื่น λ_1

ความต้องการพื้นฐานสำคัญใน wavelength-routed network คือ light path 2 เส้นทาง หรือมากกว่าที่เดินทางบนเส้นใยแสงเส้นเดียวกันต้องมีความยาวคลื่นที่แตกต่างกันจึงจะทำให้ไม่ เกิดการรบกวนระหว่างกัน

ภาพที่ 2.13 wavelength-routed (wide-area) optical WDM network. [21]

2.5.โครงข่าย SDH

SDH เริ่มจากการจัดการโครงข่ายสายโทรศัพท์ เมื่อสัญญาณโทรศัพท์ได้เปลี่ยนเป็น ดิจิตอล โดยช่องสัญญาณเสียงหนึ่งช่องใช้สัญญาณแถบกว้าง 64 Kb/s แต่ในอดีตการจัด มาตรฐานลำดับชั้นของเครือข่ายสัญญาณเสียงยังแตกต่างกัน เช่นในสหรัฐอเมริกา มีการจัดกลุ่ม สัญญาณเสียง 24 ช่อง เป็น 1.54 Mb/s หรือที่เรารู้จักกันในนาม T1 และระดับต่อไปเป็น 63.1, 447.3 Mb/s แต่ทางกลุ่มยุโรปใช้ 64 Kb/s ต่อหนึ่งสัญญาณเสียง และจัดกลุ่มต่อไปเป็น 32 ช่อง เสียงคือ 2.048 Mb/s ที่รู้จักกันในนาม E1 และจัดกลุ่มใหญ่ขึ้นเป็น 8.44, 34.36 Mb/s การวาง มาตรฐานใหม่สำหรับเครือข่ายความเร็วสูงจะต้องรองรับการใช้งานต่าง ๆ ทั้งเครือข่ายสัญญาณ โทรศัพท์และสัญญาณมัลติมีเดียอื่น ๆ เช่น สัญญาณโทรทัศน์ ข้อมูลบนอินเทอร์เน็ต และที่จะ เกิดขึ้นในอนาคตอีกได้ คณะกรรมการจัดการมาตรฐาน SDH จึงรวมแนวทางต่าง ๆ ในลักษณะให้ ยอมรับกันได้ การเน้น SDH ให้เป็นกลางที่ทำให้เครือข่ายประยุกต์ใช้งานต่าง ๆ วิ่งลงตัวได้จึงเป็น เรื่องสำคัญ โดยวางแถบกว้างพื้นฐานระดับต่ำสุดไว้ที่ 51.84 Mb/s โดยที่ภายในแถบกว้างนี้จะเป็น เฟรมข้อมูลที่สามารถนำช่องสัญญาณเสียงโทรศัพท์หรือการประยุกต์อื่นใดเข้าไปรวมได้และยัง รวมระดับช่องสัญญาณต่ำสุด 51.84 Mb/s นี้ให้สูงขึ้น [22]

SONET/SDH เป็นมาตรฐานสากลของเครือข่ายสื่อสัญญาณความเร็วสูง ช่วยให้ network operator สามารถตอบสนองความต้องการใช้ capacity ของช่องสัญญาณของลูกค้าได้อย่าง รวดเร็ว เครือข่าย SONET/SDH มีความสามารถในการฟื้นตัวเองได้อย่างอัตโนมัติในกรณีที่มี ปัญหาขัดข้องเกิดขึ้นกับเครือข่าย ทำให้เครือข่ายมีความสามารถในการใช้การได้ (availability)ที่ สูงขึ้น การจัดโครงสร้างการมัลติเพลกซ์ของสัญญาณ SONET/SDH ได้ช่วยให้สามารถต่อไขว้ (cross-connect) ช่องสัญญาณ low-order ที่อยู่ภายในช่องสัญญาณ high-order ได้โดยไม่ จำเป็นต้องดีมัลติเพลกซ์สัญญาณทั้งหมดออกก่อน [23]

2.5.1 basic building block ของมาตรฐาน SONET

basic building block ของมาตรฐาน SONET เรียกว่า synchronous transport signal level1 (STS-1) ประกอบขึ้นด้วย 90 x 9 (columns x rows) STS-1 มีอัตราการส่งข้อมูล (line rate) เท่ากับ 51.84 Mbps และมีอัตราการส่งข้อมูลที่สูงขึ้นด้วยการมัลติเพลกซ์โดย bit interleaved synchronous multiplexer เป็นจำนวน N เฟรม จาก STS-1 ไปสู่ STS-N โดยที่ N = 1, 3, 12, 24, 48, 192 ดังนั้นอัตราการส่งข้อมูลใน STS-N มีค่าเท่ากับ N x 51.84 Mbps โดย โครงสร้างในส่วนที่เป็น overhead ส่งผลให้ความจุในการส่งผ่านข้อมูล (transmission capacity) ลดลง ซึ่งสามารถแสดงได้ดังนี้

transmission capacity =
$$9 \times (90-3) \times \frac{1}{125\mu s} \times 8(\frac{bits}{byte}) = 50.112Mb / s$$
 (2.14)

ภาพที่ 2.14 basic SONET building block

2.5.2 basic building block ของมาตรฐาน SDH

basic building block ของมาตรฐาน SDH เรียกว่า synchronous transport module level1 (STM-1) ประกอบขึ้นด้วย 270 columns x 9 rows STM-1 มีอัตราการส่งข้อมูล (line rate) เท่ากับ 155.52 Mbps และมีอัตราการส่งข้อมูลที่สูงขึ้น เป็นจำนวน N เฟรม จาก STM-1 ไปสู่ STM-N โดยที่ N = 1, 4, 16, 64 ดังนั้นอัตราการส่งข้อมูลใน STM-N มีค่าเท่ากับ N x 155.52 Mbps (กำหนดโดยมาตรฐานของ G.707) เนื่องจากโครงสร้างในส่วนที่เป็น overhead ส่งผลให้ ความจุในการส่งผ่านข้อมูลลดดลงซึ่งสามารถแสดงได้ดังนี้

transmission capacity =
$$9 \times (270 - 9) \times \frac{1}{125 \mu s} \times 8(\frac{bits}{byte}) = 150.336 Mb/s$$
 (2.15)

ตารางที่ 2.1 การเปรียบเทียบระหว่างมาตรฐานแบบ SONET และ SDH

SONET	SONET	SDH	Line rate	SONET	SDH
Optical	Frame	Level and	(Mbps)	Capacity	Capacity
		Frame			
Carrie Level	Format	Format		(28 T1s = T3)	(63 E1s = E3)
OC-1	STS-1	-	51.84	1 x 28 T1s	1 x 21 E1s
OC-3	STS-3	STM-1	155.52	3 x 28 T1s	1 x 63 E1s
OC-12	STS-12	STM-4	622.08	12 x 28 T1s	4 x 63 E1s
OC-48	STS-48	STM-16	2,488.32	48 x 28 T1s	16 x 63 E1s
OC-192	STS-192	STM-64	9,953.28	192 x 28 T1s	64 x 63 E1s
OC-768	STS-768	STM-256	39,813.12	768 x 28 T1s	256 x 63 E1s
OC-3072	STS-3072	STM-1024	159,252.48	3072 x 28 T1s	1024 x 62 E1s

การมัลติเพลกซ์ในมาตรฐาน SDH เริ่มต้นด้วยการ mapping สัญญาณที่มีอัตราเร็ว แตกต่างกันตามความต้องการในการใช้งาน bandwidth เข้าสู่ containers (Cs) ส่วนของ Cs จะ รวมกันกับส่วนของ path over head (POH) ได้เป็น virtual containers (Cs + POH = VCs) เช่น C-4 ซึ่งประกอบข้นด้วย 260 x 9 (columns x rows) รวมกันกับส่วนของ POH ได้เป็นสัญญาณ VC-4 ส่วนนี้จะรวมกันกับ AU-4 pointer ขนาด 9 bytes ได้เป็นสัญญาณ AU-4 (AUG) จากนั้น ส่วนของ transport overhead ซึ่งประกอบขึ้นด้วย RSOH และ MSOH จะถูกเพิ่มลงไปใน สัญญาณ AU-4 ได้เป็นสัญญาณ STM-1

2.6 Optical transport network (OTN)

SDH เป็นเทคโนโลยีที่เหมาะสำหรับข้อมูลที่ต้องการการรับประกันการตอบสนองแบบ real time เช่น ข้อมูลเสียง และภาพเคลื่อนไหว ซึ่งเป็นข้อมูลที่มีอัตราข้อมูลคงที่ เช่น ข้อมูลเสียงมี อัตราข้อมูลเท่ากับ 64 kbps ภาพที่ 20 แสดงลักษณะการเปลี่ยนแปลงของอัตราข้อมูลของข้อมูล ลักษณะดังกล่าวซึ่งเหมาะสมกับการส่งไปในโครงข่าย SDH ด้วยเส้นตรง แต่ในปัจจุบันข้อมูลมี ลักษณะแตกต่างกันมาก โดยอัตราข้อมูลจะมีลักษณะ burst คือเปลี่ยนไปตามเวลาดังเส้นโค้ง ใน ภาพที่ 2.16 พบว่ามีบางเวลาอัตราข้อมูลที่ต้องการส่งน้อยกว่าความสามารถในการส่งข้อมูลของ ระบบ TDM แบบ SDH ส่งผลให้ใช้ความสามารถในการส่งข้อมูลที่มีไม่คุ้มค่า ในทางกลับกัน หาก อัตราข้อมูลที่ต้องการจะส่งนั้นมากเกินกว่าระบบจะสามารถรองรับได้ ข้อมูลที่ต้องการส่งที่เกินมา จะไม่สามารถส่งไปได้

ภาพที่ 2.16 เปรียบเทียบข้อมูลแบบ burst กับการตอบสนองแบบระบบ TDM แบบ SDH

วิธีการส่งข้อมูลแบบลักษณะ burst ที่เหมาะสมก็ คือวิธีการแพกเกตสวิตชิง (packet switching) กล่าวคือ การใช้ packet ที่ปรับเปลี่ยนความยาวได้ พร้อมกับการยกเลิกข้อกำหนดว่า packet หรือ frame ต่างๆ ต้องถูกส่งออกไปในเวลาที่กำหนด เช่น 0.125 ms จึงสามารถรองรับ ข้อมูลลักษณะแบบ burst ดังภาพที่ x1 ได้อย่างเหมาะสม นั่นคือลักษณะการทำงานของ packetswitched network นั่นเอง ประเภทของ packet ที่นิยมใช้ในปัจจุบันคือ Ethernet packet ซึ่ง โครงสร้างของ Ethernet packet แสดงได้ในภาพที่ 2.17 ใน packet ส่วนบรรจุข้อมูล (LLC) ซึ่ง สามารถปรับเปลี่ยนความยาว (N) ได้ตามปริมาณของข้อมูลได้อย่างเหมาะสม

ภาพที่ 2.17 โครงสร้างของ Ethernet packet

เทคโนโลยีที่ใช้ในโครงข่ายหลักที่สามารถสื่อสาร Ethernet packet หรือ packet อื่น รวมทั้ง SDH/SONET frame ไปในลักษณะของ packet ก็คือ optical transport network (OTN) ซึ่งแสดงได้ในภาพที่ 2.18 จากรูปแสดงว่า OTN ต่างโครงข่ายกัน เมื่อส่ง packet และ frame ชนิด ใดก็ตามสามารถส่งไปยังปลายทางได้ในลักษณะเดิม โดยไม่ต้องแบ่งย่อยลงใน frame แบบ TDM เช่น SDH frame

ภาพที่ 2.18 Optical transport network (OTN)

การส่งผ่าน packet ไปใน OTN นั้น ทำได้โดยแสดงในภาพที่ 2.19 เมื่อส่ง Ethernet packet จากจุดเริ่มต้น เมื่อเข้าสู่ OTN จะเพียงถูกเติม header ตามระดับไปบน packet ดังกล่าว เมื่อถึงปลายทาง จะถอด header ของ OTN และ packet จะกลับเป็น Ethernet packet เดิม

ภาพที่ 2.19 การส่ง Ethernet packet ผ่าน OTN

ภาพที่ 2.20 แสดงองค์กรที่กำหนดมาตรฐานของ OTN หากต้องการจะส่งข้อมูลจาก LAN ความเร็วสูงเช่น 40Gb/s LAN นั้น จะอยู่ในมาตรฐาน IEEE 802.3ba ส่วนการ mapping ของ Ethernet packet ลงบน OTN frame และส่งไปใน OTN นั้น ถูกกำหนดโดย ITU-T SG15 ภายใต้ มาตรฐาน ITU-T G.709 ซึ่งรองรับสื่อสัญญาณที่เป็นระบบเส้นใยแสงถึงระดับ DWDM รวมทั้งการ มอดูเลตสัญญาณความเร็วสูงระดับ 40 Gb/s ขึ้นไปนั้น ก็ถูกปรับเปลี่ยนจากวิธี OOK ไปเป็นวิธี DQPSK ซึ่งสามารถส่งข้อมูลต่อแบนด์วิดท์ได้มากกว่า OOK ถึง 2 เท่า

ภาพที่ 2.20 มาตรฐานซึ่งกำหนดการส่ง packet ผ่าน OTN

2.7 การป้องกันความเสียหายในโครงข่าย SDH ลักษณะเมช

แสงสำรองแทนด้วยเส้นประ

โครงข่าย SDH ลักษณะเมชเกิดจากการเชื่อมโยงกันระหว่างวงลูปปิดหลายลูปดังภาพที่ 2.21 ที่แต่ละสถานีมี add-drop multiplexer (ADM) ทำหน้าที่เพิ่มและดึงช่องสัญญาณในสาย ออกมาใช้งานได้ เครือข่ายแบบเมชประกอบด้วยเส้นใยแสงทำงาน 2 เส้นและเส้นใยแสงสำรอง 2 เส้น ทราฟฟิกสามารถรับและส่งได้ทั้งสองทิศ สำหรับการส่งผ่านสัญญาณในกรณีที่โครงข่าย ทำงานปกติจะเลือกระยะทางการส่งผ่านสัญญาณที่สั้นกว่า (short path) และเลือกระยะทางการ ส่งผ่านสัญญาณที่ยาวกว่า (long path) สำรองไว้สำหรับการป้องกันโครงข่ายจากความเสียหายที่ เกิดขึ้น กลไกลการกู้คืนสัญญาณ (restoration) ของโครงข่ายลักษณะเมชให้ข้อดีเนื่องจาก optical cross-connects มีความสามารถเชื่อมต่อของสัญญาณทางแสงจากสัญญาณขาเข้าใดๆ ไป สัญญาณขาออกใดๆ ส่งผลให้มีความสามารถเลือกเส้นทางใหม่ (reroute) เส้นทางหนึ่งหรือหลาย เส้นทางได้อย่างชาญฉลาดและอัตโนมัติใกล้ๆ บริเวณที่เกิดความเสียหายในโครงข่าย อีกทั้งกลไก ลการกู้คืนสัญญาณสามารถทำได้เร็วถึง 50 ms หรือน้อยกว่า [12]

ความเสียหายสามารถเกิดขึ้นกับข่ายเชื่อมโยง โนด และ แต่ละช่องสัญญาณของ WDM ความเสียหายของข่ายเชื่อมโยงเกิดเส้นใยแสงขาด ความเสียหายของโนดอาจเกิดจาก power outages หรือ อุปกรณ์เสียหาย (equipment failures) ความเสียหายของแต่ละช่องสัญญาณอาจ เกิดจากการเสียหายของอุปกรณ์เกี่ยวกับช่องสัญญาณนั้นๆ ตัวอย่างเช่น ตัวส่งสัญญาณ หรือ ตัวรับสัญญาณ เป็นต้น กลไกลการป้องกันความเสียหายในเกือบทุกกรณีถูกออกแบบให้ป้องกัน การเสียหายที่เกิดขึ้นกับข่ายเชื่อโยงใดเชื่อมโยงหนึ่ง (a single failure) ซึ่งสมมุติได้ว่าโครงข่ายถูก ออกแบบดีพอ การเกิดความเสียหายกับข่ายเชื่อมโยงหลายข่ายเชื่อมโยงพร้อมกันเกิดขึ้นได้น้อย มาก

เริ่มการอธิบายประเภทของกลไกลการป้องกันที่ใช้กับข่ายเชื่อมโยงจุดต่อจุดก่อน จากนั้น จึงนำไปประยุกต์ใช้กับโครงข่าย 2 วิธีพื้นฐานของกลไกลการป้องกันที่ถูกใช้กับข่ายเชื่อมโยงจุดต่อ จุดคือ การป้องกันแบบ 1 + 1 (1+1 protection) และ การป้องกันแบบ 1:1 (1:1 protection) หรือ การป้องกันแบบ 1:N (1:N protection) แสดงในภาพที่ 2.22

ในการป้องกันแบบ 1 + 1 ทราฟฟิกถูกส่งแบบเส้นใยแสงสองเส้นที่แยกออกจากกันใน เวลาเดียวกันจากต้นทางไปยังปลายทาง เส้นใยแสงเส้นหนึ่งทำหน้าที่เป็นเส้นใยแสงทำงานและอีก เส้นหนึ่งทำหน้าที่เป็นเส้นใยแสงสำรอง ปลายทางจะเลือกรับสัญญาณจากเส้นใยแสงเส้นใดเส้น หนึ่ง เมื่อเส้นใยแสงขาดปลายทางจะเปลี่ยนการรับสัญญาณไปยังเส้นใยแสงอีกเส้นได้อย่าง ต่อเนื่อง การป้องกันรูปแบบนี้ทำได้รวดเร็วและไม่ต้องการโปรโตคอลเพื่อสื่อสัญญาณระหว่างโนด ปลายทางสองโนด

ในการป้องกันแบบ 1:1 เส้นใยแสงระหว่างต้นทางและปลายทางยังคงมี 2 เส้น แต่การส่ง สัญญาณถูกส่งบนเส้นใยแสงทำงานเพียงเส้นเดียว ถ้าเส้นใยแสงทำงานขาด ทั้งต้นทางและ ปลายทางจะเปลี่ยนการส่งสัญญาณไปยังเส้นใยแสงสำรอง ในกรณีการป้องกันแบบ 1:N เส้นใย แสงทำงาน N เส้นใช้เส้นใยแสงสำรองเส้นเดียวร่วมกัน การจัดเรียงลักษณะนี้สามารถรองรับความ เสียหายที่เกิดจากเส้นใยแสงทำงานใดๆ

หลังจากเส้นใยแสงทำงานที่ขาดถูกซ่อมแล้ว ในการป้องกับแบบ 1 + 1 เส้นใยแสงทำงาน เดิมที่ถูกซ่อมกลายมาเป็นเส้นใยแสงสำรองแทน ในกรณีการป้องกันแบบ 1:N การส่งสัญญาณ ต้องสับเปลี่ยนกลับมาทำงานบนเส้นใยแสงทำงานเดิม

ภาพที่ 2.22 เทคนิคการป้องกันความเสียหายแบบ (ก) 1 + 1 (ข) 1:1 (ค) 1:N

สำหรับ ภาพที่ 2.23 แสดงการป้องกันสำหรับทราฟฟิกในโครงข่ายที่แต่ละช่ายเชื่อมโยง carries traffic ต้นทางที่ต่างกันไปยังปลายทางที่ต่างกัน แบ่งออกเป็น 2 ประเภทคือ path switching และ line switching ใน path switching หรือ path protection กลไกลการกู้คืน สัญญาณของทราฟฟิกถูกจัดการโดยต้นทางและปลายทางของแต่ละทราฟฟิก ทราฟฟิกถูกเลือก เส้นทางใหม่ที่โนดต้นทางและโนดปลายทางในเหตุการณ์ที่เกิดความเสียหายขึ้นที่ข่ายเชื่อมโยงใด เชื่อมโยงหนึ่งตลอดเส้นทางระหว่างสองคู่โนด ใน line switching กลไกลการกู้คืนสัญญาณของท ราฟฟิกถูกจัดการโดยคู่โนดที่ปลายทางของข่ายเชื่อมโยงที่เกิดความเสียหาย

ภาพที่ 2.23 Path switching และ line switching ในโครงข่ายลักษณะเมช (ก) โครงข่ายทำงานปกติ (ข) กลไกลการกู้คืนแบบ path-switching หลังจากข่ายเชื่อมโยงหนึ่งเกิด ความเสียหาย (ค) span protection ในรูปแบบของ line switching (ง) line protection ในรูปแบบ ของ line switching

Line switching แบ่งออกเป็น span protecting และ line protection ใน span protection ถ้าเส้นใยแสงระหว่างคู่โนดใดๆ ขาด ทราฟฟิกจะถูกสับเปลี่ยนไปยังเส้นใยแสงอีกเส้น บริเวณคู่โนดเดิมดังภาพที่ 2.23 ใน line protection ทราฟฟิกจะถูกสับเปลี่ยนไปยังอีกเส้นทางหนึ่ง ระหว่างคู่โนดเดิมเช่นเดียวกับข่ายเชื่อมโยงแบบจุดต่อจุด path protection สามารถทำได้ทั้งแบบ 1 + 1 และ 1:N 1 + 1 path protection ด้อยประสิทธิภาพเพราะมีความต้องการแบนวิด 2 เท่า สำหรับแต่ละการเชื่อมโยง 1:N path protection N เส้นทางสามารถใช้หนึ่งเส้นทางสำรองร่วมกัน ได้ซึ่งถือว่ามีประสิทธิภาพมากกว่า

2.7.1 การป้องกันความเสียหายที่ใช้จำลองในวิทยานิพนธ์

กลไกการกู้คืนสัญญาณใน SDH และ OTN จะใช้การป้องกันเดียวกันคือ 1:1 path protection โดยระหว่างคู่โนดใดๆจะเชื่อมต่อด้วยเส้นใยแสง 4 เส้นวางไว้ด้วยกันคือเส้นใยแสง ทำงานและเส้นใยแสงสำรองทั้งสองทิศทาง กลไกการกู้คืนสัญญาณคือที่แต่ละโนดจะมีอุปกรณ์ที่ เรียกว่า optical cross connect ทำหน้าที่สลับเส้นทางจากเส้นใยแสงทำงานไปที่เส้นใยแสงสำรอง เมื่อเกิดความเสียหายโดย path protection จะเป็นการป้องกันแบบหาเส้นทางใหม่จากโนดต้นทาง สู่โนดปลายทางทั้งหมด ซึ่งเมื่อใช้การป้องกันดังกล่าวเมื่อเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่ง โนดต้นทางและโนดปลายทางจะเป็นผู้เลือกเส้นทางใหม่เองโดยไม่ขึ้นกับโนดระหว่างทาง และการ ป้องกันดังกล่าวใช้อุปกรณ์ optical cross connect ที่แต่ละโนดน้อยกว่าการป้องกันประเภทอื่น วิทยานิพนธ์นี้จึงเลือกใช้การป้องกันแบบ path protection

2.8 เทคนิคการแก้ไขสัญญาณความผิดเพี้ยนที่เกิดจากปรากฏการณ์ดิสเพอร์ชัน

วิธีลดปัญหาที่เกิดจากปรากฏการณ์ดิสเพอร์ชันคือการใช้หน่วยชดเซยดิสเพอร์ชัน ซึ่ง ประกอบด้วยเส้นใยแสงที่ถูกเปลี่ยนแปลง dispersion characteristic ให้หักล้างค่าดิสเพอร์ชัน สะสมของ SMF เส้นใยแสงที่อยู่ด้านในนั้นถูกเรียกว่า dispersion-compensating fiber (DCF) หรืออาจจะกล่าวได้ว่าเป็นเทคนิคการจัดการดิสเพอร์ชันสามารถทำโดยการนำเอาเส้นใยแสงที่มี ค่าดิสเพอร์ชันที่ต่างกันนำมาต่อกันเพื่อชดเซยค่าดิสเพอร์ชันและทำให้ค่าดิสเพอร์ชันเฉลี่ยมีค่าต่ำ กว่า dispersion limit โดยค่า dispersion limit ของโครงข่ายที่ส่งด้วยอัตราเร็ว 40 Gb/s ต่อ ช่องสัญญาณมีค่าเท่ากับ 800 ps/nm ตามสมการที่ (2.16)และ (2.17)

$$D_1 L_1 + D_2 L_2 = D_{acc} (2.16)$$

$$-D_{\rm lim} \le D_{\rm acc} \le D_{\rm lim} \tag{2.17}$$

โดย D₁ คือ ค่าดิสเพอร์ชันของเส้นใยแสงที่ใช้ในการส่งผ่านสัญญาณ [ps/km/nm]

D₂ คือ ค่าดิสเพอร์ชันของเส้นใยแสงที่ใช้ในการชดเชยค่าดิสเพอร์ชัน [ps/km/nm]

L₁ คือ ความยาวของเส้นใยแสงที่ใช้ในการส่งผ่านสัญญาณ [km]

L₂ คือ ความยาวของเส้นใยแสงที่ใช้ในการชดเชยค่าดิสเพอร์ชัน [km]

D_{acc} คือ ค่าดิสเพอร์ชันสะสมที่ปลายทาง

D_{lim} คือ ค่าขีดจำกัดดิสเพอร์ชัน (dispersion limit) [ps/nm]

2.9 เทคนิคการแก้ไขสัญญาณความผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมดโพลาไรซ์

วิธีลดปัญหาที่เกิดจากปัญหาการกระจายโหมดโพลาไรซ์คือการวางอุปกรณ์ชดเชย สัญญาณความผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมดโพลาไรซ์ (PMD compensator : PMDC) ซึ่งมีคุณสมบัติสามารถชดเชยค่า DGD ได้ เมื่อนำมาวางบนระบบจะสามารถหักล้างกับ ค่า DGD ที่สะสมมาได้ดังสมการที่ (2.18)

$$\tau_{acXZ} + D_{PMD}\sqrt{L_{XY}} = \tau_{acc}$$
(2.18)

- โดยที่ $D_{PMD,1}$ คือ ค่าเฉลี่ยของพารามิเตอร์ PMD ที่ใช้ในการส่งผ่านสัญญาณ [ps/\sqrt{km}] $D_{PMD,2}$ คือ ค่าเฉลี่ยของพารามิเตอร์ PMD ที่ใช้ในการชดเชยค่า DGD [ps/\sqrt{km}]
 - L คือ ความยาวของเส้นใยแสงที่ใช้ในการส่งผ่านสัญญาณ [km]
 - L₂ คือ ความยาวของเส้นใยแสงที่ใช้ในการชดเชยค่าดิสเพอร์ชัน [km]
 - au_{acc} คือ ค่า differential group delay : DGD [ps]

บทที่ 3 ความผิดเพี้ยนของสัญญาณในเส้นใยแสง

การมัลติเพล็กซ์แบบ WDM เป็นการส่งสัญญาณที่มีความยาวคลื่นต่างกันไปพร้อมกัน ภายในเส้นใยแสง ทำให้สามารถส่งข้อมูลได้ในปริมาณมาก จากการศึกษาพบว่าการมอดูเลต แบบ DQPSK เป็นวิธีการหนึ่งที่เหมาะสมสำหรับการส่งสัญญาณแสงด้วยอัตราการรับ-ส่งข้อมูล 40 Gbps ต่อช่องสัญญาณบน optical transport network

ภาพที่ 3.1 DQPSK encoder [24]

จากภาพที่ 3.1 แสดงวงจรแปลงสัญญาณ DQPSK ซึ่งใช้ Mach-Zehnder modulator (MZM) และ phase modulator (PM) ต่ออนุกรมกัน สำหรับ MZM จะถูกใช้ทำให้ส่งผ่านแสงได้ น้อยที่สุดและถูกขับเคลื่อนด้วย ข้อมูล NRZ ที่มีแอมพลิจูด 2Vπ โดยสัญญาณจะถูกแบ่งออกเป็น 2 ส่วน คือ in-phase (I_k) และ quadrature (Q_k) โดย 2 สัญญาณนี้ทำให้เกิดความต่างเฟส $\frac{\pi}{2}$ จากตารางที่ 3.1 [24] ได้แสดงความสัมพันธ์ของสัญญาณที่ถูกมอดูเลตกับเฟสของสัญญาณ

I _k	0	0	1	1
Q _k	0	1	1	0
phase	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$

ตารางที่ 3.1 แสดงความสัมพันธ์ของสัญญาณที่ถูกมอดูเลตกับเฟสของสัญญาณ

ภาพที่ 3.2 DQPSK receiver[24]

จากภาพที่ 3.2 แสดงวงจรรับสัญญาณ DQPSK ประกอบด้วย MZMs 2 ตัว ซึ่งแต่ละตัว จะมีการประวิงเวลา τ เป็นระยะเวลา 2/อัตราบิต (bit rate) เฟสจะถูกตั้งค่าอยู่ที่ด้านบน $\frac{\pi}{4}$ และ ด้านล่าง $-\frac{\pi}{4}$ ตัวตรวจจับแสง (detector) แต่ละตัวมีแบนด์วิธกว้างเท่ากับ อัตราบิต/2 สัญญาณ จะถูกแสดงผลออกมา ซึ่งจะมีลักษณะของ eye diagram ตามภาพที่ 3.3

ภาพที่ 3.3 eye diagram ของ DQPSK modulation (a) ของสัญญาณ I_k (b) ของสัญญาณ Q_k

ตามมาตรฐานของ ITU ในช่วงความถี่ C band ได้แบ่งช่องสัญญาณออกเป็น 50 ช่องสัญญาณ ซึ่งแต่ละ ช่องสัญญาณห่างกัน 100 GHz.โดยจะพิจารณาเพียง 11 channels ดัง ตารางที่ 3.2 [27]

	THz	nm		THz	nm
1	191.00	1569.59	7	194.00	1545.32
2	191.50	1565.50	8	194.50	1541.35
3	192.00	1561.42	9	195.00	1537.40
4	192.50	1557.36	10	195.50	1533.47
5	193.00	1553.33	11	195.90	1530.33
6	193.50	1549.32			

ตารางที่ 3.2 11 channels จาก ITU GRID SPECIFICATION

3.1 ความผิดเพี้ยนของสัญญาณในเส้นใยแสงจากผลจากปรากฏการณ์ดิสเพอร์ชันเมื่อ เพิ่มอัตราการส่งข้อมูลเป็น 40 Gb/s ต่อช่องสัญญาณ

พิจารณาความสัมพันธ์ระหว่างความยาวคลื่น (λ) กับค่าดิสเพอร์ชัน (D) ซึ่งสามารถหา ได้จากสมการที่ (3.1) [14]

$$D(\lambda) = \frac{\lambda S_0}{4} \left[1 - \left(\frac{\lambda_0}{\lambda}\right)^4 \right]$$
(3.1)

 S_0 คือ zero dispersion slope = 0.09 [ps/nm².km]

 λ_0 คีขzero dispersion point = 1300 [nm]

เนื่องด้วยโครงงานนี้ พิจารณาระบบโครงข่ายในเมือง จึงเลือกใช้เส้นใยแสงชนิด G.652.D ซึ่งมีมาตรฐานดังตารางที่ 3.3 [28] เมื่อแทนในสมการที่(3.1) สามารถนำมาพล็อตกราฟได้ดังภาพ ที่ 3.4 พบว่าค่าดิสเพอร์ชันแปรผันตามกับความยาวคลื่น กล่าวคือ ค่าดิสเพอร์ชันจะมีค่ามากขึ้น เมื่อความยาวคลื่นมากขึ้น

ตารางที่ 3.3 Optical and Geometric specifications for optical fiber G.652.D

Optical parameter	Values	
Zero dispersion point ($\lambda_{_0}$)	1300-1324 nm	
Zero dispersion slope ($S_{\scriptscriptstyle 0}$)	\leq 0.090 ps/nm ² .km	
Chromatic dispersion	≤ 18.0 ps/nm.km	
in 1550 nm (D)		

ภาพที่ 3.4 กราฟแสดงความสัมพันธ์ระหว่างความยาวคลื่น และค่าดิสเพอร์ชันในช่วงความถี่ C-band

3.2 ระยะทางสูงสุดที่สามารถส่งสัญญาณผ่านเส้นใยแสงได้ เนื่องจากผลของดิสเพอร์ชัน ตามขอบเขตจำกัดของอัตราบิตผิดพลาดของระบบ (BER)

กำหนดให้การส่งสัญญาณบนระบบสื่อสัญญาณผ่านเส้นใยแสงด้วยอัตราการรับ-ส่ง ข้อมูล 40 Gbps โดยวิธี DQPSK modulation มีขอบเขตของอัตราบิตผิดพลาดของระบบ (BER <10⁻¹²) [26] ในการหาระยะทางสูงสุดที่สามารถส่งสัญญาณผ่านเส้นใยแสงได้ จาก computer simulation จะได้ความสัมพันธ์ระหว่างความยาวคลื่นและระยะทางสูงสุดที่สามารถส่งสัญญาณ ได้ ดังภาพที่ 3.5 พบว่าระยะทางสูงสุดที่สามารถส่งสัญญาณได้แปรผกผันกับความยาวคลื่น กล่าวคือระยะทางสูงสุดในการส่งสัญญาณจะน้อยลงเมื่อความยาวคลื่นมากขึ้น หากพิจารณาที่ ขอบบนและขอบล่างของ C band จะได้ค่าระยะทางสูงสุดในการส่งสัญญาณดังตารางที่ 3.4

ภาพที่ 3.5 กราฟแสดงความสัมพันธ์ระหว่างความยาวคลื่นและระยะทางสูงสุดของ เส้นใยแสงที่สัญญาณสามารถส่งผ่านไปได้โดยมี BER < 10⁻¹²

ตารางที่ 3.4 แสดงระยะทางสูงสุดในการส่งสัญญาณที่ขอบบนและขอบล่าง ของความยาวคลื่นช่วง C band

ความยาวคลื่น [nm]	ระยะทางสูงสุด [km]
1569.59	9.14
1530.33	11.73

สรุปได้ว่าเมื่อความยาวคลื่นมากขึ้น ค่าดิสเพอร์ชันจะมากขึ้น แต่ระยะทางสูงสุดในการส่ง สัญญาณให้ได้ตามขอบเขตจำกัดของอัตราบิตผิดพลาดของระบบจะลดน้อยลง และผลของค่าดิส เพอร์ชันทำให้สามารถส่งสัญญาณได้อย่างถูกต้องได้ในช่วงระยะทาง 9.14-11.73 km

3.3 ระยะทางสูงสุดที่สามารถส่งสัญญาณผ่านเส้นใยแสงได้ เนื่องจากผลของ PMD ตาม ขอบเขตจำกัดของอัตราบิตผิดพลาดของระบบ (BER) ระยะทางสูงสุดที่สามารถส่งสัญญาณผ่านเส้นใยแสงได้เนื่องจากผลของ PMD สามารถ คำนวณได้จากสมการที่ (3.2) [14]

$$\Delta \tau_{pol} = D_{PMD} \sqrt{L} \tag{3.2}$$

$\Delta au_{_{pol}}$	คือ การขยายออกของพัลซ์เนื่องจาก PMD
D_{PMD}	คือ โหมดการกระจายตัวของดิสเพอร์ชัน
L	คือ ความยาวของสายส่งสัญญาณ

จากสมการที่ (3.2) จะพบว่าระยะทางสูงสุดในการส่งสัญญาณตามขอบเขตจำกัดของ อัตราบิตผิดพลาดของระบบ ไม่ขึ้นกับกำลังในการส่ง และความยาวคลื่น ดังนั้นจากการใช้ computer simulation จึงเลือกใช้กำลังในการส่งที่ 8 dBm และความยาวคลื่น 1569.59 nm ได้ผล ดังตารางที่ 3.5

ตารางที่ 3.5 แสดงความสัมพันธ์ระหว่างระยะทางในการส่งสัญญาณ

L[km]	BER	BER _Q
6200	4.13198x10 ⁻²¹³	3.70153x10 ⁻¹⁹¹
6400	6.64241x10 ⁻¹¹⁷	6.67017x10 ⁻¹¹⁰
7200	5.43798x10 ⁻⁷⁸	2.19462x10 ⁻⁷³
8000	0	0
8800	0	0
9600	9.43545x10 ⁻¹⁹⁸	4.22352x10 ⁻¹⁶⁹
10400	2.51141x10 ⁻¹⁹⁰	7.29191x10 ⁻¹⁶⁹

กับอัตราบิตผิดพลาดของระบบ

จากตารางที่ 3.5 จะพบว่าอัตราบิตผิดพลาดของระบบมีค่าแบบสุ่มเนื่องมาจาก PMD มี ผลกับระยะทางในการส่งไกลๆ จึงสุ่มค่าโดยคิดที่ระยะทางทุกๆ 500 km ตลอดระยะทางในการส่ง สัญญาณ และพบว่าค่าอัตราบิตผิดพลาดของระบบน้อยมาก ถือได้ว่าแทบไม่มีความผิดเพี้ยนของ สัญญาณเกิดขึ้น จึงไม่สามารถหาระยะทางสูงสุดที่สามารถส่งสัญญาณผ่านเส้นใยแสงเนื่องจาก ผลของ PMD ได้ เหตุเพราะ PMD มีผลต่อการผิดเพี้ยนของสัญญาณน้อยมาก แต่สามารถสรุปได้ ว่า ค่า PMD ไม่มีผลต่อการผิดเพี้ยนของสัญญาณเมื่อส่งสัญญาณในระยะทาง 0-10,400 km

3.4 การชดเชยปัญหาดิสเพอร์ชันและปัญหาการกระจายโหมดโพลาไรซ์ในโครงข่ายที่มี อัตราการรับส่งข้อมูลที่ 40 Gbps

เนื่องจากปัญหาการกระจายโหมดโพลาไรซ์มีผลต่อระบบน้อยมากดังที่กล่าวมาในหัวข้อที่ แล้ว จึงพิจารณาเพียงการชดเชยดิสเพอร์ชันเท่านั้น พิจารณาเส้นใยแสงชนิด G.652D ที่ความยาว คลื่น 1550.12 nm มีมาตรฐานดังตารางที่ 3.6 [29]

	SMF	DCU
dispersion [ps/nm.km]	18	-82
PMD [ps/ \sqrt{km}]	0.2	0.1
attenuation [dB/km]	0.2	0.62
$A_{_{eff}}$ [μ m ²]	80	12
$n_2 [{ m m}^2/{ m W}]$	2.6x10 ⁻²¹	13.2x10 ⁻²¹

ตารางที่ 3.6 มาตรฐานของเส้นใยแสงชนิด G.652d (SMF) และเส้นใยแสงชดเชยดิสเพอร์ชัน (DCU)

การชดเซยดิสเพอร์ชันด้วยหน่วยชดเซยดิสเพอร์ชัน จะเลือกใช้แบบ non-slope compensated เนื่องจากพิจารณาที่ความยาวคลื่นเดียวเท่านั้น ซึ่งสามารถคำนวณหาระยะทาง ของหน่วยชดเซยได้จากสมการที่ (3.3) [14] และกำหนดให้วางหน่วยชดเซยทุกๆระยะ 40, 50, 80 และ 100 km จะได้ความยาวของหน่วยชดเซยดังตารางที่ 3.7 แสดงให้เห็นว่า ยิ่งส่งสัญญาณที่ ระยะทางไกลขึ้น ยิ่งต้องทำการชดเซยการผิดเพี้ยนของสัญญาณด้วยหน่วยชดเซยดิสเพอร์ชันด้วย ความยาวมากขึ้น

$$D_{SMF}L_{SMF} + D_{DCU}L_{DCU} = 0$$
(3.3)

 $D_{\scriptscriptstyle SMF}$ คือ ค่าดิสเพอร์ชันของเส้นใยแสง = 18 ps/nm.km

L_{SMF} คือ ความยาวของเส้นใยแสง [km]

D_{DCU} คือ ค่าดิสเพอร์ชันของหน่วยชดเชย = -82 ps/nm.km

L_{DCU} คือ ความยาวของหน่วยชดเชย [km]

span [km]	$L_{\! DCU}$ [km]
40	8.7805
50	10.9756
80	17.5610
100	21.9512

ตารางที่ 3.7ค่าความยาวของหน่วยชดเชยที่ความยาวของเส้นใยแสงต่างๆ

3.5 การชดเชยปัญหาการลดทอนของกำลังสัญญาณ (attenuation)

สามารถแก้ไขปัญหา attenuation ได้โดยใช้อุปกรณ์ขยายกำลังสัญญาณ (optical amplifer) ซึ่งสามารถกำหนด gain ได้จากสมการที่ (3.4) [14] กำหนดให้วาง optical amplifier ทุกๆ 40, 50, 80 และ 100 km จะได้ gain ดังตารางที่ 3.8 แสดงให้เห็นว่าเมื่อวาง optical amplifier ห่างกันเป็นระยะมากขึ้น จะต้องใช้ gain ในการขยายสัญญาณมากขึ้นด้วย

$$G = \alpha_{\rm SMF} L_{\rm SMF} + \alpha_{\rm DCU} L_{\rm DCU}$$
(3.4)

- G คือ อัตราการขยายของสัญญาณ [dB]
- $lpha_{
 m SMF}$ คือ attenuation ของ SMF = 0.2 dB/km
- $lpha_{DCU}$ คือ attenuation ของ DCU = 0.62 dB/km

a			_	a	1
m 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	പപ്പ തിലെ	ontion	omplifior	97926126	റംബ
		Uplical	ampiller	11905001	1 IN I
	0				

span [km]	<i>G</i> [dB]	
40	13.4	

50	16.8
80	26.9
100	33.6

3.6 ระยะทางสูงสุดที่สามารถส่งสัญญาณผ่านเส้นใยแสงได้ เนื่องจากผลของ Kerr effect ระยะทางสูงสุดที่ถูกจำกัดด้วย Kerr effect สามารถคำนวณได้จากสมการที่ (3.5) [30]

$$L_{NL} = \frac{1}{\gamma P_0} \tag{3.5}$$

$$\gamma = \frac{2\pi n_2}{\lambda A_{eff}} \tag{3.6}$$

จากการแทนค่าในสมการที่ (3.6) จะได้

$$\gamma = \frac{2\pi n_2}{\lambda A_{eff}} = 1.3173 \times 10^{-3} \,\mathrm{W}^{-1} \mathrm{km}^{-1}$$

P₀ = กำลังที่ส่งไปในเส้นใยแสง ซึ่งคำนวณได้จากสมการที่ (3.7)

$$P_0 = P_{in} \left(\frac{1 - \exp(-\alpha L)}{\alpha L} \right)$$
(3.7)

- P_{in} คือ กำลังในการส่งสัญญาณ [mW]
- α คือ attenuation ของ SMF = 0.0461
- *L* คือ ระยะทางในการส่งสัญญาณ

เมื่อพิจารณาL ที่ 40, 50, 80 และ 100 km จะได้ความสัมพันธ์ของกำลังในการส่ง สัญญาณกับระยะทางสูงสุดในการส่งสัญญาณดังแสดงในภาพที่ 3.6 ซึ่งสามารถสรุปได้ว่าผลของ Kerr effect ทำให้เมื่อใช้กำลังในการส่งสัญญาณมากขึ้น จะทำให้สามารถส่งสัญญาณไปได้ไกล น้อยลง

ภาพที่ 3.6 กราฟแสดงความสัมพันธ์ระหว่างกำลังในการส่งสัญญาณ กับระยะทางสูงสุดในการส่งสัญญาณเนื่องจากผลของ Kerr effect

3.7 การจำลองระบบส่งสัญญาณเพื่อศึกษาผลกระทบของ Kerr effect เมื่อได้ชดเชยความ ผิดเพี้ยนของสัญญาณจากปัจจัยอื่นๆแล้ว

ภาพที่ 3.7 แบบจำลองการส่งสัญญาณ

การจำลองระบบการส่งสัญญาณที่ทำการแก้ไขความผิดเพี้ยนของสัญญาณจากปัจจัย อื่นๆแสดงได้ภาพที่ 3.7 ในขั้นตอนนี้จะศึกษาผลกระทบของ Kerr effect เมื่อวาง DCU และ optical amplifier ที่ระยะต่างๆ จากนั้นใช้ computer simulation ในการหาระยะทางสูงสุดที่ สามารถส่งสัญญาณได้โดยอยู่ในขอบเขตของอัตราบิตผิดพลาดของระบบ แสดงในตารางที่ 3.9 สรุปได้ว่า ยิ่งวาง DCU และ optical amplifier ห่างกันมากเท่าไหร่ในระบบ ยิ่งทำให้สามารถส่ง สัญญาณได้ระยะทางไกลน้อยลง เมื่อพิจารณาที่ระยะทางสูงสุดในการส่งสัญญาณของแต่ละ span จะแสดงได้ดังภาพที่ 3.8 แสดงให้เห็นว่ามีกำลังในการส่งสัญญาณเพียงค่าเดียวเท่านั้นที่ทำ ให้สามารถส่งสัญญาณด้วยระยะทางที่ไกลที่สุด ซึ่งสามารถสรุปได้ดังตารางที่ 3.10

span [km]	L_{max} [km]
40	1000
50	850
80	400
100	300

ที่ระยะการวาง DCU และ optical amplifier ต่างๆกัน

ตารางที่ 3.9 ระยะทางสูงสุดในการส่งสัญญาณโดยอัตราบิตข้อมูล BER<10⁻¹²

ภาพที่ 3.8 ความสัมพันธ์ของกำลังในการส่งสัญญาณกับค่า log ของอัตราตัวอย่างผิดพลาด ที่ระยะทางวาง DCU และ optical amplifier 40, 50, 80 และ 100 km

ตารางที่ 3.10 ค่าของกำลังในการส่งสัญญาณที่ span ต่างๆกัน เพื่อให้ได้ระยะทางในการส่งสัญญาณมากที่สุด

span [km]	$L_{\!max}$ [km]	$P_{\!in}$ [dBm]
40	1000	8
50	850	12
80	400	20
100	300	21

บทที่ 4 อัลกอริทึมสำหรับการใช้หน่วยชดเชยดิสเพอร์ชัน

โครงข่ายที่มีการมัลติเพลกซ์แบบเชิงความยาวคลื่นรวมทั้งการออกแบบโครงข่ายด้วย เทคโนโลยีWDM นำไปสู่โครงข่ายแบบไม่มีการเปลี่ยนรูปของพลังงานระหว่างสัญญาณในรูปแบบ อิเล็กทรอนิกส์และรูปแบบแสง การส่งข้อมูลด้วยความถี่ที่สูงขึ้นโดยจึงไม่ได้รับผลของปัญหา ขีดจำกัดทางอิเล็กทรอนิกส์ความถี่ 40 GHz ทำให้สามารถขยายขนาดโครงข่ายให้เกิดการใช้งาน แบนด์วิดท์สูงสุด อย่างไรก็ตามเมื่อสัญญาณเดินทางไปในเส้นใยแสงระยะทางหนึ่งจะเกิดผลจาก ปรากฏการณ์ดิสเพอร์ชัน จึงจำเป็นอย่างมากที่ต้องมีการสร้างอัลกอริทึมเพื่อลดผลกระทบจาก ปรากฏการณ์ดิสเพอร์ชัน อัลกอริทึมสำหรับการใช้หน่วยชดเชยดิสเพอร์ชันอย่างมีประสิทฺธิภาพลง ในโครงข่ายลักษณะเมชทั้งกรณีที่โครงข่ายทำงานปกติซึ่งมีขั้นตอนวิธี 3 ขั้นตอนดังนี้

4.1 ระบุเส้นทางการส่งผ่านสัญญาณจากโนดต้นทางไปสู่โนดปลายทาง

การระบุเส้นทางการส่งผ่านสัญญาณจากโนดต้นทางไปสู่โนดปลายทางที่เป็นไปได้ ทั้งหมดในกรณีที่โครงข่ายทำงานปกติจะพิจารณาระยะทางระหว่างโนดที่มีค่าสั้นที่สุด (shortest path) และการจัดสรรเส้นทางการส่งผ่านสัญญาณภายในโครงข่ายขึ้นใหม่ในกรณีที่มีความ เสียหายเกิดขึ้นกับข่ายเชื่อมโยงหนึ่งภายในโครงข่ายจะใช้กลไกการกู้คืนสัญญาณแบบ Path Protection บนเส้นใยแสงทำงาน

4.2 การสร้างสมการและอสมการเงื่อนไขขอบเขต

การสร้างสมการเงื่อนไขขอบเขตสำหรับเส้นทางการส่งสัญญาณสำหรับการส่งผ่าน สัญญาณกรณีโครงข่ายทำงานปกติ และสำหรับเส้นทางการส่งผ่านสัญญาณกรณีที่เกิดความ เสียหายกับข่ายเชื่อมโยงหนึ่งในโครงข่ายด้วยกลไกการกู้คืนสัญญาณบนเส้นใยแสงสำรองแบบ ย path protection ประกอบด้วย

- สมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณระหว่างโนดต้นทางและโนดปลายทาง (Path Constraints)
- อสมการเงื่อนไขขอบเขตของค่าดิสเพอร์ชัน (Maximum Dispersion Constraints)
- เงื่อนไขขอบเขตจำนวนเต็ม (Integrality Constraint)
- การกำหนดฟังก์ชันวัตถุประสงค์ (Objective Function)

4.2.1 สมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณระหว่างโนด

การสร้างสมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณระหว่างโนดต้นทาง Z ไปยังโนด ปลายทาง X และ Y เมื่อเชื่อมต่อด้วยเส้นใยแสง 2 เส้น สามารถส่งถึงกันได้ทั้งสองทิศทาง เรา สามารถกำหนดสมการขอบเขตการส่งผ่านสัญญาณระหว่างโนดต้นทางไปยังโนดปลายทางใด ๆ ได้ดังนี้

ภาพที่ 4.1 การส่งผ่านสัญญาณระหว่างโนดต้นทางและปลายทาง [4]

$$D_{acXZi} + (D_i + L_{XY}) + (D_{compi} \times N_{XY}) = D_{acYZi}$$

$$(4.1)$$

- โดยที่ **D**_{acXZi} คือ ดิสเพอร์ชันสะสมที่โนดปลายทาง X เมื่อสัญญาณความยาวคลื่น λ_i ส่งผ่านมาจากโนดต้นทาง Z
 - D_{acYZi} คือ ดิสเพอร์ชันสะสมที่โนดปลายทาง Υ เมื่อสัญญาณความยาวคลื่น λ_i ส่งผ่านมาจากโนดต้นทาง Z
 - D, คือ ค่าดิสเพอร์ชันบนเส้นใยแสงที่ความยาวคลื่น λ,
 - $D_{\scriptscriptstyle commi}$ คือ ค่าชดเชยดิสเพอร์ชันของหน่วยชดเชยดิสเพอร์ชันที่ λ_i
 - . L_{xy} คือ ความยาวของข่ายเชื่อมโยง XY
 - . N_{xy} คือ จำนวนหน่วยชดเชยดิสเพอร์ชันบนข่ายเชื่อมโยง XY

จากสมการที่ (4.1) ค่าดิสเพอร์ชันสะสม D_{acXZi} ที่ในดปลายทาง X เมื่อสัญญาณความ ยาวคลื่น λ_i ถูกส่งผ่านมาจากในดต้นทาง Z จะเพิ่มขึ้นด้วยค่าดิสเพอร์ชันบนเส้นใยแสง SMF ความยาว L_{XY} ที่มีค่าเท่ากับ $D_i \times L_{XY}$ ในขณะเดียวกันค่าดิสเพอร์ชันสะสมดังกล่าวจะถูกชดเชย ด้วยหน่วยชดเชยดิสเพอร์ชันที่วางลงบนข่ายเชื่อมโยง XY จำนวน N_{XY} หน่วย ซึ่งชดเชยดิสเพอร์ ชันมีค่าเท่ากับ $D_{compi} \times N_{XY}$ สุดท้ายจะได้เป็นค่าดิสเพอร์ชันสะสมสิ้นสุดที่ในดปลายทาง Y (D_{acYZi})

4.2.2 เงื่อนไขขอบเขตของค่าดิสเพอร์ชัน

เราต้องการให้ค่าดิสเพอร์ชันสะสมของแต่ละความยาวคลื่น ณ โนดปลายทาง Y จากโนด ต้นทาง Z มีค่าน้อยกว่า D_{max} (acceptable accumulated dispersion) และในทางตรงกันข้าม ต้องมีค่ามากกว่า –D_{max} ดังนี้

$$-D_{\max} \le D_{acYZi} \le D_{\max} \tag{4.2}$$

โดยที่ $D_{_{
m max}}$ คือ ค่าดิสเพอร์ชันมากที่สุดที่ไม่ทำให้พัลส์สัญญาณเกิดผิดเพี้ยนจนไม่ สามารถชดเชยให้กลับมาสู่สัญญาณเดิมได้

4.2.3 เงื่อนไขขอบเขตจำนวนเต็ม

เงื่อนไขขอบเขตจำนวนเต็มสำหรับแต่ละข่ายเชื่อมโยง XY คือ จำนวนหน่วยชดเชยดิส เพอร์ชันที่วางลงในแต่ละข่ายเชื่อมโยงต้องเป็นจำนวนเต็มบวกหรือศูนย์เท่านั้น

$$N_{XY} = \left\{ x : x \in I^+ \cup \{0\} \right\}$$
(4.3)

4.2.4 ฟังก์ชันวัตถุประสงค์

ฟังก์ชันวัตถุประสงค์เป็นฟังก์ชันที่กำหนดจำนวนหน่วยชดเชยดิสเพอร์ชันน้อยสุดใน โครงข่ายในขณะเดียวกันจำนวนหน่วยชดเชยดิสเพอร์ชันน้อยสุดนี้ยังคงรักษาไว้ซึ่งประสิทธิภาพ การส่งสัญญาณภายในโครงข่ายได้

$$Minimize\left\{N = \sum_{X,Y=1}^{n} N_{XY}\right\}$$
(4.4)

โดยที่ *n* คือ จำนวนโนดทั้งหมดในโครงข่าย

4.3 การแก้สมการและอสมการเงื่อนไขขอบเขต

จากปัญหาข้างต้นเป็นปัญหาที่มีจำนวนจริงและจำนวนเต็ม อีกทั้งสมการต่างๆ ที่ เกี่ยวข้องอยู่ในรูปแบบของสมการเส้นตรงจึงต้องใช้การแก้ปัญหาแบบ Mixed-Integer-Linear-Programming (MILP) เพื่อทำ Optimization หาผลเฉลยจากสมการและอสมการเงื่อนไขขอบเขต โดยเลือกใช้โปรแกรม XPress.MP [31] ในการประมวลผลเนื่องจากเนื่องจากโปรแกรมมีวิธีการใช้ งานที่ง่ายและมีการประมวลผลที่รวดเร็วแสดงดังภาพที่ 4.2

ผลเฉลยที่ได้เราจะได้จากอัลกอริทึมสำหรับการใช้หน่วยชดเชยดิสเพอร์ชันคือ จำนวน หน่วยชดเชยดิสเพอร์ชันในแต่ละเส้นใยแสงและค่าดิสเพอร์ชันสะสมของแต่ละความยาวคลื่นที่ทุก โนดปลายทางภายในโครงข่าย

ภาพที่ 4.2 โปรแกรม XPress.MP MP

บทที่ 5 อัลกอริทึมสำหรับการใช้อุปกรณ์ชดเชยปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการ กระจายโหมดโพลาไรซ์

อัลกอริทึมสำหรับการใช้อุปกรณ์ชดเชยปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการกระจาย โหมดโพลาไรซ์อย่างมีประสิทธิภาพลงในโครงข่ายลักษณะเมชทั้งกรณีที่โครงข่ายทำงานปกติซึ่งมี ขั้นตอนวิธี 4 ขั้นตอนดังนี้

5.1 ระบุเส้นทางการส่งผ่านสัญญาณจากโนดต้นทางไปสู่โนดปลายทาง

การระบุเส้นทางการส่งผ่านสัญญาณจากโนดต้นทางไปสู่โนดปลายทางที่เป็นไปได้ ทั้งหมดในกรณีที่โครงข่ายทำงานปกติจะพิจารณาระยะทางระหว่างโนดที่มีค่าสั้นที่สุด (shortest path) และการจัดสรรเส้นทางการส่งผ่านสัญญาณภายในโครงข่ายขึ้นใหม่ในกรณีที่มีความ เสียหายเกิดขึ้นกับข่ายเชื่อมโยงหนึ่งภายในโครงข่ายจะใช้กลไกการกู้คืนสัญญาณแบบ Path Protection บนเส้นใยแสงทำงาน

5.2 การสร้างสมการและอสมการเงื่อนไขขอบเขต

การสร้างสมการเงื่อนไขขอบเขตสำหรับเส้นทางการส่งสัญญาณสำหรับการส่งผ่าน สัญญาณกรณีโครงข่ายทำงานปกติและสำหรับเส้นทางการส่งผ่านสัญญาณกรณีที่เกิดความ เสียหายกับข่ายเชื่อมโยงหนึ่งในโครงข่ายด้วยกลไกการกู้คืนสัญญาณบนเส้นใยแสงสำรองแบบ Path Protection ประกอบด้วย

- สมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณระหว่างโนดต้นทางและโนด
- อสมการเงื่อนไขขอบเขตของของค่าความผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมด
 โพลาไรซ์
- เงื่อนไขขอบเขตจำนวนเต็ม
- การกำหนดฟังก์ชันวัตถุประสงค์

5.2.1 สมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณระหว่างโนด

การสร้างสมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณระหว่างโนดต้นทาง Z ไปยังโนด ปลายทาง X และ Y เมื่อเชื่อมต่อด้วยเส้นใยแสง 2 เส้น สามารถส่งถึงกันได้ทั้งสองทิศทาง สามารถ กำหนดสมการขอบเขตการส่งผ่านสัญญาณระหว่างโนดต้นทางไปยังโนดปลายทางใด ๆ ได้ดังนี้

ภาพที่ 5.1 การส่งผ่านสัญญาณระหว่างโนดต้นทางและปลายทาง

$$\tau_{acXZ} + D_{PMD}\sqrt{L_{XY}} + N_{XY}\tau_{comp} = \tau_{acYZ}$$
(5.1)

- โดยที่ au_{acxz} คือ ค่า DGD ที่โนดปลายทาง X ส่งผ่านมาจากโนดต้นทาง Z [ps]
 - au_{acYZ} คือ ค่า DGD ที่โนดปลายทาง Y เมื่อสัญญาณส่งผ่านมาจากโนดต้นทาง Z [ps]
 - $D_{_{PMD}}\,$ คือ ค่าเฉลี่ยของพารามิเตอร์ PMD ที่ใช้ในการส่งผ่านสัญญาณ [ps/\sqrt{km}]
 - τ_{comp} คือ ค่าชดเชยค่า DGD ของอุปกรณ์ชดเชยปัญหาความผิดเพี้ยนที่เกิดจาก
 ปัญหาการกระจายโหมดโพลาไรซ์ [ps]
 - $L_{_{XY}}$ คือ ความยาวของข่ายเชื่อมโยง XY [km]
 - N_{xy} คือ จำนวนอุปกรณ์ชดเชยปัญหาความผิดเพี้ยนที่เกิดจากปัญหา การกระจายโหมดโพลาไรซ์บนข่ายเชื่อมโยง XY

จากสมการที่ (5.1) ค่า differential group delay \mathcal{T}_{acXZ} ที่โนดปลายทาง X เมื่อสัญญาณ ถูกส่งผ่านมาจากโนดต้นทาง Z จะเพิ่มขึ้นด้วยค่า $D_{_{PMD}}\sqrt{L_{_{XY}}}$ บนเส้นใยแสง SMF ความยาว $L_{_{XY}}$ ในขณะเดียวกันจะถูกชดเชยด้วยอุปกรณ์ชดเชยปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการ กระจายโหมดโพลาไรซ์ที่วางลงบนข่ายเชื่อมโยง XY จำนวน $N_{_{XY}}$ หน่วย ซึ่งชดเชยดิสเพอร์ชันมีค่า เท่ากับ $N_{_{XY}}\mathcal{T}_{_{comp}}$ สุดท้ายจะได้เป็นค่า differential group delay ที่โนดปลายทาง Y ($\mathcal{T}_{_{acYZ}}$)

5.2.2 เงื่อนไขขอบเขตของค่าความผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมด โพลาไรซ์

เราต้องการให้ผลรวมค่า DGD ณ โนดปลายทาง Y จากโนดต้นทาง Z มีค่าน้อยกว่า $au_{
m max}$ (the differential group delay limit) และในทางตรงกันข้ามต้องมีค่ามากกว่า $- au_{
m max}$ ดังนี้

$$-\tau_{\max} \le \tau_{acc} \le +\tau_{\max} \tag{5.2}$$

โดยที่ $au_{
m max}$ คือ ค่า differential group delay ที่มากที่สุดที่ไม่ทำให้พัลส์สัญญาณ เกิดผิดเพี้ยนจนไม่สามารถชดเชยให้กลับมาสู่สัญญาณเดิมได้

5.2.3 เงื่อนไขขอบเขตจำนวนเต็ม

เงื่อนไขขอบเขตจำนวนเต็มสำหรับแต่ละข่ายเชื่อมโยง XY คือจำนวนอุปกรณ์ชดเชย ปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมดโพลาไรซ์ที่วางลงในแต่ละข่ายเชื่อมโยง ต้องเป็นจำนวนเต็มบวกหรือศูนย์เท่านั้น

$$N_{XY} = \left\{ x : x \in I^+ \cup \{0\} \right\}$$
(5.3)

5.2.4 ฟังก์ชันวัตถุประสงค์

พึงก์ชันวัตถุประสงค์เป็นพึงก์ชันที่กำหนดจำนวนอุปกรณ์ชดเชยปัญหาความผิดเพี้ยนที่ เกิดจากปัญหาการกระจายโหมดโพลาไรซ์น้อยสุดในโครงข่ายในขณะเดียวกันจำนวนอุปกรณ์ ชดเชยปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมดโพลาไรซ์น้อยสุดนี้ยังคงรักษาไว้ซึ่ง ประสิทธิภาพการส่งสัญญาณภายในโครงข่ายได้

$$Minimize\left\{N = \sum_{X,Y=1}^{n} N_{XY}\right\}$$
(5.4)

โดยที่ *n* คือ จำนวนโนดทั้งหมดในโครงข่าย

5.3 การแก้สมการและอสมการเงื่อนไขขอบเขต

จากปัญหาข้างต้นเป็นปัญหาที่มีจำนวนจริงและจำนวนเต็ม อีกทั้งสมการต่างๆ ที่ เกี่ยวข้องอยู่ในรูปแบบของสมการเส้นตรงจึงต้องใช้การแก้ปัญหาแบบ Mixed-Integer-Linear-Programming (MILP) เพื่อทำ Optimization หาผลเฉลยจากสมการและอสมการเงื่อนไขขอบเขต โดยเลือกใช้โปรแกรม XPress.MP [31] ในการประมวลผลเนื่องจากเนื่องจากโปรแกรมมีวิธีการใช้ งานที่ง่ายและมีการประมวลผลที่รวดเร็วแสดงดังภาพที่ 4.2 ผลเฉลยที่ได้เราจะได้จากอัลกอริทึม สำหรับการใช้อุปกรณ์ชดเชยปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมดโพลาไรซ์คือ จำนวนอุปกรณ์ชดเชยปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมดโพลาไรซ์ในแต่ละ เส้นใยแสงและค่า DGD ที่ทุกโนดปลายทางภายในโครงข่าย

บทที่ 6 อัลกอริทึมสำหรับการใช้หน่วยชดเชยดิสเพอร์ชัน เมื่อคำนึงผลของความไม่เป็นเชิงเส้น ของเส้นใยแสง

ในการสื่อสารทางเส้นที่ใช้อัตราการรับส่งข้อมูลสูงที่มากกว่า 10 Gbps จะมีอีกปัญหาที่ จำเป็นต้องพิจารณานอกเหนือจากการสูญเสียกำลังสัญญาณและดิสเพอร์ชันแล้วคือปัญหาความ ไม่เป็นเชิงเส้นของเส้นใยแสง จากที่กล่าวมาแล้วผลของปรากฏการณ์เคอร์เกิดจากค่าดัชนีหักเห เปลี่ยนแปลงไปตามกำลังงานของสัญญาณ ทำให้เฟสของสัญญาณที่ปลายทางเปลี่ยนแปลงไป โดยขึ้นกับกำลังงานของสัญญาณ

อัลกอริทึมสำหรับการใช้หน่วยชดเชยดิสเพอร์ชันอย่างมีประสิทธิภาพเมื่อคำนึงที่ผลของ ความไม่เป็นเชิงเส้นของเส้นใยแสงนั้นจะคล้ายกับอัลกอริทึมสำหรับการใช้หน่วยชดเชยดิสเพอร์ชัน อย่างมีประสิทฺธิภาพเพียงแต่จะมีสมการและอสมการที่เกี่ยวข้องกับความไม่เป็นเชิงเส้นของเส้นใย แสงเพิ่มขึ้นมาเท่านั้น

6.1 ระยะทางที่ถูกจำกัดด้วยผลของความไม่เป็นเชิงเส้นของเส้นใยแสง (Nonlinear Length)

ระยะทางที่ถูกจำกัดด้วยผลของความไม่เป็นเชิงเส้นของเส้นใยแสง หรือ Nonlinear Length สามารถคำนวณได้จากสมการที่ (3.5) และ (3.6) เมื่อแทนค่าพารามิเตอร์ต่างๆ จะได้

$$\gamma = \frac{2\pi n_2}{\lambda A_{eff}} = \frac{2 \times \pi \times (2.6 \times 10^{-20})}{(1550.12 \times 10^{-9}) \times (80 \times 10^{-6})} = 1.317 \times 10^{-3} W^{-1} km^{-1}$$

และเมื่อให้ P_o = 10 mW = 10 dB จะได้

$$L_{NL} = \frac{1}{\gamma P_0} = \frac{1}{(1.317 \times 10^{-3}) \times 10} = 75.930 \approx 76 km$$

จากสมการข้างต้นจะพบว่าผลกระทบของปัญหาความไม่เป็นเชิงเส้นของเส้นใยแสงจะยัง ไม่ส่งผลต่อโครงข่ายหากแสงเดินทางไปเป็นระยะน้อยกว่าหรือเท่ากับ 76 km ดังนั้นจึงเกิดสมการ และอสมการระยะทางที่ถูกจำกัดด้วยผลของความไม่เป็นเชิงเส้นขึ้นซึ่งจะกล่าวในหัวข้อถัดไป

6.2 ระบุเส้นทางการส่งผ่านสัญญาณจากโนดต้นทางไปสู่โนดปลายทาง

การระบุเส้นทางการส่งผ่านสัญญาณจากโนดต้นทางไปสู่โนดปลายทางที่เป็นไปได้ ทั้งหมดในกรณีที่โครงข่ายทำงานปกติจะพิจารณาระยะทางระหว่างโนดที่มีค่าสั้นที่สุด (shortest path) และการจัดสรรเส้นทางการส่งผ่านสัญญาณภายในโครงข่ายขึ้นใหม่ในกรณีที่มีความ เสียหายเกิดขึ้นกับข่ายเชื่อมโยงหนึ่งภายในโครงข่ายจะใช้กลไกการกู้คืนสัญญาณแบบ Path Protection บนเส้นใยแสงทำงาน ในกรณีโครงข่ายทำงานปกติและในกรณีเกิดความเสียหายกับ ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย

6.3 การสร้างสมการและอสมการเงื่อนไขขอบเขต

การสร้างสมการเงื่อนไขขอบเขตสำหรับเส้นทางการส่งสัญญาณสำหรับการส่งผ่าน สัญญาณกรณีโครงข่ายทำงานปกติและสำหรับเส้นทางการส่งผ่านสัญญาณกรณีที่เกิดความ เสียหายกับข่ายเชื่อมโยงหนึ่งในโครงข่ายด้วยกลไกการกู้คืนสัญญาณบนเส้นใยแสงสำรองแบบ Path Protection ประกอบด้วย

- สมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณระหว่างโนดต้นทางและโนดปลายทาง (Path Constraints)
- อสมการเงื่อนไขขอบเขตของค่าดิสเพอร์ชัน (Maximum Dispersion Constraints)
- เงื่อนไขขอบเขตจำนวนเต็ม (Integrality Constraint)
- การกำหนดฟังก์ชันวัตถุประสงค์ (Objective Function)
- อสมการเงื่อนไขระยะทางที่ถูกจำกัดด้วยผลของความไม่เป็นเชิงเส้น (Nonlinear Length Constraints)

6.3.1 สมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณระหว่างโนด

การสร้างสมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณระหว่างโนดต้นทาง Z ไปยังโนด ปลายทาง X และ Y เมื่อเชื่อมต่อด้วยเส้นใยแสง 2 เส้น สามารถส่งถึงกันได้ทั้งสองทิศทาง เรา สามารถกำหนดสมการขอบเขตการส่งผ่านสัญญาณระหว่างโนดต้นทางไปยังโนดปลายทางใด ๆ ดังสมการที่ (6.1)

$$D_{acXZi} + (D_i + L_{XY}) + (D_{compi} \times N_{XY}) = D_{acYZi}$$
(6.1)

โดยที่	$D_{_{acXZi}}$	คือ ดิสเพอร์ชันสะสมที่โนดปลายทาง X เมื่อสัญญาณความยาวคลื่น $\mathcal{\lambda}_i$
		ส่งผ่านมาจากโนดต้นทาง Z
	$D_{_{acYZi}}$	คือ ดิสเพอร์ชันสะสมที่โนดปลายทาง Y เมื่อสัญญาณความยาวคลื่น $\lambda_{_i}$
		ส่งผ่านมาจากโนดต้นทาง Z
	$D_{_i}$	คือ ค่าดิสเพอร์ชันบนเส้นใยแสงที่ความยาวคลื่น $\mathcal{\lambda}_i$
	$D_{_{compi}}$	คือ ค่าชดเชยดิสเพอร์ชันของหน่วยชดเชยดิสเพอร์ชันที่ λ_i
	$L_{_{XY}}$	คือ ความยาวของข่ายเชื่อมโยง XY
	$N_{_{XY}}$	คือ จำนวนหน่วยชดเชยดิสเพอร์ชันบนข่ายเชื่อมโยง XY

จากสมการที่ (6.1) ค่าดิสเพอร์ชันสะสม D_{acxzi} ที่ในดปลายทาง X เมื่อสัญญาณความ ยาวคลื่น λ_i ถูกส่งผ่านมาจากโนดต้นทาง Z จะเพิ่มขึ้นด้วยค่าดิสเพอร์ชันบนเส้นใยแสง SMF ความยาว L_{xy} ที่มีค่าเท่ากับ D_i×L_{xy} ในขณะเดียวกันค่าดิสเพอร์ชันสะสมดังกล่าวจะถูกชดเชย ด้วยหน่วยชดเชยดิสเพอร์ชันที่วางลงบนข่ายเชื่อมโยง XY จำนวน N_{xy} หน่วย ซึ่งชดเชยดิสเพอร์ ชันมีค่าเท่ากับ D_{compi}×N_{xy} สุดท้ายจะได้เป็นค่าดิสเพอร์ชันสะสมที่ในดปลายทาง Y (D_{acyzi})

6.3.2 เงื่อนไขขอบเขตของค่าดิสเพอร์ชัน

เราต้องการให้ค่าดิสเพอร์ซันสะสมของแต่ละความยาวคลื่น ณ โนดปลายทาง Y จากโนด ต้นทาง Z มีค่าน้อยกว่า D_{max} (acceptable accumulated dispersion) และในทางตรงกันข้าม ต้องมีค่ามากกว่า –D_{max} ดังนี้

$$D_{\max} \le D_{acYZi} \le D_{\max} \tag{6.2}$$

โดยที่ $D_{_{\max}}$ คือ ค่าดิสเพอร์ชันมากที่สุดที่ไม่ทำให้พัลส์สัญญาณเกิดผิดเพี้ยนจนไม่ สามารถชดเชยให้กลับมาสู่สัญญาณเดิมได้

6.3.3 เงื่อนไขขอบเขตจำนวนเต็ม

เงื่อนไขขอบเขตจำนวนเต็มสำหรับแต่ละข่ายเชื่อมโยง XY คือ จำนวนหน่วยชดเชยดิส เพอร์ชันที่วางลงในแต่ละข่ายเชื่อมโยงต้องเป็นจำนวนเต็มบวกหรือศูนย์เท่านั้น

$$N_{XY} = \left\{ x : x \in I^+ \bigcup \{0\} \right\}$$
(6.3)

6.3.4 ฟังก์ชันวัตถุประสงค์

ฟังก์ชันวัตถุประสงค์เป็นฟังก์ชันที่กำหนดจำนวนหน่วยชดเชยดิสเพอร์ชันน้อยสุดใน โครงข่ายในขณะเดียวกันจำนวนหน่วยชดเชยดิสเพอร์ชันน้อยสุดนี้ยังคงรักษาไว้ซึ่งประสิทธิภาพ การส่งสัญญาณภายในโครงข่ายได้

$$Minimize\left\{N = \sum_{X,Y=1}^{n} N_{XY}\right\}$$
(6.4)

6.3.5 อสมการเงื่อนไขระยะทางที่ถูกจำกัดด้วยผลของความไม่เป็นเชิงเส้น (Nonlinear Length Constraints)

อสมการเงื่อนไขระยะทางที่ถูกจำกัดด้วยผลของความไม่เป็นเชิงเส้นจะกำหนดช่วงการวาง หน่วยชดเชยดิสเพอร์ชันในแต่ละเส้นทาง

ภาพที่ 6.1 (ก) (ข) ช่วงการวางหน่วยชดเชยดิสเพอร์ชันระหว่างโนดต้นทางและปลายทาง

$$L = L_{NL}N + r \tag{6.5}$$

$$r \le L_{_{NL}} \tag{6.6}$$

$$L \le L_{\scriptscriptstyle NL}(N+1) \tag{6.7}$$

โดยที่ *L* คือ ระยะทางจากโนดต้นทาง Z ถึงโนดปลายทาง Y [km]

 $L_{_{\!N\!L}}$ คือ Nonlinear Length [km]

N คือ จำนวนหน่วยชดเชยดิสเพอร์ชัน

จากสมการที่ (6.5) จะวางหน่วยชดเชยดิสเพอร์ชันที่ระยะน้อยกว่าหรือเท่ากับ nonlinear length เพื่อลดผลจากปัญหาความไม่เป็นเชิงเส้นของเส้นใยแสง โดยจะทดลองในกรณีที่เลวร้าย ที่สุดคือให้วางหน่วยชดเชยดิสเพอร์ชันที่ nonlinear length พอดี ซึ่งหน่วยชดเชยดิสเพอร์ชันตัว แรกจะวางที่ระยะ $L_{_{NL}}$ หน่วยชดเชยดิสเพอร์ชันตัวที่2จะวางที่ระยะ $2L_{_{NL}}$ พบว่าที่ตำแหน่งวาง หน่วยชดเชยดิสเพอร์ชันจำนวนที่ N มีระยะ $L_{_{NL}}N$ ดังภาพที่ 6.1 (ก) พบว่าจะเหลือยะทาง r ใด เมื่อพิจารณาที่ระยะ r จะกำหนดว่าระยะที่เหลือมีค่าน้อยกว่า nonlinear length ดังสมการที่ (6.6) เมื่อนำ (6.6) ไปแทนค่าในสมการที่ (6.5) จะได้ว่า $L \leq L_{_{NL}}N + L_{_{NL}}$

6.4 การแก้สมการและอสมการเงื่อนไขขอบเขต

จากปัญหาข้างต้นเป็นปัญหาที่มีจำนวนจริงและจำนวนเต็ม อีกทั้งสมการต่างๆ ที่ เกี่ยวข้องอยู่ในรูปแบบของสมการเส้นตรงจึงต้องใช้การแก้ปัญหาแบบ Mixed-Integer-Linear-Programming (MILP) เพื่อทำ Optimization หาผลเฉลยจากสมการและอสมการเงื่อนไขขอบเขต โดยเลือกใช้โปรแกรม XPress.MP [31] ในการประมวลผลเนื่องจากเนื่องจากโปรแกรมมีวิธีการใช้ งานที่ง่ายและมีการประมวลผลที่รวดเร็ว ผลเฉลยที่ได้เราจะได้จากอัลกอริทึมสำหรับการใช้หน่วย ชดเซยดิสเพอร์ชันเมื่อคำนึงที่ผลของความไม่เป็นเชิงเส้นของเส้นใยแสงคือ จำนวนหน่วยชดเซยดิส เพอร์ชันในแต่ละเส้นใยแสงและค่าดิสเพอร์ชันสะสมของแต่ละความยาวคลื่นที่ทุกโนดปลายทาง ภายในโครงข่าย

บทที่ 7 การใช้อัลกอริทึมสำหรับใช้หน่วยชดเชยดิสเพอร์ชันในกรณีทำงานปกติและกรณีเกิด ความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย

ในบทที่นี้จะนำเสนอการใช้อัลกอริทึมสำหรับใช้หน่วยชดเชยดิสเพอร์ชันดังแสดงในบทที่ 4 กับโครงข่ายต่างๆในกรณีทำงานปกติ โดยจะจำลองการใช้หน่วยชดเชยดิสเพอร์ชันที่น้อยที่สุด บนโครงข่ายตัวอย่าง จำลองการใช้หน่วยชดเชยดิสเพอร์ชันที่น้อยที่สุดบนโครงข่าย Optical Pan-European Network (OPEN) และสุดท้ายจำลองการใช้หน่วยชดเชยดิสเพอร์ชันที่น้อยที่สุดบน โครงข่าย North-American Reference Network (NARNET)

7.1 การจำลองการใช้หน่วยชดเชยดิสเพอร์ชันที่น้อยที่สุดบนโครงข่ายตัวอย่าง

ประเภทของเส้นใยแสงที่ใช้ในการส่งผ่านสัญญาณคือเส้นใยแสงแบบโหมดคลื่นเดียวซึ่งมี ค่าดิสเพอร์ชัน (*D*) เท่ากับ 16.5 ps/km/nm ที่ความยาวคลื่น 1,550 nm และมีค่าความชัน ของดิสเพอร์ชัน (*S*) ที่ 0.05 ps/nm²/km แสดงความสัมพันธ์ระหว่างความยาวคลื่นและดิสเพอร์ ชันของเส้นใยแสงที่ใช้ในการส่งผ่านสัญญาณดังภาพที่ 7.1 [33]

ภาพที่ 7.1 ดิสเพอร์ชันของ SMF ITU-T G.652

7.1.1 ประเภทของหน่วยชดเชยดิสเพอร์ชันที่ใช้ในการจำลองโครงข่าย

หน่วยชดเชยดิสเพอร์ชันที่ใช้ในการจำลองโครงข่ายจะใช้ 2 ชนิดในการจำลองการใช้ หน่วยชดเชยดิสเพอร์ชันคือ

NS-DCU มีค่าดิสเพอร์ชันเท่ากับ -82 ps/km/nm ที่ 1550 nm และมีค่าความชันของ
 ค่าดิสเพอร์ชันที่ 0.25 ps/nm2/km ภาพที่ 7.2 [33] แสดงความความสัมพันธ์ระหว่าง
 ความยาวคลื่นกับดิสเพอร์ชันของ NS-DCU

การคำนวณหาค่าการชดเชยดิสเพอร์ชันที่แต่ละความยาวคลื่นของ NS-DCU ในการ จำลองโครงข่ายสามารถหาได้จากสมการ(2.16) แต่เนื่องจากลักษณะหน่วยชดเชยค่าดิสเพอร์ชันที่ เป็นอุปกรณ์ลักษณะ Black Block ดังนั้นเราจำเป็นต้องหาค่าความยาวของเส้นใยแสงที่ทำหน้าที่ เป็นตัวชดเชยซึ่งบรรจุอยู่ใน NS-DCU จากสมการ (2.16) สามารถจัดรูปเพื่อให้สะดวกต่อการ คำนวณหาความยาวได้ดังนี้

$$L_{NS-DCU} = \frac{D_{SMF} \times L_{SMF}}{D_{NS-DCU}}$$
(7.1)

จากสมการที่ (7.1) ค่า $D_{_{SMF}}$ หาได้จากภาพที่ 7.1 ค่าดิสเพอร์ชันของ SMF ที่ความยาว คลื่น 1550 nm มีค่าเท่ากับ 16.5 ps/km/nm $L_{_{SMF}}$ มีค่าเท่ากับ 100 km และค่า $D_{_{NS-DCU}}$ หาได้ จากภาพที่ 7.2 ซึ่งค่าดิสเพอร์ชันของ NS-DCU ที่ความยาวคลื่น 1550 nm มีค่าเท่ากับ -82 ps/km/nm นำค่าไปแทนในสมการที่ (7.1) หาค่าความยาวของ NS-DCU ได้เท่ากับ 20.122 km หรือประมาณ 20 km

 SC-DCU มีคุณสมบัติชดเชยความชั่นของดิสเพอร์ชั่นได้ 100% เพื่อชดเชยค่าดิสเพอร์ ชันสะสมของ G.652 ในระยะทาง 100 km ลักษณะหน่วยชดเชยค่าดิสเพอร์ชันเป็นดัง ภาพที่ 7.3 [41] และมีรายละเอียดสำหรับความยาวในตารางที่ 7.1 เพื่อนำมา กำหนดค่าดิสเพอร์ชันที่แต่ละความยาวคลื่นของ SC-DCU

ภาพที่ 7.3 Avanex's SC-DCU [33]

การคำนวณค่าดิสเพอร์ชันที่ความยาวคลื่นต่างๆ ของ SC-DCU สามารถคำนวณได้จาก รายละเอียดของ SC-DCU ตามตารางที่ 7.1 เมื่อพิจารณา DCM - 60 - SMF - C ที่ความยาวคลื่น 1525 nm มีค่าดิสเพอร์ชันเฉลี่ยเท่ากับ -1521 ps/nm ที่ความยาวคลื่น 1545 nm มีค่าดิสเพอร์ชัน เฉลี่ยเท่ากับ -1640.5 ps/nm และที่ความยาวคลื่น 1565 nm มีค่าดิสเพอร์ชันเฉลี่ยเท่ากับ -1761.5 ps/nm เมื่อเรานำค่าทั้งหมดนี้ไปสร้างกราฟเส้นตรงระหว่างความยาวคลื่นและค่าดิสเพอร์ ชันเฉลี่ยได้ดังภาพที่ 7.4

		Measured Dispersion [ps / nm]				
Modul Description	at 1,5	25 nm	at 1,5	45 nm	at 1,565 nm	
	Min	Max	Min	Max	Min	Max
DCM - 10 - SMF - C	-159	-145	-170	-158	-184	-168
DCM - 20 - SMF - C	-315	-293	-337	-319	-364	-340
DCM - 30 - SMF - C	-629	-588	-673	-640	-727	-682
DCM - 40 - SMF - C	-942	-883	-1009	-960	-1090	-1024
DCM - 50 - SMF - C	-1251	-1183	-1340	-1286	-1448	-1371
DCM - 60 - SMF - C	-1560	-1482	-1671	-1611	-1805	-1718

ตารางที่ 7.1 ค่าดิสเพอร์ชันสำหรับมอดูลความยาวต่างๆ

ภาพที่ 7.4 ความสัมพันธ์ระหว่างของความยาวคลื่นและค่าดิสเพอร์ชันสะสมของ SC-DCU

7.2 โครงข่ายตัวอย่างกรณีทำงานปกติ

โครงข่ายตัวอย่างเป็นโครงข่ายลักษณะเมชที่ประกอบด้วย 5 โนด (node) และ 6 ข่าย เชื่อมโยง (link) มีระยะทางรวม 1090 km และมีข่ายเชื่อมโยงที่ยาวที่สุด 250 km ระหว่างคู่โนด (1) – (2) โดยทุกคู่โนดสามารถส่งข้อมูลถึงกันได้ทั้งสองทิศทาง เมื่อนำอัลกอริทึมสำหรับใช้หน่วย ชดเชยดิสเพอร์ชันมาทดลองใช้กับโครงข่ายตัวอย่างสามารถอธิบายได้ดังนี้

กำหนดให้โครงข่ายตัวอย่างในภาพที่ 7.5 เป็นโครงข่ายลักษณะเมช ในแต่ละข่ายเชื่อมโยง ประกอบด้วยเส้นใยแสง 4 เส้นคือเส้นใยแสงทำงานและเส้นใยแสงสำรองอย่างละ 2 เส้นซึ่ง สามารถส่งผ่านสัญญาณได้ทั้งสองทิศทาง การจัดสรรเส้นทางการส่งผ่านสัญญาณกรณีโครงข่าย ทำงานปกติและการจัดสรรเส้นทางขึ้นใหม่ในกรณีที่เกิดความเสียหายกับข่ายเชื่อมโยงหนึ่งภายใน โครงข่ายถูกพิจารณาทุกกรณีที่เกิดความเสียหายกับข่ายเชื่อมโยงด้วยกลไกการกู้คืนสัญญาณ แบบ Path Protection สามารถแสดงได้ดังตารางที่ 7.2 - ตารางที่ 7.8

สัญญาณส่งจาก	สัญญาณส่งจาก	สัญญาณส่งจาก	สัญญาณส่งจาก	สัญญาณส่งจาก
โนดที่ 1	โนดที่ 2	โนดที่ 3	โนดที่ 4	โนดที่ 5
1-2	2-1	3 — 1	4-3-1	5-2-1
1-3	2 - 4 - 3	3-4-2	4-2	5 — 2
1 - 3 - 4	2-4	3-4	4-3	5 - 4 - 3
1 - 2 - 5	2-5	3 - 4 - 5	4-5	5-4

ตารางที่ 7.2 เส้นทางการส่งผ่านสัญญาณบนเส้นใยแสงทำงานกรณีโครงข่ายตัวอย่างทำงานปกติ

ตารางที่ 7.3 เส้นทางการส่งสัญญาณที่จัดสรรขึ้นใหม่บนเส้นใยแสงสำรองโดยกลไกการกู้คืน สัญญาณแบบ Path Protection เมื่อเกิดความข่ายเสียหายขึ้นกับข่ายเชื่อมโยง 12 และ 21

สัญญาณส่งจาก โนดที่ 1	สัญญาณส่งจาก โนดที่ 2	สัญญาณส่งจาก โนดที่ 3	สัญญาณส่งจาก โนดที่ 4	สัญญาณส่งจาก โนดที่ 5
1 3 4 2	2 4 3 1	-	-	5431
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-

ตารางที่ 7.4 เส้นทางการส่งสัญญาณที่จัดสรรขึ้นใหม่บนเส้นใยแสงสำรองโดยกลไกการกู้คืน สัญญาณแบบ Path Protection เมื่อเกิดความข่ายเสียหายขึ้นกับข่ายเชื่อมโยง 13 และ 31

สัญญาณส่งจาก โนดที่ 1	สัญญาณส่งจาก โนดที่ 2	สัญญาณส่งจาก โนดที่ 3	สัญญาณส่งจาก โนดที่ 4	สัญญาณส่งจาก โนดที่ 5
-	-	3 4 2 1	4 2 1	-
1 2 4 3	-	-	-	-
1 2 4	-	-	-	-
-	-	-	-	-

ตารางที่ 7.5 เส้นทางการส่งสัญญาณที่จัดสรรขึ้นใหม่บนเส้นใยแสงสำรองโดยกลไกการกู้คืน สัญญาณแบบ Path Protection เมื่อเกิดความข่ายเสียหายขึ้นกับข่ายเชื่อมโยง 24 และ 42

สัญญาณส่งจาก	สัญญาณส่งจาก	สัญญาณส่งจาก	สัญญาณส่งจาก	สัญญาณส่งจาก
โนดที่ 1	โนดที่ 2	โนดที่ 3	โนดที่ 4	โนดที่ 5
-	-	-	-	-
-	2 1 3	3 1 2	4 5 2	-
-	2 5 4	-	-	-
-	-	-	-	-

ตารางที่ 7.6 เส้นทางการส่งสัญญาณที่จัดสรรขึ้นใหม่บนเส้นใยแสงสำรองโดยกลไกการกู้คืน สัญญาณแบบ Path Protection เมื่อเกิดความข่ายเสียหายขึ้นกับข่ายเชื่อมโยง 25 และ 52

สัญญาณส่งจาก	สัญญาณส่งจาก	สัญญาณส่งจาก	สัญญาณส่งจาก	สัญญาณส่งจาก
โนดที่ 1	โนดที่ 2	โนดที่ 3	โนดที่ 4	โนดที่ 5
-	-	-	-	5 4 3 1
-	-	-	-	5 4 2
-	-	-	-	-
1 3 4 5	2 4 5	-	-	-

ตารางที่ 7.7 เส้นทางการส่งสัญญาณที่จัดสรรขึ้นใหม่บนเส้นใยแสงสำรองโดยกลไกการกู้คืน สัญญาณแบบ Path Protection เมื่อเกิดความข่ายเสียหายขึ้นกับข่ายเชื่อมโยง 34 และ 43

สัญญาณส่งจาก	สัญญาณส่งจาก	สัญญาณส่งจาก	สัญญาณส่งจาก	สัญญาณส่งจาก
โนดที่ 1	โนดที่ 2	โนดที่ 3	โนดที่ 4	โนดที่ 5
-	-	-	4 2 1	-
-	2 1 3	3 1 2	-	-
1 2 4	-	3 1 2 4	4 2 1 3	5 2 1 3
-	-	3 1 2 5	-	-

ตารางที่ 7.8 เส้นทางการส่งสัญญาณที่จัดสรรขึ้นใหม่บนเส้นใยแสงสำรองโดยกลไกการกู้คืน สัญญาณแบบ Path Protection เมื่อเกิดความข่ายเสียหายขึ้นกับข่ายเชื่อมโยง 54 และ 45

สัญญาณส่งจาก	สัญญาณส่งจาก	สัญญาณส่งจาก	สัญญาณส่งจาก	สัญญาณส่งจาก
โนดที่ 1	โนดที่ 2	โนดที่ 3	โนดที่ 4	โนดที่ 5
-	-	-	-	-
-	-	-	-	-
-	-	-	-	5 2 4 3
-	-	3 4 2 5	4 2 5	24

7.2.1 ระบุเส้นทางการส่งผ่านสัญญาณจากโนดต้นทางไปสู่โนดปลายทาง

การระบุเส้นทางการส่งผ่านสัญญาณจากโนดต้นทางไปสู่โนดปลายทางที่เป็นไปได้ ทั้งหมดในกรณีที่โครงข่ายทำงานปกติจะพิจารณาระยะทางระหว่างโนดที่มีค่าสั้นที่สุด (shortest path) โดยการจัดสรรเส้นทางการส่งผ่านสัญญาณกรณีโครงข่ายทำงานปกติจะแสดงในบทที่ 3

7.2.2 การสร้างสมการและอสมการเงื่อนไขขอบเขต

สมการเงื่อนไขขอบเขตสำหรับเส้นทางการส่งสัญญาณสำหรับการส่งผ่านสัญญาณกรณี โครงข่ายทำงานปกติประกอบด้วย สมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณระหว่างโนดต้นทาง และโนดปลายทาง อสมการเงื่อนไขขอบเขตของค่าดิสเพอร์ชัน เงื่อนไขขอบเขตจำนวนเต็ม และ การกำหนดฟังก์ชันวัตถุประสงค์

7.2.2.1 สมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณระหว่างโนดต้นทางและโนด ปลายทาง

1 — 2	$0 + (D_i \times 250) + (D_{compi} \times N_{12}) = D_{ac21i}$
1 — 3	$0 + (D_i \times 150) + (D_{compi} \times N_{13}) = D_{ac31i}$
1 - 3 - 4	$0 + (D_i \times 150) + (D_{compi} \times N_{13}) + (D_i \times 175) + (D_{compi} \times N_{34}) = D_{ac41i}$
1 — 2 — 5	$0 + (D_i \times 250) + (D_{compi} \times N_{12}) + (D_i \times 100) + (D_{compi} \times N_{25}) = D_{ac51i}$
2) กรณีทุกสัญถุ	บาณความยาวคลื่น $\lambda_{\!_i}$ ถูกส่งมาจากโนด 2; Z = 2
2 — 1	$0 + (D_i \times 250) + (D_{compi} \times N_{21}) = D_{ac12i}$
2-4-3	$0 + (D_i \times 200) + (D_{compi} \times N_{24}) + (D_i \times 175) + (D_{compi} \times N_{43}) = D_{ac32i}$
2 — 4	$0 + (D_i \times 200) + (D_{compi} \times N_{24}) = D_{ac42i}$
2 — 5	$0 + (D_i \times 100) + (D_{compi} \times N_{25}) = D_{ac52i}$
 กรณีทุกสัญถุ 	บาณความยาวคลื่น $\lambda_{\!_i}$ ถูกส่งมาจากโนด 3; Z = 3
3 — 1	$0 + (D_i \times 150) + (D_{compi} \times N_{31}) = D_{ac13i}$
3-4-2	$0 + (D_i \times 175) + (D_{compi} \times N_{34}) + (D_i \times 200) + (D_{compi} \times N_{42}) = D_{ac23i}$
3-4	$0 + (D_i \times 175) + (D_{compi} \times N_{34}) = D_{ac43i}$
3-4-5	$0 + (D_i \times 175) + (D_{compi} \times N_{34}) + (D_i \times 215) + (D_{compi} \times N_{45}) = D_{ac53i}$

กรณีทุกสัญญาณความยาวคลื่น λ, ถูกส่งมาจากโนด 1; Z = 1

	ৰ ১	a.	
4)	กรณทกสถาณก	วามยาวคลน λ.	ถกสงมาจากเนด 4: Z = 4
/	9 9 9	,	91 ,

4 — 3 — 1	$0 + (D_i \times 175) + (D_{compi} \times N_{43}) + (D_i \times 150) + (D_{compi} \times N_{31}) = D_{acl4i}$
4 — 2	$0 + (D_i \times 200) + (D_{compi} \times N_{42}) = D_{ac42i}$
4 — 3	$0 + (D_i \times 175) + (D_{compi} \times N_{43}) = D_{ac34i}$
4 – 5	$0 + (D_i \times 215) + (D_{compi} \times N_{45}) = D_{ac54i}$
5) กรณีทุกสัญญา	เณความยาวคลื่น λ_i ถูกส่งมาจากโนด 5; Z = 5
5 — 2 — 1	$0 + (D_i \times 100) + (D_{compi} \times N_{52}) + (D_i \times 250) + (D_{compi} \times N_{21}) = D_{ac15i}$
5 — 2	$0 + (D_i \times 100) + (D_{compi} \times N_{52}) = D_{ac25i}$
5 – 4 – 3	$0 + (D_i \times 215) + (D_{compi} \times N_{54}) + (D_i \times 175) + (D_{compi} \times N_{43}) = D_{ac35i}$
5 — 4	$0 + (D_i \times 215) + (D_{compi} \times N_{54}) = D_{ac45i}$

ตารางที่ 7.9 ช่องสัญญาณใน Wave Division Multiplexing (WDM) ITU Grid C-Band [34]

Channel	Frequency	Wavelength	Channel	Frequency	Wavelength
(#)	(GHz)	(nm)	(#)	(GHz)	(nm)
1	190100	1577.03	37	193700	1547.72
2	190200	1576.2	38	193800	1546.92
3	190300	1575.37	39	193900	1546.12
4	190400	1574.54	40	194000	1545.32
5	190500	1573.71	41	194100	1544.53
6	190600	1572.89	42	194200	1543.73
7	190700	1572.06	43	194300	1542.94
8	190800	1571.24	44	194400	1542.14
9	190900	1570.42	45	194500	1541.35
10	191000	1569.59	46	194600	1540.56
11	191100	1568.11	47	194700	1539.77
12	191200	1567.95	48	194800	1538.98
13	191300	1567.13	49	194900	1538.19
14	191400	1566.31	50	195000	1537.4

15	191500	1565.5	51	195100	1536.61
16	191600	1564.68	52	195200	1535.82
17	191700	1563.86	53	195300	1535.04
18	191800	1563.05	54	195400	1534.25
19	191900	1562.23	55	195500	1533.47
20	192000	1561.42	56	195600	1532.68
21	192100	1560.61	57	195700	1531.9
22	192200	1559.79	58	195800	1531.12
23	192300	1558.98	59	195900	1530.33
24	192400	1558.17	60	196000	1529.55
25	192500	1557.36	61	196100	1528.77
26	192600	1556.56	62	196200	1527.99
27	192700	1555.75	63	196300	1527.22
28	192800	1554.94	64	196400	1526.44
29	192900	1554.13	65	196500	1525.66
30	193000	1553.33	66	196600	1524.89
31	193100	1552.52	67	196700	1524.11
32	193200	1551.72	68	196800	1523.34
33	193300	1550.92	69	196900	1522.56
34	193400	1550.12	70	197000	1521.79
35	193500	1549.32	71	197100	1521.02
36	193600	1548.52	72	197200	1520.25

ในการจำลองจะใช้สัญญาณ WDM 72 ความยาวคลื่น C band ตั้งแต่ความยาวคลื่น 1520.25 nm ถึง 1577.03 โดยความยาวคลื่นกลางที่ 1550.15nm ด้วยระยะห่างระหว่าง ช่องสัญญาณ 0.8 nm [34] ดังแสดงในตารางที่ 7.9 โดยจะจำลองการส่งผ่านสัญญาณโดย พิจารณาเฉพาะความยาวคลื่นที่ส่งผลหลักต่อการใช้หน่วยชดเชยดิสเพอร์ชันซึ่งคือเฉพาะความ ยาวคลื่นที่ขอบทั้งสองข้าง 1520.25 nm และ 1577.03 nm เพื่อลดระยะเวลาในการหาผลเฉลย เนื่องจากหากสัญญาณของความยาวคลื่นขอบทั้งสองถูกใช้ในการจำลองการใช้หน่วยชดเชยดิส เพอร์ชัน เมื่อสัญญาณเดินทางไปถึงที่ปลายทางโดยที่ค่าดิสเพอร์ชันสะสมของความยาวคลื่นขอบ ทั้งสองมีค่าอยู่ในขอบเขตที่กำหนดไว้สามารถรับรองได้ว่าสัญญาณของความยาวคลื่นที่เหลือมี ค่าดิสเพอร์ชันสะสมอยู่ภายในขอบเขตที่กำหนดเช่นกัน

ในเส้นใยแสง SMF สามารถคำนวณค่าดิสเพอร์ชันที่ความยาวคลื่นต่างๆได้จากภาพที่ 7.1 ดิสเพอร์ชันของ SMF ITU-T G.652 เช่นค่าดิสเพอร์ชันของความยาวคลื่น 1577.03 nm สามารถ คำนวณได้ดังนี้

$$D_{1577.03[SMF]} = 16.5 + 0.05 \times (1577.03 - 1550) = 17.8515$$
 ps/nm/km

การคำนวณค่าดิสเพอร์ชันที่ความยาวคลื่นต่างๆของ NS-DCU สามารถคำนวณได้จาก ภาพที่ 7.2 เช่นค่าดิสเพอร์ชันของความยาวคลื่น 1577.03 nm คำนวณดังนี้

$$D_{1577.03[NS-DCU]} = (-82) + 0.25 \times (1577.03 - 1550) = -75.2425 \text{ ps/nm/km}$$

น้ำค่าดังกล่าวมาคูณกับความยาวของ NS-DCU ที่คำนวณได้จากสมการที่ (7.1) จะได้ ค่าชดเชยดิสเพอร์ชันของ NS-DCU ที่ความยาวคลื่น 1577.03 nm ดังนี้

*D*_{comp_{1577.05[NS-DCU]} =[(-82)+0.25×(1577.03−1550)]×20=-1504.85 ps/nm สำหรับการคำนวณค่าดิสเพอร์ชันที่ความยาวคลื่นต่างๆของ SC-DCU สามารถคำนวณได้ จากสมการเส้นตรงจากภาพที่ 7.3 โดยค่าเฉลี่ยดิสเพอร์ชันสะสมของความยาวคลื่น 1577.03 nm สามารถคำนวณได้ดังนี้}

 $D_{comp_{1577.03[SC-DCU]}} = (-6.0125)*1577.03 + 7648.1 = -1833.79 \text{ ps/nm}$

λ_{i}	D_i	$Dcomp_i$ (ps/nm)	
(nm)	(ps/nm/km)	NS-DCU	SC-DCU
1520.25	15.0125	-1788.75	-1491.74
1577.03	17.8515	-1504.85	-1830.10

ตารางที่ 7.10 ค่าดิสเพอร์ชันของ SMF, NS-DCU และ SC-DCU

เมื่อทราบค่าดิสเพอร์ชันต่างๆแล้ว จากนั้นสร้างสมการเงื่อนไขขอบเขตในการส่งสัญญาณ 2 ความยาวคลื่นโดยใช้ข้อมูลใน ตารางที่ 7.10 จากโนดต้นทาง Z ไปยังโนดปลายทาง Y ภายใน โครงข่ายตัวอย่างเพื่อหาจำนวนหน่วยชดเชยดิสเพอร์ชันที่น้อยที่สุดของแต่ละข่ายเชื่อมโยงใน โครงข่ายตัวอย่าง

ตารางที่ 7.11 สมการเงื่อนไขขอบเขตชดเชยค่าดิสเพอร์ชันการส่งผ่านสัญญาณ 2 ความยาวคลื่น ในกรณีโครงข่ายตัวอย่างทำงานปกติ

การส่งสัญญาณ	สมการ
1 — 2	$0 + (D_i \times 250) + (D_{compi} \times N_{12}) = D_{ac211}$
	$0 + (D_i \times 250) + (D_{compi} \times N_{12}) = D_{ac212}$
1 — 3	$0 + (D_i \times 150) + (D_{compi} \times N_{13}) = D_{ac311}$
	$0 + (D_i \times 150) + (D_{compi} \times N_{13}) = D_{ac312}$
1 - 3 - 4	$0 + (D_i \times 150) + (D_{compi} \times N_{13}) + (D_i \times 175) + (D_{compi} \times N_{34}) = D_{ac411}$
	$0 + (D_i \times 150) + (D_{compi} \times N_{13}) + (D_i \times 175) + (D_{compi} \times N_{34}) = D_{ac412}$
1-2-5	$0 + (D_i \times 250) + (D_{compi} \times N_{12}) + (D_i \times 100) + (D_{compi} \times N_{25}) = D_{ac511}$
	$0 + (D_i \times 250) + (D_{compi} \times N_{12}) + (D_i \times 100) + (D_{compi} \times N_{25}) = D_{ac512}$
2-1	$0 + (D_i \times 250) + (D_{compi} \times N_{21}) = D_{ac121}$
	$0 + (D_i \times 250) + (D_{compi} \times N_{21}) = D_{ac122}$
2-4-3	$0 + (D_i \times 200) + (D_{compi} \times N_{24}) + (D_i \times 175) + (D_{compi} \times N_{43}) = D_{ac321}$
	$0 + (D_i \times 200) + (D_{compi} \times N_{24}) + (D_i \times 175) + (D_{compi} \times N_{43}) = D_{ac322}$
2-4	$0 + (D_i \times 200) + (D_{compi} \times N_{24}) = D_{ac421}$
	$0 + (D_i \times 200) + (D_{compi} \times N_{24}) = D_{ac422}$
2-5	$0 + (D_i \times 100) + (D_{compi} \times N_{25}) = D_{ac521}$
	$0 + (D_i \times 100) + (D_{compi} \times N_{25}) = D_{ac522}$
3 — 1	$0 + (D_i \times 150) + (D_{compi} \times N_{31}) = D_{ac131}$
	$0 + (D_i \times 150) + (D_{compi} \times N_{31}) = D_{ac132}$
3-4-2	$0 + (D_i \times 175) + (D_{compi} \times N_{34}) + (D_i \times 200) + (D_{compi} \times N_{42}) = D_{ac231}$
	$0 + (D_i \times 175) + (D_{compi} \times N_{34}) + (D_i \times 200) + (D_{compi} \times N_{42}) = D_{ac232}$
3-4	$0 + (D_i \times 175) + (D_{compi} \times N_{34}) = D_{ac431}$
	$0 + (D_i \times 175) + (D_{compi} \times N_{34}) = D_{ac432}$

3 - 4 - 5	$0 + (D_i \times 175) + (D_{compi} \times N_{34}) + (D_i \times 215) + (D_{compi} \times N_{45}) = D_{ac531}$
	$0 + (D_i \times 175) + (D_{compi} \times N_{34}) + (D_i \times 215) + (D_{compi} \times N_{45}) = D_{ac532}$
4 - 3 - 1	$0 + (D_i \times 175) + (D_{compi} \times N_{43}) + (D_i \times 150) + (D_{compi} \times N_{31}) = D_{ac141}$
	$0 + (D_i \times 175) + (D_{compi} \times N_{43}) + (D_i \times 150) + (D_{compi} \times N_{31}) = D_{ac142}$
4 - 2	$0 + (D_i \times 200) + (D_{compi} \times N_{42}) = D_{ac421}$
	$0 + (D_i \times 200) + (D_{compi} \times N_{42}) = D_{ac422}$
4-3	$0 + (D_i \times 175) + (D_{compi} \times N_{43}) = D_{ac341}$
	$0 + (D_i \times 175) + (D_{compi} \times N_{43}) = D_{ac342}$
4 — 5	$0 + (D_i \times 215) + (D_{compi} \times N_{45}) = D_{ac541}$
	$0 + (D_i \times 215) + (D_{compi} \times N_{45}) = D_{ac542}$
5-2-1	$0 + (D_i \times 215) + (D_{compi} \times N_{45}) = D_{ac542}$ $0 + (D_i \times 100) + (D_{compi} \times N_{52}) + (D_i \times 250) + (D_{compi} \times N_{21}) = D_{ac151}$
5-2-1	$0 + (D_i \times 215) + (D_{compi} \times N_{45}) = D_{ac542}$ $0 + (D_i \times 100) + (D_{compi} \times N_{52}) + (D_i \times 250) + (D_{compi} \times N_{21}) = D_{ac151}$ $0 + (D_i \times 100) + (D_{compi} \times N_{52}) + (D_i \times 250) + (D_{compi} \times N_{21}) = D_{ac152}$
5 - 2 - 1 5 - 2	$\begin{aligned} 0 + (D_i \times 215) + (D_{compi} \times N_{45}) &= D_{ac542} \\ 0 + (D_i \times 100) + (D_{compi} \times N_{52}) + (D_i \times 250) + (D_{compi} \times N_{21}) &= D_{ac151} \\ 0 + (D_i \times 100) + (D_{compi} \times N_{52}) + (D_i \times 250) + (D_{compi} \times N_{21}) &= D_{ac152} \\ 0 + (D_i \times 100) + (D_{compi} \times N_{52}) &= D_{ac251} \end{aligned}$
5 - 2 - 1 5 - 2	$\begin{split} 0 + (D_i \times 215) + (D_{compi} \times N_{45}) &= D_{ac542} \\ 0 + (D_i \times 100) + (D_{compi} \times N_{52}) + (D_i \times 250) + (D_{compi} \times N_{21}) &= D_{ac151} \\ 0 + (D_i \times 100) + (D_{compi} \times N_{52}) + (D_i \times 250) + (D_{compi} \times N_{21}) &= D_{ac152} \\ 0 + (D_i \times 100) + (D_{compi} \times N_{52}) &= D_{ac251} \\ 0 + (D_i \times 100) + (D_{compi} \times N_{52}) &= D_{ac252} \end{split}$
5-2-1 5-2 5-4-3	$\begin{split} 0 + (D_i \times 215) + (D_{compi} \times N_{45}) &= D_{ac542} \\ 0 + (D_i \times 100) + (D_{compi} \times N_{52}) + (D_i \times 250) + (D_{compi} \times N_{21}) = D_{ac151} \\ 0 + (D_i \times 100) + (D_{compi} \times N_{52}) + (D_i \times 250) + (D_{compi} \times N_{21}) = D_{ac152} \\ 0 + (D_i \times 100) + (D_{compi} \times N_{52}) = D_{ac251} \\ 0 + (D_i \times 100) + (D_{compi} \times N_{52}) = D_{ac252} \\ 0 + (D_i \times 215) + (D_{compi} \times N_{54}) + (D_i \times 175) + (D_{compi} \times N_{43}) = D_{ac351} \\ \end{split}$
5-2-1 5-2 5-4-3	$\begin{split} 0 + (D_i \times 215) + (D_{compi} \times N_{45}) &= D_{ac542} \\ 0 + (D_i \times 100) + (D_{compi} \times N_{52}) + (D_i \times 250) + (D_{compi} \times N_{21}) = D_{ac151} \\ 0 + (D_i \times 100) + (D_{compi} \times N_{52}) + (D_i \times 250) + (D_{compi} \times N_{21}) = D_{ac152} \\ 0 + (D_i \times 100) + (D_{compi} \times N_{52}) = D_{ac251} \\ 0 + (D_i \times 100) + (D_{compi} \times N_{52}) = D_{ac252} \\ 0 + (D_i \times 215) + (D_{compi} \times N_{54}) + (D_i \times 175) + (D_{compi} \times N_{43}) = D_{ac351} \\ 0 + (D_i \times 215) + (D_{compi} \times N_{54}) + (D_i \times 175) + (D_{compi} \times N_{43}) = D_{ac352} \\ \end{split}$
5-2-1 5-2 5-4-3 5-4	$\begin{split} 0 + (D_i \times 215) + (D_{compi} \times N_{45}) &= D_{ac542} \\ 0 + (D_i \times 100) + (D_{compi} \times N_{52}) + (D_i \times 250) + (D_{compi} \times N_{21}) &= D_{ac151} \\ 0 + (D_i \times 100) + (D_{compi} \times N_{52}) + (D_i \times 250) + (D_{compi} \times N_{21}) &= D_{ac152} \\ 0 + (D_i \times 100) + (D_{compi} \times N_{52}) &= D_{ac251} \\ 0 + (D_i \times 100) + (D_{compi} \times N_{52}) &= D_{ac252} \\ 0 + (D_i \times 215) + (D_{compi} \times N_{54}) + (D_i \times 175) + (D_{compi} \times N_{43}) &= D_{ac351} \\ 0 + (D_i \times 215) + (D_{compi} \times N_{54}) + (D_i \times 175) + (D_{compi} \times N_{43}) &= D_{ac352} \\ 0 + (D_i \times 215) + (D_{compi} \times N_{54}) + (D_i \times 175) + (D_{compi} \times N_{43}) &= D_{ac352} \\ 0 + (D_i \times 215) + (D_{compi} \times N_{54}) + (D_i \times 175) + (D_{compi} \times N_{43}) &= D_{ac352} \\ \end{split}$

7.2.2.2 เงื่อนไขขอบเขตของค่าดิสเพอร์ชัน

กำหนดว่าค่าดิสเพอร์ชันสะสมของทุกสัญญาณทุกความยาวคลื่นที่ทุกโนดปลายทาง Y ต้องมีค่าอยู่ในช่วง ± D_{max} เนื่องจาก D_{max} คือ ค่าดิสเพอร์ชันมากที่สุดที่ไม่ทำให้พัลส์สัญญาณ ผิดเพี้ยนจนไม่สามารถชดเชยความผิดเพี้ยนให้กลับมาสู่สัญญาณเดิมได้ โดย D_{max} = 800 ps/nm (ส่งสัญญาณที่ความเร็ว 40 Gbps RZ-DQPSK) จะแสดงใน ตารางที่ 7.12

การส่งสัญญาณ	รูปแบบอสมการ
λ ₁ ส่งจาก โนด 1 ไป โนด 2	$-800 \le D_{ac211} \le 800$
$\lambda_{_2}$ ส่งจาก โนด 1 ไป โนด 2	$-800 \le D_{ac212} \le 800$
$\lambda_{\! 1}$ ส่งจาก โนด 1 ไป โนด 3	$-800 \le D_{ac311} \le 800$
$\lambda_{_2}$ ส่งจาก โนด 1 ไป โนด 3	$-800 \le D_{ac312} \le 800$
λ ₁ ส่งจาก โนด 1 ไป โนด 4	$-800 \le D_{ac411} \le 800$
$\lambda_{_2}$ ส่งจาก โนด 1 ไป โนด 4	$-800 \le D_{ac412} \le 800$
λ ₁ ส่งจาก โนด 1 ไป โนด 5	$-800 \le D_{ac511} \le 800$
$\lambda_{_2}$ ส่งจาก โนด 1 ไป โนด 5	$-800 \le D_{ac512} \le 800$
λ _เ ส่งจาก โนด 2 ไป โนด 1	$-800 \le D_{ac121} \le 800$
$\lambda_{_2}$ ส่งจาก โนด 2 ไป โนด 1	$-800 \le D_{ac122} \le 800$
λ _เ ส่งจาก โนด 2 ไป โนด 3	$-800 \le D_{ac321} \le 800$
λ_2 ส่งจาก โนด 2 ไป โนด 3	$-800 \le D_{ac322} \le 800$
λ _เ ส่งจาก โนด 2 ไป โนด 4	$-800 \le D_{ac421} \le 800$
λ_2 ส่งจาก โนด 2 ไป โนด 4	$-800 \le D_{ac422} \le 800$
$\lambda_{ m l}$ ส่งจาก โนด 2 ไป โนด 5	$-800 \le D_{ac521} \le 800$
$\lambda_{_2}$ ส่งจาก โนด 2 ไป โนด 5	$-800 \le D_{ac522} \le 800$
$\lambda_{ m l}$ ส่งจาก โนด 3 ไป โนด 1	$-800 \le D_{ac131} \le 800$
λ_2 ส่งจาก โนด 3 ไป โนด 1	$-800 \le D_{ac132} \le 800$
λ _เ ส่งจาก โนด 3 ไป โนด 2	$-800 \le D_{ac231} \le 800$
$\lambda_{_2}$ ส่งจาก โนด 3 ไป โนด 2	$-800 \le D_{ac232} \le 800$
$\lambda_{_{ m I}}$ ส่งจาก โนด 3 ไป โนด 4	$-800 \le D_{ac431} \le 800$
$\lambda_{_2}$ ส่งจาก โนด 3 ไป โนด 4	$-800 \le D_{ac432} \le 800$
$\lambda_{_{ m I}}$ ส่งจาก โนด 3 ไป โนด 5	$-800 \le D_{ac531} \le 800$
$\lambda_{_2}$ ส่งจาก โนด 3 ไป โนด 5	$-800 \le D_{ac532} \le 800$
λ ₁ ส่งจาก โนด 4 ไป โนด 1	$-800 \le D_{ac141} \le 800$
$\lambda_{_2}$ ส่งจาก โนด 4 ไป โนด 1	$-800 \le D_{ac142} \le 800$

ตารางที่ 7.12 เงื่อนไขขอบเขตของค่าดิสเพอร์ชันในการส่งผ่านสัญญาณ 2 ความยาวคลื่น

<i>λ</i> ₁ ส่งจาก โนด 4 ไป โนด 2	$-800 \le D_{ac241} \le 800$
\mathcal{A}_2 ส่งจาก โนด 4 ไป โนด 2	$-800 \le D_{ac242} \le 800$
<i>ิ่ิ </i>	$-800 \le D_{ac341} \le 800$
\mathcal{A}_2 ส่งจาก โนด 4 ไป โนด 3	$-800 \le D_{ac342} \le 800$
<i>ิ่ิ </i>	$-800 \le D_{ac541} \le 800$
$\mathcal{\lambda}_{_{2}}$ ส่งจาก โนด 4 ไป โนด 5	$-800 \le D_{ac542} \le 800$
<i>ิ่ิ</i>	$-800 \le D_{ac151} \le 800$
$\mathcal{\lambda}_{_{2}}$ ส่งจาก โนด 5 ไป โนด 1	$-800 \le D_{ac152} \le 800$
<i>ิ่ิ่</i>	$-800 \le D_{ac251} \le 800$
$m{\lambda}_2$ ส่งจาก โนด 5 ไป โนด 2	$-800 \le D_{ac252} \le 800$
<i>ิ่ิ </i>	$-800 \le D_{ac151} \le 800$
$\mathcal{A}_{_2}$ ส่งจาก โนด 5 ไป โนด 3	$-800 \le D_{ac152} \le 800$
<i>ิ่ิ </i>	$-800 \le D_{ac451} \le 800$
λ_2 ส่งจาก โนด 5 ไป โนด 4	$-800 \le D_{ac452} \le 800$

7.2.2.3 เงื่อนไขขอบเขตจำนวนเต็ม

จำนวนหน่วยชดเซยดิสเพอร์ชันที่วางลงในแต่ละข่ายเชื่อมโยงต้องเป็นจำนวนเต็มบวก หรือศูนย์เท่านั้น

7.2.2.4 ฟังก์ชันวัตถุประสงค์

ฟังก์ชันวัตถุประสงค์เป็นฟังก์ชันที่กำหนดจำนวนหน่วยชดเชยดิสเพอร์ชันน้อยสุดใน โครงข่ายในขณะเดียวกันต้องรักษาประสิทธิภาพการส่งสัญญาณภายในโครงข่ายไว้ได้

เมื่อพิจารณาการใช้หน่วยชดเชยดิสเพอร์ชันชนิด NS-DCU ในกรณีโครงข่ายทำงานปกติ พบว่าเกิดปัญหา over-under compensation กล่าวคือ ดิสเพอร์ชันสะสมของบางเส้นทางเกินค่า ขีดจำกัดดิสเพอร์ชัน เช่นเส้นทางจากโนด 1 ไปโนด 5 ระยะทาง 350 km เมื่อใช้สัญญาณที่ความ ยาวคลื่น 1577.03 nm จะคำนวณจำนวน NS-DCU ที่ต้องใช้ได้จากสมการดังนี้

$$(D_2 + L_{15}) + (D_{comp2} \times N_{15}) = D_{ac512} \le D_{max}$$
(7.2)

$$\frac{(D_2 + L_{15}) - D_{\max}}{D_{comp2}} \le N_{15}$$

แทนค่าต่างๆจาก ตารางที่ 7.10 $\frac{(17.8515 \times 350) - 800}{1504.85} = 3.6203 \le N_{15}$ จะต้องใช้อย่างน้อยที่สุดจำนวน 4 ตัวเพื่อไม่ให้ค่าดิสเพอร์ชันสะสมเกินค่าขีดจำกัดดิส เพอร์ชัน แต่ในขณะเดียวกันเมื่อใช้สัญญาณที่ความยาวคลื่น 1502.25 nm ที่ปลายทางจะมีค่าดิส เพอร์ชันสะสม (15.0125 × 350) + (-1788.75 × 4) = -1900.625 ps/nm ซึ่งทำให้ หน่วยชดเชยดิสเพอร์ชันชนิด NS-DCU ไม่สามารถใช้ได้เนื่องจากปัญหา over-under compensation โดยแสดงได้ในภาพที่ 7.6 ในกรณีที่ใช้หน่วยชดเชยดิสเพอร์ชันชนิด SC-DCU ผล เฉลยจะแสดงใน ตารางที่ 7.13 และตารางที่ 7.14 พบว่าทุกค่าดิสเพอร์ชันสะสมที่โนดปลายทาง Y ใด ๆ ของโครงข่ายมีค่าอยู่ในช่วงที่ได้กำหนดเอาไว้ตามเงื่อนไขขอบเขตของค่าดิสเพอร์ชัน

หน่วยชดเชยดิสเพอร์ชัน	จำนวน
n12	4
n13	2
n21	4
n24	3
n25	1
n31	2
n34	3
n42	3
n43	3
n45	3
n52	1
n54	3
Nmin	32

a		0		0	
ത്രഹംഹംബ	712	ເພາຍອອເອບານ		ดากการทา	ontimization
N I I I I N NI	1.10	MUPPOULIPAP	30-000	_/ II II I I I I I I I	opunization

ในโครงข่ายตัวอย่างกรณีทำงานปกติ

ภาพที่ 7. 6 ดิสเพอร์ชันสะสมระหว่างโนด 1 และ 5 เมื่อใช้ NS-DCU

	ดิสเพอร์ชันสะสม [ps/nm]			ดิสเพอร์ชันสะ	ะสม [ps/nm]
	1577.03	1520.25		1577.03	1520.25
Dac12	61.955	172.565	Dac34	-176.677	-53.2325
Dac13	477.265	461.595	Dac35	360.705	484.035
Dac14	300.588	403.363	Dac41	300.588	403.363
Dac15	746.875	778.675	Dac42	269.61	317.08
Dac21	61.955	172.565	Dac43	-176.677	-58.2325
Dac23	92.9325	258.847	Dac45	537.383	542.268
Dac24	269.61	317.08	Dac51	746.875	778.675
Dac25	684.92	606.11	Dac52	684.92	606.11
Dac31	477.265	461.595	Dac53	360.705	484.035
Dac32	32.9325	258.847	Dac54	537.383	542.268

ในโครงข่ายตัวอย่างกรณีทำงานปกติ

ตารางที่ 7.14 ผลเฉลยค่าดิสเพอร์ชันสะสม จากการทำ MILP Optimization

7.3 โครงข่าย Optical Pan European Network กรณีทำงานปกติ

โครงข่าย Optical Pan European Network (OPEN) ประกอบด้วย 10 โนด 13 ข่าย เชื่อมโยง ซึ่งมีระยะทางรวมทั้งโครงข่ายคือ 1882 km และshortest path ที่ยาวที่สุดระหว่างโนด 1 และ โนด 10 มีความยาว 713 km โดยมีระยะทางระหว่างข่ายเชื่อมโยงดังแสดงในภาพที่ 7.7 และ ภาพที่ 7.8 เมื่อนำอัลกอริทึมสำหรับใช้หน่วยชดเชยดิสเพอร์ชันมาทดลองใช้กับโครงข่ายตัวอย่าง สามารถอธิบายได้ดังนี้

ภาพที่ 7.8 โครงข่าย OPEN

เมื่อพิจารณาการใช้หน่วยชดเชยดิสเพอร์ชันชนิด NS-DCU ไม่สามารถทำได้ เพราะมี ข้อจำกัดของดิสเพอร์ชันสะสมบางเส้นทางเกินค่า -D_{max} กล่าวคือ ดิสเพอร์ชันสะสมของบาง

ภาพที่ 7.7 โครงข่าย OPEN

เส้นทางเกินค่าขีดจำกัดดิสเพอร์ชัน เช่นเส้นทางจากโนด 1 ไปโนด 10 ระยะทาง 713 km เมื่อใช้ สัญญาณที่ความยาวคลื่น 1577.03 nm จะคำนวณจำนวน NS-DCU ที่ต้องใช้ได้จากสมการดังนี้

$$(D + L_{110}) + (D_{comp} \times N_{110}) = D_{ac101} \le D_{max}$$

$$\frac{(D + L_{110}) - D_{max}}{D_{comp}} \le N_{110}$$
(7.3)

เมื่อแทนค่าต่างๆจาก ตารางที่ 7.10 จะได้ $\frac{(17.8515 \times 713) - 800}{1504.85} = 7.93 \le N_{110}$ ซึ่งต้องใช้หน่วยชดเชยดิสเพอร์ชันอย่างน้อยที่สุดจำนวน 8 ตัวเพื่อไม่ให้ค่าดิสเพอร์ชันสะสมเกินค่า ขีดจำกัดดิสเพอร์ชัน แต่ในขณะเดียวกันเมื่อใช้สัญญาณที่ความยาวคลื่น 1502.25 nm ที่ ปลายทางจะมีค่าดิสเพอร์ชันสะสม (15.0125×713)+(-1788.75×8)=-3606.89 ps/nm ซึ่ง ทำให้หน่วยชดเชยดิสเพอร์ชันชนิด NS-DCU ไม่สามารถใช้ได้เนื่องจากปัญหา over-under compensation แสดงได้ในภาพที่ 7.9

ภาพที่ 7.9 ดิสเพอร์ชันสะสมระหว่างโนด 1 และ 10 เมื่อใช้ NS-DCU

จากภาพที่ 7.9 พบว่าเมื่อสัญญาณเดินทางไปถึงปลายทางค่าดิสเพอร์ชันสะสมเมื่อส่ง สัญญาณที่มีความยาวคลื่น 1520.25 nm เกินค่า – D_{max} ในขณะที่ค่าดิสเพอร์ชันสะสมเมื่อส่ง ้สัญญาณที่มีความยาวคลื่น 1577.03 nm ยังไม่เกินค่า D_{max} ด้วยเหตุนี้ทำให้เราไม่สามารถใช้ NS-DCU บนโครงข่าย OPEN ที่มีการส่งสัญญาณตั้งแต่ 1520.25 nm ถึง 1577.03 nm ได้

กรณีของ SC-DCU ที่มอดูล DCM - 60 - SMF – C เราไม่สามารถหาคำตอบได้ เนื่องจาก ปัญหาและข้อจำกัดที่เราพิจารณาอยู่เป็นปัญหาที่เป็นไปไม่ได้ (Infeasible Problem) ดังนั้นจึง ต้องพิจารณาว่าปัจจัยใดเป็นข้อจำกัด โดยการปรับค่าพารามิเตอร์บางค่าเพื่อหาผลเฉลย เริ่ม พิจารณาจากสมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณ (3.1) พบว่าค่าพารามิเตอร์ที่สามารถ ปรับได้คือ D_{compi} ซึ่งเป็นค่าชดเซยดิสเพอร์ชันของหน่วยชดเซยดิสเพอร์ชันที่ λ_i สามารถ ปรับได้คือ Line for the form the form

2 (nm)	$Dcomp_i$ (ps/nm)				
\mathcal{N}_i (IIIII)	DCM - 60 - SMF – C	DCM - 50 - SMF – C	DCM - 40 - SMF – C		
1520.25	-1491.74	-1193.44	-895.14		
1577.03	-1830.10	-1466.67	-1100.23		

ตารางที่ 7.15 ค่าดิสเพอร์ชันของ SC-DCU ที่มอดูลต่างๆ

ตารางที่ 7.16 ผลเฉลยจำนวน SC-DCU แต่ละ Module จากการทำ MILP optimization

ในโครงข่าย OPEN กรณีทำงานปกติ

ชนิดของ SC-DCU	จำนวน
DCM-30-SMF-C	108
DCM-20-SMF-C	210
DCM-10-SMF-C	413

ตารางที่ 7.17 ผลเฉลยจำนวน SC-DCU (DCM-30-SMF-C) จากการทำ MILP optimization ในโครงข่าย OPEN กรณีทำงานปกติ

หน่วยชดเชยดิสเพอร์ชัน	จำนวน	หน่วยชดเชยดิสเพอร์ชัน	จำนวน
n12	2	n63	8
n13	4	n65	8

n21	2	n69	2
n23	4	n610	5
n31	4	n73	4
n32	4	n78	1
n34	3	n87	1
n36	8	n89	5
n37	4	n96	2
n43	3	n98	5
n45	4	n910	4
n54	4	n106	5
n56	8	n109	4
		N min	108

ตารางที่ 7.18 ผลเฉลยค่าดิสเพอร์ชันสะสม จากการทำ MILP Optimization ในโครงข่าย OPEN กรณีทำงานปกติ

	ดิสเพอร์ชันสะสม (ps/nm)			ดิสเพอร์ชันสะ	ะสม (ps/nm)
	1577.03	1520.25 nm		1577.03 nm	1520.25 nm
Dac101	252.329	544.712	Dac510	153.055	382.988
Dac102	180.924	484.663	Dac51	67.7	272.1
Dac103	420.827	608.175	Dac52	-3.9	212.05
Dac104	414.951	661.912	Dac53	136.212	335.563
Dac105	153.055	382.988	Dac54	242.087	281.825
Dac106	525.753	539.938	Dac56	-372.698	-156.95
Dac107	158.93	329.25	Dac57	674.665	782.525
Dac108	357.255	476.475	Dac58	476.34	635.3
Dac109	384.899	401.925	Dac59	69.67	254.2
Dac110	252.33	544.712	Dac610	525.8	539.94
Dac12	727.995	651.338	Dac61	- 273.423	4.775
Dac13	-168.497	-63.4625	Dac62	-344.83	55.28

Dac14	-174.373	-9.725	Dac63	-104.925	68.2375
Dac15	67.714	272.1	Dac64	-110.8	121.975
Dac16	-273.432	4.775	Dac65	-372.698	-156.95
Dac17	269.956	383.5	Dac67	216.402	338.463
Dac18	71.631	236.275	Dac68	414.727	485.688
Dac19	43.987	310.825	Dac69	442.371	411.138
Dac210	180.924	484.663	Dac710	158.93	329.25
Dac21	727.995	651.338	Dac71	269.956	383.5
Dac23	-239.903	-123.512	Dac72	198.55	323.45
Dac24	-245.779	-69.775	Dac73	438.45	446.963
Dac25	-3.6	212.05	Dac74	432.578	500.7
Dac26	-344.829	-55.275	Dac75	674.665	782.525
Dac27	198.55	323.45	Dac76	216.402	338.463
Dac28	0.225	176.225	Dac78	-198.325	-147.225
Dac29	-27.419	250.775	Dac79	-225.969	-72.675
Dac310	420.827	608.175	Dac810	357.255	476.475
Dac31	-168.498	-63.4625	Dac81	71.631	236.275
Dac32	-239.904	-123.513	Dac82	0.225	176.225
Dac34	-5.8755	53.7375	Dac83	240.129	299.8
Dac35	236.211	335.563	Dac84	234.25	353.47
Dac36	-104.925	68.2375	Dac85	476.34	625.3
Dac37	438.454	446.963	Dac86	414.7	485.7
Dac38	240.129	299.738	Dac87	-198.325	-147.225
Dac39	212.484	374.288	Dac89	-27.644	74.55
Dac410	414.925	661.6113	Dac910	384.899	401.925
Dac41	-174.373	-9.725	Dac91	43.987	310.825
Dac42	-245.779	-69.775	Dac92	-27.419	250.775
Dac43	-5.8755	53.7375	Dac93	212.484	374.288
Dac45	242.087	281.825	Dac94	206.609	428.025

Dac46	-110.8	121.9	Dac95	69.67	254.188
Dac47	432.6	500.7	Dac96	442.4	411.138
Dac48	234.253	353.475	Dac97	-225.969	-72.675
Dac49	206.609	428.025	Dac98	-27.644	74.55

7.4 โครงข่าย North-American Reference Network กรณีทำงานปกติ

ภาพที่ 7.10 โครงข่าย NARNET

โครงข่าย North-American Reference Network (NARNET) ประกอบด้วย 17 โนด 24 ข่ายเชื่อมโยง ซึ่งมีระยะทางรวมทั้งโครงข่ายคือ 9140 km โดยมีระยะทางระหว่างข่ายเชื่อมโยงดัง แสดงในภาพที่ 7.10

เมื่อนำอัลกอริทึมสำหรับใช้หน่วยชดเชยดิสเพอร์ชันมาทดลองใช้กับโครงข่ายตัวอย่าง ้สามารถอธิบายได้ดังนี้ ในกรณีของ NS-DCU บนโครงข่าย NARNET ไม่สามารถใช้ได้เนื่องจากผล ของ over-under compensation ดังที่กล่าวในหัวข้อ 5.2 และ 5.3 และในกรณีของ SC-DCU บน โครงข่าย NARNET ที่มอดูล DCM - 60 - SMF – C เราไม่สามารถหาคำตอบได้ เนื่องจากปัญหา

และข้อจำกัดที่เราพิจารณาอยู่เป็นปัญหาที่เป็นไปไม่ได้ (Infeasible Problem) ดังที่กล่าวในหัวข้อ ที่ 5.3

อีกวิธีสำหรับปรับค่า D_{compi} คือการผสมระหว่างหน่วยชดเชยดิสเพอร์ชันแบบ NS-DCU และ SC-DCU เนื่องจากเมื่อใช้หน่วยชดเชยดิสเพอร์ชันชนิด NS-DCU ชดเชยในระยะทางไกลจะ เกิดปัญหา Over Compensation แต่ในทางกลับกันเมื่อใช้หน่วยชดเชยดิสเพอร์ชันชนิด SC-DCU ชดเชยในระยะทางไกลจะเกิดปัญหา Under Compensation เมื่อใช้หน่วยชดเชยดิสเพอร์ชันสอง ชนิดร่วมกันจะต้องปรับสมการเงื่อนไขขอบเขตดังนี้

$$D_{acXZi} + (D_i + L_{XY}) + (D_{compi,SC-DCU} \times N_{XY,SC-DCU}) + (D_{compi,SC-DCU} \times N_{XY,SC-DCU}) = D_{acYZi}$$
(7.4)

โดยที่	D_{acXZi}	คือ ดิสเพอร์ชันสะสมที่โนดปลายทาง X เมื่อสัญญาณความยาว
		คลื่น <i>ิ</i> _เ ส่งผ่านมาจากโนดต้นทาง Z
	D_{acYZi}	คือ ดิสเพอร์ชันสะสมที่โนดปลายทาง Y เมื่อสัญญาณความยาว
		คลื่น <i>λ_i ส่งผ่านมาจากโนดต้นทาง</i> Ζ
	D_i	คือ ค่าดิสเพอร์ชันบนเส้นใยแสงที่ความยาวคลื่น λ_i
	$D_{compi,SC-DCU}$	คือ ค่าชดเชยดิสเพอร์ชันของ SC-DCU ที่ λ_i
	$D_{compi,NS-DCU}$	คือ ค่าชดเชยดิสเพอร์ชันของ SC-DCU ที่ λ_i
	L_{XY}	คือ ความยาวของข่ายเชื่อมโยง XY
	N _{XY,SC-DCU}	คือ จำนวน SC-DCU บนข่ายเชื่อมโยง XY
	N _{XY,NS-DCU}	คือ จำนวน NS-DCU บนข่ายเชื่อมโยง XY

ตารางที่ 7.19 ค่าดิสเพอร์ชันของ NS-DCU ที่มีระยะทา	างการชดเชยดิสเพอร์ชันที่ชดเชยได้พอดีเมื่อ
เปรียบเทียบกับเส้นใยแสงชนิด SMF IT	U-T G.652 ที่ระยะทางต่างๆ

$\lambda_{_i}(ext{nm})$	$Dcomp_i$ (ps/nm)				
	SMF 100	SMF 90 km	SMF 80 km	SMF70 km	SMF 60 km
1520.25	-1788.75	-1609.875	-1431	-1252.125	-1073.25
1577.03	-1504.85	-1354.365	-1203.88	-1053.395	-902.91

เมื่อทราบค่าพารามิเตอร์ต่างๆที่ปรับค่าแล้วจากนั้นแก้สมการเงื่อนไขขอบเขตการชดเซย ดิสเพอร์ชันในกรณีโครงข่ายทำงานปกติโดยใช้อัลกอริทึมที่นำเสนอไว้แล้ว ผลเฉลยที่ได้จากการแก้ สมการดังกล่าวจะได้จำนวนหน่วยชดเซยดิสเพอร์ชัน โดยในกรณีใช้หน่วยชดเชยดิสเพอร์ชันชนิด เดียวจะใช้ SC-DCU มอดูล DCM - 20 - SMF – C ละในกรณีใช้หน่วยชดเซยดิสเพอร์ชันสองชนิด ร่วมกัน คือ จำนวนหน่วยชดเชยดิสเพอร์ชันชนิด SC-DCU มอดูล DCM - 60 - SMF - C และ หน่วยชดเซยดิสเพอร์ชันชนิด NS-DCU ที่ชดเชยได้พอดีเมื่อเปรียบเทียบกับเส้นใยแสงชนิด SMF ITU-T G.652 ที่ 40 km ดังแสดงในตารางที่ 7.20 และ ตารางที่ 7.21

หน่วยชดเชยดิสเพอร์ชัน	จำนวน	หน่วยชดเชยดิสเพอร์ชัน	จำนวน
n1_2	19	n17_15	18
n1_3	27	n2_1	19
n10_12	15	n2_4	18
n10_13	21	n3_1	27
n10_5	21	n3_4	27
n11_12	10	n3_5	18
n11_6	19	n4_2	18
n12_10	15	n4_3	27
n12_11	9	n4_6	31
n12_13	19	n4_7	7
n12_15	21	n5_10	21
n13_10	22	n5_3	17
n13_12	20	n5_6	9
n13_16	21	n6_11	18
n14_15	28	n6_4	30
n14_17	19	n6_5	8
n14_8	27	n6_9	10

ตารางที่ 7.20 ผลเฉลยจำนวน SC-DCU (DCM-20-SMF-C) จากการทำ MILP optimization ในโครงข่าย NARNET กรณีทำงานปกติ

n15_12	21	n7_4	7
n15_14	28	n7_8	9
n15_16	16	n8_14	27
n15_17	18	n8_7	9
n16_13	21	n8_9	16
n16_15	16	n9_6	11
n17_14	19	n9_8	16
		Nmin	890

ตารางที่ 7.21 ผลเฉลยค่าดิสเพอร์ชันสะสม จากการทำ MILP Optimization ในโครงข่าย NARNET กรณีทำงานปกติ

	ดิสเพอร์ชันสะสม [ps/nm]			ดิสเพอร์ชันส	ะสม [ps/nm]
	1577.03	1520.25		1577.03	1520.25
Dac12	-254.34	427	Dac910	-752.48	156
Dac13	46.244	739	Dac911	-123.104	774.1
Dac14	-395.48	456.3	Dac912	-583.132	120.9
Dac15	-461.332	469.9	Dac913	8.6	746.8
Dac16	-38.38	756.5	Dac914	83.888	731.2
Dac17	-235.936	797.5	Dac915	-517.28	107.3
Dac18	-658.788	510.9	Dac916	-432.656	89.7
Dac19	-217.164	793.6	Dac917	130.868	721.4
Dac110	535.346	637.55	Dac101	-19.608	752.6
Dac111	-253.962	52.65	Dac102	83.888	731.2
Dac112	366.068	672.7	Dac103	-0.836	748.7
Dac113	-56.784	386.1	Dac104	-188.956	787.7
Dac114	224.928	701.9	Dac105	-573.796	119
Dac115	300.216	686.3	Dac106	-480.104	473.8
Dac116	215.592	703.9	Dac107	-630.58	505

Dac117	-235.568	423.1	Dac108	-752.48	156
Dac21	-592.18	-251.5	Dac109	535.346	637.55
Dac23	-141.09	29.25	Dac1011	290.78	688.3
Dac24	-206.932	42.9	Dac1012	-169.308	35.1
Dac25	112.096	725.3	Dac1013	177.948	711.7
Dac26	18.404	370.5	Dac1014	262.572	694.1
Dac27	-404.448	83.9	Dac1015	-235.15	48.75
Dac28	206.156	705.8	Dac1016	-319.824	66.3
Dac29	-620.776	128.7	Dac1017	-197.924	415.3
Dac210	-19.608	752.6	Dac111	-0.368	374.4
Dac211	-366.804	76.1	Dac112	300.216	686.3
Dac212	149.74	717.5	Dac113	-141.508	403.6
Dac213	-197.526	40.95	Dac114	-207.36	417.3
Dac214	84.256	356.8	Dac115	55.68	737
Dac215	102.66	727.3	Dac116	18.036	744.8
Dac216	187.284	709.7	Dac117	-404.816	458.2
Dac217	-376.24	78	Dac118	-123.104	774.1
Dac31	-225.744	46.8	Dac119	-253.962	52.65
Dac32	-84.654	17.55	Dac1110	290.78	688.3
Dac34	-272.744	56.55	Dac1112	460.128	653.15
Dac35	168.512	713.6	Dac1113	197.128	333.4
Dac36	74.82	358.75	Dac1114	478.91	649.25
Dac37	-75.656	390	Dac1115	394.276	666.8
Dac38	262.572	694.1	Dac1116	309.652	684.4
Dac39	-320.192	440.7	Dac1117	18.404	370.5
Dac310	83.888	731.2	Dac121	149.74	717.5
Dac311	-66.22	388	Dac122	253.136	696.1

Dac312	253.136	696.1	Dac123	168.512	713.6
Dac313	103.068	352.9	Dac124	-19.608	752.6
Dac314	187.722	335.35	Dac125	-404.448	83.9
Dac315	206.156	705.8	Dac126	-310.756	438.7
Dac316	290.78	688.3	Dac127	-461.332	469.9
Dac317	-272.744	56.55	Dac128	-583.132	120.9
Dac41	-141.09	29.25	Dac129	366.068	672.7
Dac42	-451.09	-280.75	Dac1210	-169.308	35.1
Dac43	-188.12	39	Dac1211	460.128	653.15
Dac45	253.136	696.1	Dac1213	347.196	676.6
Dac46	159.504	341.2	Dac1214	431.92	659
Dac47	8.968	372.4	Dac1215	-65.842	13.65
Dac48	347.196	676.6	Dac1216	-150.496	31.2
Dac49	-761.916	158	Dac1217	-28.576	380.2
Dac410	-367.272	450.4	Dac131	-197.526	40.95
Dac411	-507.944	105.3	Dac132	103.068	352.9
Dac412	-197.924	415.3	Dac133	-338.596	70.2
Dac413	-338.596	70.2	Dac134	-404.448	83.9
Dac414	-263.368	54.6	Dac135	130.868	721.4
Dac415	-244.904	425.1	Dac136	-179.152	411.4
Dac416	-160.28	407.5	Dac137	-602.004	124.8
Dac417	-723.904	-224.2	Dac138	8.6	746.8
Dac51	159.504	341.2	Dac139	-423.22	87.8
Dac52	-272.744	56.55	Dac1310	177.948	711.7
Dac53	178.316	337.3	Dac1311	-169.308	35.1
Dac54	-254.34	427	Dac1312	347.196	676.6
Dac56	-348.032	72.2	Dac1314	281.782	315.85

Dac57	-197.526	40.95	Dac1315	300.216	686.3
Dac58	-160.28	407.5	Dac1316	384.84	668.8
Dac59	-461.332	469.9	Dac1317	-178.714	37.05
Dac510	-188.956	787.7	Dac141	-282.18	58.5
Dac511	-207.36	417.3	Dac142	-178.714	37.05
Dac512	-19.608	752.6	Dac143	-263.368	54.6
Dac513	-38.012	382.2	Dac144	-451.528	93.6
Dac514	-85.092	391.9	Dac145	-150.844	405.6
Dac515	-66.588	762.4	Dac146	-103.864	395.8
Dac516	18.036	744.8	Dac147	-254.34	427
Dac517	-545.588	113.1	Dac148	83.888	731.2
Dac61	112.096	725.3	Dac149	-507.944	105.3
Dac62	-197.924	415.3	Dac1410	-103.864	395.8
Dac63	253.136	696.1	Dac1411	-253.962	52.65
Dac64	-611.34	126.8	Dac1412	65.484	360.7
Dac65	93.692	354.85	Dac1413	-84.654	17.55
Dac67	-56.784	386.1	Dac1415	18.404	370.5
Dac68	-178.714	37.05	Dac1416	103.068	352.9
Dac69	-38.38	756.5	Dac1417	-460.496	-278.8
Dac610	-573.796	119	Dac151	102.66	727.3
Dac611	55.68	737	Dac152	206.156	705.8
Dac612	-404.448	83.9	Dac153	121.532	723.4
Dac613	130.868	721.4	Dac154	-66.588	762.4
Dac614	215.592	703.9	Dac155	-338.596	70.2
Dac615	-338.596	70.2	Dac156	-244.904	425.1
Dac616	-253.962	52.65	Dac157	-395.48	456.3
Dac617	309.652	684.4	Dac158	-517.28	107.3
Dac71	18.404	370.5	Dac159	300.216	686.3
--------	----------	--------	---------	----------	--------
Dac72	-291.616	60.45	Dac1510	-235.15	48.75
Dac73	159.504	341.2	Dac1511	394.276	666.8
Dac74	-705.032	-228.1	Dac1512	-65.842	13.65
Dac75	93.692	354.85	Dac1513	300.216	686.3
Dac76	-150.496	31.2	Dac1514	384.84	668.8
Dac78	187.722	335.35	Dac1516	-84.654	17.55
Dac79	-602.372	499.2	Dac1517	478.91	649.25
Dac710	-480.104	473.8	Dac161	187.284	709.7
Dac711	-348.4	446.5	Dac162	290.78	688.3
Dac712	-310.756	438.7	Dac163	206.156	705.8
Dac713	-179.152	411.4	Dac164	18.036	744.8
Dac714	-103.864	395.8	Dac165	-253.962	52.65
Dac715	-244.904	425.1	Dac166	-160.28	407.5
Dac716	-160.28	407.5	Dac167	-310.756	438.7
Dac717	-564.36	117	Dac168	-432.656	89.7
Dac81	-38.012	382.2	Dac169	215.592	703.9
Dac82	-442.092	91.7	Dac1610	-319.824	66.3
Dac83	8.968	372.4	Dac1611	309.652	684.4
Dac84	-554.556	-259.3	Dac1612	-150.496	31.2
Dac85	-56.784	386.1	Dac1613	384.84	668.8
Dac86	-150.496	31.2	Dac1614	469.504	651.2
Dac87	37.276	366.6	Dac1615	-84.654	17.55
Dac89	-658.788	510.9	Dac1617	563.564	631.7
Dac810	-630.58	505	Dac171	-376.24	78
Dac811	-404.816	458.2	Dac172	-272.744	56.55
Dac812	-461.332	469.9	Dac173	-357.468	74.1

Dac813	-235.568	423.1	Dac174	-545.588	113.1
Dac814	-254.34	427	Dac175	309.652	684.4
Dac815	-395.48	456.3	Dac176	-197.924	415.3
Dac816	-310.756	438.7	Dac177	-348.4	446.5
Dac817	-714.836	148.2	Dac178	130.868	721.4
Dac91	206.156	705.8	Dac179	-602.004	124.8
Dac92	-103.864	395.8	Dac1710	-197.924	415.3
Dac93	347.196	676.6	Dac1711	-348.032	72.2
Dac94	-517.28	107.3	Dac1712	-28.576	380.2
Dac95	-178.714	37.05	Dac1713	-178.714	37.05
Dac96	187.722	335.35	Dac1714	-94.06	19.5
Dac97	37.276	366.6	Dac1715	478.91	649.25
Dac98	-217.164	793.6	Dac1716	563.564	631.7

7.5 โครงข่ายตัวอย่างในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย 7.5.1 ระบุเส้นทางการส่งผ่านสัญญาณจากโนดต้นทางไปสู่โนดปลายทาง

การระบุเส้นทางการส่งผ่านสัญญาณจากโนดต้นทางไปสู่โนดปลายทางในกรณีเกิดความ เสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย จะจัดสรรเส้นทางให้โดยใช้กลไกการกู้คืนแบบ path protection โดยจะสื่อสัญญาณบนเส้นใยแสงสำรอง ซึ่งการระบุเส้นทางการส่งผ่านสัญญาณใหม่ จะแยกคิดเป็นกรณีความเสียหายของข่ายเชื่อมโยงด้วยระยะทางระหว่างโนดที่น้อยที่สุด

7.5.2 การสร้างสมการและอสมการเงื่อนไขขอบเขต 7.5.2.1 สมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณระหว่างโนด

สมการเงื่อนไขขอบเขตชดเซยค่าดิสเพอร์ชันในการส่งผ่านสัญญาณระหว่างโนดต้นทาง และโนดปลายทางใด ๆในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่ายโดยใช้การ ป้องกันแบบ path protection นั้นสามารถแยกเป็นกรณีได้ดังนี้

<u>กรณีที่เกิดความเสียหายขึ้นกับข่ายเชื่อมโยง 12 และ ข่ายเชื่อมโยง 21 (A)</u>
 กรณีทุกสัญญาณความยาวคลื่น λ_i ถูกส่งมาจากโนด 1; Z = 1

1 - - 3 - - 4 - - 2

$$0 + (D_i \times 150) + (D_{compi} \times N_{13}) + (D_i \times 175) + (D_{compi} \times N_{34}) + (D_i \times 200) + (D_{compi} \times N_{42}) = D_{ac21i/4} + (D_i \times 150) + (D_{compi} \times N_{13}) + (D_i \times 175) + (D$$

กรณีทุกสัญญาณความยาวคลื่น λ_i ถูกส่งมาจากโนด 2; Z = 2

2 - - 4 - - 3 - - 1

 $0 + (D_i \times 200) + (D_{compi} \times N_{24}) + (D_i \times 175) + (D_{compi} \times N_{43}) + (D_i \times 150) + (D_{compi} \times N_{31}) = D_{ac12iA}$ กรณีทุกสัญญาณความยาวคลื่น λ_i ถูกส่งมาจากโนด 5; Z = 5

$$0 + (D_i \times 215) + (D_{compi} \times N_{54}) + (D_i \times 175) + (D_{compi} \times N_{43}) + (D_i \times 150) + (D_{compi} \times N_{31}) = D_{ac15iA} + (D_i \times 175) + (D_i \times 175)$$

<u>กรณีที่เกิดความเสียหายขึ้นกับข่ายเชื่อมโยง 13 และ ข่ายเชื่อมโยง 31 (B)</u>
 กรณีทุกสัญญาณความยาวคลื่น λ, ถูกส่งมาจากโนด 1; Z = 1

$$1 - 2 - 4 - 3$$

$$0 + (D_i \times 250) + (D_{compi} \times N_{12}) + (D_i \times 200) + (D_{compi} \times N_{24}) + (D_i \times 175) + (D_{compi} \times N_{43}) = D_{ac31iB}$$

$$1 - 2 - 4$$

$$0 + (D_i \times 250) + (D_{compi} \times N_{12}) + (D_i \times 200) + (D_{compi} \times N_{24}) = D_{ac41iB}$$
กรณีทุกสัญญาณความยาวคลื่น λ_i ถูกส่งมาจากโนด 3; Z = 3

 $0 + (D_i \times 175) + (D_{compi} \times N_{43}) + (D_i \times 200) + (D_{compi} \times N_{42}) + (D_i \times 250) + (D_{compi} \times N_{21}) = D_{ac13iB}$ กรณีทุกสัญญาณความยาวคลื่น λ_i ถูกส่งมาจากโนด 4; Z = 4

$$0 + (D_i \times 200) + (D_{compi} \times N_{42}) + (D_i \times 250) + (D_{compi} \times N_{21}) = D_{ac14iB}$$

กรณีที่เกิดความเสียหายขึ้นกับข่ายเชื่อมโยง 24 และ ข่ายเชื่อมโยง 42 (C)
 กรณีทุกสัญญาณความยาวคลื่น λ, ถูกส่งมาจากโนด 2; Z = 2

$$2 - 1 - 3$$

$$0 + (D_i \times 250) + (D_{compi} \times N_{21}) + (D_i \times 150) + (D_{compi} \times N_{13}) = D_{ac32iC}$$

$$2 - 5 - 4$$

$$0 + (D_i \times 100) + (D_{compi} \times N_{25}) + (D_i \times 215) + (D_{compi} \times N_{54}) = D_{ac42iC}$$

กรณีทุกสัญญาณความยาวคลื่น λ, ถูกส่งมาจากโนด 3; Z = 3

$$3 - - 1 - 2$$

$$0 + (D_i \times 150) + (D_{compi} \times N_{31}) + (D_i \times 250) + (D_{compi} \times N_{12}) = D_{ac23iC}$$
กรณีทุกสัญญาณความยาวคลื่น λ_i ถูกส่งมาจากโนด 4; Z = 4
$$4 - - 5 - 2$$

$$0 + (D_i \times 215) + (D_{compi} \times N_{45}) + (D_i \times 100) + (D_{compi} \times N_{52}) = D_{ac24iC}$$

กรณีเกิดความเสียหายขึ้นกับข่ายเชื่อมโยง 25 และ ข่ายเชื่อมโยง 52 (D)
 กรณีทุกสัญญาณความยาวคลื่น λ_i ถูกส่งมาจากโนด 1; Z = 1

1 - - 3 - - 4 - - 5

 $0 + (D_i \times 150) + (D_{compi} \times N_{13}) + (D_i \times 175) + (D_{compi} \times N_{34}) + (D_i \times 215) + (D_{compi} \times N_{45}) = D_{ac21iD}$ กรณีทุกสัญญาณความยาวคลื่น λ_i ถูกส่งมาจากโนด 2; Z = 2

$$\begin{split} 0 + (D_i \times 200) + (D_{compi} \times N_{24}) + (D_i \times 215) + (D_{compi} \times N_{45}) &= D_{ac52iD} \\ n + compared to the compared of the compared$$

5) <u>กรณีเกิดความเสียหายขึ้นกับข่ายเชื่อมโยง 34 และ ข่ายเชื่อมโยง 43 (E)</u> กรณีทุกสัญญาณความยาวคลื่น *λ*, ถูกส่งมาจากโนด 1; Z = 1

 $0 + (D_i \times 250) + (D_{compi} \times N_{12}) + (D_i \times 200) + (D_{compi} \times N_{24}) = D_{ac4\,liE}$ กรณีทุกสัญญาณความยาวคลื่น λ_i ถูกส่งมาจากโนด 2; Z = 2

2 - - 1 - - 3

$$0 + (D_i \times 250) + (D_{compi} \times N_{21}) + (D_i \times 150) + (D_{compi} \times N_{13}) = D_{ac32iE}$$

กรณีทุกสัญญาณความยาวคลื่น λ_i ถูกส่งมาจากโนด 3; Z = 3

$$\begin{array}{l} 3--1-2\\ 0+(D_i\times 150)+(D_{compi}\times N_{31})+(D_i\times 250)+(D_{compi}\times N_{12})=D_{ac23iE}\\ 3--1-2-4\\ 0+(D_i\times 150)+(D_{compi}\times N_{31})+(D_i\times 250)+(D_{compi}\times N_{12})+(D_i\times 200)+(D_{compi}\times N_{24})=D_{ac43iE}\\ 3--1-2-5\\ 0+(D_i\times 150)+(D_{compi}\times N_{31})+(D_i\times 250)+(D_{compi}\times N_{12})+(D_i\times 100)+(D_{compi}\times N_{25})=D_{ac53iE}\\ nsณีทุกสัญญาณความยาวคลื่น \lambda_i ถูกส่งมาจากโนด 4; Z=4\\ 4--2--1\\ 0+(D_i\times 200)+(D_{compi}\times N_{42})+(D_i\times 250)+(D_{compi}\times N_{21})=D_{ac14iE}\\ 4--2--1-3\\ 0+(D_i\times 200)+(D_{compi}\times N_{42})+(D_i\times 250)+(D_{compi}\times N_{21})+(D_i\times 150)+(D_{compi}\times N_{13})=D_{ac34iE}\\ nsณีทุกสัญญาณความยาวคลื่น \lambda_i ถูกส่งมาจากโนด 5; Z=5\\ 5-2--1-3\end{array}$$

$$0 + (D_i \times 100) + (D_{compi} \times N_{52}) + (D_i \times 250) + (D_{compi} \times N_{21}) + (D_i \times 150) + (D_{compi} \times N_{13}) = D_{ac35iE}$$

6) กรณีเกิดความเสียหายขึ้นกับข่ายเชื่อมโยง 45 และ ข่ายเชื่อมโยง 54 (F)
 กรณีทุกสัญญาณความยาวคลื่น λ_i ถูกส่งมาจากโนด 3; Z = 3

 $0 + (D_i \times 175) + (D_{compi} \times N_{43}) + (D_i \times 200) + (D_{compi} \times N_{42}) + (D_i \times 100) + (D_{compi} \times N_{25}) = D_{ac53iF}$ กรณีทุกสัญญาณความยาวคลื่น λ_i ถูกส่งมาจากโนด 4; Z = 4

 $0 + (D_i \times 200) + (D_{compi} \times N_{42}) + (D_i \times 100) + (D_{compi} \times N_{25}) = D_{ac54iF}$ กรณีทุกสัญญาณความยาวคลื่น λ_i ถูกส่งมาจากโนด 5; Z = 5

$$5 - 2 - 4 - 3$$

$$0 + (D_i \times 100) + (D_{compi} \times N_{52}) + (D_i \times 200) + (D_{compi} \times N_{24}) + (D_i \times 175) + (D_{compi} \times N_{43}) = D_{ac35iF}$$

$$5 - 2 - 4$$

$$0 + (D_i \times 100) + (D_{compi} \times N_{52}) + (D_i \times 200) + (D_{compi} \times N_{24}) = D_{ac45iF}$$

ในการจำลองจะใช้สัญญาณ WDM 72 ความยาวคลื่น C band ตั้งแต่ความยาวคลื่น 1520.25 nm ถึง 1577.03 โดยมีค่าความยาวคลื่นกลางที่ 1550.15nm ด้วยระยะห่างระหว่าง ช่องสัญญาณ 0.8 nm ดังแสดงในตารางที่ 7.9 โดยจะจำลองการส่งผ่านสัญญาณโดยพิจารณา เฉพาะความยาวคลื่นที่ส่งผลหลักต่อการใช้หน่วยชดเชยดิสเพอร์ชันซึ่งคือเฉพาะความยาวคลื่นที่ ขอบทั้งสองข้าง 1520.25 nm และ 1577.03 nm

ค่าดิสเพอร์ชันของเส้นใยแสงชนิด SMF และค่าการชดเชยดิสเพอร์ชันของหน่วยชดเชยดิส เพอร์ชันชนิด NS-DCU และ SC-DCU ในแต่ละความยาวคลื่นมอดูลต่างๆ จะคำนวณตาม รายละเอียดที่อธิบายไว้ในตารางที่ 7.10

7.5.2.2 เงื่อนไขขอบเขตของค่าดิสเพอร์ชัน

กำหนดว่าค่าดิสเพอร์ชันสะสมของทุกสัญญาณทุกความยาวคลื่นที่ทุกโนดปลายทาง Y ต้องมีค่าอยู่ในช่วง ± D_{max} เนื่องจาก D_{max} คือ ค่าดิสเพอร์ชันมากที่สุดที่ไม่ทำให้พัลส์สัญญาณ ผิดเพี้ยนจนไม่สามารถชดเชยความผิดเพี้ยนให้กลับมาสู่สัญญาณเดิมได้ โดย D_{max} = 800 ps/nm (ส่งสัญญาณที่ความเร็ว 40 Gbps RZ-DQPSK) จะแสดงในตารางที่ 7.22

ตารางที่ 7.22 เงื่อนไขขอบเขตของค่าดิสเพอร์ชันในการส่งผ่านสัญญาณด้วย กลไกการกู้คืนสัญญาณแบบ Path Protection บนเส้นใยแสงสำรองในโครงข่ายตัวอย่าง

การส่งสัญญาณ		กคณี	ey 1119 19 10 10 10	
โนดต้นทาง	โนดปลายทาง	119919	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1	2	А	$-800 \le D_{ac21iA} \le 800$	
1	3	В	$-800 \le D_{ac31iB} \le 800$	
1	4	В	$-800 \le D_{ac41iB} \le 800$	
1	5	D	$-800 \le D_{ac51iD} \le 800$	
1	4	E	$-800 \le D_{ac41iE} \le 800$	
2	1	А	$-800 \le D_{ac12iA} \le 800$	
2	3	С	$-800 \le D_{ac32iC} \le 800$	
2	4	С	$-800 \le D_{ac42iC} \le 800$	
2	5	D	$-800 \le D_{ac52iD} \le 800$	

2	3	E	$-800 \le D_{ac32iE} \le 800$
3	1	В	$-800 \le D_{ac13iB} \le 800$
3	2	С	$-800 \le D_{ac23iC} \le 800$
3	2	E	$-800 \le D_{ac23iE} \le 800$
3	4	E	$-800 \le D_{ac43iE} \le 800$
3	5	E	$-800 \le D_{ac53iE} \le 800$
3	5	F	$-800 \le D_{ac53iF} \le 800$
4	1	В	$-800 \le D_{ac14iB} \le 800$
4	2	С	$-800 \le D_{ac24iC} \le 800$
4	1	E	$-800 \le D_{ac14iE} \le 800$
4	3	E	$-800 \le D_{ac34iE} \le 800$
4	2	F	$-800 \le D_{ac24iF} \le 800$
5	1	А	$-800 \le D_{ac15iA} \le 800$
5	1	D	$-800 \le D_{ac15iD} \le 800$
5	2	D	$-800 \le D_{ac25iD} \le 800$
5	3	E	$-800 \le D_{ac35iE} \le 800$
5	3	F	$-800 \le D_{ac35iF} \le 800$
5	4	F	$-800 \le D_{ac45iF} \le 800$

7.5.2.3 เงื่อนไขขอบเขตจำนวนเต็ม

จำนวนหน่วยชดเชยดิสเพอร์ชันที่วางลงในแต่ละเส้นใยแสงสำรองต้องเป็นจำนวนเต็มบวก หรือศูนย์เท่านั้น

7.5.2.4 ฟังก์ชันวัตถุประสงค์

ฟังก์ชันวัตถุประสงค์เป็นฟังก์ชันที่กำหนดจำนวนหน่วยชดเชยดิสเพอร์ชันน้อยสุดใน โครงข่ายในขณะเดียวกันต้องรักษาประสิทธิภาพการส่งสัญญาณภายในโครงข่ายไว้ได้

7.5.3 การแก้สมการและอสมการเงื่อนไขขอบเขต

การแก้สมการและอสมการเงื่อนไขขอบเขตนั้นจะใช้โปรแกรม XPress.MP ในการ optimization ในกรณีที่ใช้หน่วยชดเซยดิสเพอร์ชันชนิดเดียว จะเลือกใช้หน่วยชดเชยดิสเพอร์ชัน โดยพิจารณาจากมอดูลที่ยาวที่สุดก่อน กล่าวคือ DCM -60 - SMF – C ก่อน ถ้าไม่สามารถหา คำตอบได้จึงปรับเปลี่ยนเป็นมอดูลที่มีความยาวลดลงมาตามลำดับ โดยผลที่ได้คือ DCM -30 -SMF – C และในกรณีที่ใช้หน่วยชดเชยดิสเพอร์ชั่นสองชนิดร่วมกันจะใช้ SC-DCU มอดูล DCM -60 - SMF - C เป็นหลัก จากนั้นเราเลือกหน่วยชดเชยดิสเพอร์ชันชนิด NS-DCU โดยพิจารณาจาก NS-DCU ที่ชดเชยได้พอดีเมื่อเปรียบเทียบกับเส้นใยแสงชนิด SMF ITU-T G.652 ที่ระยะทาง 100 km ก่อน ถ้าไม่สามารถหาคำตอบได้จึงปรับเปลี่ยนเป็นมอดูลที่มาความยาวลดลงมา ผลเฉลยที่ได้ คือ จำนวนหน่วยชดเชยดิสเพอร์ชันชนิด SC-DCU มอดูล DCM – 60 - SMF - C และหน่วย ชดเชยดิสเพอร์ชันชนิด NS-DCU ที่ชดเชยได้พอดีเมื่อเปรียบเทียบกับเส้นใยแสงชนิด SMF ITU-T G.652 ที่ระยะทาง 70 km จากผลเฉลยที่แสดงในตารางที่ 7.23 จะเห็นได้ว่ากรณีใช้หน่วยชดเชยดิสเพอร์ ชันสองชนิดเรี่วมกัน

ารราวารเกิดเพยาติสารแตร์สังา	SC-	Comb	ination
	DCU	ns	SC
n12	6	2	1
n13	4	1	1
n21	6	2	1
n24	5	0	2
n25	2	0	1
n31	4	1	1
n34	4	1	1
n42	5	0	2
n43	4	1	1
n45	5	0	2

ตารางที่ 7.23 ผลเฉลยจำนวน NS-DCU และ SC-DCU โครงข่ายตัวอย่าง ด้วยกลไกการกู้คืนสัญญาณแบบ Path Protection บนเส้นใยแสงสำรอง

n52	2	0	1
n54	5	0	2
Nimin	50	8	16
INITIIT	52	2	24

7.6 โครงข่าย OPEN ในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย

วิธีหาผลเฉลยจำนวนหน่วยชดเชยดิสเพอร์ชันและการกำหนดตำแหน่งของหน่วยชดเชย ดิสเพอร์ชันในแต่ละข่ายเชื่อมโยงกรณีเกิดความเสียหายกับข่ายเชื่อมโยงหนึ่งในโครงข่าย ซึ่ง จำลองโครงข่ายด้วยกลไกการกู้คืนสัญญาณแบบ path protection บนเส้นใยแสงสำรองจะ ดำเนินการตามอัลกอริทึมที่เสนอไว้ในหัวข้อที่ 5.2 ในกรณีที่เลือกใช้ SC-DCU ที่มอดูล DCM – 60 – SMF – C ไม่สามารถหาคำตอบได้ เนื่องจากเป็นข้อจำกัดของปัญหาที่เป็นไปไม่ได้ (infeasible problem) กล่าวคือไม่สามารถใช้ SC-DCU ที่มอดูล DCM – 60 – SMF – C ในการ ชดเชยดิสเพอร์ชันในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่ายได้ในทุกเส้นทาง จึงต้องเลือกใช้มอดูลที่ลดลงมา โดยผลเฉลยที่ได้นั้นคือ SC-DCU ที่มอดูล DCM – 20 – SMF – C และในกรณีที่ใช้หน่วยชดเชยดิสเพอร์ชันสองชนิดร่วมกันจะใช้ SC-DCU มอดูล DCM - 60 - SMF - C เป็นหลัก จากนั้นเราเลือกหน่วยชดเชยดิสเพอร์ชันชนิด NS-DCU โดยพิจารณาจาก NS-DCU ที่ชดเชยได้พอดีเมื่อเปรียบเทียบกับเส้นใยแสงชนิด SMF ITU-T G.652 ที่ระยะทาง 100 km ก่อน ถ้าไม่สามารถหาคำตอบได้จึงปรับเปลี่ยนเป็นมอดูลที่มาความยาวลดลงมา ผลเฉลยที่ได้คือ จำนวนหน่วยชดเชยดิสเพอร์ชันชนิด SC-DCU มอดูล DCM – 60 - SMF - C และหน่วยชดเชยดิส เพอร์ชันชนิด NS-DCU ที่ชดเชยได้พอดีเมื่อเปรียบเทียบกับเส้นใยแสงชนิด SMF ITU-T G.652 ที่ ระยะทาง 20 km จากผลเฉลยที่แสดงในตารางที่ 7.24 จะเห็นได้ว่ากรณีใช้หน่วยชดเชยดิสเพอร์ชันสอง ชนิดเรื่อมล่งผลให้จำนวนหน่วยชดเชยดิสเพอร์ชันมากกว่ากรณีใช้หน่วยชดเชยดิสเพอร์ชันสอง ชนิดร่วมกัน

ตารางที่ 7.24	ผลเฉลยจำนวน NS-DCU และ SC-DCU โครงข่าย OPEN	l
ด้วยกลไกการ	ๅ้คืนสัญญาณแบบ path protection บนเส้นใยแสงสำรอง	

างบ่ายสดเสย SC-		Combination		189 LORIGO MER	80	Combination	
อู <i>นา</i> พออูฐภ มหายานเกย		NS- SC-	อูฬาพออูชุภา มหายานเทย		NS-	SC-	
NMPMF11F	DCU	DCU	DCU	NMPMA1111	DCU	DCU	DCU
n12sc	6	1	1	n63sc	17	1	3
n13sc	8	3	1	n65sc	16	0	3
n21sc	6	1	1	n69sc	5	0	1
n23sc	8	3	1	n73sc	10	4	1
n31sc	6	2	1	n78sc	1	1	0
n32sc	6	2	1	n87sc	1	2	0
n34sc	5	0	1	n89sc	11	0	2
n36sc	15	0	3	n910sc	8	0	2
n37sc	8	4	1	n96sc	4	0	1
n43sc	7	1	1	n98sc	10	0	2
n45sc	8	0	2	n106sc	11	1	2
n54sc	8	0	2	n109sc	9	0	2
n56sc	15	0	3	Nmin	220	27	40
n610sc	11	1	2	INTIIN 220		67	

100

7.7 โครงข่าย NARNET ในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย

ภาพที่ 7.12 เส้นใยแสงทำงานและเส้นใยแสงสำรองบนโครงข่าย NARNET

วิธีหาผลเฉลยจำนวนหน่วยชดเซยดิสเพอร์ชันและการกำหนดตำแหน่งของหน่วยชดเซย ดิสเพอร์ชันในแต่ละข่ายเชื่อมโยงกรณีเกิดความเสียหายกับข่ายเชื่อมโยงหนึ่งในโครงข่าย ซึ่ง จำลองโครงข่ายด้วยกลไกการกู้คืนสัญญาณแบบ path protection บนเส้นใยแสงสำรองจะ ดำเนินการตามอัลกอริทึมที่เสนอไว้ข้างต้น ในกรณีที่เลือกใช้ SC-DCU ที่มอดูล DCM – 60 – SMF – C ไม่สามารถหาคำตอบได้ เนื่องจากเป็นข้อจำกัดของปัญหาที่เป็นไปไม่ได้ (infeasible problem) กล่าวคือไม่สามารถใช้ SC-DCU ที่มอดูล DCM – 60 – SMF – C ในการชดเซยดิสเพอร์ ชันในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่ายได้ในทุกเส้นทาง จึงต้องเลือกใช้ มอดูลที่ลดลงมา โดยผลเฉลยที่ได้นั้นคือ SC-DCU ที่มอดูล DCM – 10 – SMF – C และในกรณีที่ ใช้หน่วยชดเซยดิสเพอร์ชันสองชนิดร่วมกันจะใช้ SC-DCU มอดูล DCM - 60 - SMF - C เป็นหลัก จากนั้นเราเลือกหน่วยชดเซยดิสเพอร์ชันชนิด NS-DCU โดยพิจารณาจาก NS-DCU ที่ชดเซยได้ พอดีเมื่อเปรียบเทียบกับเส้นใยแสงชนิด SMF ITU-T G.652 ที่ระยะทาง 100 km ก่อน ถ้าไม่ สามารถหาคำตอบได้จึงปรับเปลี่ยนเป็นมอดูลที่มาความยาวลดลงมา ผลเฉลยที่ได้คือ จำนวน หน่วยชดเชยดิสเพอร์ชันชนิด SC-DCU มอดูล DCM – 40 - SMF - C และหน่วยชดเชยดิสเพอร์ ชันชนิด NS-DCU ที่ชดเชยได้พอดีเมื่อเปรียบเทียบกับเส้นใยแสงชนิด SMF ITU-T G.652 ที่ ระยะทาง 40 km จากผลเฉลยที่แสดงในตารางที่ 7.25 จะเห็นได้ว่ากรณีใช้หน่วยชดเชยดิสเพอร์ ชันชนิดเดียวส่งผลให้จำนวนหน่วยชดเชยดิสเพอร์ชันมากกว่ากรณีใช้หน่วยชดเชยดิสเพอร์ชันสอง ชนิดร่วมกัน

าหา่กยุสุดเสย	ามบ่ายสดเสย SC-		Combination		80	Combination	
ดิสเพอร์สับ		NS-	SC-	อิสเพอร์สับ		NS-	
N 164 P M T 9 T 159	DCO	DCU	DCU	N191914 [] 9]] 19	DCO	DCU	3C-DCU
n1_2	41	0	9	n2_1	41	0	7
n1_3	54	0	7	n2_4	35	0	6
n10_12	29	0	5	n3_1	54	0	9
n10_13	43	0	7	n3_4	56	0	10
n10_5	42	0	7	n3_5	35	0	6
n11_12	19	0	3	n4_2	36	0	6
n11_6	38	0	6	n4_3	57	0	10
n12_10	28	0	5	n4_6	64	0	11
n12_11	18	0	3	n4_7	14	2	0
n12_13	39	1	6	n5_10	43	0	7
n12_15	44	0	7	n5_3	36	0	6
n13_10	43	0	7	n5_6	18	0	3
n13_12	40	0	7	n6_11	37	0	6
n13_16	41	0	7	n6_4	62	0	11
n14_15	57	0	9	n6_5	15	0	3
n14_17	37	0	6	n6_9	18	0	3
n14_8	55	2	7	n7_4	13	0	2

ตารางที่ 7.25 ผลเฉลยจำนวน NS-DCU และ SC-DCU โครงข่าย NARNET ด้วยกลไกการกู้คืนสัญญาณแบบ path protection บนเส้นใยแสงสำรอง

n15_12	44	0	8	n7_8	18	0	3
n15_14	56	0	10	n8_14	55	0	10
n15_16	31	0	6	n8_7	18	1	3
n15_17	36	1	6	n8_9	35	0	7
n16_13	41	0	7	n9_6	20	0	3
n16_15	32	0	5	n9_8	36	0	6
n17_14	37	1	6	Mmin	1709	8	300
n17_15	37	0	6		1790	3	808

บทที่ 8

การใช้อัลกอริทึมสำหรับใช้อุปกรณ์ชดเชยปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการ กระจายโหมดโพลาไรซ์ในกรณีทำงานปกติและกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยง หนึ่งภายในโครงข่าย

ในบทที่นี้จะนำเสนอการใช้อัลกอริทึมสำหรับใช้อุปกรณ์ชดเชยปัญหาความผิดเพี้ยนที่เกิด จากปัญหาการกระจายโหมดโพลาไรซ์ดังแสดงในบทที่ 5 กับโครงข่ายต่างๆในกรณีทำงานปกติ และกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย โดยจะจำลองการใช้ PMDCที่ น้อยที่สุดบนโครงข่ายตัวอย่าง จำลองการใช้ PMDC ที่น้อยที่สุดบนโครงข่าย Optical Pan-European Network (OPEN) และสุดท้ายจำลองการใช้ PMDC ที่น้อยที่สุดบนโครงข่าย North-American Reference Network (NARNET)

8.1 การจำลองการใช้อุปกรณ์ชดเชยปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการกระจาย โหมดโพลาไรซ์ที่น้อยที่สุดบนโครงข่ายตัวอย่าง

วิธีลดปัญหาที่เกิดจากปรากฏการณ์ดิสเพอร์ชันคือการใช้อุปกรณ์ชดเชยปัญหาความ ผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมดโพลาไรซ์ ซึ่งในวิทยานิพนธ์นี้จะเลือกใช้ PMDC โดย ประเภทของเส้นใยแสงที่ใช้ในการส่งผ่านสัญญาณคือเส้นใยแสงแบบโหมดคลื่นเดียวมีค่าค่าเฉลี่ย ของพารามิเตอร์ PMD ที่ใช้ในการส่งผ่านสัญญาณเท่ากับ 0.2 ps/√km

8.1.1 อุปกรณ์ชดเชยปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมด โพลาไรซ์

อุปกรณ์ชดเซยปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมดโพลาไรซ์ที่เลือกใช้ คือ PMD Compensator–PMDBuster™ เป็นอุปกรณ์ที่มีขายจริงในตลาดโทรคมนาคมและ สามารถชดเซยปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมดโพลาไรซ์บนโครงข่ายที่มี การรับส่งข้อมูล 40 Gbps หรือ 100 Gbps อุปกรณ์ดังกล่าวถูกออกแบบมาให้สามารถวางก่อน อุปกรณ์ขยายสัญญาณได้โดยตรง โดยสามารถชดเซยปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการ กระจายโหมดโพลาไรซ์ได้ในช่วง 0-50 ps และมีค่าเฉลี่ยที่ 17 ps

ภาพที่ 8.1 PMD Compensator–PMDBuster™

8.2 โครงข่ายตัวอย่างกรณีทำงานปกติ

โครงข่ายตัวอย่างเป็นโครงข่ายลักษณะเมชที่ประกอบด้วย 5 โนด (node) และ 6 ข่าย เชื่อมโยง (link) ดังแสดงในภาพที่ 7.5 เมื่อนำอัลกอริทึมสำหรับใช้ PMDC มาทดลองใช้กับ โครงข่ายตัวอย่างสามารถอธิบายได้ดังนี้

8.2.1 ระบุเส้นทางการส่งผ่านสัญญาณจากโนดต้นทางไปสู่โนดปลายทาง

การระบุเส้นทางการส่งผ่านสัญญาณจากโนดต้นทางไปสู่โนดปลายทางที่เป็นไปได้ ทั้งหมดในกรณีที่โครงข่ายทำงานปกติจะพิจารณาระยะทางระหว่างโนดที่มีค่าสั้นที่สุด (shortest path) โดยการจัดสรรเส้นทางการส่งผ่านสัญญาณกรณีโครงข่ายทำงานปกติจะแสดงตารางที่ 7.2-ตารางที่ 7.8

8.2.2 การสร้างสมการและอสมการเงื่อนไขขอบเขต

สมการเงื่อนไขขอบเขตสำหรับเส้นทางการส่งสัญญาณสำหรับการส่งผ่านสัญญาณกรณี โครงข่ายทำงานปกติประกอบด้วย สมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณระหว่างโนดต้นทาง และโนดปลายทาง อสมการเงื่อนไขขอบเขตของค่าดิสเพอร์ชัน เงื่อนไขขอบเขตจำนวนเต็ม และ การกำหนดฟังก์ชันวัตถุประสงค์

8.2.2.1 สมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณระหว่างโนดต้นทางและโนด ปลายทาง

1) กรณีทุกสัญเ	ญาณถูกส่งมาจากโนด 1; Z = 1
1 — 2	$0 + (D_{PMD} \times \sqrt{250}) + (\tau_{comp} \times N_{12}) = \tau_{ac21}$
1 — 3	$0 + (D_{PMD} \times \sqrt{150}) + (\tau_{comp} \times N_{13}) = \tau_{ac31}$
1 - 3 - 4	$0 + (D_{PMD} \times \sqrt{150}) + (\tau_{comp} \times N_{13}) + (D_{PMD} \times \sqrt{175}) + (\tau_{comp} \times N_{34}) = \tau_{ac41}$
1 - 2 - 5	$0 + (D_{PMD} \times \sqrt{250}) + (\tau_{comp} \times N_{12}) + (D_{PMD} \times \sqrt{100}) + (\tau_{comp} \times N_{25}) = \tau_{ac51}$

2) กรณีทุกสัญญาณถูกส่งมาจากโนด 2; Z = 2

2 – 1	$0 + (D_{PMD} \times \sqrt{250}) + (\tau_{comp} \times N_{21}) = \tau_{ac12}$
2-4-3	$0 + (D_{PMD} \times \sqrt{200}) + (\tau_{comp} \times N_{24}) + (D_{PMD} \times \sqrt{175}) + (\tau_{comp} \times N_{43}) = \tau_{ac32}$
2 — 4	$0 + (D_{PMD} \times \sqrt{200}) + (\tau_{comp} \times N_{24}) = \tau_{ac42}$
2 — 5	$0 + (D_{PMD} \times \sqrt{100}) + (\tau_{comp} \times N_{25}) = \tau_{ac52}$

กรณีทุกสัญญาณถูกส่งมาจากโนด 3; Z = 3

3 — 1	$0 + (D_{PMD} \times \sqrt{150}) + (\tau_{comp} \times N_{31}) = \tau_{ac13}$
3-4-2	$0 + (D_{PMD} \times \sqrt{175}) + (\tau_{comp} \times N_{34}) + (D_{PMD} \times \sqrt{200}) + (\tau_{comp} \times N_{42}) = \tau_{ac23}$
3-4	$0 + (D_{PMD} \times \sqrt{175}) + (\tau_{comp} \times N_{34}) = \tau_{ac43}$
3 - 4 - 5	$0 + (D_{PMD} \times \sqrt{175}) + (\tau_{comp} \times N_{34}) + (D_{PMD} \times \sqrt{215}) + (\tau_{comp} \times N_{45}) = \tau_{ac53}$

กรณีทุกสัญญาณถูกส่งมาจากโนด 4; Z = 4

4 — 3 — 1	$0 + (D_{PMD} \times \sqrt{175}) + (\tau_{comp} \times N_{43}) + (D_{PMD} \times \sqrt{150}) + (\tau_{comp} \times N_{31}) = \tau_{ac14}$
4 — 2	$0 + (D_{PMD} \times \sqrt{200}) + (\tau_{comp} \times N_{42}) = \tau_{ac42}$
4 — 3	$0 + (D_{PMD} \times \sqrt{175}) + (\tau_{comp} \times N_{43}) = \tau_{ac34}$
4 — 5	$0 + (D_{PMD} \times \sqrt{215}) + (\tau_{comp} \times N_{45}) = \tau_{ac54}$

5 — 2 — 1	$0 + (D_{PMD} \times \sqrt{100}) + (\tau_{comp} \times N_{52}) + (D_{PMD} \times \sqrt{250}) + (\tau_{comp} \times N_{21}) = \tau_{ac15}$
5 — 2	$0 + (D_{PMD} \times \sqrt{100}) + (\tau_{comp} \times N_{52}) = \tau_{ac25}$
5 - 4 - 3	$0 + (D_{PMD} \times \sqrt{215}) + (\tau_{comp} \times N_{54}) + (D_{PMD} \times \sqrt{175}) + (\tau_{comp} \times N_{43}) = \tau_{ac35}$
5 — 4	$0 + (D_{PMD} \times \sqrt{215}) + (\tau_{comp} \times N_{54}) = \tau_{ac45}$

ในการจำลองการส่งผ่านของสัญญาณในปัญหาการกระจายโหมดโพลาไรซ์จากสมการจะ พบว่าไม่มีพจน์ของความยาวคลื่นมาเกี่ยวข้อง ดังนั้นสมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณ ระหว่างโนดต้นทางและโนดปลายทางที่กล่าวมาจะสามารถใช้ได้กับทุกความยาวคลื่น

8.2.2.2 เงื่อนไขขอบเขตของค่าความผิดเพี้ยนที่เกิดจากปัญหาการกระจาย โพลาไรซ์

กำหนดให้ผลรวมของค่า DGD (total compensated differential group delay) ที่โนด ปลายทาง Y จากโนดต้นทาง Z มีค่าน้อยกว่า au_{max} และในทางตรงกันข้ามต้องมีค่ามากกว่า $- au_{max}$ เนื่องจาก au_{max} คือผลรวมของค่า DGDมากที่สุดที่ไม่ทำให้พัลส์สัญญาณผิดเพี้ยนจน ไม่สามารถชดเชยความผิดเพี้ยนให้กลับมาสู่สัญญาณเดิมได้ โดย au_{max} =16 ps (ส่งสัญญาณที่ ความเร็ว 40 Gbps RZ-DQPSK) จะแสดงในตารางที่ 8.1

การส่งสัญญาณ	รูปแบบอสมการ
ส่งจาก โนด 1 ไป โนด 2	$-16 \le \tau_{ac21} \le 16$
ส่งจาก โนด 1 ไป โนด 3	$-16 \le \tau_{ac31} \le 16$
ส่งจาก โนด 1 ไป โนด 4	$-16 \le \tau_{ac41} \le 16$
ส่งจาก โนด 1 ไป โนด 5	$-16 \le \tau_{ac51} \le 16$
ส่งจาก โนด 2 ไป โนด 1	$-16 \le \tau_{ac12} \le 16$
ส่งจาก โนด 2 ไป โนด 3	$-16 \le \tau_{ac32} \le 16$
ส่งจาก โนด 2 ไป โนด 4	$-16 \le \tau_{ac42} \le 16$

ตารางที่ 8.1 เงื่อนไขขอบเขตของค่าความผิดเพี้ยนที่เกิดจากปัญหาการกระจายโพลาไรซ์ ในการส่งผ่านสัญญาณในกรณีโครงข่ายตัวอย่างทำงานปกติ

ส่งจาก โนด 2 ไป โนด 5	$-16 \le \tau_{ac52} \le 16$
ส่งจาก โนด 3 ไป โนด 1	$-16 \le \tau_{ac13} \le 16$
ส่งจาก โนด 3 ไป โนด 2	$-16 \le \tau_{ac23} \le 16$
ส่งจาก โนด 3 ไป โนด 4	$-16 \le \tau_{ac43} \le 16$
ส่งจาก โนด 3 ไป โนด 5	$-16 \le \tau_{ac53} \le 16$
ส่งจาก โนด 4 ไป โนด 1	$-16 \le \tau_{ac14} \le 16$
ส่งจาก โนด 4 ไป โนด 2	$-16 \le \tau_{ac24} \le 16$
ส่งจาก โนด 4 ไป โนด 3	$-16 \le \tau_{ac34} \le 16$
ส่งจาก โนด 4 ไป โนด 5	$-16 \le \tau_{ac54} \le 16$
ส่งจาก โนด 5 ไป โนด 1	$-16 \le \tau_{ac15} \le 16$
ส่งจาก โนด 5 ไป โนด 2	$-16 \le \tau_{ac25} \le 16$
ส่งจาก โนด 5 ไป โนด 3	$-16 \le \tau_{ac15} \le 16$
ส่งจาก โนด 5 ไป โนด 4	$-16 \le \tau_{ac45} \le 16$

8.2.2.3 เงื่อนไขขอบเขตจำนวนเต็ม

้จำนวน PMDC ที่วางลงในแต่ละข่ายเชื่อมโยงต้องเป็นจำนวนเต็มบวกหรือศูนย์เท่านั้น

8.2.2.4 ฟังก์ชันวัตถุประสงค์

ฟังก์ชันวัตถุประสงค์เป็นฟังก์ชันที่กำหนดจำนวน PMDC น้อยสุดในโครงข่ายใน ขณะเดียวกันจำนวน PMDC น้อยสุดนี้ยังคงรักษาไว้ซึ่งประสิทธิภาพการส่งสัญญาณภายใน โครงข่ายได้

เมื่อพิจารณาโครงข่ายตัวอย่างในกรณีทำงานปกติพบว่าไม่จำเป็นต้องวาง PMDC เนื่องจากผลกระทบของปัญหาการกระจายโหมดโพลาไรซ์ทุกๆเส้นทางยังไม่เกินค่าที่กำหนดไว้ เช่นตัวอย่างที่ light path ที่ยาวที่สุด 390 km สามารถคำนวณหาผลรวมของค่า DGD ได้ดังนี้

$$\begin{array}{l} 0 + (D_{PMD} \times \sqrt{L}) = \tau_{acc(L)} \leq \tau_{max} \\ \tau_{acc(250)} = 0 + (0.2 \times \sqrt{390}) \leq \tau_{max} \\ \tau_{acc(250)} = 3.95 \leq 16 \end{array}$$

จากเส้นทางที่มีระยะทางไกลที่สุดพบว่าไม่จำเป็นต้องวางอุปกรณ์ชดเชยปัญหาความ ผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมดโพลาไรซ์ดังนั้นทุกเส้นทางในโครงข่ายตัวอย่างจึงไม่ จำเป็นต้องวางอุปกรณ์ชดเชยดังกล่าวเนื้อจากมีผลรวมของค่า DGD ไม่เกินค่าที่กำหนดไว้ดัง แสดงในภาพที่ 8.2

ภาพที่ 8.2 แสดงผลรวมของค่า DGD ที่ทุกโนดปลายทางบนโครงข่ายตัวอย่าง

เนื่องจากโครงข่ายมีขนาดเล็กและปัญหาจากการกระจายโหมดโพลาไรซ์มักจะเกิดที่ระยะ ทางไกลๆ จึงทดลองขยายขนาดโครงข่ายโดยการเพิ่มพารามิเตอร์ X ซึ่งเป็นจำนวนเท่าที่ขยาย ขนาดโครงข่ายออกจากโครงข่ายขนาดปกติเข้าไปในสมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณ ระหว่างโนดต้นทางและโนดปลายทางจะได้สมการใหม่ดังนี้

· · · · · · · · · · · · · · · · · · ·	······································
1 — 2	$0 + (D_{PMD} \times \sqrt{X \times 250}) + (\tau_{comp} \times N_{12}) = \tau_{ac21}$
1 — 3	$0 + (D_{PMD} \times \sqrt{X \times 150}) + (\tau_{comp} \times N_{13}) = \tau_{ac31}$
1 - 3 - 4	$0 + (D_{PMD} \times \sqrt{X \times 150}) + (\tau_{comp} \times N_{13}) + (D_{PMD} \times \sqrt{X \times 175}) + (\tau_{comp} \times N_{34}) = \tau_{ac41}$
1 — 2 — 5	$0 + (D_{PMD} \times \sqrt{X \times 250}) + (\tau_{comp} \times N_{12}) + (D_{PMD} \times \sqrt{X \times 100}) + (\tau_{comp} \times N_{25}) = \tau_{ac51}$

1) กรณีทุกสัญญาณถูกส่งมาจากโนด 1; Z = 1

2) กรณีทุกสัญญาณถูกส่งมาจากโนด 2; Z = 2

2 — 1	$0 + (D_{PMD} \times \sqrt{X \times 250}) + (\tau_{comp} \times N_{21}) = \tau_{ac12}$
2-4-3	$0 + (D_{PMD} \times \sqrt{X \times 200}) + (\tau_{comp} \times N_{24}) + (D_{PMD} \times \sqrt{X \times 175}) + (\tau_{comp} \times N_{43}) = \tau_{ac32}$
2 — 4	$0 + (D_{PMD} \times \sqrt{X \times 200}) + (\tau_{comp} \times N_{24}) = \tau_{ac42}$
2-5	$0 + (D_{PMD} \times \sqrt{X \times 100}) + (\tau_{comp} \times N_{25}) = \tau_{ac52}$

กรณีทุกสัญญาณถูกส่งมาจากโนด 3; Z = 3

3 — 1	$0 + (D_{PMD} \times \sqrt{X \times 150}) + (\tau_{comp} \times N_{31}) = \tau_{ac13}$
3-4-2	$0 + (D_{PMD} \times \sqrt{X \times 175}) + (\tau_{comp} \times N_{34}) + (D_{PMD} \times \sqrt{X \times 200}) + (\tau_{comp} \times N_{42}) = \tau_{ac23}$
3 – 4	$0 + (D_{PMD} \times \sqrt{X \times 175}) + (\tau_{comp} \times N_{34}) = \tau_{ac43}$
3-4-5	$0 + (D_{PMD} \times \sqrt{X \times 175}) + (\tau_{comp} \times N_{34}) + (D_{PMD} \times \sqrt{X \times 215}) + (\tau_{comp} \times N_{45}) = \tau_{ac53}$

4) กรณีทุกสัญญาณถูกส่งมาจากโนด 4; Z = 4

4 - 3 - 1	$0 + (D_{PMD} \times \sqrt{X \times 175}) + (\tau_{comp} \times N_{43}) + (D_{PMD} \times \sqrt{X \times 150}) + (\tau_{comp} \times N_{31}) = \tau_{ac14}$
4 — 2	$0 + (D_{PMD} \times \sqrt{X \times 200}) + (\tau_{comp} \times N_{42}) = \tau_{ac42}$
4 — 3	$0 + (D_{PMD} \times \sqrt{X \times 175}) + (\tau_{comp} \times N_{43}) = \tau_{ac34}$
4 — 5	$0 + (D_{PMD} \times \sqrt{X \times 215}) + (\tau_{comp} \times N_{45}) = \tau_{ac54}$

5) กรณีทุกสัญญาณถูกส่งมาจากโนด 5; Z = 5

5 — 2 — 1	$0 + (D_{PMD} \times \sqrt{X \times 100}) + (\tau_{comp} \times N_{52}) + (D_{PMD} \times \sqrt{X \times 250}) + (\tau_{comp} \times N_{21}) = \tau_{ac15}$
5 — 2	$0 + (D_{PMD} \times \sqrt{X \times 100}) + (\tau_{comp} \times N_{52}) = \tau_{ac25}$
5 - 4 - 3	$0 + (D_{PMD} \times \sqrt{X \times 215}) + (\tau_{comp} \times N_{54}) + (D_{PMD} \times \sqrt{X \times 175}) + (\tau_{comp} \times N_{43}) = \tau_{ac35}$
5 — 4	$0 + (D_{PMD} \times \sqrt{X \times 215}) + (\tau_{comp} \times N_{54}) = \tau_{ac45}$

เมื่อเพิ่มพารามิเตอร์ X เข้าไปในสมการเงื่อนไขขอบเขตแล้วจึงหาจำนวน PMDC น้อยสุด บนโครงข่ายตัวอย่างได้ดังตารางที่ 8.2 และตัวอย่างผลรวมของค่า DGD ในกรณีที่ขยายโครงข่าย 9 เท่าจากขนาดเดิมดังตารางที่ 8.3 และภาพที่ 8.1 แสดงว่าทุกโนดปลายทางมีผลรวมของค่า DGD อยู่ภายในขอบเขตที่จำกัดไว้

	จำนวน		
	X=9	X=12	X=13
n12	0	0	0
n13	0	0	0
n21	0	0	0
n24	0	0	0
n25	0	1	1
n31	0	0	0
n34	0	1	1
n42	1	0	0
n43	1	1	1
n45	1	0	0
n52	0	1	1
n54	0	0	0
Nmin	3	4	4

ตารางที่ 8.2 ผลเฉลยจำนวน PMDC จาการทำ MILP optimization ในกรณีโครงข่ายตัวอย่างทำงานปกติ

	$ au_{acc}$ [ps]		$ au_{acc}$ [ps]
$ au_{rms12}$	9.48683	$ au_{rms34}$	-9.06275
$ au_{rms13}$	7.34847	$ au_{rms35}$	-0.265
$ au_{rms14}$	-1.7143	$ au_{rms41}$	15.2857
$ au_{rms15}$	15.4868	$ au_{rms42}$	8.48528
$ au_{rms21}$	9.48683	$ au_{rms43}$	7.93725
$ au_{rms23}$	-0.5775	$ au_{rms45}$	8.79773
$ au_{rms24}$	-8.51472	$ au_{rms51}$	15.4868
$ au_{rms25}$	6	$ au_{rms52}$	6
$ au_{rms31}$	7.34847	$ au_{rms53}$	-0.265
$ au_{rms32}$	-0.5775	$ au_{rms54}$	-8.20227

ตารางที่ 8.3 ผลเฉลยผลรวมของค่า DGD จากการทำ MILP Optimization กรณีโครงข่ายตัวอย่างขยายขนาด9เท่าทำงานปกติ

ภาพที่ 8.3 ผลรวมของค่า DGD ทุกเส้นทางบนโครงข่ายตัวอย่างเมื่อใช้ PMDC

8.3 โครงข่าย OPEN ในกรณีทำงานปกติ

โครงข่าย OPEN ประกอบด้วย 10 โนด 13 ข่ายเชื่อมโยง ซึ่งมีระยะทางรวมทั้งโครงข่ายคือ 1882 km ซึ่งแสดงในภาพที่ 7.7 และภาพที่ 7.8 เมื่อนำอัลกอริทึมสำหรับใช้ PMDC มาทดลองใช้ กับโครงข่าย OPEN สามารถอธิบายได้ดังนี้

ในโครงข่ายขนาดปกติไม่จำเป็นต้องใช้ PMDC ดังที่กล่าวมาในหัวข้อที่แล้ว ดังนั้นจึง ขยายขนาดโครงข่าย OPEN ขึ้นด้วยพารามิเตอร์ X เช่นเดียวกัน จะได้ผลเฉลยจำนวน PMDC น้อยสุดบนโครงข่าย OPEN ได้ดังตารางที่ 8.4 และภาพที่ 8.4 ซึ่งพบว่าจำนวน PMDC มีแนวโน้ม เพิ่มขึ้นตามพารามิเตอร์ X ซึ่งหมายถึงเมื่อขยายขนาดโครงข่ายขึ้นจะต้องใช้ PMDC จำนวน เพิ่มขึ้นตามไปด้วย โดยตัวอย่างผลรวมของค่า DGD ในกรณีที่ขยายโครงข่าย 4 เท่าจากขนาดเดิม ดังตารางที่ 8.5 และภาพที่ 8.1 พบว่าทุกโนดปลายทางมีผลรวมของค่า DGD อยู่ภายในขอบเขตที่ จำกัดไว้

		จำนวน					
	X=4	X=5	X=6	X=7	X=8	X=9	X=10
n12	0	0	0	0	0	0	0
n13	0	0	0	0	0	0	1
n21	0	0	0	0	0	0	0
n23	0	0	0	0	0	0	1
n31	0	1	0	0	0	0	0
n32	0	1	0	0	0	0	0
n34	0	1	0	0	0	0	0
n36	1	1	0	1	1	1	0
n37	1	1	0	0	0	1	0
n43	0	0	0	0	0	0	1
n45	0	0	1	1	1	1	0
n54	0	0	1	1	1	1	0
n56	0	0	0	1	1	1	1

ตารางที่ 8.4 ผลเฉลยจำนวน PMDC จาการทำ MILP optimization ในกรณีโครงข่าย OPFN ทำงานปกติ

n63	1	0	0	1	1	1	1
n65	0	0	0	1	1	1	1
n69	0	0	0	0	0	0	0
n610	0	0	1	0	0	0	1
n73	1	0	0	0	0	1	1
n78	0	0	1	1	1	0	0
n87	0	0	1	1	1	0	0
n89	0	0	0	0	0	1	1
n96	0	0	0	0	0	0	0
n98	0	0	0	0	0	1	1
n910	0	0	0	0	0	0	0
n106	0	0	1	0	0	0	0
n109	0	0	0	0	0	0	0
Nmin	4	5	6	8	8	10	10

ภาพที่ 8.4 ความสัมพันธ์ระหว่างจำนวน PMDC กับจำนวนเท่าที่ขยายขนาดโครงข่าย

	$ au_{acc}$ [ps]		$ au_{acc}$ [ps]		$ au_{acc}$ [ps]
Trms101	1.3007	Trms34	4.43621	Trms67	12.0417
Trms102	1.236	Trms35	9.77288	Trms68	9.85077
Trms103	-3.6792	Trms36	-9.81112	Trms69	4.13763
Trms104	0.757	Trms37	-11.50091	Trms710	13.3593
Trms105	13.1519	Trms38	-9.31002	Trms71	-6.5209
Trms106	6.13188	Trms39	-3.5969	Trms72	-6.5856
Trms107	13.3593	Trms410	0.757	Trms73	-11.50091
Trms108	11.1684	Trms41	9.41617	Trms74	-7.06469
Trms109	5.45527	Trms42	9.3515	Trms75	-1.728
Trms110	1.3007	Trms43	4.43621	Trms76	12.0417
Trms12	4.43621	Trms45	5.33667	Trms78	2.19089
Trms13	4.97996	Trms46	-5.3749	Trms79	7.90403
Trms14	9.41617	Trms47	-7.06469	Trms810	11.1684
Trms15	14.7528	Trms48	-4.8738	Trms81	-4.3301
Trms16	-4.8312	Trms49	0.8393	Trms82	-4.3947
Trms17	-6.5209	Trms510	13.1519	Trms83	-9.31002
Trms18	-4.3301	Trms51	14.7528	Trms84	-4.8738
Trms19	1.3831	Trms52	14.6882	Trms85	0.4629
Trms210	1.236	Trms53	9.77288	Trms86	9.85077
Trms21	4.43621	Trms54	5.33667	Trms87	2.19089
Trms23	4.91528	Trms56	7.01997	Trms89	5.71314
Trms24	9.3515	Trms57	-1.728	Trms910	5.45527
Trms25	14.6882	Trms58	0.4629	Trms91	1.3831

ตารางที่ 8.5 ผลเฉลยผลรวมของค่า DGD จากการทำ MILP Optimization กรณีโครงข่าย OPEN ขยายขนาด 4 เท่าทำงานปกติ

Trms26	-4.8958	Trms59	11.1576	Trms92	1.3184
Trms27	-6.5856	Trms610	6.13188	Trms93	-3.5969
Trms28	-4.3947	Trms61	-4.8312	Trms94	0.8393
Trms29	1.3184	Trms62	-4.8958	Trms95	11.1576
Trms310	-3.6792	Trms63	-9.81112	Trms96	4.13763
Trms31	4.97996	Trms64	-5.3749	Trms97	7.90403
Trms32	4.91528	Trms65	7.01997	Trms98	5.71314

ภาพที่ 8.5 ผลรวมของค่า DGD ทุกเส้นทางบนโครงข่าย OPEN เมื่อใช้ PMDC

8.4 โครงข่าย NARNET ในกรณีทำงานปกติ

โครงข่าย North-American Reference Network (NARNET) ประกอบด้วย 17 โนด 24 ข่ายเชื่อมโยง ซึ่งมีระยะทางรวมทั้งโครงข่ายคือ 9140 km ดังแสดงในภาพที่ 7.10 เมื่อนำ อัลกอริทึมสำหรับใช้ PMDC มาทดลองใช้กับโครงข่าย NARNET สามารถอธิบายได้ดังนี้

เมื่อพิจารณาโครงข่าย NARNET ในกรณีทำงานปกติพบว่าจำเป็นต้องวาง PMDC เนื่องจากโครงข่าย NARNET มีขนาดใหญ่เมื่อเทียบกับ 2 โครงข่ายข้างต้น ปัญหาการกระจาย โหมดโพลาไรซ์จึงส่งผลกระทบต่อโครงข่ายนี้ เช่นที่ light path ที่ยาวที่สุด 2180 km จากโนดต้น ทาง 1 ไปโนดปลายทาง 16 สามารถคำนวณหาผลรวมของค่า DGD ได้ดังนี้

$$0 + (D_{PMD} \times \sqrt{L}) = \tau_{acc(L)} \le \tau_{max}$$

$$\tau_{acc(1-16)} = \begin{pmatrix} 0 + (0.2 \times \sqrt{540}) + (0.2 \times \sqrt{360}) + \\ (0.2 \times \sqrt{420}) + (0.2 \times \sqrt{440}) + (0.2 \times \sqrt{420}) \end{pmatrix} \le \tau_{max}$$

$$au_{acc(1-16)} = 20.835 \leq \! 16$$
 ps

พบว่าผลรวมของค่า DGD มีค่าเกิน $au_{
m max}$ ที่กำหนดไว้จึงจำเป็นต้องใช้ PMDC เพื่อ ชดเชยผลกระทบดังกล่าว เมื่อทำการหาผลเฉลยพบว่าต้องใช้ PMDC จำนวน 6 ตัวดังแสดงใน ตารางที่ 8.6 โดยมีผลรวมของค่า DGD ทุกโนดปลายทางแสดงใน ตารางที่ 8.7 และ ภาพที่ 8.6 แสดงว่า ผลรวมของค่า DGDมีค่าไม่เกิน 16 ps

ตารางที่ 8.6 ผลเฉลยจำนวน PMDC จาการทำ MILP optimization

	จำนวน		จำนวน		จำนวน
n1_2	0	n14_8	0	n4_6	0
n1_3	0	n15_12	0	n4_7	1
n10_12	0	n15_14	0	n5_10	1
n10_13	0	n15_16	0	n5_3	0
n10_5	1	n15_17	0	n5_6	0
n11_12	0	n16_13	0	n6_11	1
n11_6	1	n16_15	0	n6_4	0
n12_10	0	n17_14	0	n6_5	0
n12_11	0	n17_15	0	n6_9	0

ในกรณีโครงข่าย NARNET ทำงานปกติ

n12_13	0	n2_1	0	n7_4	1
n12_15	0	n2_4	0	n7_8	0
n13_10	0	n3_1	0	n8_14	0
n13_12	0	n3_4	0	n8_7	0
n13_16	0	n3_5	0	n8_9	0
n14_15	0	n4_2	0	n9_6	0
n14_17	0	n4_3	0	n9_8	0
		Nmin	6		

ตารางที่ 8.7 ผลเฉลยผลรวมของค่า DGD จากการทำ MILP Optimization กรณีโครงข่าย NARNET ทำงานปกติ

	$ au_{acc}[extsf{ps}]$		$ au_{acc}[extsf{ps}]$		$ au_{acc}[extsf{ps}]$
Trms1_10	-4.4589	Trms14_4	-7.30271	Trms4_13	-1.3584
Trms1_11	-1.9757	Trms14_5	13.954	Trms4_14	-7.30271
Trms1_12	-0.9948	Trms14_6	11.2707	Trms4_15	-2.4861
Trms1_13	-0.2637	Trms14_7	7.33086	Trms4_16	1.0916
Trms1_14	0.5908	Trms14_8	4.64758	Trms4_17	-3.404
Trms1_15	3.2004	Trms14_9	8.44231	Trms4_2	3.79473
Trms1_16	3.8351	Trms15_1	3.2004	Trms4_3	4.81664
Trms1_17	4.4895	Trms15_10	7.65934	Trms4_5	7.74293
Trms1_2	4.09878	Trms15_11	6.87852	Trms4_6	5.05964
Trms1_3	4.64758	Trms15_12	4.19524	Trms4_7	-14.6336
Trms1_4	7.89351	Trms15_13	7.57771	Trms4_8	-11.9503
Trms1_5	8.44231	Trms15_14	4.81664	Trms4_9	7.88807
Trms1_6	11.1256	Trms15_16	3.57771	Trms5_1	8.44231
Trms1_7	-6.7401	Trms15_17	3.89872	Trms5_10	-12.9012
Trms1_8	-4.0568	Trms15_2	1.3087	Trms5_11	-10.418

Trms1_9	13.954	Trms15_3	-1.4471	Trms5_12	-9.43712
Trms10_1	-4.4589	Trms15_4	-2.4861	Trms5_13	-8.70598
Trms10_11	6.14738	Trms15_5	-5.2419	Trms5_14	13.954
Trms10_12	3.4641	Trms15_6	-6.2228	Trms5_15	-5.2419
Trms10_13	4.19524	Trms15_7	12.1475	Trms5_16	-4.6072
Trms10_14	12.476	Trms15_8	9.46422	Trms5_17	-1.3432
Trms10_15	7.65934	Trms15_9	-3.3943	Trms5_2	11.5377
Trms10_16	8.29402	Trms16_1	3.8351	Trms5_3	3.79473
Trms10_17	11.5581	Trms16_10	8.29402	Trms5_4	7.74293
Trms10_2	-1.3636	Trms16_11	10.4562	Trms5_6	2.68328
Trms10_3	-9.10649	Trms16_12	7.77294	Trms5_7	11.9897
Trms10_4	-5.1583	Trms16_13	4	Trms5_8	9.30644
Trms10_5	-12.9012	Trms16_14	8.39435	Trms5_9	5.51171
Trms10_6	-10.2179	Trms16_15	3.57771	Trms6_1	11.1256
Trms10_7	-0.9115	Trms16_17	7.47643	Trms6_10	-10.2179
Trms10_8	-3.5948	Trms16_2	4.8864	Trms6_11	-13.1013
Trms10_9	-7.38951	Trms16_3	-0.8125	Trms6_12	-10.418
Trms11_1	-1.9757	Trms16_4	1.0916	Trms6_13	-6.418
Trms11_10	6.14738	Trms16_5	-4.6072	Trms6_14	11.2707
Trms11_12	2.68328	Trms16_6	-2.6451	Trms6_15	-6.2228
Trms11_13	6.68328	Trms16_7	15.7252	Trms6_16	-2.6451
Trms11_14	11.6952	Trms16_8	13.0419	Trms6_17	- 2.324
Trms11_15	6.87852	Trms16_9	0.1834	Trms6_2	8.85438
Trms11_16	10.4562	Trms17_1	4.4895	Trms6_3	6.47801
Trms11_17	10.7772	Trms17_10	11.5581	Trms6_4	5.05964
Trms11_2	-4.2469	Trms17_11	10.7772	Trms6_5	2.68328
Trms11_3	-6.6233	Trms17_12	8.09395	Trms6_7	9.30644

Trms11_4	-8.04164	Trms17_13	11.4764	Trms6_8	6.62316
Trms11_5	-10.418	Trms17_14	3.89872	Trms6_9	2.82843
Trms11_6	-13.1013	Trms17_15	3.89872	Trms7_1	-6.7401
Trms11_7	-3.7948	Trms17_16	7.47643	Trms7_10	-0.9115
Trms11_8	-6.4781	Trms17_2	0.3907	Trms7_11	-3.7948
Trms11_9	-10.2729	Trms17_3	1.4126	Trms7_12	-1.1116
Trms12_1	-0.9948	Trms17_4	-3.404	Trms7_13	2.8884
Trms12_10	3.4641	Trms17_5	-1.3432	Trms7_14	7.33086
Trms12_11	2.68328	Trms17_6	-2.324	Trms7_15	12.1475
Trms12_13	4	Trms17_7	11.2296	Trms7_16	15.7252
Trms12_14	9.01187	Trms17_8	8.5463	Trms7_17	11.2296
Trms12_15	4.19524	Trms17_9	12.341	Trms7_2	-10.8388
Trms12_16	7.77294	Trms2_1	4.09878	Trms7_3	-9.81693
Trms12_17	8.09395	Trms2_10	-1.3636	Trms7_4	-14.6336
Trms12_2	-1.5636	Trms2_11	-4.2469	Trms7_5	11.9897
Trms12_3	-5.6424	Trms2_12	-1.5636	Trms7_6	9.30644
Trms12_4	-5.3584	Trms2_13	2.4364	Trms7_8	2.68328
Trms12_5	-9.43712	Trms2_14	-3.508	Trms7_9	6.47801
Trms12_6	-10.418	Trms2_15	1.3087	Trms8_1	-4.0568
Trms12_7	-1.1116	Trms2_16	4.8864	Trms8_10	-3.5948
Trms12_8	-3.7948	Trms2_17	0.3907	Trms8_11	-6.4781
Trms12_9	-7.58957	Trms2_3	8.61137	Trms8_12	-3.7948
Trms13_1	-0.2637	Trms2_4	3.79473	Trms8_13	0.2052
Trms13_10	4.19524	Trms2_5	11.5377	Trms8_14	4.64758
Trms13_11	6.68328	Trms2_6	8.85438	Trms8_15	9.46422
Trms13_12	4	Trms2_7	-10.8388	Trms8_16	13.0419
Trms13_14	12.4931	Trms2_8	-8.15555	Trms8_17	8.5463

Trms13_15	7.67649	Trms2_9	11.6828	Trms8_2	-8.15555
Trms13_16	4.09878	Trms3_1	4.64758	Trms8_3	-7.13365
Trms13_17	11.5752	Trms3_10	-9.10649	Trms8_4	-11.9503
Trms13_2	2.4364	Trms3_11	-6.6233	Trms8_5	9.30644
Trms13_3	-4.9113	Trms3_12	-5.6424	Trms8_6	6.62316
Trms13_4	-1.3584	Trms3_13	-4.9113	Trms8_7	2.68328
Trms13_5	-8.70598	Trms3_14	-2.4861	Trms8_9	3.79473
Trms13_6	-6.418	Trms3_15	-1.4471	Trms9_1	13.954
Trms13_7	2.8884	Trms3_16	-0.8125	Trms9_10	-7.38951
Trms13_8	0.2052	Trms3_17	1.4126	Trms9_11	-10.2729
Trms13_9	-3.5896	Trms3_2	8.61137	Trms9_12	-7.58957
Trms14_1	0.5908	Trms3_4	4.81664	Trms9_13	-3.5896
Trms14_10	12.476	Trms3_5	3.79473	Trms9_14	8.44231
Trms14_11	11.6952	Trms3_6	6.47801	Trms9_15	-3.3943
Trms14_12	9.01187	Trms3_7	-9.81693	Trms9_16	0.1834
Trms14_13	12.3943	Trms3_8	-7.13365	Trms9_17	12.341
Trms14_15	4.81664	Trms3_9	9.30644	Trms9_2	11.6828
Trms14_16	8.39435	Trms4_1	7.89351	Trms9_3	9.30644
Trms14_17	3.89872	Trms4_10	-5.1583	Trms9_4	7.88807
Trms14_2	-3.508	Trms4_11	-8.04164	Trms9_5	5.51171
Trms14_3	-2.4861	Trms4_12	-5.3584	Trms9_6	2.82843
		Trms9_8	3.79473	Trms9_7	6.47801

ภาพที่ 8.6 ผลรวมของค่า DGD ทุกเส้นทางบนโครงข่าย NARNET เมื่อใช้ PMDC

8.5 โครงข่ายตัวอย่างในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย

การระบุเส้นทางการส่งผ่านสัญญาณจากโนดต้นทางไปสู่โนดปลายทางในกรณีเกิดความ เสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย จะจัดสรรเส้นทางให้โดยใช้กลไกการกู้คืนแบบ path protection โดยจะสื่อสัญญาณบนเส้นใยแสงสำรอง ซึ่งการระบุเส้นทางการส่งผ่านสัญญาณใหม่ จะแยกคิดเป็นกรณีความเสียหายของข่ายเชื่อมโยงด้วยระยะทางระหว่างโนดที่น้อยที่สุดซึ่ง เส้นทางการส่งผ่านสัญญาณนั้นถูกระบุไว้ดังตารางที่ 7.3 - ตารางที่ 7.8

8.5.1 การสร้างสมการและอสมการเงื่อนไขขอบเขต 8.5.1.1 สมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณระหว่างโนด

สมการเงื่อนไขขอบเขตชดเชยค่าดิสเพอร์ชันในการส่งผ่านสัญญาณระหว่างโนดต้นทาง และโนดปลายทางใด ๆในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งบนโครงข่ายโดยใช้การ ป้องกันแบบ path protection นั้นสามารถแยกเป็นกรณีได้ดังนี้

กรณีที่เกิดความเสียหายขึ้นกับข่ายเชื่อมโยง 12 และ ข่ายเชื่อมโยง 21 (A)
 กรณีทุกสัญญาณถูกส่งมาจากโนด 1; Z = 1

 $0 + (D_{PMD} \times \sqrt{150}) + (\tau_{comp} \times N_{13}) + (D_{PMD} \times \sqrt{175}) + (\tau_{comp} \times N_{34}) + (D_{PMD} \times \sqrt{200}) + (\tau_{comp} \times N_{42}) = \tau_{ac21A} + (\tau_{comp} \times N_{13}) + (\tau_{com$

กรณีทุกสัญญาณถูกส่งมาจากโนด 2; Z = 2

2 - - 4 - - 3 - - 1

 $0 + (D_{PMD} \times \sqrt{200}) + (\tau_{comp} \times N_{24}) + (D_{PMD} \times \sqrt{175}) + (\tau_{comp} \times N_{43}) + (D_{PMD} \times \sqrt{150}) + (\tau_{comp} \times N_{31}) = \tau_{ac12A}$ กรณีทุกสัญญาณถูกส่งมาจากโนด 5; Z = 5

5 - - 4 - - 3 - - 1

$$0 + (D_{PMD} \times \sqrt{215}) + (\tau_{comp} \times N_{54}) + (D_{PMD} \times \sqrt{175}) + (\tau_{comp} \times N_{43}) + (D_{PMD} \times \sqrt{150}) + (\tau_{comp} \times N_{31}) = \tau_{ac15A} + (\tau_{comp} \times N_{54}) + (\tau_{com$$

กรณีที่เกิดความเสียหายขึ้นกับข่ายเชื่อมโยง 13 และ ข่ายเชื่อมโยง 31 (B)
 กรณีทุกสัญญาณถูกส่งมาจากโนด 1; Z = 1

1 - - 2 - - 4 - - 3

$$0 + (D_{PMD} \times \sqrt{250}) + (\tau_{comp} \times N_{12}) + (D_{PMD} \times \sqrt{200}) + (\tau_{comp} \times N_{24}) + (D_{PMD} \times \sqrt{175}) + (\tau_{comp} \times N_{43}) = \tau_{ac31B} + (\tau_{ac31B} \times N_{24}) + (\tau_{ac31B} \times$$

 $0 + (D_{PMD} \times \sqrt{250}) + (\tau_{comp} \times N_{12}) + (D_{PMD} \times \sqrt{200}) + (\tau_{comp} \times N_{24}) = \tau_{ac41B}$ กรณีทุกสัญญาณถูกส่งมาจากโนด 3; Z = 3

3 - - 4 - - 2 - - 1

 $0 + (D_{PMD} \times \sqrt{175}) + (\tau_{comp} \times N_{43}) + (D_{PMD} \times \sqrt{200}) + (\tau_{comp} \times N_{42}) + (D_{PMD} \times \sqrt{250}) + (\tau_{comp} \times N_{21}) = \tau_{ac13B}$ กรณีทุกสัญญาณถูกส่งมาจากโนด 4; Z = 4

$$0 + (D_{PMD} \times \sqrt{200}) + (\tau_{comp} \times N_{42}) + (D_{PMD} \times \sqrt{250}) + (\tau_{comp} \times N_{21}) = \tau_{ac14B}$$

กรณีที่เกิดความเสียหายขึ้นกับข่ายเชื่อมโยง 24 และ ข่ายเชื่อมโยง 42 (C)
 กรณีทุกสัญญาณควถูกส่งมาจากโนด 2; Z = 2

$$2 - 1 - 3$$

$$0 + (D_{PMD} \times \sqrt{250}) + (\tau_{comp} \times N_{21}) + (D_{PMD} \times \sqrt{150}) + (\tau_{comp} \times N_{13}) = \tau_{ac32C}$$

$$2 - 5 - 4$$

$$0 + (D_{PMD} \times \sqrt{100}) + (\tau_{comp} \times N_{25}) + (D_{PMD} \times \sqrt{215}) + (\tau_{comp} \times N_{54}) = \tau_{ac42C}$$

กรณีทุกสัญญาณถูกส่งมาจากโนด 3; Z = 3

 $0 + (D_{PMD} \times \sqrt{150}) + (\tau_{comp} \times N_{31}) + (D_{PMD} \times \sqrt{250}) + (\tau_{comp} \times N_{12}) = \tau_{ac23C}$ กรณีทุกสัญญาณถูกส่งมาจากโนด 4; Z = 4

4 - - 5 - - 2

3 - - 1 - - 2

$$0 + (D_{PMD} \times \sqrt{215}) + (\tau_{comp} \times N_{45}) + (D_{PMD} \times \sqrt{100}) + (\tau_{comp} \times N_{52}) = \tau_{ac24C}$$

<u>กรณีเกิดความเสียหายขึ้นกับข่ายเชื่อมโยง 25 และ ข่ายเชื่อมโยง 52 (D)</u>
 กรณีทุกสัญญาณถูกส่งมาจากโนด 1; Z = 1

1 - - 3 - - 4 - - 5

 $0 + (D_{PMD} \times \sqrt{150}) + (\tau_{comp} \times N_{13}) + (D_{PMD} \times \sqrt{175}) + (\tau_{comp} \times N_{34}) + (D_{PMD} \times \sqrt{215}) + (\tau_{comp} \times N_{45}) = \tau_{ac21D}$ กรณีทุกสัญญาณถูกส่งมาจากโนด 2; Z = 2

$$0 + (D_{PMD} \times \sqrt{200}) + (\tau_{comp} \times N_{24}) + (D_{PMD} \times \sqrt{215}) + (\tau_{comp} \times N_{45}) = \tau_{ac52D}$$
กรณีทุกสัญญาณถูกส่งมาจากโนด 5; Z = 5

$$0 + (D_{PMD} \times \sqrt{215}) + (\tau_{comp} \times N_{54}) + (D_{PMD} \times \sqrt{175}) + (\tau_{comp} \times N_{43}) + (D_{PMD} \times \sqrt{150}) + (\tau_{comp} \times N_{31}) = \tau_{ac15D}$$

5 - 4 - 2

$$0 + (D_{PMD} \times \sqrt{215}) + (\tau_{comp} \times N_{54}) + (D_{PMD} \times \sqrt{200}) + (\tau_{comp} \times N_{42}) = \tau_{ac25D}$$

5) <u>กรณีเกิดความเสียหายขึ้นกับข่ายเชื่อมโยง 34 และ ข่ายเชื่อมโยง 43 (E)</u> กรณีทุกลัญญาณถูกส่งมาจากโนด 1; Z = 1

1 - - 2 - - 4

 $0 + (D_{PMD} \times \sqrt{250}) + (\tau_{comp} \times N_{12}) + (D_{PMD} \times \sqrt{200}) + (\tau_{comp} \times N_{24}) = \tau_{ac41E}$ กรณีทุกสัญญาณถูกส่งมาจากโนด 2; Z = 2

2 - - 1 - - 3

 $0 + (D_{PMD} \times \sqrt{250}) + (\tau_{comp} \times N_{21}) + (D_{PMD} \times \sqrt{150}) + (\tau_{comp} \times N_{13}) = \tau_{ac32E}$

กรณีทุกสัญญาณถูกส่งมาจากโนด 3; Z = 3

$$3 - 1 - 2$$

$$0 + (D_{PMD} \times \sqrt{150}) + (\tau_{comp} \times N_{31}) + (D_{PMD} \times \sqrt{250}) + (\tau_{comp} \times N_{12}) = \tau_{ac23E}$$

$$3 - 1 - 2 - 4$$

$$0 + (D_{PMD} \times \sqrt{150}) + (\tau_{comp} \times N_{31}) + (D_{PMD} \times \sqrt{250}) + (\tau_{comp} \times N_{12}) + (D_{PMD} \times \sqrt{200}) + (\tau_{comp} \times N_{24}) = \tau_{ac43E}$$

$$3 - 1 - 2 - 5$$

$$0 + (D_{PMD} \times \sqrt{150}) + (\tau_{comp} \times N_{31}) + (D_{PMD} \times \sqrt{250}) + (\tau_{comp} \times N_{12}) + (D_{PMD} \times \sqrt{100}) + (\tau_{comp} \times N_{25}) = \tau_{ac3E}$$

$$0 + (D_{PMD} \times \sqrt{150}) + (\tau_{comp} \times N_{31}) + (D_{PMD} \times \sqrt{250}) + (\tau_{comp} \times N_{12}) + (D_{PMD} \times \sqrt{100}) + (\tau_{comp} \times N_{25}) = \tau_{ac3E}$$

$$0 + (D_{PMD} \times \sqrt{200}) + (\tau_{comp} \times N_{42}) + (D_{PMD} \times \sqrt{250}) + (\tau_{comp} \times N_{21}) = \tau_{ac14E}$$

$$4 - 2 - 1$$

$$0 + (D_{PMD} \times \sqrt{200}) + (\tau_{comp} \times N_{42}) + (D_{PMD} \times \sqrt{250}) + (\tau_{comp} \times N_{21}) = \tau_{ac14E}$$

$$4 - 2 - 1 - 3$$

$$0 + (D_{PMD} \times \sqrt{200}) + (\tau_{comp} \times N_{42}) + (D_{PMD} \times \sqrt{250}) + (\tau_{comp} \times N_{21}) + (D_{PMD} \times \sqrt{150}) + (\tau_{comp} \times N_{13}) = \tau_{ac34E}$$

$$0 + (D_{PMD} \times \sqrt{100}) + (\tau_{comp} \times N_{42}) + (D_{PMD} \times \sqrt{250}) + (\tau_{comp} \times N_{21}) + (D_{PMD} \times \sqrt{150}) + (\tau_{comp} \times N_{13}) = \tau_{ac34E}$$

$$0 + (D_{PMD} \times \sqrt{100}) + (\tau_{comp} \times N_{52}) + (D_{PMD} \times \sqrt{250}) + (\tau_{comp} \times N_{21}) + (D_{PMD} \times \sqrt{150}) + (\tau_{comp} \times N_{13}) = \tau_{ac34E}$$

$$0 + (D_{PMD} \times \sqrt{100}) + (\tau_{comp} \times N_{52}) + (D_{PMD} \times \sqrt{250}) + (\tau_{comp} \times N_{21}) + (D_{PMD} \times \sqrt{150}) + (\tau_{comp} \times N_{13}) = \tau_{ac34E}$$

$$0 + (D_{PMD} \times \sqrt{100}) + (\tau_{comp} \times N_{52}) + (D_{PMD} \times \sqrt{250}) + (\tau_{comp} \times N_{21}) + (D_{PMD} \times \sqrt{150}) + (\tau_{comp} \times N_{13}) = \tau_{ac34E}$$

$$0 + (D_{PMD} \times \sqrt{100}) + (\tau_{comp} \times N_{52}) + (D_{PMD} \times \sqrt{250}) + (\tau_{comp} \times N_{21}) + (D_{PMD} \times \sqrt{150}) + (\tau_{comp} \times N_{13}) = \tau_{ac35E}$$

$$0 + (D_{PMD} \times \sqrt{100}) + (\tau_{comp} \times N_{52}) + (D_{PMD} \times \sqrt{250}) + (\tau_{comp} \times N_{21}) + (D_{PMD} \times \sqrt{150}) + (\tau_{comp} \times N_{13}) = \tau_{ac35E}$$

$$0 + (D_{PMD} \times \sqrt{100}) + (\tau_{comp} \times N_{52}) + (D_{PMD} \times \sqrt{250}) + (\tau_{comp} \times N_{21}) + (D_{PMD} \times \sqrt{150}) + (\tau_{comp} \times N_{13}) = \tau_{ac35E}$$

<u>กรณีเกิดความเสียหายขึ้นกับข่ายเชื่อมโยง 45 และ ข่ายเชื่อมโยง 54 (F)</u>
 กรณีทุกสัญญาณถูกส่งมาจากโนด 3; Z = 3

 $0 + (D_{PMD} \times \sqrt{175}) + (\tau_{comp} \times N_{43}) + (D_{PMD} \times \sqrt{200}) + (\tau_{comp} \times N_{42}) + (D_{PMD} \times \sqrt{100}) + (\tau_{comp} \times N_{25}) = \tau_{ac53F}$ กรณีทุกสัญญาณถูกส่งมาจากโนด 4; Z = 4

$$0 + (D_{PMD} \times \sqrt{100}) + (\tau_{comp} \times N_{52}) + (D_{PMD} \times \sqrt{200}) + (\tau_{comp} \times N_{24}) = \tau_{ac45F}$$

ในการจำลองการส่งผ่านของสัญญาณในปัญหาการกระจายโหมดโพลาไรซ์จากสมการจะ พบว่าไม่มีพจน์ของความยาวคลื่นมาเกี่ยวข้อง ดังนั้นสมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณ ระหว่างโนดต้นทางและโนดปลายทางที่กล่าวมาจะสามารถใช้ได้กับทุกความยาวคลื่น

8.5.1.2 เงื่อนไขขอบเขตของค่าความผิดเพี้ยนที่เกิดจากปัญหาการกระจาย โพลาไรซ์

กำหนดให้ผลรวมของค่า DGD ณ โนดปลายทาง Y จากโนดต้นทาง Z ในกรณีเกิดความ เสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่ายตัวอย่าง มีค่าน้อยกว่า au_{max} และในทางตรงกันข้าม ต้องมีค่ามากกว่า $- au_{max}$ โดย au_{max} =16 ps (ส่งสัญญาณที่ความเร็ว 40 Gbps RZ-DQPSK) จะแสดงในตารางที่ 8.8

การส่งสัญญาณ		20 7	
โนดต้นทาง	โนดปลายทาง	111.19	วิกฑากพชนาน
1	2	А	$-16 \le \tau_{ac21A} \le 16$
1	3	В	$-16 \le \tau_{ac31B} \le 16$
1	4	В	$-16 \le \tau_{ac41B} \le 16$
1	5	D	$-16 \le \tau_{ac51D} \le 16$
1	4	E	$-16 \le \tau_{ac41E} \le 16$
2	1	А	$-16 \le \tau_{ac12A} \le 16$
2	3	С	$-16 \le \tau_{ac32C} \le 16$
2	4	С	$-16 \le \tau_{ac42C} \le 16$
2	5	D	$-16 \le \tau_{ac52D} \le 16$
2	3	E	$-16 \le \tau_{ac32E} \le 16$
3	1	В	$-16 \le \tau_{ac13B} \le 16$
3	2	С	$-16 \le \tau_{ac23C} \le 16$

ตารางที่ 8.8 เงื่อนไขขอบเขตของค่าความผิดเพี้ยนที่เกิดจากปัญหาการกระจายโพลาไรซ์ ในการส่งผ่านสัญญาณในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งบนโครงข่ายตัวอย่าง
3	2	Е	$-16 \le \tau_{ac23E} \le 16$
3	4	E	$-16 \le \tau_{ac43E} \le 16$
3	5	E	$-16 \le \tau_{ac53E} \le 16$
3	5	F	$-16 \le \tau_{ac53F} \le 16$
4	1	В	$-16 \le \tau_{ac14B} \le 16$
4	2	С	$-16 \le \tau_{ac24C} \le 16$
4	1	E	$-16 \le \tau_{ac14E} \le 16$
4	3	E	$-16 \le \tau_{ac34E} \le 16$
4	2	F	$-16 \le \tau_{ac24F} \le 16$
5	1	А	$-16 \le \tau_{ac15A} \le 16$
5	1	D	$-16 \le \tau_{ac15D} \le 16$
5	2	D	$-16 \le \tau_{ac25D} \le 16$
5	3	E	$-16 \le \tau_{ac35E} \le 16$
5	3	F	$-16 \le \tau_{ac35F} \le 16$
5	4	F	$-16 \le \tau_{ac45F} \le 16$

8.5.1.3 เงื่อนไขขอบเขตจำนวนเต็ม

้จำนวน PMDC ที่วางลงในแต่ละข่ายเชื่อมโยงต้องเป็นจำนวนเต็มบวกหรือศูนย์เท่านั้น

8.5.1.4 ฟังก์ชันวัตถุประสงค์

ฟังก์ชันวัตถุประสงค์เป็นฟังก์ชันที่กำหนดจำนวน PMDC น้อยสุดในโครงข่ายใน ขณะเดียวกันจำนวน PMDC น้อยสุดนี้ยังคงรักษาไว้ซึ่งประสิทธิภาพการส่งสัญญาณภายใน โครงข่ายได้

การแก้สมการและอสมการเงื่อนไขขอบเขตจากโปรแกรม XPress MP เพื่อ optimization โดยพบว่าในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่ายตัวอย่างไม่จำเป็นต้องใช้ PMDC เนื่องจากโครงข่ายมีขนาดเล็กและผลของชดเชยปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการ กระจายโหมดโพลาไรซ์จะเกิดที่ระยะทางไกลๆ จึงขยายขนาดโครงข่ายตัวอย่างด้วยพารามิเตอร์ X ดังที่กล่าวไว้ข้างต้น เมื่อเพิ่มพารามิเตอร์ X เข้าไปในสมการเงื่อนไขขอบเขตแล้วจึงหาจำนวน PMDC น้อยสุดบนโครงข่ายตัวอย่างได้ดังตารางที่ 8.9 และตัวอย่างผลรวมของค่า DGD ในกรณีที่ ขยายโครงข่าย 9 เท่าจากขนาดเดิมดังตารางที่ 8.10 และ ภาพที่ 8.7

		จำนวน					
	X=4	X=5	X=6	X=7	X=8	X=9	X=10
n12	0	1	0	0	0	0	0
n13	0	0	1	1	1	1	1
n21	0	1	0	0	0	0	0
n24	0	0	0	0	1	1	1
n25	0	0	0	0	0	0	0
n31	0	0	0	0	1	1	1
n34	0	1	0	0	0	0	0
n42	1	0	1	1	1	1	1
n43	1	1	1	1	0	0	0
n45	1	0	0	0	0	0	0
n52	0	0	0	0	0	0	0
n54	0	0	0	0	0	0	0
Nmin	3	4	3	3	4	4	4

ตารางที่ 8.9 ผลเฉลยจำนวน PMDC จาการทำ MILP optimization ในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งบนโครงข่ายตัวอย่าง

ตารางที่ 8.10 ผลเฉลยผลรวมของค่า DGD จากการทำ MILP Optimization กรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่ายตัวอย่างขยาย4เท่า

	$ au_{acc}$ [ps]		$ au_{acc}$ [ps]
Trms12i	-1.1527	Trms32E	11.2235
Trms13B	0.2729	Trms34E	-0.1196

Trms14B	-5.0186	Trms35E	15.2235
Trms14E	-5.0186	Trms35F	-2.0516
Trms15A	-0.9444	Trms41B	11.9814
Trms15D	-0.9444	Trms41E	11.9814
Trms21A	-1.1527	Trms42C	9.86515
Trms23C	11.2235	Trms43E	-0.1196
Trms23E	11.2235	Trms45F	9.65685
Trms24C	-7.1349	Trms51D	-0.9444
Trms25D	-5.478	Trms52D	-5.478
Trms31B	0.2729	Trms53F	-2.0516
Trms32C	11.2235	Trms54F	-7.3432

ภาพที่ 8.7 ผลรวมของค่า DGD ทุกเส้นทางบนโครงข่ายตัวอย่างขยาย4เท่า ในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่ายเมื่อใช้ PMDC

8.6 โครงข่าย OPEN ในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย

การแก้สมการและอสมการเงื่อนไขขอบเขตในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่ง ภายในโครงข่าย OPEN ไม่จำเป็นต้องใช้ PMDC เนื่องจากโครงข่ายมีขนาดเล็กและผลของชดเชย ปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมดโพลาไรซ์จะเกิดที่ระยะทางไกลๆ จึงขยาย ขนาดโครงข่ายตัวอย่างด้วยพารามิเตอร์ X ดังที่กล่าวไว้ข้างต้น เมื่อเพิ่มพารามิเตอร์ X เข้าไปใน สมการเงื่อนไขขอบเขตแล้วจึงหาจำนวน PMDC น้อยสุดบนโครงข่ายตัวอย่างได้ดังตารางที่ 8.11 และตัวอย่างผลรวมของค่า DGD ในกรณีที่ขยายโครงข่าย 5 เท่าจากขนาดเดิมดังตารางที่ 8.12 และภาพที่ 8.8

	จำนวน					
	X=5	X=6	X=7	X=8		
n106	0	1	0	0		
n109	1	0	0	1		
n12	1	0	1	1		
n13	0	0	0	0		
n21	1	0	1	1		
n23	0	0	0	0		
n31	0	1	0	0		
n32	0	1	0	0		
n34	0	1	0	0		
n36	1	1	1	1		
n37	0	1	0	0		
n43	0	0	0	0		
n45	1	0	0	0		
n54	1	0	0	1		
n56	0	1	1	1		
n610	0	0	0	0		

ตารางที่ 8.11 ผลเฉลยจำนวน PMDC จาการทำ MILP optimization ในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย OPEN

n63	1	0	1	1
n65	0	0	1	0
n69	0	0	0	0
n73	0	0	0	0
n78	0	0	0	0
n87	0	0	0	0
n89	1	0	1	1
n910	1	0	0	1
n96	0	1	0	0
n98	1	1	1	1
Nmin	10	9	8	10

ตารางที่ 8.12 ผลเฉลยผลรวมของค่า DGD จากการทำ MILP Optimization กรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย OPEN ขยาย5เท่า

	$ au_{acc}$ [ps]		$ au_{acc}$ [ps]		$ au_{acc}$ [ps]
Tacc101B	-8.6516	Tacc34D	-12.1474	Tacc68L	-0.3649
Tacc101E	-7.3479	Tacc35D	-1.114	Tacc69I	-4.0452
Tacc101J	-7.3479	Tacc35G	-1.114	Tacc710K	4.0412
Tacc102C	-8.5793	Tacc36E	2.6112	Tacc710L	4.0412
Tacc102E	-7.4202	Tacc37F	-12.4996	Tacc710M	3.3186
Tacc102J	-7.4202	Tacc38F	-14.9491	Tacc71B	-0.3965
Tacc103E	-12.9157	Tacc38K	-14.9491	Tacc71F	-6.9318
Tacc103J	-12.9157	Tacc39F	-4.3366	Tacc72C	-0.3242
Tacc104D	3.6708	Tacc39K	-4.3366	Tacc72F	-7.0041
Tacc104E	3.6708	Tacc39L	-4.3366	Tacc73F	-12.4996
Tacc104J	-7.9558	Tacc410D	3.6708	Tacc74D	-6.7219

Tacc105H	-8.1805	Tacc410E	3.6708	Tacc74F	-6.7219
Tacc105J	1.5738	Tacc410J	-7.9558	Tacc75D	4.3116
Tacc106J	-6.2748	Tacc41B	-1.5849	Tacc75F	4.3116
Tacc107K	4.0412	Tacc41D	-6.5797	Tacc75G	4.3116
Tacc107M	3.3186	Tacc42C	-1.5126	Tacc76I	-2.8144
Tacc108L	6.4907	Tacc42D	-6.652	Tacc76K	-2.8144
Tacc108M	0.8692	Tacc43D	-12.1474	Tacc76L	-2.8144
Tacc109M	11.4817	Tacc45G	3.8458	Tacc78K	-8.8009
Tacc110B	-8.6516	Tacc46D	-3.1849	Tacc79K	1.8116
Tacc110E	-7.3479	Tacc46E	-3.1849	Tacc79L	1.8116
Tacc110J	-7.3479	Tacc47D	-6.7219	Tacc810L	6.4907
Tacc12A	11.0632	Tacc47F	-6.7219	Tacc810M	0.8692
Tacc13B	-6.5447	Tacc48D	-9.1714	Tacc81B	2.053
Tacc14B	-1.5849	Tacc48F	-9.1714	Tacc81F	-9.3813
Tacc14D	-6.5797	Tacc48K	-9.1714	Tacc81K	-9.3813
Tacc15B	-12.6183	Tacc49D	1.4412	Tacc82C	2.1253
Tacc15D	4.4537	Tacc49F	1.4412	Tacc82F	-9.4536
Tacc15G	4.4537	Tacc49K	1.4412	Tacc82K	-9.4536
Tacc16B	-15.5073	Tacc49L	0.6233	Tacc83F	-14.9491
Tacc16E	8.1789	Tacc510H	-8.1805	Tacc83K	-14.9491
Tacc17B	-0.3965	Tacc510J	1.5738	Tacc84D	-9.1714
Tacc17F	-6.9318	Tacc51B	-12.6183	Tacc84F	-9.1714
Tacc18B	2.053	Tacc51D	4.4537	Tacc84K	-9.1714
Tacc18F	-9.3813	Tacc51G	4.4537	Tacc85D	1.8621
Tacc18K	-9.3813	Tacc52C	-12.546	Tacc85F	1.8621
Tacc19B	-8.5596	Tacc52D	4.3814	Tacc85G	1.8621
Tacc19F	1.2312	Tacc52G	4.3814	Tacc85K	1.8621

Tacc19K	1.2312	Tacc53D	-1.114	Tacc86I	-0.3649
Tacc19L	1.2312	Tacc53G	-1.114	Tacc86L	-0.3649
Tacc210C	-8.5793	Tacc54G	3.8458	Tacc87K	-8.8009
Tacc210E	-7.4202	Tacc56H	-15.0362	Tacc89L	4.2611
Tacc210J	-7.4202	Tacc57D	4.3116	Tacc910M	11.4817
Tacc21A	11.0632	Tacc57F	4.3116	Tacc91B	-8.5596
Tacc23C	-6.4724	Tacc57G	4.3116	Tacc91F	1.2312
Tacc24C	-1.5126	Tacc58D	1.8621	Tacc91K	1.2312
Tacc24D	-6.652	Tacc58F	1.8621	Tacc91L	1.2312
Tacc25C	-12.546	Tacc58G	1.8621	Tacc92C	-8.4872
Tacc25D	4.3814	Tacc58K	1.8621	Tacc92F	1.1589
Tacc25G	4.3814	Tacc59H	-8.0884	Tacc92K	1.1589
Tacc26C	-15.435	Tacc59I	3.8034	Tacc92L	1.1589
Tacc26E	7.571	Tacc610J	-6.2748	Tacc93F	-4.3366
Tacc27C	-0.3242	Tacc61B	-15.5073	Tacc93K	-4.3366
Tacc27F	-7.0041	Tacc61E	8.1789	Tacc93L	-4.3366
Tacc28C	2.1253	Tacc62C	-15.435	Tacc94D	1.4412
Tacc28F	-9.4536	Tacc62E	8.1066	Tacc94F	1.4412
Tacc28K	-9.4536	Tacc63E	2.6112	Tacc94K	1.4412
Tacc29C	-8.4872	Tacc64D	-3.1849	Tacc94L	0.6233
Tacc29F	1.1589	Tacc64E	-3.1849	Tacc95H	-8.0884
Tacc29K	1.1589	Tacc65H	-15.0362	Tacc95I	3.8034
Tacc29L	1.1589	Tacc67I	-2.8144	Tacc96I	-4.0452
Tacc310E	-12.9157	Tacc67K	-2.8144	Tacc97K	1.8116
Tacc310J	-12.9157	Tacc67L	-2.8144	Tacc98L	4.2611
Tacc31B	-6.5447	Tacc68I	-0.3649		
Tacc32C	-6.4724	Tacc68K	-5.9865		

ภาพที่ 8.8 ผลรวมของค่า DGD ทุกเส้นทางบนโครงข่าย OPEN ขยาย 5 เท่า ในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่ายเมื่อใช้ PMDC

8.7 โครงข่าย NARNET ในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย

การแก้สมการและอสมการเงื่อนไขขอบเขตในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่ง ภายในโครงข่าย NARNET ในโครงข่ายขนาดปกติและโครงข่ายที่ขยายขนาดขึ้นแล้วไม่สามารถหา คำตอบได้ เนื่องจากปัญหาและข้อจำกัดที่พิจารณาอยู่เป็นปัญหาที่เป็นไปไม่ได้ (Infeasible Problem) กล่าวคือ

ดังนั้นจึงเสนออีกวิธีในการแก้ปัญหาคือต้องพิจารณาว่าปัจจัยใดเป็นข้อจำกัดและปรับ ค่าพารามิเตอร์บางค่าเพื่อหาผลเฉลย พิจารณาจากจากสมการที่ (5.1) พบว่ามีค่าพารามิเตอร์ที่ สามารถปรับได้ D_{comp} โดยเราจะปรับค่า D_{comp} ระหว่างช่วงที่ PMDC รองรับคือช่วง 0-50 ps ในโครงข่าย NARNET ขนาดปกติกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่ายเมื่อ ปรับค่าพารามิเตอร์ D_{comp} แล้วพบว่าค่าที่เหมาะสมคือ 13 ps ซึ่งจะได้จำนวน PMDC ดังตาราง ที่ 8.13 และมีผลรวมของค่า DGD ที่ทุกโนดปลายทางดังตารางที่ 8.14 พบว่าไม่มีโนดใดมีผลรวม ของค่า DGD เกินขอบเขตที่จำกัดไว้

n1_2sc	0	n14_8sc	0	n4_6sc	1
n1_3sc	0	n15_12sc	0	n4_7sc	0
n10_12sc	0	n15_14sc	0	n5_10sc	0
n10_13sc	0	n15_16sc	0	n5_3sc	0
n10_5sc	1	n15_17sc	0	n5_6sc	0
n11_12sc	0	n16_13sc	0	n6_11sc	0
n11_6sc	1	n16_15sc	0	n6_4sc	0
n12_10sc	0	n17_14sc	0	n6_5sc	0
n12_11sc	0	n17_15sc	1	n6_9sc	0
n12_13sc	0	n2_1sc	1	n7_4sc	0
n12_15sc	1	n2_4sc	0	n7_8sc	0
n13_10sc	0	n3_1sc	1	n8_14sc	1
n13_12sc	0	n3_4sc	0	n8_7sc	0
n13_16sc	1	n3_5sc	1	n8_9sc	1
n14_15sc	1	n4_2sc	0	n9_6sc	0
n14_17sc	0	n4_3sc	0	n9_8sc	0
				Nmin	12

ตารางที่ 8.13 ผลเฉลยจำนวน PMDC จาการทำ MILP optimization ในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย NARNET

ตารางที่ 8.14 ผลเฉลยผลรวมของค่า DGD จากการทำ MILP Optimization กรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย NARNET

	$ au_{acc}$		$ au_{acc}$		$ au_{acc}$
	[ps]		[ps]		[ps]
Trms1_10xB	-5.3963	Trms14_5xL	4.4402	Trms4_11xJ	4.9891
Trms1_10xH	-4.8283	Trms14_5xM	3.5748	Trms4_12xE	5.2549
Trms1_11xB	-9.1481	Trms14_6xI	1.7569	Trms4_12xP	2.3058

Trms1_11xG	-9.1481	Trms14_6xL	1.7569	Trms4_13xE	3.9054
Trms1_11xJ	-7.3115	Trms14_6xM	2.5939	Trms4_13xP	3.0369
Trms1_12xB	-6.4648	Trms14_7xK	-7.3032	Trms4_13xQ	3.0369
Trms1_12xH	-8.2924	Trms14_7xM	-2.9801	Trms4_14xF	3.3304
Trms1_12xN	-8.2924	Trms14_8xM	-3.783	Trms4_14xK	3.3304
Trms1_13xB	-2.4648	Trms14_9xL	4.5854	Trms4_14xM	-5.3465
Trms1_13xH	-4.2924	Trms14_9xM	5.4223	Trms4_15xF	2.8369
Trms1_13xO	-5.9948	Trms15_10xN	-1.1283	Trms4_15xK	2.8369
Trms1_14xA	6.1615	Trms15_10xR	-1.1283	Trms4_15xM	2.8369
Trms1_14xC	6.1615	Trms15_11xP	-7.6599	Trms4_15xT	2.8369
Trms1_14xF	-3.6037	Trms15_11xR	1.3598	Trms4_16xF	6.4146
Trms1_14xK	-3.6037	Trms15_12xR	-1.3235	Trms4_16xK	6.4146
Trms1_14xM	-13.9829	Trms15_13xS	-4.80476	Trms4_16xM	6.4146
Trms1_15xB	-2.2696	Trms15_13xV	-4.80476	Trms4_16xT	6.4146
Trms1_15xH	-4.0972	Trms15_14xT	-5.20256	Trms4_16xV	6.7404
Trms1_15xN	-4.0972	Trms15_16xV	-0.706	Trms4_17xF	-6.2644
Trms1_15xR	9.4074	Trms15_17xW	-4.28464	Trms4_17xK	-6.2644
Trms1_16xB	1.3081	Trms15_1xB	-2.2696	Trms4_17xM	-6.2644
Trms1_16xH	-0.5195	Trms15_1xH	-4.0972	Trms4_17xU	5.4126
Trms1_16xO	-5.1649	Trms15_1xN	-4.0972	Trms4_1xA	9.46422
Trms1_16xS	-2.2219	Trms15_1xR	-3.5926	Trms4_1xC	9.46422
Trms1_17xA	10.0602	Trms15_2xC	-14.7008	Trms4_2xC	0.563
Trms1_17xC	10.0602	Trms15_2xF	-6.3684	Trms4_3xD	-0.4589
Trms1_17xF	-14.9009	Trms15_2xK	-6.3684	Trms4_5xE	8.61137
Trms1_17xK	-14.9009	Trms15_2xM	-6.3684	Trms4_5xG	8.61137
Trms1_17xM	-14.9009	Trms15_2xT	-6.3684	Trms4_6xE	11.6729
Trms1_17xU	-14.9009	Trms15_3xH	-8.7448	Trms4_7xF	1.3661

Trms1_2xA	0.259	Trms15_3xN	-8.7448	Trms4_8xF	-1.3172
Trms1_3xB	-0.2898	Trms15_3xR	-6.2348	Trms4_8xK	-1.3172
Trms1_4xA	-3.53578	Trms15_4xF	-10.1631	Trms4_9xE	8.84445
Trms1_4xC	-3.53578	Trms15_4xK	-10.1631	Trms4_9xI	8.84445
Trms1_5xB	3.5049	Trms15_4xM	-10.1631	Trms5_10xH	-0.2706
Trms1_6xB	-0.0468	Trms15_4xT	-10.1631	Trms5_11xG	-2.7538
Trms1_6xG	-0.0468	Trms15_5xH	0.4605	Trms5_11xJ	-2.7538
Trms1_7xA	-1.1694	Trms15_5xN	0.4605	Trms5_12xH	-3.73472
Trms1_7xC	-1.1694	Trms15_5xR	2.9705	Trms5_12xN	-3.73472
Trms1_7xF	-5.568	Trms15_6xJ	1.4414	Trms5_13xH	0.2653
Trms1_8xA	0.9651	Trms15_6xP	1.4414	Trms5_13xO	-1.4371
Trms1_8xC	1.5139	Trms15_6xR	-9.9126	Trms5_14xG	-9.4252
Trms1_8xF	-8.2512	Trms15_7xK	-7.7967	Trms5_14xI	4.4402
Trms1_8xK	-8.2512	Trms15_7xM	-7.7967	Trms5_14xL	4.4402
Trms1_9xB	3.738	Trms15_7xT	-7.7967	Trms5_14xM	-9.4252
Trms1_9xG	3.738	Trms15_8xM	-8.5996	Trms5_15xH	0.4605
Trms1_9xI	3.738	Trms15_8xT	-8.5996	Trms5_15xN	0.4605
Trms10_11xN	-2.3192	Trms15_9xI	-12.741	Trms5_15xR	2.9705
Trms10_11xP	-2.3192	Trms15_9xJ	-12.741	Trms5_16xH	4.0382
Trms10_12xN	0.3641	Trms15_9xP	-12.741	Trms5_16xO	-0.6072
Trms10_13xO	7.4641	Trms15_9xR	-12.741	Trms5_16xS	2.3358
Trms10_14xN	5.0528	Trms16_10xO	-1.763	Trms5_17xH	-8.6408
Trms10_14xR	5.0528	Trms16_10xS	-1.763	Trms5_17xN	-8.6408
Trms10_14xT	2.4568	Trms16_11xP	-4.0822	Trms5_17xR	4.8527
Trms10_15xN	11.8717	Trms16_11xR	-2.2179	Trms5_17xW	4.8527
Trms10_15xR	11.8717	Trms16_11xV	-2.2179	Trms5_1xB	3.5049
Trms10_16xO	11.237	Trms16_12xR	-4.90122	Trms5_2xC	-13.4589

Trms10_16xS	11.237	Trms16_12xV	-4.90122	Trms5_2xE	-0.5939
Trms10_17xN	2.7704	Trms16_13xS	-1.2271	Trms5_2xG	-0.5939
Trms10_17xR	2.7704	Trms16_14xT	-1.6249	Trms5_4xE	-4.38863
Trms10_17xW	3.3747	Trms16_14xV	-8.8893	Trms5_4xG	-4.38863
Trms10_1xB	7.6037	Trms16_15xV	-0.706	Trms5_6xG	0.671
Trms10_1xH	8.1717	Trms16_17xV	-9.8073	Trms5_7xG	-2.0222
Trms10_2xC	-9.3601	Trms16_17xW	-0.7069	Trms5_7xI	-2.8906
Trms10_2xE	3.5049	Trms16_1xB	1.3081	Trms5_7xK	-2.8906
Trms10_2xG	3.5049	Trms16_1xH	-0.5195	Trms5_7xL	-2.8906
Trms10_2xH	5.9005	Trms16_1xO	-2.2219	Trms5_8xG	0.6611
Trms10_3xH	3.5241	Trms16_1xS	-2.2219	Trms5_8xI	-0.2074
Trms10_4xE	-0.2898	Trms16_2xC	-14.0661	Trms5_8xL	-0.2074
Trms10_4xG	-0.2898	Trms16_2xF	-2.7907	Trms5_9xG	4.4558
Trms10_4xH	2.1057	Trms16_2xK	-2.7907	Trms5_9xI	3.5874
Trms10_5xH	12.7294	Trms16_2xM	-2.7907	Trms6_10xG	-2.9539
Trms10_6xG	10.0461	Trms16_2xT	-2.7907	Trms6_10xH	-2.9539
Trms10_6xH	10.0461	Trms16_2xV	-2.4648	Trms6_11xJ	-0.0706
Trms10_7xG	2.0766	Trms16_3xH	-5.167	Trms6_12xJ	-2.7538
Trms10_7xH	6.3525	Trms16_3xO	-6.8694	Trms6_12xP	-2.7538
Trms10_7xI	1.2081	Trms16_3xS	-6.8694	Trms6_13xJ	- 2.0227
Trms10_7xK	1.2081	Trms16_4xF	-6.5854	Trms6_13xP	-2.0227
Trms10_7xL	1.2081	Trms16_4xK	-6.5854	Trms6_13xQ	-2.0227
Trms10_8xG	3.6693	Trms16_4xM	-6.5854	Trms6_14xI	1.7569
Trms10_8xH	3.6693	Trms16_4xT	-6.5854	Trms6_14xL	1.7569
Trms10_8xI	3.8914	Trms16_4xV	-6.2596	Trms6_14xM	-10.4061
Trms10_8xL	3.8914	Trms16_5xH	4.0382	Trms6_15xJ	1.4414
Trms10_9xG	12.8745	Trms16_5xO	2.3358	Trms6_15xP	1.4414

Trms10_9xH	12.8745	Trms16_5xS	2.3358	Trms6_15xR	3.0874
Trms10_9xI	7.6862	Trms16_6xJ	2.0761	Trms6_16xJ	2.0761
Trms11_10xN	-2.3192	Trms16_6xP	2.0761	Trms6_16xP	2.0761
Trms11_10xP	-2.3192	Trms16_6xR	1.6808	Trms6_16xR	1.6808
Trms11_12xP	1.1449	Trms16_6xV	1.6808	Trms6_16xV	1.6808
Trms11_13xP	1.876	Trms16_7xK	-4.219	Trms6_17xJ	2.1695
Trms11_13xQ	10.3426	Trms16_7xM	-4.219	Trms6_17xP	2.1695
Trms11_14xP	2.1695	Trms16_7xT	- 4.219	Trms6_17xR	2.1695
Trms11_14xR	2.1695	Trms16_7xV	-2.0128	Trms6_17xW	2.1695
Trms11_14xT	1.676	Trms16_8xM	-5.0219	Trms6_1xB	-0.0468
Trms11_15xP	5.3401	Trms16_8xT	-5.0219	Trms6_1xG	-0.0468
Trms11_15xR	14.3598	Trms16_8xV	-4.6961	Trms6_2xC	-10.7756
Trms11_16xP	5.9748	Trms16_9xI	-9.1633	Trms6_2xE	2.4676
Trms11_16xR	10.7821	Trms16_9xJ	4.9045	Trms6_3xG	-3.12372
Trms11_16xV	10.7821	Trms16_9xP	-9.1633	Trms6_4xE	-1.3271
Trms11_17xP	6.0682	Trms16_9xR	4.1834	Trms6_5xG	0.671
Trms11_17xR	5.2585	Trms16_9xV	4.5092	Trms6_7xI	-5.57392
Trms11_17xW	2.5939	Trms17_10xN	2.7704	Trms6_7xK	-5.57392
Trms11_1xB	3.8519	Trms17_10xR	2.7704	Trms6_7xL	-5.57392
Trms11_1xG	3.8519	Trms17_10xW	3.3747	Trms6_8xI	-2.8906
Trms11_1xJ	5.6885	Trms17_11xP	-6.9318	Trms6_8xL	-2.8906
Trms11_2xC	-6.8769	Trms17_11xR	5.2585	Trms6_9xI	0.9041
Trms11_2xE	6.3663	Trms17_11xW	2.5939	Trms7_10xG	2.0766
Trms11_2xJ	8.7838	Trms17_12xR	2.5752	Trms7_10xH	6.3525
Trms11_3xG	0.775	Trms17_12xW	-0.0894	Trms7_10xl	1.2081
Trms11_3xJ	1.0409	Trms17_13xS	-0.906	Trms7_10xK	1.2081
Trms11_4xE	2.5716	Trms17_13xV	-0.906	Trms7_10xL	1.2081

Trms11_4xJ	4.9891	Trms17_13xW	3.3918	Trms7_11xl	-1.6752
Trms11_5xG	10.2462	Trms17_14xU	-4.28464	Trms7_11xJ	9.2359
Trms11_5xJ	10.2462	Trms17_15xW	8.71536	Trms7_11xK	-1.6752
Trms11_6xJ	12.9294	Trms17_16xV	3.1927	Trms7_11xL	-1.6752
Trms11_7xI	-1.6752	Trms17_16xW	12.2931	Trms7_12xI	1.0081
Trms11_7xJ	9.2359	Trms17_1xA	10.0602	Trms7_12xJ	6.5526
Trms11_7xK	-1.6752	Trms17_1xC	10.0602	Trms7_12xK	1.0081
Trms11_7xL	-1.6752	Trms17_1xF	-1.9009	Trms7_12xL	1.0081
Trms11_8xI	1.0081	Trms17_1xK	-1.9009	Trms7_12xP	6.5526
Trms11_8xJ	6.5526	Trms17_1xM	-1.9009	Trms7_13xI	5.0081
Trms11_8xL	1.0081	Trms17_1xU	-1.9009	Trms7_13xJ	7.2837
Trms11_9xI	4.8028	Trms17_2xC	1.159	Trms7_13xK	5.0081
Trms11_9xJ	15.7579	Trms17_2xF	- 2.4697	Trms7_13xL	5.0081
Trms12_10xN	0.3641	Trms17_2xK	- 2.4697	Trms7_13xP	7.2837
Trms12_11xP	1.1449	Trms17_2xM	-2.4697	Trms7_13xQ	7.2837
Trms12_13xQ	7.65934	Trms17_2xU	-3.7926	Trms7_14xK	5.6968
Trms12_14xR	4.8527	Trms17_3xD	-4.846	Trms7_14xM	-1.0997
Trms12_14xT	-1.0073	Trms17_3xF	-6.5484	Trms7_15xK	5.2033
Trms12_15xR	11.6765	Trms17_3xK	-6.5484	Trms7_15xM	7.0837
Trms12_16xR	8.09878	Trms17_3xM	-6.5484	Trms7_15xT	7.0837
Trms12_16xV	8.09878	Trms17_3xU	-6.5484	Trms7_16xK	8.781
Trms12_17xR	2.5752	Trms17_4xF	-6.2644	Trms7_16xM	10.6614
Trms12_17xW	-0.0894	Trms17_4xK	-6.2644	Trms7_16xT	10.6614
Trms12_1xB	6.5352	Trms17_4xM	-6.2644	Trms7_16xV	10.9872
Trms12_1xH	4.7076	Trms17_4xU	-7.5874	Trms7_17xK	-3.898
Trms12_1xN	4.7076	Trms17_5xH	4.3592	Trms7_17xM	-2.0176
Trms12_2xC	-5.896	Trms17_5xN	4.3592	Trms7_17xU	3.0462

Trms12_2xE	9.0496	Trms17_5xR	4.8527	Trms7_1xA	11.8306
Trms12_2xJ	6.1005	Trms17_5xW	4.8527	Trms7_1xC	11.8306
Trms12_2xP	6.1005	Trms17_6xJ	2.1695	Trms7_1xF	7.432
Trms12_3xH	0.06	Trms17_6xP	2.1695	Trms7_2xC	2.9294
Trms12_3xN	0.06	Trms17_6xR	2.1695	Trms7_2xF	5.1608
Trms12_4xE	5.2549	Trms17_6xW	2.1695	Trms7_3xD	2.7845
Trms12_4xJ	2.3058	Trms17_7xK	-3.898	Trms7_3xF	2.7845
Trms12_4xP	2.3058	Trms17_7xM	-3.898	Trms7_4xF	1.3661
Trms12_5xH	9.26528	Trms17_7xU	-9.9538	Trms7_5xG	10.9778
Trms12_5xN	9.26528	Trms17_8xM	-4.7009	Trms7_5xI	10.1094
Trms12_6xJ	10.2462	Trms17_8xU	-12.6371	Trms7_5xK	10.1094
Trms12_6xP	10.2462	Trms17_9xL	4.5044	Trms7_5xL	10.1094
Trms12_7xl	1.0081	Trms17_9xM	4.5044	Trms7_6xI	7.42608
Trms12_7xJ	6.5526	Trms17_9xU	4.5044	Trms7_6xK	7.42608
Trms12_7xK	1.0081	Trms2_10xC	-9.3601	Trms7_6xL	7.42608
Trms12_7xL	1.0081	Trms2_10xE	3.5049	Trms7_8xK	1.0492
Trms12_7xP	4.6722	Trms2_10xG	3.5049	Trms7_9xK	10.2545
Trms12_8xl	3.6914	Trms2_10xH	5.9005	Trms7_9xL	10.2545
Trms12_8xJ	3.8693	Trms2_11xC	-6.8769	Trms8_10xG	3.6693
Trms12_8xL	3.6914	Trms2_11xE	6.3663	Trms8_10xH	3.6693
Trms12_8xP	-12.3405	Trms2_11xJ	8.7838	Trms8_10xI	3.8914
Trms12_9xI	7.4861	Trms2_12xC	-5.896	Trms8_10xL	3.8914
Trms12_9xJ	13.0746	Trms2_12xE	9.0496	Trms8_11xI	1.0081
Trms12_9xP	13.0746	Trms2_12xJ	6.1005	Trms8_11xJ	6.5526
Trms13_10xO	7.4641	Trms2_12xP	6.1005	Trms8_11xL	1.0081
Trms13_11xP	1.876	Trms2_13xC	-5.1649	Trms8_12xI	3.6914
Trms13_11xQ	10.3426	Trms2_13xE	7.7001	Trms8_12xJ	3.8693

Trms13_12xQ	7.65934	Trms2_13xJ	6.8317	Trms8_12xL	3.6914
Trms13_14xS	0.0119	Trms2_13xP	6.8317	Trms8_12xP	0.6595
Trms13_14xT	2.4739	Trms2_13xQ	6.8317	Trms8_13xI	7.6914
Trms13_14xV	0.0119	Trms2_14xC	10.2603	Trms8_13xJ	4.6005
Trms13_15xS	8.19524	Trms2_14xF	7.1251	Trms8_13xL	7.6914
Trms13_15xV	8.19524	Trms2_14xK	7.1251	Trms8_13xP	4.6005
Trms13_16xS	11.7729	Trms2_14xM	-1.5518	Trms8_13xQ	4.6005
Trms13_17xS	-0.906	Trms2_15xC	-1.7008	Trms8_14xM	-3.783
Trms13_17xV	-0.906	Trms2_15xF	6.6316	Trms8_15xM	4.4004
Trms13_17xW	3.3918	Trms2_15xK	6.6316	Trms8_15xT	4.4004
Trms13_1xB	10.5352	Trms2_15xM	6.6316	Trms8_16xM	7.9781
Trms13_1xH	8.7076	Trms2_15xT	6.6316	Trms8_16xT	7.9781
Trms13_1xO	7.0052	Trms2_16xC	-1.0661	Trms8_16xV	8.3039
Trms13_2xC	-5.1649	Trms2_16xF	10.2093	Trms8_17xM	-4.7009
Trms13_2xE	7.7001	Trms2_16xK	10.2093	Trms8_17xU	0.3629
Trms13_2xJ	6.8317	Trms2_16xM	10.2093	Trms8_1xA	14.5139
Trms13_2xP	6.8317	Trms2_16xT	10.2093	Trms8_1xC	14.5139
Trms13_2xQ	6.8317	Trms2_16xV	10.5352	Trms8_1xF	4.7488
Trms13_3xH	4.06	Trms2_17xC	14.159	Trms8_1xK	4.7488
Trms13_3xO	2.3576	Trms2_17xF	-2.4697	Trms8_2xC	5.6127
Trms13_4xE	3.9054	Trms2_17xK	-2.4697	Trms8_2xF	2.4775
Trms13_4xJ	3.0369	Trms2_17xM	-2.4697	Trms8_2xK	2.4775
Trms13_4xP	3.0369	Trms2_17xU	9.2074	Trms8_3xD	0.1012
Trms13_4xQ	3.0369	Trms2_1xA	13.259	Trms8_3xF	0.1012
Trms13_5xH	13.2653	Trms2_3xC	-4.25364	Trms8_3xK	0.1012
Trms13_5xO	11.5629	Trms2_3xD	-4.25364	Trms8_4xF	-1.3172
Trms13_6xJ	10.9773	Trms2_4xC	0.563	Trms8_4xK	-1.3172

Trms13_6xP	10.9773	Trms2_5xC	-0.4589	Trms8_5xG	13.6611
Trms13_6xQ	10.9773	Trms2_5xE	12.4061	Trms8_5xI	12.7926
Trms13_7xI	5.0081	Trms2_5xG	12.4061	Trms8_5xL	12.7926
Trms13_7xJ	7.2837	Trms2_6xC	2.2244	Trms8_6xI	10.1094
Trms13_7xK	5.0081	Trms2_6xE	15.4676	Trms8_6xL	10.1094
Trms13_7xL	5.0081	Trms2_7xC	2.9294	Trms8_7xK	1.0492
Trms13_7xP	5.4034	Trms2_8xC	5.6127	Trms8_9xL	12.9378
Trms13_7xQ	7.2837	Trms2_8xF	2.4775	Trms9_10xG	-0.1255
Trms13_8xI	7.6914	Trms2_8xK	2.4775	Trms9_10xH	-0.1255
Trms13_8xJ	4.6005	Trms2_9xC	5.0528	Trms9_10xI	-5.3138
Trms13_8xL	7.6914	Trms2_9xE	12.6392	Trms9_11xl	-8.1972
Trms13_8xP	4.6005	Trms2_9xI	12.6392	Trms9_11xJ	2.7579
Trms13_8xQ	4.6005	Trms3_10xH	3.5241	Trms9_12xI	-5.5139
Trms13_9xI	11.4861	Trms3_11xG	0.775	Trms9_12xJ	0.0746
Trms13_9xJ	13.8057	Trms3_11xJ	1.0409	Trms9_12xP	0.0746
Trms13_9xP	13.8057	Trms3_12xH	0.06	Trms9_13xI	-1.5139
Trms13_9xQ	13.8057	Trms3_12xN	0.06	Trms9_13xJ	0.8057
Trms14_10xN	- 7.9472	Trms3_13xH	4.06	Trms9_13xP	0.8057
Trms14_10xR	-7.9472	Trms3_13xO	2.3576	Trms9_13xQ	0.8057
Trms14_10xT	2.4568	Trms3_14xD	4.7488	Trms9_14xL	4.5854
Trms14_11xP	-10.8305	Trms3_14xF	4.7488	Trms9_14xM	-7.5777
Trms14_11xR	-10.8305	Trms3_14xK	4.7488	Trms9_15xl	0.259
Trms14_11xT	1.676	Trms3_14xM	-5.6305	Trms9_15xJ	0.259
Trms14_12xR	-8.1473	Trms3_15xH	4.2552	Trms9_15xP	0.259
Trms14_12xT	-1.0073	Trms3_15xN	4.2552	Trms9_15xR	0.259
Trms14_13xS	0.0119	Trms3_15xR	6.7652	Trms9_16xl	3.8367
Trms14_13xT	2.4739	Trms3_16xH	7.833	Trms9_16xJ	4.9045

Trms14_13xV	0.0119	Trms3_16xO	3.1875	Trms9_16xP	3.8367
Trms14_15xT	7.79744	Trms3_16xS	6.1306	Trms9_16xR	4.5092
Trms14_16xT	11.3751	Trms3_17xD	-4.846	Trms9_16xV	4.5092
Trms14_16xV	4.1107	Trms3_17xF	-6.5484	Trms9_17xL	-8.4956
Trms14_17xU	-4.28464	Trms3_17xK	-6.5484	Trms9_17xM	-8.4956
Trms14_1xA	6.1615	Trms3_17xM	-6.5484	Trms9_17xU	-8.4956
Trms14_1xC	6.1615	Trms3_17xU	-6.5484	Trms9_1xB	3.738
Trms14_1xF	-3.6037	Trms3_1xB	12.7102	Trms9_1xG	3.738
Trms14_1xK	-3.6037	Trms3_2xC	-4.25364	Trms9_1xI	3.738
Trms14_1xM	-0.9829	Trms3_2xD	-4.25364	Trms9_2xC	-7.9472
Trms14_2xC	-2.7397	Trms3_4xD	-0.4589	Trms9_2xE	-0.3608
Trms14_2xF	-5.8749	Trms3_6xG	9.87628	Trms9_2xI	-0.3608
Trms14_2xK	-5.8749	Trms3_7xD	2.7845	Trms9_3xG	0.6611
Trms14_2xM	-1.5518	Trms3_7xF	2.7845	Trms9_3xI	0.6611
Trms14_3xD	-8.2512	Trms3_8xD	0.1012	Trms9_4xE	-4.15555
Trms14_3xF	-8.2512	Trms3_8xF	0.1012	Trms9_4xI	-4.15555
Trms14_3xK	-8.2512	Trms3_8xK	0.1012	Trms9_5xG	4.4558
Trms14_3xM	-5.6305	Trms3_9xG	13.6611	Trms9_5xI	3.5874
Trms14_4xF	-9.6696	Trms3_9xI	13.6611	Trms9_6xI	0.9041
Trms14_4xK	-9.6696	Trms4_10xE	-0.2898	Trms9_7xK	-2.7455
Trms14_4xM	-5.3465	Trms4_10xG	-0.2898	Trms9_7xL	-2.7455
Trms14_5xG	3.5748	Trms4_10xH	2.1057	Trms9_8xL	-0.0622
Trms14_5xI	4.4402	Trms4_11xE	2.5716		

ภาพที่ 8.9 แสดงว่าไม่มีผลรวมของค่า DGD ที่โนดปลายทางใดๆ ที่มีค่าเกินขอบเขตที่กำหนดไว้ที่ 16 ps

บทที่ 9

การใช้อัลกอริทึมสำหรับการวางหน่วยชดเชยดิสเพอร์ชันในกรณีทำงานปกติและกรณี เกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย เมื่อคำนึงผลของความไม่เป็นเชิง เส้นของเส้นใยแสง

ในบทที่นี้จะนำเสนอการใช้อัลกอริทึมสำหรับวางหน่วยชดเชยดิสเพอร์ชันเมื่อคำนึงผลของ ความไม่เป็นเชิงเส้นของเส้นใยแสงดังแสดงในบทที่ 6 กับโครงข่ายต่างๆ โดยจะจำลองการใช้หน่วย ชดเชยดิสเพอร์ชันที่น้อยที่สุดบนโครงข่ายตัวอย่าง จำลองการวางหน่วยชดเชยดิสเพอร์ชันที่น้อย ที่สุดบนโครงข่าย OPEN และสุดท้ายจำลองการวางหน่วยชดเชยดิสเพอร์ชันที่น้อยที่สุดบน โครงข่าย NARNET

9.1 โครงข่ายตัวอย่างกรณีทำงานปกติ

เมื่อนำอัลกอริทึมสำหรับใช้หน่วยชดเชยดิสเพอร์ชันเมื่อคำนึงผลของความไม่เป็นเชิงเส้น ของเส้นใยแสงมาทดลองใช้กับโครงข่ายตัวอย่างสามารถอธิบายได้ดังนี้

9.1.1 ระบุเส้นทางการส่งผ่านสัญญาณจากโนดต้นทางไปสู่โนดปลายทาง

การระบุเส้นทางการส่งผ่านสัญญาณจากโนดต้นทางไปสู่โนดปลายทางที่เป็นไปได้ทั้งหมดในกรณี ที่โครงข่ายทำงานปกติจะพิจารณาระยะทางระหว่างโนดที่มีค่าสั้นที่สุด

9.1.2 การสร้างสมการและอสมการเงื่อนไขขอบเขต

สมการเงื่อนไขขอบเขตสำหรับเส้นทางการส่งสัญญาณสำหรับการส่งผ่านสัญญาณกรณี โครงข่ายทำงานปกติประกอบด้วย สมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณระหว่างโนดต้นทาง และโนดปลายทาง อสมการเงื่อนไขขอบเขตของค่าดิสเพอร์ชัน เงื่อนไขขอบเขตจำนวนเต็ม การ กำหนดพังก์ชันวัตถุประสงค์ และอสมการเงื่อนไขระยะทางที่ถูกจำกัดด้วยผลของความไม่เป็นเชิง เส้น 9.1.2.1 สมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณระหว่างโนดต้นทางและโนด ปลายทาง

-	
1 — 2	$0 + (D_i \times 250) + (D_{compi} \times N_{12}) = D_{ac21i}$
1 — 3	$0 + (D_i \times 150) + (D_{compi} \times N_{13}) = D_{ac31i}$
1 - 3 - 4	$0 + (D_i \times 150) + (D_{compi} \times N_{13}) + (D_i \times 175) + (D_{compi} \times N_{34}) = D_{ac41i}$
1 — 2 — 5	$0 + (D_i \times 250) + (D_{compi} \times N_{12}) + (D_i \times 100) + (D_{compi} \times N_{25}) = D_{ac51i}$

1) กรณีทุกสัญญาณความยาวคลื่น λ_i ถูกส่งมาจากโนด 1; Z = 1

2)	กรกี่พกสักเกเากเคา	ามยากคลื่ม โ	กกส่งบาจากโบด 2.7 = 2
<u>~</u>)	119 010 111010 00 10101 10101 19		$\sum_{i=1}^{n} i = i $

2 – 1	$0 + (D_i \times 250) + (D_{compi} \times N_{21}) = D_{ac12i}$
2-4-3	$0 + (D_i \times 200) + (D_{compi} \times N_{24}) + (D_i \times 175) + (D_{compi} \times N_{43}) = D_{ac32i}$
2 — 4	$0 + (D_i \times 200) + (D_{compi} \times N_{24}) = D_{ac42i}$
2 — 5	$0 + (D_i \times 100) + (D_{compi} \times N_{25}) = D_{ac52i}$

3) กรณีทุกสัญญาณความยาวคลื่น λ_i ถูกส่งมาจากโนด 3; Z = 3

3 — 1	$0 + (D_i \times 150) + (D_{compi} \times N_{31}) = D_{ac13i}$
3-4-2	$0 + (D_i \times 175) + (D_{compi} \times N_{34}) + (D_i \times 200) + (D_{compi} \times N_{42}) = D_{ac23i}$
3-4	$0 + (D_i \times 175) + (D_{compi} \times N_{34}) = D_{ac43i}$
3-4-5	$0 + (D_i \times 175) + (D_{compi} \times N_{34}) + (D_i \times 215) + (D_{compi} \times N_{45}) = D_{ac53i}$

4) กรณีทุกสัญญาณความยาวคลื่น λ_i ถูกส่งมาจากโนด 4; Z = 4

4 — 3 — 1	$0 + (D_i \times 175) + (D_{compi} \times N_{43}) + (D_i \times 150) + (D_{compi} \times N_{31}) = D_{ac14i}$
4 — 2	$0 + (D_i \times 200) + (D_{compi} \times N_{42}) = D_{ac42i}$
4 — 3	$0 + (D_i \times 175) + (D_{compi} \times N_{43}) = D_{ac34i}$
4 — 5	$0 + (D_i \times 215) + (D_{compi} \times N_{45}) = D_{ac54i}$

5 — 2 — 1	$0 + (D_i \times 100) + (D_{compi} \times N_{52}) + (D_i \times 250) + (D_{compi} \times N_{21}) = D_{ac15i}$
5 — 2	$0 + (D_i \times 100) + (D_{compi} \times N_{52}) = D_{ac25i}$
5-4-3	$0 + (D_i \times 215) + (D_{compi} \times N_{54}) + (D_i \times 175) + (D_{compi} \times N_{43}) = D_{ac35i}$
5-4	$0 + (D_i \times 215) + (D_{compi} \times N_{54}) = D_{ac45i}$

5) กรณีทุกสัญญาณความยาวคลื่น λ_{i} ถูกส่งมาจากโนด 5; Z = 5

โดยการจำลองจะใช้สัญญาณ WDM 72 ความยาวคลื่น C band ตั้งแต่ความยาวคลื่น 1520.25 nm ถึง 1577.03 โดยความยาวคลื่นกลางที่ 1550.15nm ด้วยระยะห่างระหว่าง ช่องสัญญาณ 0.8 nm ตารางที่ 7.9 โดยจะจำลองการส่งผ่านสัญญาณโดยพิจารณาเฉพาะความ ยาวคลื่นที่ส่งผลหลักต่อการใช้หน่วยชดเชยดิสเพอร์ชันซึ่งคือเฉพาะความยาวคลื่นที่ขอบทั้งสอง ข้าง 1520.25 nm และ 1577.03 nm เพื่อลดระยะเวลาในการหาผลเฉลย

ในการคำนวณจะใช้วิธีเช่นเดียวกับอัลกอริทึมสำหรับหาจำนวนหน่วยชดเชยดิสเพอร์ชัน ในกรณีไม่คำนึงผลของความไม่เป็นเชิงเส้นของเส้นใยแสง กล่าวคือมีค่าดิสเพอร์ชันของ SMF, NS-DCU และ SC-DCU ดังตารางที่ 7.10 โดยเมื่อทราบค่าดิสเพอร์ชันดังกล่าวแล้วจึงนำมาเขียน สมการเงื่อนไขขอบเขตในการส่งสัญญาณ 2 ความยาวคลื่นจากโนดต้นทาง Z ไปยังโนดปลายทาง Y ภายในโครงข่ายตัวอย่างเพื่อหาจำนวนหน่วยชดเชยดิสเพอร์ชันที่น้อยที่สุดของแต่ละข่าย เชื่อมโยงในโครงข่ายตัวอย่าง

9.1.2.2 เงื่อนไขขอบเขตของค่าดิสเพอร์ชัน

กำหนดว่าค่าดิสเพอร์ชันสะสมของทุกสัญญาณทุกความยาวคลื่นที่ทุกโนดปลายทาง Y ต้องมีค่าอยู่ในช่วง ±D_{max} เนื่องจาก D_{max} คือ ค่าดิสเพอร์ชันมากที่สุดที่ไม่ทำให้พัลส์สัญญาณ ผิดเพี้ยนจนไม่สามารถชดเชยความผิดเพี้ยนให้กลับมาสู่สัญญาณเดิมได้ โดย D_{max} = 800 ps/nm (ส่งสัญญาณที่ความเร็ว 40 Gbps RZ-DQPSK)

9.1.2.3 เงื่อนไขขอบเขตจำนวนเต็ม

จำนวนหน่วยชดเชยดิสเพอร์ชันที่วางลงในแต่ละข่ายเชื่อมโยงต้องเป็นจำนวนเต็มบวก หรือศูนย์เท่านั้น

9.1.2.4 ฟังก์ชันวัตถุประสงค์

ฟังก์ชันวัตถุประสงค์เป็นฟังก์ชันที่กำหนดจำนวนหน่วยชดเชยดิสเพอร์ชันน้อยสุดใน โครงข่ายในขณะเดียวกันต้องรักษาประสิทธิภาพการส่งสัญญาณภายในโครงข่ายไว้ได้

9.1.2.5 อสมการเงื่อนไขระยะทางที่ถูกจำกัดด้วยผลของความไม่เป็นเชิงเส้น

กำหนดว่าจะต้องวางหน่วยชดเชยดิสเพอร์ชันที่ระยะน้อยกว่าหรือเท่ากับ nonlinear length เพื่อลดผลกระทบจากปัญหาความไม่เป็นเชิงเส้นของเส้นใยแสง โดย nonlinear length ใน ที่นี้คือ 75.930 km จะได้ว่า

การส่งสัญญาณ	รูปแบบอสมการ
ส่งจาก โนด 1 ไป โนด 2	$L_{12} \le 75.93(N_{12} + 1)$
ส่งจาก โนด 1 ไป โนด 3	$L_{13} \le 75.93(N_{13} + 1)$
ส่งจาก โนด 1 ไป โนด 4	$L_{14} \le 75.93(N_{14} + 1)$
ส่งจาก โนด 1 ไป โนด 5	$L_{15} \le 75.93(N_{15} + 1)$
ส่งจาก โนด 2 ไป โนด 1	$L_{21} \le 75.93(N_{21} + 1)$
ส่งจาก โนด 2 ไป โนด 3	$L_{23} \le 75.93(N_{23} + 1)$
ส่งจาก โนด 2 ไป โนด 4	$L_{24} \le 75.93(N_{24} + 1)$
ส่งจาก โนด 2 ไป โนด 5	$L_{25} \le 75.93(N_{25} + 1)$
ส่งจาก โนด 3 ไป โนด 1	$L_{31} \le 75.93(N_{31} + 1)$
ส่งจาก โนด 3 ไป โนด 2	$L_{32} \le 75.93(N_{32} + 1)$
ส่งจาก โนด 3 ไป โนด 4	$L_{34} \le 75.93(N_{34} + 1)$
ส่งจาก โนด 3 ไป โนด 5	$L_{35} \le 75.93(N_{35} + 1)$
ส่งจาก โนด 4 ไป โนด 1	$L_{41} \le 75.93(N_{41} + 1)$
ส่งจาก โนด 4 ไป โนด 2	$L_{42} \le 75.93(N_{42} + 1)$
ส่งจาก โนด 4 ไป โนด 3	$L_{43} \le 75.93(N_{43} + 1)$
ส่งจาก โนด 4 ไป โนด 5	$L_{45} \le 75.93(N_{45} + 1)$
ส่งจาก โนด 5 ไป โนด 1	$L_{51} \le 75.93(N_{51} + 1)$

ตารางที่ 9.1 อสมการเงื่อนไขระยะทางที่ถูกจำกัดด้วยผลของความไม่เป็นเชิงเส้น

ส่งจาก โนด 5 ไป โนด 2	$L_{52} \le 75.93(N_{52} + 1)$
ส่งจาก โนด 5 ไป โนด 3	$L_{53} \le 75.93(N_{53} + 1)$
ส่งจาก โนด 5 ไป โนด 4	$L_{54} \le 75.93(N_{54} + 1)$

เราจะเลือกใช้ชนิดของหน่วยชดเชยดิสเพอร์ชันตามผลเฉลยจากบทที่ 6 คือ SC-DCU โมดูลที่ DCM - 40 - SMF – C เมื่อเพิ่มอสมการเงื่อนไขระยะทางที่ถูกจำกัดด้วยผลของความไม่ เป็นเชิงเส้นแล้วผลเฉลยจะได้ดังตารางที่ 9.2 และ ตารางที่ 9.3 พบว่าค่าดิสเพอร์ชันสะสมที่โนด ปลายทาง Y ใด ๆ ของโครงข่ายมีค่าอยู่ในช่วงที่ได้กำหนดเอาไว้ตามเงื่อนไขขอบเขตของค่าดิส เพอร์ชัน และจากภาพที่ 9.1 พบว่าเมื่อวางหน่วยชดเชยดิสเพอร์ชันน้อยกว่าหรือเท่ากับ nonlinear length แล้วดิสเพอร์ชันสะสมที่โนดปลายทางใดๆไม่เกินขอบเขตที่กำหนดไว้

> ตารางที่ 9.2 ผลเฉลยจำนวน SC-DCU จากการทำ MILP optimization ในโครงข่ายตัวอย่างกรณีทำงานปกติ

หน่วยชดเชยดิสเพอร์ชัน	จำนวน
n12	4
n13	2
n21	4
n24	3
n25	1
n31	2
n34	3
n42	3
n43	3
n45	3
n52	1
n54	3
Nmin	32

	ดิสเพอร์ชันสะสม [ps/nm]			ดิสเพอร์ชันสะ	ะสม [ps/nm]
	1577.03	1520.25		1577.03	1520.25
Dac12	61.96	172.57	Dac34	-176.68	-58.23
Dac13	477.27	461.6	Dac35	360.71	484.04
Dac14	300.59	403.36	Dac41	300.59	403.36
Dac15	746.87	778.68	Dac42	269.61	317.08
Dac21	61.96	172.57	Dac43	-176.68	-58.23
Dac23	92.93	258.85	Dac45	537.38	542.27
Dac24	269.61	317.08	Dac51	746.87	778.68
Dac25	684.92	606.11	Dac52	684.92	606.11
Dac31	477.27	461.6	Dac53	360.71	484.04
Dac32	92.93	258.85	Dac54	537.38	542.27

ตารางที่ 9.3 ผลเฉลยค่าดิสเพอร์ชันสะสม จากการทำ MILP Optimization ในโครงข่ายตัวอย่างกรณีทำงานปกติ

ภาพที่ 9.1 ดิสเพอร์ชันสะสมแต่ละโนดในโครงข่ายตัวอย่างที่ความยาวคลื่น 1577.03 nm

ในการจำลองสัญญาณผ่านในโครงข่ายเส้นใยแสงชนิด SMF G.652 การกำหนดตำแหน่ง การวางหน่วยชดเซยดิสเพอร์ชันจะขึ้นอย่กับระยะ nonlinear length โดยจะวางในระยะน้อยกว่า หรือเท่ากับ nonlinear length และวางหน้าเครื่องขยายสัญญาณเนื่องจากมีกำลังต่ำที่สด โดยใน โครงข่ายตัวอย่างจะจำลองเส้นทางจากโนด 3 ไปโนด 5 มีระยะทาง 390 km หลังจากวางหน่วย ชดเชยดิสเพอร์ชันด้วยโปรแกรม OptiSys 10.0 และส่งสัญญาณ 3 ความยาวคลื่นคือ 1549.32 nm, 1550.12 nm และ 1550.92 nm เนื่องจากในหัวข้อนี้พิจารณาถึงปัญหาความไม่เป็นเชิงเส้น ของเส้นใยแสงจึงเลือกความยาวคลื่นมากกว่า 1 ความยาวคลื่นที่อยู่ติดกันส่งไปพร้อมกันในเส้นใย แสงเพื่อให้เห็นถึงผลจากความไม่เป็นเชิงเส้นของเส้นใยแสง ได้ Eye Diagram โดยมีอัตราบิต 40 Gbps Sequence Length เท่ากับ 2,048 บิต และจำนวน Sample Per Bit เท่ากับ 512 ในกรณีที่ ไม่คำนึงถึงผลของความไม่เป็นเชิงเส้นของเส้นใยแสงนั้น มีค่าค่าตัวประกอบคุณภาพ (Q) เท่ากับ 6.87661 และ ค่าอัตราความผิดพลาดบิต (BER) เท่ากับ 3.0646×10⁻¹² แสดงดังภาพที่ 9.2 (ก) ในกรณีที่คำนึงถึงผลของความไม่เป็นเชิงเส้นของเส้นใยแสงมีค่าค่าตัวประกอบคุณภาพ (Q) เท่ากับ 7.02853 และ ค่าอัตราความผิดพลาดบิต (BER) เท่ากับ 1.03952×10⁻¹² แสดงดังภาพที่ 9.2 (ข) ในกรณีที่คำนึงถึงเฉพาะผลของความไม่เป็นเชิงเส้นของเส้นใยแสงมีค่าค่าตัวประกอบ คุณภาพ (Q) เท่ากับ 6.07189 และ ค่าอัตราความผิดพลาดบิต (BER) เท่ากับ 6.26155×10⁻¹⁰ แสดงดังภาพที่ 9.2 (ค) และเมื่อพิจารณากราฟความสัมพันธ์ระหว่าง log(BER) และกำลังขาเข้า ของสัญญาณในกรณีรับส่งสัญญาณไม่ผ่านเส้นใยแสง (back to back) กรณีไม่คำนึงถึงผลของ ความไม่เป็นเชิงเส้นของเส้นใยแสง กรณีคำนึงผลของความไม่เป็นเชิงเส้นของเส้นใยแสง และกรณี ้คำนึงเฉพาะผลความไม่เป็นเชิงเส้นของเส้นใยแสงโดยจะแสดงในภาพที่ 9.3 ในกรณี back to back จะไม่เกิด signal distortion ใดๆเนื่องจากเป็นการส่งจากตัวส่งสู่ตัวรับโดยไม่ผ่านเส้นใยแสง ้โดยในกรณีไม่คำนึงถึงผลของความไม่เป็นเชิงเส้นของเส้นใยแสงมีค่าระดับกำลังแสงที่เพิ่มขึ้นเพื่อ ให้อัตราความผิดพลาดบิตคงเดิม (Power Penalty) ณ ค่า BER ที่ยอมรับได้เท่ากับ 10⁻¹² เท่ากับ 10.2 dB ในกรณีคำนึงถึงผลของความไม่เป็นเชิงเส้นของเส้นใยแสงมีค่า Power Penalty ณ ค่า BER 10⁻¹² เท่ากับ 11.2 dB โดยในกรณีคำนึงถึงผลของความไม่เป็นเชิงเส้นของเส้นใยมี power penalty มากกว่าเนื่องจากเมื่อเพิ่มความไม่เป็นเชิงเส้นของเส้นใยแสงเข้าไปส่งผลให้เกิด signal distortion มากกว่าในกรณีไม่คำนึงผลของความไม่เป็นเชิงเส้นของเส้นใยแสง และในกรณีคำนึง เฉพาะผลความไม่เป็นเชิงเส้นของเส้นใยแสงนั้นได้ผลที่แย่ที่สุดเนื่องจากกำลังของสัญญาณจะ มากที่สดเมื่อไม่มีผลจากดิสเพอร์ชัน (zero dispersion)

ภาพที่ 9.2 Eye Pattern จากการจำลองผลบน Optisys ของเส้นทางการสื่อสารที่ยาวที่สุด (ก) กรณีโครงข่ายตัวอย่างในกรณีไม่คำนึงถึงผลของความไม่เป็นเชิงเส้นของเส้นใยแสง (ข) กรณีโครงข่ายตัวอย่างในกรณีคำนึงถึงผลของความไม่เป็นเชิงเส้นของเส้นใยแสง (ค)กรณีโครงข่ายตัวอย่างในกรณีคำนึงถึงเฉพาะผลของความไม่เป็นเชิงเส้นของเส้นใยแสง

ภาพที่ 9.3 ความสัมพันธ์ระหว่าง log(BER) กับกำลังขาเข้าของสัญญาณ

9.2 โครงข่าย OPEN กรณีทำงานปกติ

เมื่อนำอัลกอริทึมสำหรับใช้หน่วยชดเชยดิสเพอร์ชันเมื่อคำนึงผลของความไม่เป็นเชิงเส้น ของเส้นใยแสงมาทดลองใช้กับโครงข่าย OPEN โดยเลือกชนิดของหน่วยชดเชยดิสเพอร์ชันให้ตรง กับผลเฉลยจากบทที่ 7 กล่าวคือใช้หน่วยชดเชยดิสเพอร์ชันชนิด SC-DCU โมดูล DCM-30-SMF-C เมื่อเพิ่มอสมการเงื่อนไขระยะทางที่ถูกจำกัดด้วยผลของความไม่เป็นเชิงเส้นแล้วผลเฉลยจะได้ จำนวนหน่วยชดเชยดิสเพอร์ชันดังตารางที่ 9.4 และมีค่าดิสเพอร์ชันสะสมที่โนดปลายทางดัง ตารางที่ 9.5 พบว่าไม่มีค่าใดเกินค่าขอบเขตที่กำหนดไว้

หน่วยชดเชยดิสเพอร์ชัน หน่วยชดเชยดิสเพอร์ชัน จำนวน จำนวน n12 2 n610 5 n63 7 n13 4 n21 2 n65 7 4 n23 n69 2 4 n73 4 n31 n32 n78 1 4 n34 3 n87 1 n36 8 n89 5 4 n37 4 n910 n43 3 n96 3 n45 4 n98 5 n54 4 n106 6 n109 n56 8 4 Nmin 108

ตารางที่ 9.4 ผลเฉลยจำนวง	ม SC-DCU (D	CM-30-SMF-	C)
จากการทำ MILP optimization '	ในโครงข่าย O	PEN กรณีทำง [,]	านปกติ

	ดิสเพอร์ชันสะสม [ps/nm]			ดิสเพอร์ชันสะ	ะสม [ps/nm]
	1577.03	1520.25		1577.03	1520.25
Dac101	252.31	544.7	Dac510	153.05	382.99
Dac102	180.91	484.7	Dac51	67.71	272.1
Dac103	420.83	608.18	Dac52	-3.69	212.05
Dac104	414.98	661.9	Dac53	236.21	335.56
Dac105	153.05	382.99	Dac54	242.09	281.83
Dac106	525.75	539.94	Dac56	361.17	440.65
Dac107	158.93	329.25	Dac57	674.67	782.53
Dac108	357.26	476.48	Dac58	476.34	635.3
Dac109	384.9	401.93	Dac59	69.67	254.19
Dac110	252.31	544.7	Dac610	-208.12	-57.66
Dac12	727.99	651.34	Dac61	-273.42	4.78
Dac13	-168.5	-63.46	Dac62	-344.83	-55.27
Dac14	-174.37	-9.72	Dac63	-104.93	68.24
Dac15	67.71	272.1	Dac64	-110.8	121.98
Dac16	460.45	602.38	Dac65	-372.7	-156.95
Dac17	269.96	383.5	Dac67	-517.47	-259.14
Dac18	71.63	236.28	Dac68	-319.14	-111.91
Dac19	44.02	310.83	Dac69	-291.5	-186.46
Dac210	180.91	484.7	Dac710	158.93	329.25
Dac21	727.99	651.34	Dac71	269.96	383.5
Dac23	-239.9	-123.51	Dac72	198.55	323.45
Dac24	-245.78	-69.77	Dac73	438.45	446.96
Dac25	-3.69	212.05	Dac74	432.58	500.7

ตารางที่ 9.5 ผลเฉลยค่าดิสเพอร์ชันสะสม จากการทำ MILP Optimization ในโครงข่าย OPEN กรณีทำงานปกติ

Dac26	389.04	542.33	Dac75	674.67	782.53
Dac27	198.55	323.45	Dac76	216.4	338.46
Dac28	0.23	176.23	Dac78	-198.325	-147.225
Dac29	-27.38	250.78	Dac79	-225.97	-72.67
Dac310	420.83	608.18	Dac810	357.26	476.48
Dac31	-168.5	-63.46	Dac81	71.63	236.28
Dac32	-239.9	-123.51	Dac82	0.23	176.23
Dac34	-5.88	53.74	Dac83	240.13	299.74
Dac35	236.21	335.56	Dac84	234.25	353.48
Dac36	628.94	665.84	Dac85	476.34	635.3
Dac37	438.45	446.96	Dac86	414.73	485.69
Dac38	240.13	299.74	Dac87	-198.325	-147.225
Dac39	212.48	374.29	Dac89	-27.64	74.55
Dac410	414.98	661.9	Dac910	384.9	401.93
Dac41	-174.37	-9.72	Dac91	44.02	310.83
Dac42	-245.78	-69.77	Dac92	-27.38	250.77
Dac43	-5.88	53.74	Dac93	212.48	374.29
Dac45	242.09	281.83	Dac94	206.61	428.03
Dac46	623.07	719.58	Dac95	69.67	254.19
Dac47	432.58	500.7	Dac96	442.37	411.14
Dac48	234.25	353.48	Dac97	-225.97	-72.67
Dac49	206.61	428.03	Dac98	-27.64	74.55

ในการจำลองสัญญาณผ่านในโครงข่าย OPEN จะจำลองเส้นทางจากโนด 1 ไปโนด 10 มี ระยะทาง 713 km หลังจากวางหน่วยชดเชยดิสเพอร์ชันด้วยโปรแกรม OptiSys 10.0 และส่ง สัญญาณ 3 ความยาวคลื่นคือ 1549.32 nm, 1550.12 nm และ 1550.92 nm ได้ Eye Diagram โดยมีอัตราบิต 40 Gbps Sequence Length เท่ากับ 1024 บิต และจำนวน Sample Per Bit เท่ากับ 512 ในกรณีที่ไม่คำนึงถึงผลของความไม่เป็นเชิงเส้นของเส้นใยแสงนั้น มีค่าค่าตัวประกอบ

คณภาพ (Q) เท่ากับ 6.73502 และ ค่าอัตราความผิดพลาดบิต (BER) เท่ากับ 8.1917×10⁻¹² ์ แสดงดังภาพที่ 9.4 (ก) ในกรณีที่คำนึงถึงผลของความไม่เป็นเชิงเส้นของเส้นใยแสงมีค่าค่าตัว ประกอบคณภาพ (*O*) เท่ากับ 6.7136 และ ค่าอัตราความผิดพลาดบิต (BER) เท่ากับ 9.42727×10⁻¹² แสดงดังภาพที่ 9.4 (ข) ในกรณีที่คำนึงถึงเฉพาะผลของความไม่เป็นเชิงเส้นของ เส้นใยแสง Sequence Length เท่ากับ 2048 บิต และจำนวน Sample Per Bit เท่ากับ 512 มีค่า ค่าตัวประกอบคุณภาพ (Q) เท่ากับ 5.95997 และ ค่าอัตราความผิดพลาดบิต (BER) เท่ากับ 1.26219×10⁻⁹ แสดงดังภาพที่ 9.4 (ค) และเมื่อพิจารณากราฟความสัมพันธ์ระหว่าง log(BER) และกำลังขาเข้าของสัญญาณในกรณีรับส่งสัญญาณไม่ผ่านเส้นใยแสง (back to back) กรณีไม่ ้คำนึงถึงผลของความไม่เป็นเชิงเส้นของเส้นใยแสง กรณีคำนึงผลของความไม่เป็นเชิงเส้นของเส้น ้ใยแสง และกรณีคำนึงเฉพาะผลความไม่เป็นเชิงเส้นของเส้นใยแสงโดยจะแสดงในภาพที่ 9.5 โดย ้ในกรณีไม่คำนึงถึงผลของความไม่เป็นเชิงเส้นของเส้นใยแสงมีค่าระดับกำลังแสงที่เพิ่มขึ้นเพื่อให้ อัตราความผิดพลาดบิตคงเดิม (Power Penalty) ณ ค่า BER ที่ยอมรับได้เท่ากับ 10⁻¹² เท่ากับ 1.05 dB ในกรณีคำนึงถึงผลของความไม่เป็นเชิงเส้นของเส้นใยแสงมีค่า Power Penalty ณ ค่า BER 10⁻¹² เท่ากับ 5.05 dB โดยในกรณีคำนึงถึงผลของความไม่เป็นเชิงเส้นของเส้นใยมี power penalty มากกว่าเนื่องจากเมื่อเพิ่มความไม่เป็นเชิงเส้นของเส้นใยแสงเข้าไปส่งผลให้เกิด signal distortion มากกว่าในกรณีไม่คำนึงผลของความไม่เป็นเชิงเส้นของเส้นใยแสง และในกรณีคำนึง เฉพาะผลความไม่เป็นเชิงเส้นของเส้นใยแสงนั้นได้ผลที่แย่ที่สุดเนื่องจากกำลังของสัญญาณจะ มากที่สุดเมื่อไม่มีผลจากดิสเพอร์ชัน (zero dispersion)

ภาพที่ 9.4 Eye Pattern จากการจำลองผลบน Optisys ของเส้นทางการสื่อสารที่ยาวที่สุด (ก) กรณีโครงข่าย OPEN ในกรณีไม่คำนึงถึงผลของความไม่เป็นเชิงเส้นของเส้นใยแสง (ข) กรณีโครงข่าย OPEN ในกรณีคำนึงถึงผลของความไม่เป็นเชิงเส้นของเส้นใยแสง (ค) กรณีโครงข่าย OPEN ในกรณีคำนึงถึงเฉพาะผลของความไม่เป็นเชิงเส้นของเส้นใยแสง

ภาพที่ 9.5 ความสัมพันธ์ระหว่าง log(BER) กับกำลังขาเข้าของสัญญาณ

9.3 โครงข่าย NARNET กรณีทำงานปกติ

เมื่อนำอัลกอริทึมสำหรับใช้หน่วยชดเชยดิสเพอร์ชันเมื่อคำนึงผลของความไม่เป็นเชิงเส้น ของเส้นใยแสงมาทดลองใช้กับโครงข่าย NARNET โดยเลือกชนิดของหน่วยชดเชยดิสเพอร์ชันให้ ตรงกับผลเฉลยจากบทที่ 7 กล่าวคือใช้หน่วยชดเชยดิสเพอร์ชันชนิด SC-DCU โมดูล DCM-20-SMF-C เมื่อเพิ่มอสมการเงื่อนไขระยะทางที่ถูกจำกัดด้วยผลของความไม่เป็นเชิงเส้นแล้วผลเฉลย จะได้จำนวนหน่วยชดเชยดิสเพอร์ชันดังตารางที่ 9.6 และมีค่าดิสเพอร์ชันสะสมที่โนดปลายทางดัง ตารางที่ 9.7 พบว่าไม่มีค่าใดเกินค่าขอบเขตที่กำหนดไว้

ตารางที่ 9.6 ผลเฉลยจำนวน SC-DCU (DCM-20-SMF-C) จากการทำ MILP optimization ในโครงข่าย NARNET กรณีทำงานปกติ

หน่วยชดเชยดิสเพอร์ชัน	จำนวน	หน่วยชดเชยดิสเพอร์ชัน	จำนวน
n1_2	19	n17_15	18
n1_3	26	n2_1	19
n10_12	14	n2_4	18

n10_13	21	n3_1	27
n10_5	21	n3_4	27
n11_12	8	n3_5	19
n11_6	19	n4_2	18
n12_10	15	n4_3	27
n12_11	9	n4_6	31
n12_13	20	n4_7	7
n12_15	22	n5_10	21
n13_10	22	n5_3	17
n13_12	19	n5_6	8
n13_16	21	n6_11	19
n14_15	28	n6_4	31
n14_17	19	n6_5	8
n14_8	27	n6_9	9
n15_12	21	n7_4	7
n15_14	28	n7_8	9
n15_16	16	n8_14	27
n15_17	18	n8_7	9
n16_13	21	n8_9	16
n16_15	16	n9_6	11
n17_14	19	n9_8	18
		Nmin	890

	ดิสเพอร์ชันสะสม			ดิสเพอร์ช	เ้นสะสม
	[ps/nm]			[ps/r	nm]
	1577.03	1520.25		1577.03	1520.25
Dac12	-254.34	427	Dac910	-752.48	156
Dac13	46.244	739	Dac911	-123.104	774.1
Dac14	-395.48	456.3	Dac912	-583.132	120.9
Dac15	-461.332	469.9	Dac913	8.6	746.8
Dac16	-38.38	756.5	Dac914	83.888	731.2
Dac17	-235.936	797.5	Dac915	-517.28	107.3
Dac18	-658.788	510.9	Dac916	-432.656	89.7
Dac19	-217.164	793.6	Dac917	-602.004	124.8
Dac110	535.346	637.55	Dac101	-19.608	752.6
Dac111	-253.962	52.65	Dac102	-282.548	432.9
Dac112	366.068	672.7	Dac103	-367.272	450.4
Dac113	-56.784	386.1	Dac104	-188.956	787.7
Dac114	224.928	701.9	Dac105	-573.796	119
Dac115	300.216	686.3	Dac106	-480.104	473.8
Dac116	215.592	703.9	Dac107	-630.58	505
Dac117	-235.568	423.1	Dac108	-752.48	156
Dac21	140.692	345.1	Dac109	535.346	637.55
Dac23	-141.09	29.25	Dac1011	290.78	688.3
Dac24	-206.932	42.9	Dac1012	-169.308	35.1
Dac25	112.096	725.3	Dac1013	177.948	711.7
Dac26	18.404	370.5	Dac1014	-103.864	395.8
Dac27	-404.448	83.9	Dac1015	-235.15	48.75

ตารางที่ 9.7 ผลเฉลยค่าดิสเพอร์ชันสะสม จากการทำ MILP Optimization ในโครงข่าย NARNET กรณีทำงานปกติ

Dac28	206.156	705.8	Dac1016	-319.824	66.3
Dac29	-620.776	128.7	Dac1017	-564.36	117
Dac210	-19.608	752.6	Dac111	-0.368	374.4
Dac211	-733.24	-222.2	Dac112	300.216	686.3
Dac212	149.74	717.5	Dac113	-141.508	403.6
Dac213	-197.526	40.95	Dac114	-207.36	417.3
Dac214	84.256	356.8	Dac115	55.68	737
Dac215	102.66	727.3	Dac116	18.036	744.8
Dac216	187.284	709.7	Dac117	-404.816	458.2
Dac217	-376.24	78	Dac118	-123.104	774.1
Dac31	140.692	345.1	Dac119	112.474	350.95
Dac32	-84.654	17.55	Dac1110	290.78	688.3
Dac34	93.692	354.85	Dac1112	460.128	653.15
Dac35	168.512	713.6	Dac1113	197.128	333.4
Dac36	74.82	358.75	Dac1114	478.91	649.25
Dac37	-75.656	390	Dac1115	394.276	666.8
Dac38	262.572	694.1	Dac1116	309.652	684.4
Dac39	-320.192	440.7	Dac1117	18.404	370.5
Dac310	-282.548	432.9	Dac121	149.74	717.5
Dac311	-432.656	89.7	Dac122	-113.3	397.8
Dac312	-113.3	397.8	Dac123	-197.924	415.3
Dac313	103.068	352.9	Dac124	-19.608	752.6
Dac314	-178.714	37.05	Dac125	-404.448	83.9
Dac315	-160.28	407.5	Dac126	-310.756	438.7
Dac316	-75.656	390	Dac127	-461.332	469.9
Dac317	-639.18	-241.75	Dac128	-583.132	120.9
Dac41	225.346	327.55	Dac129	366.068	672.7

Dac42	281.782	315.85	Dac1210	-169.308	35.1
Dac43	178.316	337.3	Dac1211	460.128	653.15
Dac45	253.136	696.1	Dac1213	347.196	676.6
Dac46	159.504	341.2	Dac1214	65.484	360.7
Dac47	8.968	372.4	Dac1215	-65.842	13.65
Dac48	347.196	676.6	Dac1216	-150.496	31.2
Dac49	-395.48	456.3	Dac1217	-395.012	81.9
Dac410	-0.836	748.7	Dac131	-197.526	40.95
Dac411	-507.944	105.3	Dac132	103.068	352.9
Dac412	168.512	713.6	Dac133	-338.596	70.2
Dac413	27.84	368.5	Dac134	-404.448	83.9
Dac414	103.068	352.9	Dac135	130.868	721.4
Dac415	121.532	723.4	Dac136	-179.152	411.4
Dac416	206.156	705.8	Dac137	-602.004	124.8
Dac417	-357.468	74.1	Dac138	8.6	746.8
Dac51	159.504	341.2	Dac139	-423.22	87.8
Dac52	93.692	354.85	Dac1310	177.948	711.7
Dac53	-188.12	39	Dac1311	-535.744	-263.2
Dac54	-254.34	427	Dac1312	347.196	676.6
Dac56	-348.032	72.2	Dac1314	281.782	315.85
Dac57	-197.526	40.95	Dac1315	300.216	686.3
Dac58	-160.28	407.5	Dac1316	384.84	668.8
Dac59	-461.332	469.9	Dac1317	-178.714	37.05
Dac510	-188.956	787.7	Dac141	84.256	356.8
Dac511	-573.796	119	Dac142	-178.714	37.05
Dac512	-19.608	752.6	Dac143	-263.368	54.6
Dac513	-38.012	382.2	Dac144	-85.092	391.9
Dac514	-85.092	391.9	Dac145	-150.844	405.6
--------	----------	--------	---------	----------	--------
Dac515	-66.588	762.4	Dac146	-103.864	395.8
Dac516	18.036	744.8	Dac147	-254.34	427
Dac517	-545.588	113.1	Dac148	83.888	731.2
Dac61	112.096	725.3	Dac149	-141.508	403.6
Dac62	168.512	713.6	Dac1410	-103.864	395.8
Dac63	-113.3	397.8	Dac1411	-253.962	52.65
Dac64	-611.34	126.8	Dac1412	65.484	360.7
Dac65	93.692	354.85	Dac1413	281.782	315.85
Dac67	-56.784	386.1	Dac1415	18.404	370.5
Dac68	-178.714	37.05	Dac1416	103.068	352.9
Dac69	-38.38	756.5	Dac1417	-460.496	-278.8
Dac610	-573.796	119	Dac151	102.66	727.3
Dac611	55.68	737	Dac152	-160.28	407.5
Dac612	-404.448	83.9	Dac153	-244.904	425.1
Dac613	130.868	721.4	Dac154	-66.588	762.4
Dac614	-150.844	405.6	Dac155	-338.596	70.2
Dac615	-338.596	70.2	Dac156	-244.904	425.1
Dac616	-253.962	52.65	Dac157	-395.48	456.3
Dac617	-423.22	87.8	Dac158	-517.28	107.3
Dac71	18.404	370.5	Dac159	300.216	686.3
Dac72	74.82	358.75	Dac1510	-235.15	48.75
Dac73	-206.932	42.9	Dac1511	394.276	666.8
Dac74	-705.032	-228.1	Dac1512	-65.842	13.65
Dac75	93.692	354.85	Dac1513	300.216	686.3
Dac76	-150.496	31.2	Dac1514	18.404	370.5
Dac78	187.722	335.35	Dac1516	-84.654	17.55

Dac79	-602.372	499.2	Dac1517	-253.962	52.65
Dac710	-480.104	473.8	Dac161	187.284	709.7
Dac711	-714.836	148.2	Dac162	-75.656	390
Dac712	-310.756	438.7	Dac163	-160.28	407.5
Dac713	-179.152	411.4	Dac164	18.036	744.8
Dac714	-103.864	395.8	Dac165	-253.962	52.65
Dac715	-244.904	425.1	Dac166	-160.28	407.5
Dac716	-160.28	407.5	Dac167	-310.756	438.7
Dac717	-564.36	117	Dac168	-432.656	89.7
Dac81	-38.012	382.2	Dac169	215.592	703.9
Dac82	-75.656	390	Dac1610	-319.824	66.3
Dac83	-357.468	74.1	Dac1611	309.652	684.4
Dac84	-554.556	-259.3	Dac1612	-150.496	31.2
Dac85	-56.784	386.1	Dac1613	384.84	668.8
Dac86	-150.496	31.2	Dac1614	103.068	352.9
Dac87	37.276	366.6	Dac1615	-84.654	17.55
Dac89	-658.788	510.9	Dac1617	-169.308	35.1
Dac810	-630.58	505	Dac171	356.632	674.6
Dac811	-771.252	159.9	Dac172	93.692	354.85
Dac812	-461.332	469.9	Dac173	8.968	372.4
Dac813	-235.568	423.1	Dac174	187.284	709.7
Dac814	-254.34	427	Dac175	309.652	684.4
Dac815	-395.48	456.3	Dac176	168.512	713.6
Dac816	-310.756	438.7	Dac177	18.036	744.8
Dac817	-714.836	148.2	Dac178	130.868	721.4
Dac91	206.156	705.8	Dac179	130.868	721.4
Dac92	262.572	694.1	Dac1710	168.512	713.6

Dac93	-19.24	378.3	Dac1711	18.404	370.5
Dac94	-517.28	107.3	Dac1712	337.86	678.5
Dac95	-178.714	37.05	Dac1713	554.158	633.65
Dac96	187.722	335.35	Dac1714	272.376	317.8
Dac97	37.276	366.6	Dac1715	478.91	649.25
Dac98	-217.164	793.6	Dac1716	563.564	631.7

ในการจำลองสัญญาณผ่านในโครงข่าย NARNET จะจำลองเส้นทางจากโนด 1 ไปโนด 16 มีระยะทาง 2180 km หลังจากวางหน่วยชดเชยดิสเพอร์ชันด้วยโปรแกรม OptiSys 10.0 และ ส่งสัญญาณ 3 ความยาวคลื่นคือ 1549.32 nm, 1550.12 nm และ 1550.92 nm ได้ Eve Diagram โดยมีอัตราบิต 40 Gbps Sequence Length เท่ากับ 1024 บิต และจำนวน Sample Per Bit เท่ากับ 512 ในกรณีที่ไม่คำนึงถึงผลของความไม่เป็นเชิงเส้นของเส้นใยแสงนั้น มีค่าค่าตัว ประกอบคณภาพ (O) เท่ากับ 6.83045 และ ค่าอัตราความผิดพลาดบิต (BER) เท่ากับ 4.2149×10⁻¹² แสดงดังภาพที่ 9.6 (ก) ในกรณีที่คำนึงถึงผลของความไม่เป็นเชิงเส้นของเส้นใย แสงมีค่าค่าตัวประกอบคุณภาพ (Q) เท่ากับ 6.93467 และ ค่าอัตราความผิดพลาดบิต (BER) เท่ากับ 2.02268×10⁻¹² แสดงดังภาพที่ 9.6 (ข) ในกรณีที่คำนึงถึงเฉพาะผลของความไม่เป็นเชิง เส้นของเส้นใยแสงมีค่าค่าตัวประกอบคุณภาพ (Q) เท่ากับ 6.89831 และ ค่าอัตราความ ้ผิดพลาดบิต (BER) เท่ากับ 2.63057×10⁻¹² แสดงดังภาพที่ 9.6 (ค) และเมื่อพิจารณากราฟ ความสัมพันธ์ระหว่าง log(BER) และกำลังขาเข้าของสัญญาณในกรณีรับส่งสัญญาณไม่ผ่านเส้น ใยแสง (back to back) กรณีไม่คำนึงถึงผลของความไม่เป็นเชิงเส้นของเส้นใยแสง กรณีคำนึงผล ของความไม่เป็นเชิงเส้นของเส้นใยแสง และกรณีคำนึงเฉพาะผลความไม่เป็นเชิงเส้นของเส้นใย แสงโดยจะแสดงในภาพที่ 9.7 โดยในกรณีไม่คำนึงถึงผลของความไม่เป็นเชิงเส้นของเส้นใยแสงมี ้ค่าระดับกำลังแสงที่เพิ่มขึ้นเพื่อให้อัตราความผิดพลาดบิตคงเดิม (Power Penalty) ณ ค่า BER ที่ ียอมรับได้เท่ากับ 10⁻¹² เท่ากับ 1.15 dB ในกรณีคำนึงถึงผลของความไม่เป็นเชิงเส้นของเส้นใยแสง มีค่า Power Penalty ณ ค่า BER 10⁻¹² เท่ากับ 2.15 dB โดยในกรณีคำนึงถึงผลของความไม่เป็น เชิงเส้นของเส้นใยมี power penalty มากกว่าเนื่องจากเมื่อเพิ่มความไม่เป็นเชิงเส้นของเส้นใยแสง เข้าไปส่งผลให้เกิด signal distortion มากกว่าในกรณีไม่คำนึงผลของความไม่เป็นเชิงเส้นของเส้น ้ใยแสง และในกรณีคำนึงเฉพาะผลความไม่เป็นเชิงเส้นของเส้นใยแสงนั้นได้ผลที่แย่ที่สดเนื่องจาก กำลังของสัญญาณจะมากที่สุดเมื่อไม่มีผลจากดิสเพอร์ชัน (zero dispersion)

ภาพที่ 9.6 Eye Pattern จากการจำลองผลบน Optisys ของเส้นทางการสื่อสารที่ยาวที่สุด (ก) กรณีโครงข่าย OPEN ในกรณีไม่คำนึงถึงผลของความไม่เป็นเชิงเส้นของเส้นใยแสง (ข) กรณีโครงข่าย OPEN ในกรณีคำนึงถึงผลของความไม่เป็นเชิงเส้นของเส้นใยแสง (ค) กรณีโครงข่าย OPEN ในกรณีคำนึงถึงเฉพาะผลของความไม่เป็นเชิงเส้นของเส้นใยแสง

ภาพที่ 9.7 ความสัมพันธ์ระหว่าง log(BER) กับกำลังขาเข้าของสัญญาณ

9.4 โครงข่ายตัวอย่างในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย 9.4.1 ระบุเส้นทางการส่งผ่านสัญญาณจากโนดต้นทางไปสู่โนดปลายทาง

การระบุเส้นทางการส่งผ่านสัญญาณจากโนดต้นทางไปสู่โนดปลายทางในกรณีเกิดความ เสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย จะจัดสรรเส้นทางให้โดยใช้กลไกการกู้คืนแบบ path protection โดยจะสื่อสัญญาณบนเส้นใยแสงสำรอง ซึ่งการระบุเส้นทางการส่งผ่านสัญญาณใหม่ จะแยกคิดเป็นกรณีความเสียหายของข่ายเชื่อมโยงด้วยระยะทางระหว่างโนดที่น้อยที่สุดซึ่ง เส้นทางการส่งผ่านสัญญาณนั้นถูกระบุไว้แล้วในบทข้างต้น

9.4.2 การสร้างสมการและอสมการเงื่อนไขขอบเขต

9.4.2.1 สมการเงื่อนไขขอบเขตการส่งผ่านสัญญาณระหว่างโนด

สมการเงื่อนไขขอบเขตชดเชยค่าดิสเพอร์ชันในการส่งผ่านสัญญาณระหว่างโนดต้นทาง และโนดปลายทางใด ๆในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่ายโดยใช้การ ป้องกันแบบ path protection นั้นสามารถแยกเป็นกรณีได้ดังนี้

<u>กรณีที่เกิดความเสียหายขึ้นกับข่ายเชื่อมโยง 12 และ ข่ายเชื่อมโยง 21 (A)</u>
 กรณีทุกสัญญาณความยาวคลื่น λ, ถูกส่งมาจากโนด 1; Z = 1

1 - - 3 - - 4 - - 2

 $0 + (D_i \times 150) + (D_{compi} \times N_{13}) + (D_i \times 175) + (D_{compi} \times N_{34}) + (D_i \times 200) + (D_{compi} \times N_{42}) = D_{ac21iA}$ กรณีทุกสัญญาณความยาวคลื่น λ_i ถูกส่งมาจากโนด 2; Z = 2

2 - - 4 - - 3 - - 1

 $0 + (D_i \times 200) + (D_{compi} \times N_{24}) + (D_i \times 175) + (D_{compi} \times N_{43}) + (D_i \times 150) + (D_{compi} \times N_{31}) = D_{ac12iA}$ กรณีทุกสัญญาณความยาวคลื่น λ_i ถูกส่งมาจากโนด 5; Z = 5

5 - - 4 - - 3 - - 1

 $0 + (D_i \times 215) + (D_{compi} \times N_{54}) + (D_i \times 175) + (D_{compi} \times N_{43}) + (D_i \times 150) + (D_{compi} \times N_{31}) = D_{ac15iA}$

<u>กรณีที่เกิดความเสียหายขึ้นกับข่ายเชื่อมโยง 13 และ ข่ายเชื่อมโยง 31 (B)</u>
 กรณีทุกสัญญาณความยาวคลื่น λ, ถูกส่งมาจากโนด 1; Z = 1

 $0 + (D_i \times 250) + (D_{compi} \times N_{12}) + (D_i \times 200) + (D_{compi} \times N_{24}) + (D_i \times 175) + (D_{compi} \times N_{43}) = D_{ac31iB}$

1 - - 2 - - 4

 $0 + (D_i \times 250) + (D_{compi} \times N_{12}) + (D_i \times 200) + (D_{compi} \times N_{24}) = D_{ac41iB}$ กรณีทุกสัญญาณความยาวคลื่น λ_i ถูกส่งมาจากโนด 3; Z = 3

3 - - 4 - - 2 - - 1

 $0 + (D_i \times 175) + (D_{compi} \times N_{43}) + (D_i \times 200) + (D_{compi} \times N_{42}) + (D_i \times 250) + (D_{compi} \times N_{21}) = D_{ac13iB}$ กรณีทุกสัญญาณความยาวคลื่น λ_i ถูกส่งมาจากโนด 4; Z = 4

$$0 + (D_i \times 200) + (D_{compi} \times N_{42}) + (D_i \times 250) + (D_{compi} \times N_{21}) = D_{ac14iB}$$

กรณีที่เกิดความเสียหายขึ้นกับข่ายเชื่อมโยง 24 และ ข่ายเชื่อมโยง 42 (C)
 กรณีทุกสัญญาณความยาวคลื่น λ, ถูกส่งมาจากโนด 2; Z = 2

2 - - 1 - - 3

$$0 + (D_i \times 250) + (D_{compi} \times N_{21}) + (D_i \times 150) + (D_{compi} \times N_{13}) = D_{ac32iC}$$

2 - - 5 - - 4

 $0 + (D_i \times 100) + (D_{compi} \times N_{25}) + (D_i \times 215) + (D_{compi} \times N_{54}) = D_{ac42iC}$ กรณีทุกสัญญาณความยาวคลื่น λ_i ถูกส่งมาจากโนด 3; Z = 3

3 - - 1 - - 2

 $0 + (D_i \times 150) + (D_{compi} \times N_{31}) + (D_i \times 250) + (D_{compi} \times N_{12}) = D_{ac23iC}$ กรณีทุกสัญญาณความยาวคลื่น λ_i ถูกส่งมาจากโนด 4; Z = 4

4 - - 5 - - 2

$$0 + (D_i \times 215) + (D_{compi} \times N_{45}) + (D_i \times 100) + (D_{compi} \times N_{52}) = D_{ac24iC}$$

4) <u>กรณีเกิดความเสียหายขึ้นกับข่ายเชื่อมโยง 25 และ ข่ายเชื่อมโยง 52 (D)</u> กรณีทุกสัญญาณความยาวคลื่น λ_i ถูกส่งมาจากโนด 1; Z = 1

 $0 + (D_i \times 150) + (D_{compi} \times N_{13}) + (D_i \times 175) + (D_{compi} \times N_{34}) + (D_i \times 215) + (D_{compi} \times N_{45}) = D_{ac21iD}$ กรณีทุกสัญญาณความยาวคลื่น λ_i ถูกส่งมาจากโนด 2; Z = 2 2 -- 4 -- 5

 $0 + (D_i \times 200) + (D_{compi} \times N_{24}) + (D_i \times 215) + (D_{compi} \times N_{45}) = D_{ac52iD}$ กรณีทุกสัญญาณความยาวคลื่น λ, ถูกส่งมาจากโนด 5; Z = 5 5 - - 4 - - 3 - - 1 $0 + (D_i \times 215) + (D_{compi} \times N_{54}) + (D_i \times 175) + (D_{compi} \times N_{43}) + (D_i \times 150) + (D_{compi} \times N_{31}) = D_{ac15iD}$ 5 - - 4 - - 2 $0 + (D_i \times 215) + (D_{compi} \times N_{54}) + (D_i \times 200) + (D_{compi} \times N_{42}) = D_{ac25iD}$ 5) <u>กรณีเกิดความเสียหายขึ้นกับข่ายเชื่อมโยง 34 และ ข่ายเชื่อมโยง 43 (E)</u> กรณีทุกสัญญาณความยาวคลื่น λ , ถูกส่งมาจากโนด 1; Z = 1 1 - - 2 - - 4 $0 + (D_i \times 250) + (D_{compi} \times N_{12}) + (D_i \times 200) + (D_{compi} \times N_{24}) = D_{ac41iF}$ กรณีทุกสัญญาณความยาวคลื่น λ, ถูกส่งมาจากโนด 2; Z = 2 2 - - 1 - - 3 $0 + (D_i \times 250) + (D_{compi} \times N_{21}) + (D_i \times 150) + (D_{compi} \times N_{13}) = D_{ac32iE}$ กรณีทุกสัญญาณความยาวคลื่น λ , ถูกส่งมาจากโนด 3; Z = 3 3 - - 1 - - 2 $0 + (D_i \times 150) + (D_{compi} \times N_{31}) + (D_i \times 250) + (D_{compi} \times N_{12}) = D_{ac23iE}$ 3 - - 1 - - 2 - - 4 $0 + (D_i \times 150) + (D_{compi} \times N_{31}) + (D_i \times 250) + (D_{compi} \times N_{12}) + (D_i \times 200) + (D_{compi} \times N_{24}) = D_{ac43iE}$ 3 - - 1 - - 2 - - 5 $0 + (D_i \times 150) + (D_{compi} \times N_{31}) + (D_i \times 250) + (D_{compi} \times N_{12}) + (D_i \times 100) + (D_{compi} \times N_{25}) = D_{ac53iE}$ กรณีทุกสัญญาณความยาวคลื่น λ, ถูกส่งมาจากโนด 4; Z = 4 4 - - 2 - - 1 $0 + (D_i \times 200) + (D_{compi} \times N_{42}) + (D_i \times 250) + (D_{compi} \times N_{21}) = D_{acl4iE}$ 4 - - 2 - - 1 - - 3 $0 + (D_i \times 200) + (D_{compi} \times N_{42}) + (D_i \times 250) + (D_{compi} \times N_{21}) + (D_i \times 150) + (D_{compi} \times N_{13}) = D_{ac34iE}$ กรณีทุกสัญญาณความยาวคลื่น λ_i ถูกส่งมาจากโนด 5; Z = 5

 $0 + (D_i \times 100) + (D_{compi} \times N_{52}) + (D_i \times 250) + (D_{compi} \times N_{21}) + (D_i \times 150) + (D_{compi} \times N_{13}) = D_{ac35iE}$

 $0 + (D_i \times 175) + (D_{compi} \times N_{43}) + (D_i \times 200) + (D_{compi} \times N_{42}) + (D_i \times 100) + (D_{compi} \times N_{25}) = D_{ac53iF}$ กรณีทุกสัญญาณความยาวคลื่น λ_i ถูกส่งมาจากโนด 4; Z = 4

4 - - 2 - - 5

 $0 + (D_i \times 200) + (D_{compi} \times N_{42}) + (D_i \times 100) + (D_{compi} \times N_{25}) = D_{ac54iF}$ กรณีทุกสัญญาณความยาวคลื่น λ_i ถูกส่งมาจากโนด 5; Z = 5

$$0 + (D_i \times 100) + (D_{compi} \times N_{52}) + (D_i \times 200) + (D_{compi} \times N_{24}) + (D_i \times 175) + (D_{compi} \times N_{43}) = D_{ac35iF}$$

5 - 2 - 4

$$0 + (D_i \times 100) + (D_{compi} \times N_{52}) + (D_i \times 200) + (D_{compi} \times N_{24}) = D_{ac45iF}$$

9.4.2.2 เงื่อนไขขอบเขตของค่าดิสเพอร์ชัน

กำหนดว่าค่าดิสเพอร์ชันสะสมของทุกสัญญาณทุกความยาวคลื่นที่ทุกโนดปลายทาง Y ต้องมีค่าอยู่ในช่วง ±D_{max} เนื่องจาก D_{max} คือ ค่าดิสเพอร์ชันมากที่สุดที่ไม่ทำให้พัลส์สัญญาณ ผิดเพี้ยนจนไม่สามารถชดเชยความผิดเพี้ยนให้กลับมาสู่สัญญาณเดิมได้ โดย D_{max} = 800 ps/nm (ส่งสัญญาณที่ความเร็ว 40 Gbps RZ-DQPSK) จะแสดงในตารางที่ 7.22

9.4.2.3 เงื่อนไขขอบเขตจำนวนเต็ม

จำนวนหน่วยชดเชยดิสเพอร์ชันที่วางลงในแต่ละเส้นใยแสงสำรองต้องเป็นจำนวนเต็มบวก หรือศูนย์เท่านั้น

9.4.2.4 ฟังก์ชันวัตถุประสงค์

ฟังก์ชันวัตถุประสงค์เป็นฟังก์ชันที่กำหนดจำนวนหน่วยชดเชยดิสเพอร์ชันน้อยสุดใน โครงข่ายในขณะเดียวกันต้องรักษาประสิทธิภาพการส่งสัญญาณภายในโครงข่ายไว้ได้

9.4.2.5 อสมการเงื่อนไขระยะทางที่ถูกจำกัดด้วยผลของความไม่เป็นเชิงเส้น

กำหนดว่าจะต้องวางหน่วยชดเชยดิสเพอร์ชันที่ระยะน้อยกว่าหรือเท่ากับ nonlinear length เพื่อลดผลกระทบจากปัญหาความไม่เป็นเชิงเส้นของเส้นใยแสง โดย nonlinear length ใน ที่นี้คือ 75.930 km เมื่อนำไปแทนค่าในสมการที่ (6.7) จะได้ว่า

การส่งสัญญาณ		đ		
โนดต้นทาง	โนดปลายทาง	ារដោ	ว็มาแกมฉหมบบร	
1	2	А	$L_{12A} \le 75.93(N_{12} + 1)$	
1	3	В	$L_{13B} \le 75.93(N_{13} + 1)$	
1	4	В	$L_{14B} \le 75.93(N_{14} + 1)$	
1	5	D	$L_{15D} \le 75.93(N_{15} + 1)$	
1	4	Е	$L_{14E} \le 75.93(N_{14} + 1)$	
2	1	А	$L_{21A} \le 75.93(N_{21} + 1)$	
2	3	С	$L_{23C} \le 75.93(N_{23} + 1)$	
2	4	С	$L_{24C} \le 75.93(N_{24} + 1)$	
2	5	D	$L_{25D} \le 75.93(N_{25} + 1)$	
2	3	E	$L_{23E} \le 75.93(N_{23} + 1)$	
3	1	В	$L_{31B} \le 75.93(N_{31} + 1)$	
3	2	С	$L_{32C} \le 75.93(N_{32} + 1)$	
3	2	E	$L_{32E} \le 75.93(N_{32} + 1)$	
3	4	E	$L_{34E} \le 75.93(N_{34} + 1)$	
3	5	E	$L_{35E} \le 75.93(N_{35} + 1)$	
3	5	F	$L_{34F} \le 75.93(N_{35} + 1)$	
4	1	В	$L_{41B} \le 75.93(N_{41} + 1)$	
4	2	С	$L_{42C} \le 75.93(N_{42} + 1)$	

4	1	E	$L_{41E} \le 75.93(N_{41} + 1)$
4	3	E	$L_{43E} \le 75.93(N_{43} + 1)$
4	2	F	$L_{42F} \le 75.93(N_{42} + 1)$
5	1	А	$L_{51A} \le 75.93(N_{51} + 1)$
5	1	D	$L_{51D} \le 75.93(N_{51} + 1)$
5	2	D	$L_{52D} \le 75.93(N_{52} + 1)$
5	3	E	$L_{53E} \le 75.93(N_{53} + 1)$
5	3	F	$L_{53F} \le 75.93(N_{53} + 1)$
5	4	F	$L_{54F} \le 75.93(N_{54} + 1)$

เมื่อเลือกใช้หน่วยชดเชยดิสเพอร์ชันตามผลเฉลยในบทที่ 7 คือ SC-DCU โมดูล DCM -30 - SMF – C แล้วเพิ่มอสมการเงื่อนไขระยะทางที่ถูกจำกัดด้วยผลของความไม่เป็นเชิงเส้นแล้ว พบว่าไม่สามารถหาคำตอบได้จึงปรับเปลี่ยนเป็นมอดูลที่มีความยาวลดลงมาตามลำดับคือโมดูล DCM - 20 - SMF – C ซึ่งจะได้ผลเฉลยจำนวนหน่วยชดเชยดิสเพอร์ชันเมื่อวางหน่วยชดเชยดิส เพอร์ชันน้อยกว่าหรือเท่ากับ nonlinear length ดังตารางที่ 9.8

b			
หน่วยชดเชยดิสเพอร์ชัน	จำนวน	หน่วยชดเชยดิสเพอร์ชัน	จำนวน
n12	11	n34	9
n13	8	n42	10
n21	11	n43	9
n24	10	n45	9
n25	5	n52	5
n31	8	n54	9
		Nmin	104

ตารางที่ 9.8 ผลเฉลยจำนวน SC-DCU โครงข่ายตัวอย่าง ด้วยกลไกการกู้คืนสัญญาณแบบ Path Protection บนเส้นใยแสงสำรอง

9.5 โครงข่าย OPEN ในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย

วิธีหาผลเฉลยจำนวนหน่วยขดเชยดิสเพอร์ชันและการกำหนดตำแหน่งของหน่วยชดเชย ดิสเพอร์ชันในแต่ละข่ายเชื่อมโยงเมื่อคำนึงถึงผลจากความไม่เป็นเชิงเส้นของเส้นใยแสง กรณีเกิด ความเสียหายกับข่ายเชื่อมโยงหนึ่งในโครงข่าย ซึ่งจำลองโครงข่ายด้วยกลไกการกู้คืนสัญญาณ แบบ Path Protection บนเส้นใยแสงสำรอง จะเลือกใช้มอดูล DCM – 20 – SMF – C ตามผล เฉลยอัลกอริทึมในบทที่ 7 เมื่อเพิ่มอสมการเงื่อนไขระยะทางที่ถูกจำกัดด้วยผลของความไม่เป็นเชิง เส้นพบว่าไม่สามารถใช้ SC-DCU โมดูล DCM – 20 – SMF –C ได้เนื่องจากอสมการเงื่อนไข ระยะทางที่ถูกจำกัดด้วยผลของความไม่เป็นเชิงเส้นจะกำหนดจำนวนหน่วยชดเชยดิสเพอร์ชันที่ มากที่สุดที่ต้องใช้ในโครงข่ายเมื่อกำหนดว่าจะต้องวางหน่วยชดเชยดิสเพอร์ชันที่ระยะน้อยกว่า หรือเท่ากับ nonlinear length แต่เมื่อใช้ SC-DCU โมดูล DCM – 20 – SMF –C มาทดลองใช้กับ โครงข่ายพบว่าจำนวนหน่วยชดเชยดิสเพอร์ชันที่ต้องใช้น้อยกว่าจำนวนที่ถูกกำหนดด้วยอสมการ เงื่อนไขระยะทางที่ถูกจำกัดด้วยผลของความไม่เป็นเชิงเส้น เมื่อจำนวนน้อยกว่าจะทำให้เงื่อนไข ตำแหน่งการวางหน่วยชดเชยดิสเพอร์ชันน้อยกว่าหรือเท่ากับ nonlinear length ไม่เป็นจริง จึง เลือกใช้หน่วยชดเชยดิสเพอร์ชัน SC-DCU ที่มีระยะชดเชยลดลงมาคือ DCM – 10 – SMF – C เมื่อใช้โมดูลดังกล่าวพบว่าต้องใช้จำนวนหน่วยชดเชยดิสเพอร์ชันน้อยกว่าจำนวนที่คำนวณได้จึง ไม่สามารถใช้ได้

เมื่อไม่สามารถใช้ทุกโมดูลได้จึงเลือกใช้ DCU ที่มี DCF สั้นลงและมี slope ที่หักล้างกับ SMF G.652 พอดีคือเลือกใช้ SC-DCUที่มี slope -0.05 ps/nm/km² DCF 5 km โดยจะมี พารามิเตอร์ต่างๆดัง ตารางที่ 9.9

λ_{i}	D_i	$Dcomp_i$ (ps/nm)
(nm)	(ps/nm/km)	SC-DCU
1520.25	-15.0125	-75.0625
1577.03	-17.8515	-89.2575

ตารางที่ 9.9 ดิสเพอร์ชันของ SC-DCU- 5 km

เมื่อใช้หน่วยชดเชยดิสเพอร์ชันดังกล่าวจะได้ผลเฉลยดังตารางที่ 9.10 โดยมีค่าดิสเพอร์ ชันสะสมที่ทุกโนดปลายทางไม่เกินขอบเขตที่กำหนดไว้

หน่วยชดเชยดิสเพอร์ชัน	จำนวน	หน่วยชดเชยดิสเพอร์ชัน	จำนวน
n106sc	44	n54sc	36
n109sc	34	n56sc	60
n12sc	25	n610sc	44
n13sc	23	n63sc	60
n21sc	25	n65sc	60
n23sc	22	n69sc	18
n31sc	31	n73sc	33
n32sc	30	n78sc	9
n34sc	24	n87sc	6
n36sc	68	n89sc	41
n37sc	38	n910sc	34
n43sc	16	n96sc	18
n45sc	36	n98sc	41
		Nmin	876

ตารางที่ 9.10 ผลเฉลยจำนวน SC-DCU โครงข่าย OPEN ด้วยกลไกการกู้คืนสัญญาณแบบ Path Protection บนเส้นใยแสงสำรอง

9.6 โครงข่าย NARNET ในกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งภายในโครงข่าย

วิธีหาผลเฉลยจำนวนหน่วยชดเชยดิสเพอร์ชันและการกำหนดตำแหน่งของหน่วยชดเชย ดิสเพอร์ชันในแต่ละข่ายเชื่อมโยงเมื่อคำนึงถึงผลจากความไม่เป็นเชิงเส้นของเส้นใยแสง กรณีเกิด ความเสียหายกับข่ายเชื่อมโยงหนึ่งในโครงข่าย ซึ่งจำลองโครงข่ายด้วยกลไกการกู้คืนสัญญาณ แบบ Path Protection บนเส้นใยแสงสำรอง จะเลือกใช้มอดูล DCM – 20 – SMF – C ตามผล เฉลยอัลกอริทึมในบทที่ 7 เมื่อเพิ่มอสมการเงื่อนไขระยะทางที่ถูกจำกัดด้วยผลของความไม่เป็นเชิง เส้นพบว่าไม่สามารถใช้ SC-DCU โมดูล DCM – 20 – SMF – C ได้เนื่องจากอสมการเงื่อนไข ระยะทางที่ถูกจำกัดด้วยผลของความไม่เป็นเชิงเส้นจะกำหนดจำนวนหน่วยชดเชยดิสเพอร์ชันที่ มากที่สุดที่ต้องใช้ในโครงข่ายเมื่อกำหนดว่าจะต้องวางหน่วยชดเชยดิสเพอร์ชันที่ระยะน้อยกว่า หรือเท่ากับ nonlinear length แต่เมื่อใช้ SC-DCU โมดูล DCM – 20 – SMF –C พบว่าไม่สามารถ ใช้ได้ด้วยเหตุผลเช่นเดียวกับหัวข้อที่ 9.5 จึงเลือกใช้หน่วยชดเชยดิสเพอร์ชันที่มีระยะชดเชยลดลง โดยมีพารามิเตอร์ต่างๆดังตารางที่ 9.9 จะได้ผลเฉลยดังตารางที่ 9.11

หน่วยชดเชยดิสเพอร์ชัน	จำนวน	หน่วยขดเชยดิสเพอร์ชัน	จำนวน
n1_2sc	83	n17_15sc	72
n1_3sc	108	n2_1sc	82
n10_12sc	57	n2_4sc	72
n10_13sc	85	n3_1sc	108
n10_5sc	84	n3_4sc	114
n11_12sc	38	n3_5sc	70
n11_6sc	76	n4_2sc	71
n12_10sc	57	n4_3sc	112
n12_11sc	36	n4_6sc	125
n12_13sc	77	n4_7sc	26
n12_15sc	86	n5_10sc	86
n13_10sc	86	n5_3sc	71
n13_12sc	78	n5_6sc	35
n13_16sc	83	n6_11sc	74
n14_15sc	112	n6_4sc	126
n14_17sc	75	n6_5sc	33
n14_8sc	108	n6_9sc	37
n15_12sc	89	n7_4sc	28

ตารางที่ 9.11 ผลเฉลยจำนวน SC-DCU โครงข่าย NARNET ด้วยกลไกการกู้คืนสัญญาณแบบ Path Protection บนเส้นใยแสงสำรอง

n15_14sc	114	n7_8sc	36
n15_16sc	63	n8_14sc	108
n15_17sc	75	n8_7sc	36
n16_13sc	83	n8_9sc	71
n16_15sc	61	n9_6sc	38
n17_14sc	74	n9_8sc	71
		Nmin	3590

บทที่ 10 สรุปผลวิจัยและข้อเสนอแนะ

10.1 สรุปผลวิจัย

การส่งสัญญาณผ่านเส้นใยแสงเป็นระยะทางไกลจะเกิดปัญหาสำคัญอยู่ 2 ปัญหาคือ ความผิดเพี้ยนของสัญญาณซึ่งเป็นผลมาจากการลดทอนกำลังของสัญญาณแสงซึ่งแก้ไขได้ด้วย การใช้อุปกรณ์ขยายสัญญาณ และการบานออกของพัลส์สัญญาณเนื่องมาจากดิสเพอร์ชันโดย สามารถแก้ไขได้โดยการใช้หน่วยชดเซยดิสเพอร์ชัน ซึ่งมี 2 ชนิดคือ NS-DCU และ SC-DCU แต่ใน ปัจจุบันมีการเพิ่มความสามารถในการรับส่งข้อมูลจากเดิม 10 Gbps เป็น 40 Gbps จะเกิดปัญหา ที่มีความสำคัญคือปัญหาการกระจายโหมดโพลาไรซ์โดยสามารถแก้ไขได้ด้วยการใช้อุปกรณ์ ชดเชยปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมดโพลาไรซ์ และปัญหาความไม่เป็น เซิงเส้นของเส้นใยแสงซึ่งลดผลกระทบดังกล่าวได้โดยวางอุปกรณ์ชดเชยก่อนถึงระยะที่ปัญหา ความไม่เป็นเชิงเส้นของเส้นใยแสงจะส่งผลรุนแรงหรือก่อนระยะ nonlinear length จากปัญหาที่ กล่าวมาข้างต้นจึงจำเป็นต้องมีอัลกอริทึมสำหรับใช้หน่วยชดเชยค่าดิสเพอร์ชันและอุปกรณ์ชดเชย ปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมดโพลาไรซ์เพื่อลดผลจากปัญหาที่กล่าวมา ข้างต้น

วิทยานิพนธ์ฉบับนี้จึงนำเสนออัลกอริทึมสำหรับใช้หน่วยชดเชยค่าดิสเพอร์ชันและอุปกรณ์ ชดเชยปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมดโพลาไรซ์อย่างเหมาะสมที่สุดใน โครงข่ายที่มีอัตราการส่งข้อมูล 40 Gb/s ต่อช่องสัญญาณบนช่วงความยาวคลื่นทั้ง C band โดย สามารถลดผลจากปรากฏการณ์เคอร์ โดยจะแยกเป็น 3 ส่วนคือ อัลกอริทึมสำหรับใช้หน่วยชดเชย ค่าดิสเพอร์ชัน อัลกอริทึมสำหรับใช้อุปกรณ์ชดเชยปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการ กระจายโหมดโพลาไรซ์ และอัลกอริทึมสำหรับใช้หน่วยชดเชยค่าดิสเพอร์ชันกรณีคำนึงถึงผลความ ไม่เป็นเชิงเส้นของเส้นใยแสง โดยทั้ง 3 ส่วนนี้มีขั้นตอนสำคัญ 3 ขั้นตอนคือ

- การระบุเส้นทางการส่งสัญญาณจากโนดต้นทางถึงโนดปลายทางในกรณี ทำงานปกติและกรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งบนโครงข่าย
- 2. การสร้างสมการและอสมการต่างๆที่เกี่ยวข้องกับปัญหาที่พิจารณา
- การแก้สมการและอสมการโดยจะเลือกใช้โปรแกรม Xpress.MP ในการหา ผลเฉลย

ผลเฉลยจากการจำลองการใช้หน่วยชดเชยดิสเพอร์ชันและอุปกรณ์ชดเชยปัญหาความ ผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมดโพลาไรซ์บนโครงข่ายตัวอย่างในกรณีโครงข่ายกรณี ทำงานปกติเมื่อไม่คำนึงผลความไม่เป็นเชิงเส้นของเส้นใยแสงพบว่าหน่วยชดเชยดิสเพอร์ชันชนิด NS-DCU ไม่สามารถใช้ได้เนื่องจากผลจาก over – under compensation และเมื่อใช้หน่วย ชดเชยดิสเพอร์ชันชนิด SC- DCU มอดูล DCM - 40 - SMF - C จำต้องใช้จำนวน 32 ตัว ในกรณี ้คำนึงถึงผลความไม่เป็นเชิงเส้นของเส้นใยแสงใช้หน่วยชดเชยดิสเพอร์ชันชนิด SC- DCU มอดูล DCM - 40 - SMF - C จำต้องใช้จำนวน 32 ตัวเท่ากัน และอุปกรณ์ชดเชยปัญหาความผิดเพี้ยนที่ เกิดจากปัญหาการกระจายโหมดโพลาไรซ์ในโครงข่ายตัวอย่างขนาดปกติไม่จำเป็นต้องใช้ ส่วนผล เฉลยในโครงข่าย OPEN กรณีทำงานปกติเมื่อไม่คำนึงผลความไม่เป็นเชิงเส้นของเส้นใยแสงพบว่า ใช้หน่วยชดเชยดิสเพอร์ชันชนิด SC- DCU มอดูล DCM - 30 - SMF - C จำต้องใช้จำนวน 108 ตัว ในกรณีคำนึงถึงผลความไม่เป็นเชิงเส้นของเส้นใยแสงใช้หน่วยชดเชยดิสเพอร์ชันชนิด SC- DCU มอดูล DCM - 30 - SMF - C จำต้องใช้จำนวน 108 ตัวเท่ากัน และอุปกรณ์ชดเชยปัญหาความ นิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมดโพลาไรซ์ในโครงข่ายตัวอย่างขนาดปกติไม่จำเป็นต้อง ใช้ และผลเฉลยในโครงข่าย NARNET กรณีทำงานปกติเมื่อไม่คำนึงผลความไม่เป็นเชิงเส้นของ เส้นใยแสงพบว่าใช้หน่วยชดเชยดิสเพอร์ชันชนิด SC- DCU มอดูล DCM - 20 - SMF - C จำต้อง ใช้จำนวน 890 ตัว หากใช้หน่วยชดเชยดิสเพอร์ชัน 2 ชนิดร่วมกันคือ SC-DCU มอดูล DCM - 60 -SMF – C จำนวน 166 ตัว และ NS-DCU ที่ชดเชยได้พอดีเมื่อเปรียบเทียบกับเส้นใยแสงชนิด SMF ITU-T G.652 ที่ระยะทาง 40 km จำนวน 36 ตัว ในกรณีคำนึงถึงผลความไม่เป็นเชิงเส้นของเส้นใย แสงใช้หน่วยชดเชยดิสเพอร์ชันชนิด SC- DCU มอดูล DCM - 20 - SMF - C จำต้องใช้จำนวน 890 ตัว และอุปกรณ์ชดเชยปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมดโพลาไรซ์ใน โครงข่ายตัวอย่างขนาดปกติจำเป็นต้องให้จำนวน 6 เครื่อง

ผลเฉลยจากการจำลองการใช้หน่วยชดเชยดิสเพอร์ชันและอุปกรณ์ชดเชยปัญหาความ ผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมดโพลาไรซ์บนโครงข่ายตัวอย่างในกรณีเกิดความ เสียหายแก่ข่ายเชื่อมโยงหนึ่งบนโครงข่ายเมื่อไม่คำนึงผลความไม่เป็นเชิงเส้นของเส้นใยแสงพบว่า หน่วยชดเชยดิสเพอร์ชันชนิด NS-DCU ไม่สามารถใช้ได้เนื่องจากผลจาก over – under compensation และเมื่อใช้หน่วยชดเชยดิสเพอร์ชันชนิด SC- DCU มอดูล DCM - 30 - SMF - C จำต้องใช้จำนวน 52 ตัว หากใช้หน่วยชดเชยดิสเพอร์ชัน 2 ชนิดร่วมกันคือ SC-DCU มอดูล DCM - 60 - SMF – C จำนวน 16 ตัว และ NS-DCU ที่ชดเชยได้พอดีเมื่อเปรียบเทียบกับเส้นใยแสงชนิด SMF ITU-T G.652 ที่ระยะทาง 70 km จำนวน 8 ตัว ในกรณีคำนึงถึงผลความไม่เป็นเชิงเส้นของ

เส้นใยแสงใช้หน่วยชดเชยดิสเพอร์ชันชนิด SC- DCU มอดูล DCM - 30 - SMF - C จำต้องใช้ ้จำนวน 104 ตัวเท่ากัน และอุปกรณ์ชดเชยปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการกระจาย ์โหมดโพลาไรซ์ในโครงข่าย OPEN ขนาดปกติไม่จำเป็นต้องใช้ ส่วนผลเฉลยในโครงข่าย OPEN กรณีเกิดความเสียหายแก่ข่ายเชื่อมโยงหนึ่งบนโครงข่ายเมื่อไม่คำนึงผลความไม่เป็นเชิงเส้นของ เส้นใยแสงพบว่าใช้หน่วยชดเชยดิสเพอร์ชันชนิด SC- DCU มอดูล DCM - 20 - SMF - C จำต้อง ใช้จำนวน 220 ตัว หากใช้หน่วยชดเชยดิสเพอร์ชัน 2 ชนิดร่วมกันคือ SC-DCU มอดูล DCM - 60 -SMF – C จำนวน 40 ตัว และ NS-DCU ที่ชดเชยได้พอดีเมื่อเปรียบเทียบกับเส้นใยแสงชนิด SMF ITU-T G.652 ที่ระยะทาง 20 km จำนวน 27 ตัว ในกรณีคำนึงถึงผลความไม่เป็นเชิงเส้นของเส้นใย แสงใช้หน่วยชดเชยดิสเพอร์ชันชนิด SC- DCU มอดูล DCM - 5 - SMF - C จำต้องใช้จำนวน 876 ตัวเท่ากัน และอุปกรณ์ชดเซยปัญหาความผิดเพี้ยนที่เกิดจากปัญหาการกระจายโหมดโพลาไรซ์ใน โครงข่าย NARNET ขนาดปกติไม่จำเป็นต้องใช้ และผลเฉลยในโครงข่าย NARNET กรณีเกิดความ เสียหายแก่ข่ายเชื่อมโยงหนึ่งบนโครงข่ายเมื่อไม่คำนึงผลความไม่เป็นเชิงเส้นของเส้นใยแสงพบว่า ใช้หน่วยชดเชยดิสเพอร์ชันชนิด SC- DCU มอดูล DCM - 5 - SMF - C จำต้องใช้จำนวน 3590 ตัว ในกรณีคำนึงถึงผลความไม่เป็นเชิงเส้นของเส้นใยแสงใช้หน่วยชดเชยดิสเพอร์ชันชนิด SC- DCU มอดูล DCM - 20 - SMF - C จำต้องใช้จำนวน 890 ตัว และอุปกรณ์ชดเชยปัญหาความผิดเพี้ยนที่ เกิดจากปัญหาการกระจายโหมดโพลาไรซ์ในโครงข่ายตัวอย่างขนาดปกติจำเป็นต้องใช้จำนวน 12 เครื่อง

จากผลเฉลยข้างต้นพบว่าในทุกโครงข่ายนั้น หน่วยชดเชยดิสเพอร์ชันชนิด NS-DCU ไม่ สามารถใช้ได้เนื่องจากปัญหา over-under compensation และเมื่อโครงข่ายมีขนาดใหญ่ขึ้น light path ในแต่ละโครงข่ายมีจำนวนเพิ่มขึ้นทำให้มีข้อจำกัดในการวางมากขึ้นส่งผลให้การใช้หน่วย ชดเชยดิสเพอร์ชันชนิด SC-DCU โมดูลที่มีระยะการชดเชยไกลๆนั้นไม่สามารถใช้ได้จึงจำเป็นต้อง ลดช่วงที่จะชดเชยลงมาโดยการลดโมดูลลง เช่นเดียวกับปัญหาการกระจายโหมดโพลาไรซ์ใน โครงข่ายขนาดเล็กไม่จำเป็นต้องใช้อุปกรณ์ชดเชยปัญหาการกระจายโหมดโพลาไรซ์เนื่องจากใน ระยะทางสั้นๆปัญหาการกระจายโหมดโพลาไรซ์ยังไม่ส่งผลกระทบแต่เมื่อโครงข่ายขนาดใหญ่ขึ้น จึงจำเป็นต้องใช้อุปกรณ์ชดเชย ซึ่งจากผลเฉลยจากทุกหัวข้อพบว่าที่ทุกโนดปลายทางมีค่าดิส เพอร์ชันสะสมและค่าผลรวม DGD อยู่ในขอบเขตที่ยอมรับได้

การแก้ปัญหาดิสเพอร์ชันและปัญหาการกระจายโหมดโพลาไรซ์โดยลดผลกระทบจาก ปัญหาความไม่เป็นเชิงเส้นของเส้นใยแสงนั้น ทำได้โดยใช้อัลกอริทึมสำหรับใช้หน่วยชดเชยดิส เพอร์ชันมาใช้ร่วมกับอัลกอริทึมสำหรับใช้อุปกรณ์ชดเชยปัญหาการกระจายโหมดโพลาไรซ์ โดยจะ พิจารณาตำแหน่งการวางของอุปกรณ์ดังกล่าวด้วย กล่าวคือจะต้องวางที่ตำแหน่งก่อนระยะที่ เรียกว่า nonlinear length เพื่อลดผลกระทบที่เกิดจากปัญหาความไม่เป็นเชิงเส้นของเส้นใยแสง

10.2 ข้อเสนอแนะ

อัลกอริทึมที่นำเสนอยังไม่สามารถรวบรวมปัญหาทั้งหมดแล้วแก้ไขได้ภายในอัลกอริทึม เดียวซึ่งเป็นการเสียเวลาหากต้องหาผลเฉลยทีละบัญหา และในขั้นตอนการสร้างสมการและ อสมการเงื่อนไขต่างๆทั้งหมดเป็นการสร้างโดยผู้จัดทำวิทยานิพนธ์เองทั้งหมดซึ่งอาจเกิดความ ผิดพลาดขึ้นได้โดยง่าย ดังนั้นจึงควรออกแบบอัลกอริทึมที่สามารถแก้ไขปัญหาทั้งหมดได้ภายใน ครั้งเดียวและควรพัฒนาให้สามารถสร้างสมการและอสมการเงื่อนไขต่างๆได้โดยอัตโนมัติเช่นการ เขียนคำสั่งด้วยโปรแกรม Matlab เพื่อหาเส้นทางที่สั้นที่สุดเป็นต้น

รายการอ้างอิง

- [1] Gavioli G., and others. NRZ-PM-QPSK 16 × 100 Gb/s Transmission Over Installed Fiber With Different Dospersion Maps. <u>IEEE Photon. Technol. Lett., vol.</u> <u>22, no. 6</u>, 15 (March 2010) : 371-373
- [2] Madani, F. M., and Kikuchi, K. Performance Limit of Long-Distance WDM Dispersion-Managed Transmission System Using Higher Order Dispersion Compensation Fibers, <u>IEEE Photon. Technol. Lett.</u>, vol. 11, no. 5, (May 2010) : 608-610
- [3] Zhou, X., and others. Transmission of 32-Tb/s Capacity Over 580 km Using RZ-Shaped PDM-8QAM Modulation Format and Cascaded Multimodulus Blind Equalization Algorithm J. <u>Lightwave. Technol., vol. 26, no. 1, 15</u> (February 2010) : 456-465
- [4] Boonprachom, R., Kaewplung, P. An Algorithm for Minimizing the Number of Dispersion-Compensating Units in Wavelength-Routed Network. <u>TENCON 2009 - 2009 IEEE Region 10 Conference</u>. 23-26 (January 2009): 1-4.
- [5] Micheal M.C. 40G backbone deployment and visions on 100G Design. <u>Communications and Photonics Conference and Exhibition (ACP).</u> 2-6 (November 2009): 1-2.
- [6] Bruno1, G., Mongiardini, E., Riccardi, E., Rossaro, A. 40 Gb/s upgrade of a 1614 km link over TrueWave-RS fibre with live 10G OOK traffic. <u>Optical Fiber</u> <u>Communication Conference and Exposition (OFC/NFOEC)</u>. 6-10 (March 2011): 1-3
- [7] Forzati, M., Martensson, J., Berntson, A., Djupsjobacka, A., and Johannisson, P. Reduction of intrachannel four-wave mixing using the alternate- phase RZ modulation format. <u>IEEE Photon. Technol. Lett., vol. 14, no. 9</u>. (September 2002): 1285–1287
- [8] Liu, X. and others. Suppression of intrachannel four-wave-mixing-induced ghost pulses in high-speed transmissions by phase inversion between

adjacent marker blocks, <u>Opt. Lett., vol. 27, no. 13</u>, (July 2002) : 1177– 1179

- [9] Djordjevic, I.B., and Vasic, B. Constrained coding techniques for suppression of intrachannel nonlinear effects in high-speed optical transmission, <u>J.</u> <u>Lightw. Technol., vol. 24, no. 1</u>, (January 2006) : 411–419
- [10] Mecozzi, A., Clausen, C.B., and Shtaif, M. System impact of intrachannel nonlinear effects in highly dispersed optical pulse transmission, <u>IEEE Photon.</u> <u>Technol. Lett., vol. 12, no. 12</u>, (December 2000) : 1633–1635
- [11] M. Zou, M. Chen, and S. Xie, Suppression of ghost pulses in 40 Gb/s optical transmission systems with fixed-pattern phase modulation, <u>Opt.</u> <u>EXPress.MP, vol. 13, no. 7</u>, (February 2005) : 2251–2255
- [12] Zhang J. and others. Dynamic PMD compensation for high-speed optical fiber communication systems. Broadband Network and Multimedia Technology (IC-BNMT), <u>2010 3rd IEEE International Conference on,</u> <u>2010.</u> 26-28 (October 2010): 359-363
- [13] Ramamurthy, B., and Jue, J.P. Fibers, lasers, receivers and amplifiers. In Sivalingam, K. M. and Subramaniam, S., editors, Optical WDM Networks: Principles and Practice, chapter 2. Boston : Kluwer Academic Publishers, MA, 2000.
- [14] Keiser, G. Optical fiber communications 3rd edition, McGraw Hill, 2000.
- [15] Mukherjee, B. Optical Communication Networks. McGraw-Hill, New York, 1997.
- [16] Agrawal, GP. Nonlinear Fiber Optics 3rd edition, Academic Press, 2001.
- [17] Potenza, M. Optical fiber amplifiers for telecommunication system. <u>IEEE</u> <u>Communications Magazine</u> 34(8) (1996): 96-102.
- [18] Ramamurthy, B.; Iness, J.; and Mukherjee, B. Optimizing Amplifier Placements in a Multiwavelength Optical LAN/MAN: The Equally Powered-Wavelengths Case. <u>Journal of Lightwave Technology</u> 16 (9) (1998): 1560-1569.
- [19] ITU Telecommunication Standardization Sector. <u>ITU-T G.691, Optical interfaces for</u> <u>single-channel STM-64, STM-256 and other SDH systems with optical</u>

interfaces. [Computer file]. 2003. Available from: http://www.itu.int/ [2007, March 12]

[20] Tutorial DWDM prerequisite training: Fujitsu, 2002

- [21] Stamatios, V.K. DWDM Network, Devices and Technology, A JOHN WILEY & SONS, INC., PUBLICATION,
- [22] รศ.ยืน ภู่วรวรรณ. <u>เครือข่ายความเร็วสูง</u>. [ออนไลน์]. 2542. แหล่งที่มา: http://web.ku.ac.th/schoolnet/snet1/network/sdh.htm [19 กรกฎาคม 2554]
- [23] พงษ์ศักดิ์ สุสัมพันธ์ไพบูลย์. <u>การวางแผนโครงข่าย SDH</u>. [ออนไลน์]. แหล่งที่มา: http://www.cewmedia.com [19 กรกฎาคม 2554]
- [24] Peng Yue, Aijun Wen, Tao Shang and Chengwei Wang, "Implementation of Differential Precoder for High-speed Optical DQPSK Modulation", 2008.
- [25] ชนก ท่วมจร. <u>การสื่อสารผ่านใยแก้วนำแสง</u>. [ออนไลน์]. 2552. แหล่งที่มา: http://www.vcharkarn.com/varticle/38579 [19 กรกฎาคม 2554]
- [26] Atsunobu, O., Daisuke, T., Tomohiko, K., Shinji I. 43-Gbps RZ-DQPSK transponder for long-haul optical transmission system, 2008.
- [27] <u>ITU Grid Specification</u>. [online]. Available from: http://www.bayspec.com/pdf/ITU-DWDM.pdf [2012, Feb 9]
- [28] <u>TELNET Redes Inteligentes. Single-mode Optical Fiber G.652.D</u> [online]. Available from: http://www.telnet-ri.es/en/products/fiber-optic-cables-and-passivecomponents /optical-fiber/single-mode-optical-fiber-g652d/ [2011, Feb 9]
- [29] Francis Audet, Sr. Product Manager. <u>Dispersion-Compensating Fiber: Precision</u> <u>and Repetition</u>. 2010. [Online]. Available from: http://documents.exfo .com/appnotes/anote122-ang.pdf [2011, Feb 9]
- [30] BataGelj, B. <u>Need of Knowing Fiber Non-linear Coefficient in Optical Network</u>. [Online]. Available from: http://antenna.fe.uni-1j.si/~lok. [2012, Mar 20]
- [31] Wang, J.; Qi, X.; and Chen, B. Wavelength Assignment for Multicast in All-Optical WDM Network with Splitting Constraints. <u>IEEE/ACM Transactions on</u> <u>Networking</u> 14 (January 2006): 169-182.
- [32] Govind, P. Lightwave Technology Telecomunication Systems, WILEY, 2005.

- [33] Data Sheet of PowerForm[™] DCM[®] Modules for Single-Mode Fiber, C-Band: Avanex, 2005.
- [34] Fiberdyne Lab's Inc. <u>Dense Wave Division Multiplexing (DWDM) ITU Grid C-Band,</u> <u>100 GHZ Spacing</u>. [online]. Available from: http://www.fiberdyne.com/ products/itu-grid.html [2012, April 10]
- [35] International Telecommunication Union. <u>Telecommunication Standardization Sector</u> <u>of ITU</u>. [online]. 2006. Available from: http://www.catr.cn/radar/itut /201007/P020100707601100980177.pdf [2012, April 10]

ประวัติผู้เขียนวิทยานิพนธ์

นางสาว ทรรศมล เอี๊ยบศิริเมธี เกิดเมื่อวันที่ 7 ธันวาคม พ.ศ 2530 จบศึกษาระดับ ปริญญาวิศวกรรมศาสตรบัณฑิต สาขาวิชาวิศวกรรมไฟฟ้า ภาควิชาวิศวกรรมไฟฟ้า คณะ วิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ในปีการศึกษา 2552 และเข้าศึกษาต่อในหลักสูตร วิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมไฟฟ้า ภาควิชาวิศวกรรมไฟฟ้า คณะ วิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ในปีการศึกษา 2553

ส่วนหนึ่งของงานวิจัยในวิทยานิพนธ์นี้ได้รับการตีพิมพ์และเผยแพร่ในงานประชุมวิชาการ ทั้งหมด 2 ฉบับ

- บทความวิชาการในงานประชุม The seventh Nation Conference on Optics and Application (NCOA-7) จัดขึ้น ณ หอประชุม มหาวิทยาลัยเทคโนโลยีมหานคร ใน วันที่ 16 มีนาคม 2555 ในชื่อบทความเรื่อง อัลกอริทึมสำหรับใช้หน่วยชดเชยดิสเพอร์ ชันสำหรับโครงข่ายเส้นใยแสงแบบ wavelength-routed ที่ใช้อัตราการรับส่งข้อมูลที่ 40 Gb/s ต่อช่องสัญญาณ
- บทความวิชาการในงานประชุม 2012 21st Annual Wireless and Optical Communications Conference (WOCC) จัดขึ้น ณ โรงแรม The Ambassador Hotel Kaohsiung เมือง Kaohsiung ประเทศ ได้หวัน ในวันที่ 19-21 เมษายน 2555 ในชื่อบทความเรื่อง An Algorithm for the Optimal Employment of Dispersion-Compensating Units on 40 Gb/s per Channel-Based Wavelength-Routed Optical Fiber Networks