การสังเคราะห์อนุภาค Ca/SBA-15 ที่มีรูพรุนแบบเป็นระเบียบขนาดเมโซ เพื่อการผลิตไบโอดีเซลด้วยปฏิกิริยาทรานเอสเทอริฟิเคชัน

นาย กฤตนัย นิลวัชราภรณ์

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเคมี ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2553 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

ORDERED MESOPOROUS Ca/SBA-15 SYNTHESIS

FOR BIODIESEL PRODUCTION VIA TRANSESTERIFICATION

Mr. Kritanai Nilwatcharaporn

สูนย์วิทยทรัพยากร

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Program in Chemical Engineering Department of Chemical Engineering Faculty of Engineering Chulalongkorn University Academic Year 2010 Copyright of Chulalongkorn University

หัวข้อวิทยานิพนธ์	การสังเคราะห์อนุภาค Ca/SBA-15 ที่มีรูพรุน
	แบบเป็นระเบียบขนาดเมโซเพื่อการผลิตไบโอดีเซล
	ด้วยปฏิกิริยาทรานเอลเทอริฟิเคชัน
โดย	นาย กฤตนัย นิลวัชราภรณ์
สาขาวิชา	วิศวกรรมเคมี
อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก	อาจารย์ ดร. อภินันท์ สุทธิธารธวัช
อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม	ดร. นาวิน วิริยะเอี่ยมพิกุล

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็นส่วน หนึ่งของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

ten ret	- คณบดีคณะวิศวกรรมศาสตร์
(รองศาสตรา <mark>จารย์ ดร</mark> .บุญ	สม เลิศหิรัญวงศ์)
คณะกรรมการสอบวิทยานิพนธ์	
Tria	ประธานกรรมการ
(รองศาสตราจารย์ ดร. ศรา	วุธ ริมดุสิต)
(du	อาจ <mark>า</mark> รย์ที่ปรึกษาวิทยานิพนธ์หลัก
(อาจารย์ ดร. อภินันท์ สุทธิ	ธารธวัช)
Winsell & war	พิ. ภู่มี พิ. ภู่มี พิ. ภูมิ พิ. ภามา พิ. ภามา พิ. ภามา พิ. ภามา พิ. ภามา พิ. ภามา พิ. ภามา พิ. ภามา ภามา พิ. ภามา พามา พามา พามา พามา พามา พามา พามา
(ดร. นาว ิน วิร ิยะเอี่ยม า กุล	ับหาวิทยาลัย
fort	กรรมการ
(รองศาสตราจารย์ ดร.ธวัช	ชัย ชรินพาณิชกุล)
050	กรรมการ
(ผู้ช่วยศาสตราจารย์ ดร. ว:	งค์ ปวราจารย์)
agroand Alogente	กรรมการภายนอกมหาวิทยาลัย
(ดร. ขจรศักดิ์ เฟื่องนวกิจ)	

กฤตนัย นิลวัชราภรณ์ : การสังเคราะห์อนุภาค Ca/SBA-15 ที่มีรูพรุนแบบเป็นระเบียบ ขนาดเมโซเพื่อการผลิตไบโอดีเซลด้วยปฏิกิริยาทรานเอสเทอริฟิเคชัน (ORDERED MESOPOROUS Ca/SBA-15 SYNTHESIS FOR BIODIESEL PRODUCTION VIA TRANSESTERIFICATION) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: อ.ดร.อภินันท์ สุทธิธารธวัช, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: ดร.นาวิน วิริยะเอี่ยมพิกูล, 136 หน้า.

้งานวิจัยนี้ศึกษาการสังเคราะห์อนุภ<mark>าคผสม</mark> Ca/SBA-15 ที่มีรูพรุนแบบเป็นระเบียบขนาด เมโซเพื่อเพิ่มความเสถียรในการน<mark>ำไปใช้เป็นตัวเร่งปฏิกิริยาในปฏิกิริยาทรานเอสเทอริฟิเคชัน</mark> สังเคราะห์โดยการเติมแคลเซียมในเตรตระหว่างขั้นตอนการสังเคราะห์ SBA-15 ด้วยวิธีไฮโดรเทอร์ มอล ผลการวิเคราะห์วัสดุผสม Ca/SBA-15 พบว่าที่อัตราส่วนโมล Ca/Si 0.5 จะมีรูพรุนที่เป็น ระเบียบขนาดเมโซเช่นเดียวกับ SBA-15 แต่ค่าพื้นที่ผิวจะลดลงจาก 594 ตารางเมตรต่อกรัมเหลือ 260 ตารางเมตรต่อกรัม และปริมาตรรูพรุนลดลงจาก 1.04 ลูกบาศก์เซนติเมตรต่อกรัม เหลือ 0.46 ลูกบาศก์เซนติเมตรต่อกรัม โดยแคลเซียมจะอยู่ในรูพรุนของอนุภาคและเกิดพันธะกับโครงสร้าง SBA-15 ภายในรูพรุน การศึกษาผลกระทบที่มีผลต่อคุณสมบัติของอนุภาค พบว่าปริมาณ แคลเซียมที่ใช้ในการสังเคราะห์มีผลต่อรูปร่างของอนุภาค คือ ปริมาณแคลเซียมที่มากขึ้นทำให้ แคลเซียมอยู่ที่พื้นที่ผิวมากขึ้นแล<mark>ะปิดบังรูพรุนทำให้ค่า</mark>พื้นที่ผิวและปริมาตรรูพรุนของอนุภาค ลดลง ผลของอุณหภูมิการเผาในอากา<mark>ศเพื่อทำลายสารแม่</mark>แบบที่อุณหภูมิ 550°C, 650°C และ 750°C มีผลทำให้ค่าพื้นที่ผิวและขนาดรูพรุนลดลงเมื่อเผาที่อุณหภูมิสูงขึ้น เนื่องจากที่อุณหภูมิ 750°C เกิดแคลเซียมซิลิเกตทำให้โครงสร้างเปลี่ยนไป เวลาที่ใช้ในการไฮโดรเทคร์มคลมีผลทำให้ โครงสร้างรูพรุนที่มีระเบียบขนาดเมโซหายไปเมื่อใช้เวลามากขึ้น การนำวัสดุผสม Ca/SBA-15 ไป ใช้เป็นตัวเร่งปฏิกิริยาทรานเอสเทอริฟิเคชันระหว่างน้ำมันปาล์มกับเมทานอล ที่อัตราส่วนโมล ้น้ำมันปาล์ม:เมทานอล ที่ 1:27 **และความเข**้มข้นของตัวเร่งปฏิกิริยาที่ 5 %โดยน้ำหนักน้ำมัน ที่ อุณหภูมิ 200°Cเป็นเวลา 2 ชั่วโมง พบว่า 0.5_Ca/SBA-15_550°C ให้%FAME(กรดไขมันเอส เทอร์)สูงสุดที่ 96 % ซึ่งใกล้เคียงกับการใช้ตัวเร่งปฏิกิริยาที่เติม CaO บน SBA-15 ด้วยวิธีอิมเพร็ก เนซันที่ได้ 95 % อุณหภูมิการเผาสารจะมีผลต่อค่า%FAME โดยเมื่อเผาที่อุณหภูมิสูงขึ้นจาก 550°C เป็น 750°C ความเป็นเบสน้อยลงทำให้%FAMEลดลง และหลังจากทำปฏิกิริยา 3 รอบ 0.5_Ca/SBA-15_550°C ให้%FAME ลดลงเหลือ 92% และตัวเร่งปฏิกิริยาที่เติม CaO บน SBA-15 ด้วยวิธีอิมเพร็กเนชั่นให้%FAMEเหลือ 89%

สายมือชื่อนิสิต ภาควิชา วิศวกรรมเคมี ลายมือซื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก สาขาวิชา วิศวกรรมเคมี ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม ปีการศึกษา 2553

5270210521: MAJOR CHEMICAL ENGINEERING

KEYWORDS: SBA-15 / COMPOSITE MATERIAL / TRANSESTERIFICATION

KRITANAI NILWATCHARAPORN : ORDERED MESOPOROUS Ca/SBA-15 SYNTHESIS FOR BIODIESEL PRODUCTION VIA TRANSESTERIFICATION, ADVISOR: APINAN SOOTTITANTAWAT, D.Eng., CO-ADVISOR: NAWIN VIRIYA-EMPIKUL, D.Eng., 136 pp.

Ordered mesoporous Ca/SBA-15 was synthesized by adding calcium nitrate during SBA-15 synthesis via hydrothermal for improving stability that can use as catalyst in transesterification reaction. From the results, Ca/SBA-15 still had ordered mesoporous same as SBA-15. However, the specific surface area and pore volume were decreased from 594 to 260 m²/g and 1.04 to 0.46 cm³/g, respectively. Calcium was bond with SBA-15 structure inside the pores. When the mole ratio of Ca/Si increased, more calcium was found on the surface of SBA-15 resulted in the decreasing of the specific surface area and pore volume. At the calcinations temperature 550°C, 650°C and 750°C, the specific surface area and pore size were decreased with the increasing of temperature. At the calcination at 750°C, the calcium silicate was formed which the structure of SBA-15 was change. Furthermore, the ordered mesoporous was destroyed when increased time of hydrothermal from 1 day to 2 day. Ca/SBA-15 catalysts were used as the catalysts for transesterification reaction of palm oil and methanol. The reaction was performed at mole ratio palm oil : methanol 1:27, catalyst concentration 5wt% by oil, 200°C for 2 hours. 0.5_Ca/SBA-15 550°C gave the highest %FAME(Fatty Acid Methyl Ester) at 96 % comparing to the 95% from the catalyst impregnation of CaO on SBA-15. While increasing the calcinations temperature from 550°C to 750°C, the base strength was reduced causing the decrease of %FAME. After used for 3 times, 0.5_Ca/SBA-15_550°C and impregnation of CaO on SBA-15 gave 92 %FAME and 89 %FAME respectively

Department : Chemical Engineering	Student's Signature Kritanai Nilvatcher pin
	0 Scaff tout and -
Field of Study : Chemical Engineering	Advisor's Signature
Academic Year : 2010	Co-advisor's Signature

กิตติกรรมประกาศ

วิทยานิพนธ์ฉบับนี้สามารถสำเร็จลุล่วงตามวัตถุประสงค์ที่ได้วางไว้ด้วยดี เนื่องจากได้รับ การดูแลเอาใจใส่ คำปรึกษาและคำแนะนาในการทำงานวิจัย ตลอดจนข้อคิดเห็นต่างๆจากบุคคล หลายท่าน

ท่านแรกขอขอบพระคุณ อาจารย์ ดร. อภินันท์ สุทธิธารธวัช อาจารย์ที่ปรึกษา ซึ่งได้ให้ คำปรึกษา ข้อชี้แนะและให้ความกรุณาในการแก้ไขข้อบกพร่องของงานวิจัยนี้ ขอขอบพระคุณ ดร.นาวิน วิริยะเอี่ยมพิกุล อาจารย์ที่ปรึกษาร่วมของงานวิจัย สำหรับคำแนะนำที่ดีและน่าสนใจ เสมอมา ขอขอบพระคุณ ดร.บุญญาวัณย์ อยู่สุข สำหรับคำปรึกษาและความรู้ในงานวิจัยชิ้นนี้ ตลอดจน รองศาสตราจารย์ ดร. ศราวุธ ริมดุสิต ประธานกรรมการ รองศาสตราจารย์ ดร.ธวัชชัย ชรินพาณิชกุล ผู้ช่วยศาสตราจารย์ ดร. วรงค์ ปวราจารย์ และ ดร. ขจรศักดิ์ เฟื่องนวกิจ กรรมการ สอบวิทยานิพนธ์ ที่ได้เสียสละเวลาอันมีค่าในการสอบวิทยานิพนธ์นี้

ขอขอบพระคุณศูนย์นาโนเทคโนโลยีแห่งชาติ ศูนย์เทคโนโลยีโลหะและวัสดุแห่งชาติ บริษัทน้ำมันพืชปทุมและศูนย์เชี่ยวชาญเทคโนโลยีอนุภาคไทย จุฬาลงกรณ์มหาวิทยาลัย ที่ได้ให้ ความอนุเคราะห์ในการใช้เครื่องมือและอุปกรณ์ รวมถึงเงินทุนที่ใช้ในการทำงานวิจัย ตลอดจน เจ้าหน้าที่ศูนย์นาโนเทคโนโลยีแห่งชาติทุกท่าน ที่คอยให้ความช่วยเหลือและคำแนะนำในการ ทำงานวิจัย

ท้ายที่สุดนี้ขอขอบพระคุณบิดา มารดาที่คอยเป็นกำลังใจ และคอยดูแลในทุกๆ ด้านมา โดยตลอด ซึ่งเป็นแรงใจที่สำคัญที่สุด ที่ทำให้มีแรงผลักดัน ในการทำงานวิจัย และขอขอบคุณพี่ๆ เพื่อนๆ และน้องๆ ทุกคนที่ช่วยเหลือในทุก ๆ ด้าน

จึงขอกล่าวนามและแสดงความขอบคุณไว้ ณ ที่นี้

จุฬาลงกรณ์มหาวิทยาลัย

สารบัญ

	หน้า
บทคัดย่อภาษาไทย	۶۹
บทคัดย่อภาษาอังกฤษ	۹
กิตติกรรมประกาศ	น
สารบัญ	I
สารบัญตาราง	ฑ
สารบัญภาพ	ผ
บทที่ 1 บทนำ	1
1.1 ความเป็นมาและความสำคัญของปัญหา	1
1.2 วัตถุประสง <mark>ค์ขอ</mark> งงา <mark>นวิจัย</mark>	4
1.3 ขอบเขตของงานวิจัย	4
1.4 ประโยชน์ที่คาด <mark>ว่าจะได้รับ</mark>	5
2 ทฤษฎีและเอกสารงานวิจัยที่เกี่ยวข้ <mark>อง</mark>	6
2.1 กระบวนการโซล-เจล	6
2.2 สารลดแรงตึงผิว	7
2.3 กระบวนการจัดระเบียบหรือสร้างโครงสร้างได้ด้วยตนเอง(Self-assembly)	12
2.4 ปฏิกิริยาทรานเอสเทอริฟิเคชัน	14
2.5 การสังเคราะห์วัสดุผสมโลหะกับ SBA-15	16
2.6 การใช้ CaO เป็นตัวเร่งปฏิกิริยาในปฏิกิริยาทรานเอสเทอริฟิเคชัน	19
3 วิธีการดำเนินงานวิจัย	21
3.1 สารเคมีที่ใช้ในการทดลอง	21
3.2 การสังเคราะห์ SBA-15	21
3.3 การสังเคราะห์ Ca/SBA-15	22
3.4 การเติมตัวเร่งปฏิกิริยา CaO ลงบน SBA-15	
ด้วยวิธีอิมเพร็กเนชั่น(Impregnation)	23

3.5 การทดสอบคุณสมบัติทางกายภาพและคุณสมบัติทางเคมีของสารตัวอย่าง	.23
3.6 ทดสอบการนำไปใช้เป็นตัวเร่งปฏิกิริยาในปฏิกิริยาทรานเอสเทอริฟิเคชัน	.25
3.7 ทดสอบการนำกลับมาใช้ของตัวเร่งปฏิกิริยา	25
4 ผลการทดลองและวิเคราะห์ผลการทดลอง	26
4.1 เปรียบเทียบคุณสมบัติทางกายภาพและคุณสมบัติทางเคมีของ SBA-15 ,	
วัสดุผสม Ca/SBA-15 และ SBA-15 ที่เติมตัวเร่งปฏิกิริยา CaO	
ด้วยวิธีอิมเพร็กเนชั่น	.26
4.2 ผลกระทบจาก <mark>ปริมาณแคล</mark> เซียม <mark>ที่ใช้ในการสังเครา</mark> ะห์	
(อัตราส่วนโมลของ Ca/Si) ต่อคุณสมบัติทางกายภาพและคุณสมบัติทางเคมี	38
4.3 ผลกระทบจา <mark>กอุณหภูมิที่ใช้เผาต่อคุณสมบัติทางกาย</mark> ภาพและคุณสมบัติทางเคมี	.50
4.4 ผลกระทบจ <mark>ากเวลา</mark> ที่ใช้ในหม้อนึ่งอัดความดันต่อคุณสมบัติทางกายภาพ	
และคุณสมบัติทางเ <mark>คมี</mark>	73
4.5 ประสิทธิภาพใน <mark>การนำไปใช้เป็นตัวเร่งปฏิกิริยาใน</mark> ปฏิกิริยาทรานเอสเทอริฟิเคชัน	.91
4.5 ประสิทธิภาพในการนำก <mark>ลับไปใช้ใหม่</mark>	93
5 สรุปผลงานวิจัย	94
รายการอ้างอิง	.96
ภาคผนวก	99
ประวัติผู้เขียนวิทยานิพนธ์1	36

จุฬา้ลงกรณ์มหาวิทยาลัย

หน้า

สารบัญตาราง

ตารางที่	หน้า
4.1.1	ผลการวิเคราะห์ธาตุองค์ประกอบด้วยเครื่อง EDX ในกล้องจุลทรรศน์
	อิเล็กตรอนแบบส่องกราด27
4.1.2	ผลการวิเคราะห์คุณสมบัติพื้นที่ผิวของ SBA-15, 0.5_Ca/SBA-15 และ
	Imp0.5_CaO/SBA-15
4.2.1	ผลการวิเคราะห์ค <mark>ุณสมบัติพื</mark> ้นที่ผิวของ <mark>SBA-15, 0</mark> .2_Ca/SBA-15,
	0.5_Ca/SBA-15 และ 1.0_Ca/SBA-1548
4.3.1	ผลการวิเคราะห์คุณสมบัติพื้นที่ผิวของ 0.2_Ca/SBA-15_550°C,
	0.2_Ca/SBA-15_650°C ແລະ 0.2_Ca/SBA-15_750°C69
4.3.2	ผลการวิเคราะห์คุณสมบัติพื้นที่ผิวของ 0.5_Ca/SBA-15_550°C,
	0.5_Ca/SBA-15_650°C ແລະ 0.5_Ca/SBA-15_750°C69
4.3.3	ผลการวิเคราะห์คุณสมบัติพื้นที่ผิวของ 1.0_Ca/SBA-15_550°C,
	1.0_Ca/SBA-15_650 [°] C ແລະ 1.0_Ca/SBA-15_750 [°] C69
4.4.1	ผลการวิเคราะห์คุณสมบัติพื้นที่ผิวของ 0.5_Ca/SBA-15_550°C_1 วัน,
	0.5_Ca/SBA-15_550°C_2 วัน , 0.5_Ca/SBA15_650°C_1 วัน
	และ 0.5_Ca/SBA15_650°C_2 วัน88
4.4.2	ผลการวิเคราะห์คุณสมบัติพื้นที่ผิวของ 1.0_Ca/SBA-15_550°C_1 วัน,
	1.0_Ca/SBA-15_550°C_2 วัน , 1.0_Ca/SBA15_650°C_1 วัน
	และ 1.0_Ca/SBA15_650°C_2 วัน88
4.5.1	ผลปฏิกิริยาทรานเอสเทอริฟิเคชัน91
ก-1	การดูดซับ-คายซับแก๊สไนโตรเจนของสารตัวอย่าง
ก-2	การกระจายตัวของขนาดรูพรุนของสารตัวอย่าง111
ก-3	ค่าเอ็กซ์-เรย์ดิฟแฟรกชันที่มุมสูงของสารตัวอย่าง115

สารบัญภาพ

ภาพที่	N N	เน้า
2.1	ลักษณะของสารลดแรงตึงผิว	.7
2.2	กลไกการทำงานของสารลดแรงตึงผิว	8
2.3	ลักษณะการจัดเรียงตัวโคพอลิเมอร์แบบบล็อก (Block copolymer)	.10
2.4	แบบจาลองลักษณะโครงสร้างของสารลดแรงตึงผิวประเภท Amphiphilic	.11
2.5	รูปแบบเบื้องต้นของส <mark>ารกลุ่ม Pluronic® (PEO-</mark> PPO-PEO) ในรูปแบบไมเซลล์	.12
2.6	แผนภาพแบบโ <mark>ครงสร้างไมเ</mark> ซลล์ที่ควา <mark>มเข้มข้นต่าง</mark> กัน ของ	
	Cetyl Trimethyl Ammonium Bromide	13
2.7	ปฏิกิริยาทรานเอสเทอริฟิเคชัน	.14
2.8	ขั้นตอนการเกิ <mark>ดปฏิกิริยาทรานเอสเทอริฟิเคชันด้วยกา</mark> รใช้ตัวเร่งปฏิกิริยาที่เป็นเบส	.14
2.9	ผถวิเคราะห์ด้ <mark>วยเครื่องการดูดซับ-กาย</mark> ซับในโตรเจ <mark>น(</mark> Nitrogen adsorption-	
	desorption analyzer) และผลวิเคราะห์ด้วยเครื่องเอ็กซ์-เรย์ดิฟแฟรกโตมิเตอร์	
	(X-Ray diffractometor หรือ XRD) ที่มุมต่ำและมุมสูง	15
2.10	ภาพถ่ายจากกล้องจุ <mark>ลทรรศน์อิเล็กตรอนแบบ</mark> ส่องผ่านของอนุภาค Ag/SBA-15	16
2.11	ผลการวิเคราะห์ด้วยเครื่องเครื่องเอ็กซ์-เรย์ดิฟแฟรกโตมิเตอร์	
	(X-Ray diffractometor หรือ XRD) ที่มุมสูงของ (a)Mn _x O _y /SBA-15,	
	(b)Fe _x O _y /SBA-15, (c) MgO/SBA-15, (d)ZnO/SBA-15, (e) Cr ₂ O ₃ /SBA-15,	
	(f) Cr ₂ O ₃ /SBA-15 ด้วยวิธีอิมเพร็กเนชัน และ (g) NiO/SBA-15	17
2.12	ผลการวิเคราะห์ด้วยเครื่อง FT-IR(Fourier transform infrared spectroscopy)	
	ของ (c) SBA-15, (d) CuO/SBA-15 และ (e) MgO/SBA-15	18
4.1.1	รูปถ่าย SEM ของ SBA-15 ที่กำลังขยาย ก)1,000 เท่า, ข)5,000 เท่า	
	และ ค) 15,000 เท่า	28
4.1.2	รูปถ่าย SEM ของ 0.5_Ca/SBA-15 ที่กำลังขยาย ก)1,000 เท่า, ข)5,000 เท่า	
	และ ค) 15,000 เท่า	29
4.1.3	รูปถ่าย SEM ของ Imp0.5_CaO/SBA-15 ที่กำลังขยาย ก)1,000 เท่า,	
	ข)5,000 เท่า และ ค) 15,000 เท่า	30

ภาพที่		หน้า
4.1.4	รูปถ่าย TEM ของ ก) SBA-15, ข) 0.5_Ca/SBA-15 และ	
	ิค) Imp0.5_CaO/SBA-15	32
4.1.5	กราฟเอ็กซ์-เรย์คิฟแฟรกชันที่มุมสูงของ SBA-15, 0.5_Ca/SBA-15 และ	
	Imp0.5_CaO/SBA-15	33
4.1.6	กราฟเอ็กซ์-เรย์ดิฟแฟรกชันที่มุมต่ำของ SBA-15, 0.5_Ca/SBA-15 และ	
	Imp0.5_CaO/SBA-15	34
4.1.7	กราฟ FT-IR ของ SBA-15, 0.5_Ca/SBA-15 และ Imp0.5_CaO/SBA-15	35
4.1.8	ก.กราฟดูดซับ- คาย <mark>ซับ ในโต</mark> รเจนของ SBA-15, 0.5_Ca/SBA-15 และ	
	Imp0.5_CaO/ <mark>SBA-15 บ.ก</mark> ราฟกระจ <mark>ายตัวขนาครู</mark> พรุนของ SBA-15,	
	0.5_Ca/SBA-15 และ Imp0.5_CaO/SBA-15	37
4.2.1	รูปถ่าย SEM <mark>ของ SBA-15 ที่กำลังขยาย ก)1,000 เท่า</mark> , ข)5,000 เท่า	
	และ ค) 15,0 <mark>00 เท่า</mark>	39
4.2.2	รูปถ่าย SEM ข <mark>อง</mark> 0.2_Ca/SBA-15 ที่กำลังขยาย ก)1,000 เท่า, ข)5,000 เท่า	
	และ ค) 15,000 <mark>เท่า</mark>	40
4.2.3	รูปถ่าย SEM ของ 0 <mark>.5_Ca/SBA-15 ที่กำลังขยาย</mark> ก)1,000 เท่า, ข)5,000 เท่า	
	และ ค) 15,000 เท่า	41
4.2.4	รูปถ่าย SEM ของ 1.0_Ca/SBA-15 ที่กำลังขยาย ก)1,000 เท่า, ข)5,000 เท่า	
	และ ค) 15,000 เท่า	42
4.2.5	รูปถ่าย TEM ของ ก) SBA-15 , ข) 0.2_Ca/SBA-15 , ค) 0.5_Ca/SBA-15	
	และ ง) 1.0_Ca/SBA-15	44
4.2.6	กราฟเอ็กซ์-เรย์คิฟแฟรกชันที่มุมสูงของ SBA-15, 0.2_Ca/SBA-15,	
	0.5_Ca/SBA-15 ແຄະ 1.0_Ca/SBA-15	45
4.2.7	กราฟเอ็กซ์-เรย์ดิฟแฟรกชันที่มุมต่ำของ SBA-15, 0.2_Ca/SBA-15,	
	0.5_Ca/SBA-15 ແຄະ 1.0_Ca/SBA-15	46
4.2.8	กราฟ FT-IR ของ SBA-15, 0.2_Ca/SBA-15, 0.5_Ca/SBA-15 และ	
	1.0_Ca/SBA-15	47
4.2.9	ก.กราฟคูคซับ- คายซับ ในโตรเจนของ SBA-15, 0.2_Ca/SBA-15,	
	0.5_Ca/SBA-15 และ 1.0_Ca/SBA-15 บ.กราฟกระจายตัวขนาดรูพรุนของ	
	0.2_Ca/SBA-15, 0.5_Ca/SBA-15 และ 1.0_Ca/SBA-15	49

ภาพที่		หน้า
4.3.1	รูปถ่าย SEM ของ 0.2_Ca/SBA-15_550°C ที่กำลังขยาย ก)1,000 เท่า,	
	ข)5,000 เท่า และ ค) 15,000 เท่า	51
4.3.2	รูปถ่าย SEM ของ 0.2_Ca/SBA-15_650°C ที่กำลังขยาย ก)1,000 เท่า,	
	ข)5,000 เท่า และ ค) 15,000 เท่า	52
4.3.3	รูปถ่าย SEM ของ 0.2_Ca/SBA-15_750°C ที่กำลังขยาย ก)1,000 เท่า,	
	ข)5,000 เท่า และ ค) 15,000 เท่า	53
4.3.4	ฐปถ่าย SEM ของ 0.5_Ca/SBA-15_550°C ที่กำลังขยาย ก)1,000 เท่า,	
	ข)5,000 เท่า และ <mark>ค) 15,000</mark> เท่า	54
4.3.5	ฐปถ่าย SEM ของ 0.5_Ca/SBA-15_650°C ที่กำลังขยาย ก)1,000 เท่า,	
	ข)5,000 เท่า แ <mark>ละ ค</mark>) 15,000 เท่า	55
4.3.6	รูปถ่าย SEM <mark>ของ 0.5_Ca/SBA-15_750°C ที่กำลังขย</mark> าย ก)1,000 เท่า,	
	ข)5,000 เท่า และ ค) 15,000 เท่า	56
4.3.7	รูปถ่าย SEM ของ 1.0_Ca/SBA-15_550°C ที่กำลังขยาย ก)1,000 เท่า,	
	ข)5,000 เท่า แล <mark>ะ</mark> ค) <mark>15,000 เท่า</mark>	57
4.3.8	รูปถ่าย SEM ของ <mark>1.0_Ca/SBA-15_650[°]C</mark> ที่กำลังขยาย ก)1,000 เท่า,	
	ข)5,000 เท่า และ ค) 1 <mark>5,000 เท่า</mark>	58
4.3.9	รูปถ่าย SEM ของ 1.0_Ca/SBA-15_750°C ที่กำลังขยาย ก)1,000 เท่า,	
	ข)5,000 เท่า และ ค) 15,000 เท่า	59
4.3.10	รูปถ่าย TEM ของ ก) 0.5_Ca/SBA-15_550°C , ข) 0.5_Ca/SBA-15_650°C	
	และ ค) 0.5_Ca/SBA-15_750°C	60
4.3.11	กราฟเอ็กซ์-เรย์ดิฟแฟรกชันที่มุมสูงของ 0.2_Ca/SBA-15_550°C,	
	0.2_Ca/SBA-15_650°C ແລະ 0.2_Ca/SBA-15_750°C	62
4.3.12	กราฟเอ็กซ์-เรย์ดิฟแฟรกชันที่มุมสูงของ 0.5_Ca/SBA-15_550°C,	
	0.5_Ca/SBA-15_650°C ແຄະ 0.5_Ca/SBA-15_750°C	62
4.3.13	กราฟเอ็กซ์-เรย์ดิฟแฟรกชันที่มุมสูงของ 1.0_Ca/SBA-15_550°C,	
	1.0_Ca/SBA-15_650°C ແຄະ 1.0_Ca/SBA-15_750°C	63
4.3.14	กราฟเอ็กซ์-เรย์ดิฟแฟรก โตมิเตอร์ที่มุมสูงของ 1.5_Ca/SBA-15_750°C	63
4.3.15	กราฟเอ็กซ์-เรย์ดิฟแฟรกชันที่มุมสูงของ 1.5_Ca/SBA-15_550°C	
	และ 1.5_Ca/SBA-15_650°C	64

ภาพที่		หน้า
4.3.16	กราฟเอ็กซ์-เรย์คิฟแฟรกโตมิเตอร์ที่มุมต่ำของ 0.2_Ca/SBA-15_550°C,	
	0.2_Ca/SBA-15_650°C ແຄະ 0.2_Ca/SBA-15_750°C	66
4.3.17	กราฟเอ็กซ์-เรย์คิฟแฟรกโตมิเตอร์ที่มุมต่ำของ 0.5_Ca/SBA-15_550°C,	
	0.5_Ca/SBA-15_650°C ແຄະ 0.5_Ca/SBA-15_750°C	. 66
4.3.18	กราฟเอ็กซ์-เรย์คิฟแฟรกโตมิเตอร์ที่มุมต่ำของ 1.0_Ca/SBA-15_550°C,	
	1.0_Ca/SBA-15_650°C ແຄະ 1.0_Ca/SBA-15_750°C	67
4.3.19	ก.กราฟดูดซับ- คายซับ ในโตรเจนของ 0.2_Ca/SBA-15_550°C,	
	0.2_Ca/SBA-15 <mark>_650°C และ</mark> 0.2_Ca/SBA-15_750°C	
	ข.กราฟกระจาย <mark>ตัวขนาครูพรุ</mark> นของ 0.2_Ca/SBA-15_550°C,	
	0.2_Ca/SBA-15_650 [°] C ແ <mark>ລະ</mark> 0.2_Ca/SBA-15_750 [°] C	70
4.3.20	ก.กราฟดูดซับ- คายซับ ในโตรเจนของ 0.5_Ca/SBA-15_550°C,	
	0.5_Ca/SBA-15_650°C ແລະ 0.5_Ca/SBA-15_750°C	
	ข.กราฟกระจา <mark>ยตัวขนาครูพรุนของ 0.5_Ca/SBA-15_</mark> 550°C,	
	0.5_Ca/SBA-15 <mark>_650°C ແລະ 0.5_Ca/SBA-15_750</mark> °C	71
4.3.21	ก.กราฟดูดซับ- คาย <mark>ซ</mark> ับ ในโตรเจนของ 1.0_Ca/SBA-15_550°C,	
	1.0_Ca/SBA-15_650 [°] C ແລະ 1.0_Ca/SBA-15_750 [°] C	
	ข.กราฟกระจายตัวขนาดรูพรุนของ 1.0_Ca/SBA-15_550°C,	
	1.0_Ca/SBA-15_650°C ແລະ 1.0_Ca/SBA-15_750°C	72
4.4.1	รูปถ่าย SEM <mark>ของ 0.5_Ca/SBA-15_550[°]C_1 วัน ที่กำลังขยาย ก)1,000 เท่า,</mark>	
	ข)5,000 เท่า และ ค) 15,000 เท่า	74
4.4.2	รูปถ่าย SEM ของ 0.5_Ca/SBA-15_550°C_2 วัน ที่กำลังขยาย ก)1,000 เท่า,	
	ข)5,000 เท่า และ ค) 15,000 เท่า	75
4.4.3	รูปถ่าย SEM ของ 0.5_Ca/SBA-15_650°C_1 วัน ที่กำลังขยาย ก)1,000 เท่า,	
	ข)5,000 เท่า และ ค) 15,000 เท่า	76
4.4.4	รูปถ่าย SEM ของ 0.5_Ca/SBA-15_650°C_2 วัน ที่กำลังขยาย ก)1,000 เท่า,	
	ข)5,000 เท่า และ ค) 15,000 เท่า	77
4.4.5	รูปถ่าย SEM ของ 1.0_Ca/SBA-15_550°C_1 วัน ที่กำลังขยาย ก)1,000 เท่า,	
	ข)5,000 เท่า และ ค) 15,000 เท่า	78

			9
5	0	9 1 1	90
1		V V	V I
0 1			

ภาพที	ង	น้า
4.4.6	รูปถ่าย SEM ของ 1.0_Ca/SBA-15_550°C_2 วัน ที่กำลังขยาย ก)1,000 เท่า,	
	ข)5,000 เท่า และ ค) 15,000 เท่า	79
4.4.7	รูปถ่าย SEM ของ 1.0_Ca/SBA-15_650°C_1 วัน ที่กำลังขยาย ก)1,000 เท่า,	
	ข)5,000 เท่า และ ค) 15,000 เท่า 8	80
4.4.8	รูปถ่าย SEM ของ 1.0_Ca/SBA-15_650°C_2 วัน ที่กำลังขยาย ก)1,000 เท่า,	
	ข)5,000 เท่า และ ค) 15,000 เท่า	81
4.4.9	รูปถ่าย TEM ของ ก) 0.5_Ca/SBA15_650°C_1 วัน และ	
	ข) 0.5_Ca/SBA15 <mark>_650°C_2</mark> วัน	82
4.4.10	กราฟเอ็กซ์-เรย ์ดิฟแฟรกชันที่ มุมสูงขอ <mark>งของ 0.5_Ca</mark> /SBA-15_550°C_1 วัน,	
	0.5_Ca/SBA <mark>-15_550°C_2 วัน</mark> , 0.5_Ca/SBA15_650°C_1 วัน และ	
	0.5_Ca/SBA15_650°C_2 วัน	84
4.4.11	กราฟเอ็กซ์-เร <mark>ย์ดิฟแฟรกชันที่มุมสูงของของ 1.0_Ca/S</mark> BA-15_550°C_1 วัน,	
	1.0_Ca/SBA <mark>-15_550°C_2 วัน , 1.0_Ca/SBA15_650</mark> °C_1 วัน และ	
	1.0_Ca/SBA1 <mark>5_6</mark> 50 [°] C_2 วั <mark>น</mark>	84
4.4.12	กราฟเอ็กซ์-เรย์ด <mark>ิฟแฟ</mark> รกโ <mark>ตมิเตอร์ที่มุมต่ำ</mark> ของของ 0.5_Ca/SBA-15_550°C_1 วัน,	
	0.5_Ca/SBA-15_ <mark>5</mark> 50°C <mark>_2 วัน , 0.5_Ca/S</mark> BA15_650°C_1 วัน และ	
	0.5_Ca/SBA15_650°C_2 วัน	86
4.4.13	กราฟเอ็กซ์-เรย์ดิฟแฟรกโตมิเตอร์ที่มุมต่ำของของ 1.0_Ca/SBA-15_550°C_1 วัน,	
	1.0_Ca/SBA <mark>-1</mark> 5_550°C_2 วัน , 1.0_Ca/SBA15_650°C_1 วัน และ	
	1.0_Ca/SBA15_650°C_2 วัน	86
4.4.14	ก.กราฟดูดซับ- คายซับ ในโตรเจน 0.5_Ca/SBA-15_550°C_1 วัน,	
	0.5_Ca/SBA-15_550°C_2 วัน , 0.5_Ca/SBA15_650°C_1 วัน และ	
	0.5_Ca/SBA15_650°C_2 วัน ข.กราฟกระจายตัวขนาดรูพรุนของ	
	0.5_Ca/SBA-15_550°C_1 วัน, 0.5_Ca/SBA-15_550°C_2 วัน ,	
	0.5_Ca/SBA15_650°C_1 วัน และ 0.5_Ca/SBA15_650°C_2 วัน 8	39
4.4.15	ก.กราฟดูดซับ- คายซับ ในโตรเจน 1.0_Ca/SBA-15_550°C_1 วัน,	
	1.0_Ca/SBA-15_550°C_2 วัน , 1.0_Ca/SBA15_650°C_1 วัน และ	
	1.0_Ca/SBA15_650°C_2 วัน ข.กราฟกระจายตัวขนาดรูพรุนของ	
	1.0_Ca/SBA-15_550°C_1 วัน, 1.0_Ca/SBA-15_550°C_2 วัน ,	
	1.0 Ca/SBA15 650°C 1 วัน และ 1.0 Ca/SBA15 650°C 2 วัน	90

ภาพที่		หน้า
4.5.1	กราฟ CO ₂ -TPD ของ 0.5_Ca/SBA-15_550°C, 0.5_Ca/SBA-15_650°C และ	
	0.5_Ca/SBA-15_750°C	93

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

บทที่ 1

บทนำ

1.1 ความเป็นมาและความสำคัญของปัญหา

ปัจจุบันแหล่งพลังงานหลักที่ใช้ในโลกมาจากแหล่งพลังงานฟอสซิล โดยแหล่งพลังงาน ฟอสซิลมีอยู่อย่างจำกัดและไม่มนุษย์สามารถผลิตได้ ในขณะที่ความต้องการในการใช้พลังงาน ของมนุษย์ยังคงเพิ่มขึ้นตลอดเวลาและในอนาคตจะเพิ่มขึ้นในแบบก้าวกระโดดตามประชากรบน โลกที่เพิ่มขึ้นแบบก้าวกระโดดทำให้อนาคตโลกจะพบปัญหาการขาดแคลนแหล่งพลังงาน ดังนั้น นักวิทยาศาสตร์ทั่วโลกจึงให้ความสนใจในการค้นคว้าและวิจัยเกี่ยวกับการหาแหล่งพลังงานใหม่ เพื่อนำมาใช้ทดแทนแหล่งพลังงานฟอสซิล ตัวอย่างแหล่งพลังงานทดแทนที่ใช้กันในปัจจุบัน เช่น พลังงานนิวเคลียร์ซึ่งเป็นแหล่งพลังงานรองจากแหล่งพลังงานฟอสซิล พลังงานแสงอาทิตย์ พลังงานฉม พลังงานจากน้ำ พลังงานจากความร้อนใต้พิภพ และพลังงานจากชีวมวล ซึ่งหนึ่งใน พลังงานจากชีวมวล คือ ไปโอดีเซล

ไปโอดีเซลหรือเอสเทอร์ของกรดไขมัน(Fatty Acid Methyl Esters) ได้รับความสนใจ นำมาใช้เป็นพลังงานทดแทนเนื่องจากมีคุณสมบัติการเผาไหม้ที่ใกล้เคียงกับน้ำมันดีเซลที่ใช้กัน อย่างมากในปัจจุบัน นอกจากนี้ไปโอดีเซลยังสามารถย่อยสลายได้เองตามธรรมชาติ ไม่มีความ เป็นพิษ และเมื่อนำไปใช้ในเครื่องยนต์จะมีข้อดีกว่าการใช้น้ำมันดีเซล คือ จะปล่อยสาร CO, SO₂, สารจำพวกไฮโดรคาร์บอนที่เผาไหม้ไม่สมบูรณ์และเขม่าที่เป็นอนุภาคเล็กๆน้อยกว่า[1, 2] จาก คุณสมบัติที่กล่าวมาทำให้ไบโอดีเซลได้รับความสนใจเป็นอย่างมากในการนำมาใช้เป็นพลังงาน ทดแทน ไปโอดีเซลสามารถผลิตได้โดยปฏิกิริยาทรานเอสเทอริฟิเคชัน(Transesterification) ระหว่างไตรกลีเซอไรด์(Triglycerides)ที่มีอยู่ในน้ำมันพืชและไขมันสัตว์กับแอลกอฮอล์โดยใช้ ตัวเร่งปฏิกิริยาที่เป็นกรดหรือเบส ผลิตภัณฑ์ที่ได้จะเป็นไปโอดีเซลกับกลีเซอรอล(glycerol) ตัวเร่ง ปฏิกิริยาที่ใช้ในปฏิกิริยาทรานเอสเทอริฟิเคชัน(Transesterification) จะนิยมใช้ที่เป็นเบสมากกว่า ที่เป็นกรด เนื่องจากตัวเร่งปฏิกิริยาที่เป็นเบสจะเร่งให้เกิดปฏิกิริยาได้เร็วและได้ผลิตภัณฑ์ที่สูงใน สภาวะที่ไม่อันตราย คือ ที่อุณหภูมิไม่สูงและความดันปกติ(เกิดปฏิกิริยาสมบูรณ์ภายใน 1 ชั่วโมง ์ ที่อุณหภูมิ 65°C ความดัน 1 atm) ในขณะที่ตัวเร่งปฏิกิริยาที่เป็นกรดจะต้องใช้ที่อุณหภูมิสูงกว่า และความดันที่สูงกว่า ตัวอย่างตัวเร่งปฏิกิริยาเบสที่ใช้คือ โซเดียมไฮดรอกไซด์(NaOH) โปแทส เซียมไฮดรอกไซด์(KOH) เป็นต้น ตัวเร่งปฏิกิริยาที่ใช้ในการผลิตไบโอดีเซลในปัจจุบันจะเป็นตัวเร่ง ้ปฏิกิริยาแบบเอกพันธ์ซึ่งมีข้อเสียมากในการใช้ตัวเร่งปฏิกิริยา คือ จะเกิดสบู่ขึ้นในระบบเนื่องจาก ตัวเร่งปฏิกิริยาจะทำปฏิกิริยากับกรดไขมันอิสระ(free fatty acids)และต้องมีขั้นตอนในการทำให้ ระบบผลิตเป็นกลางด้วยการเติมกรดทำให้เกิดเกลือในระบบและไปรวมตัวกับกลีเซอรอลซึ่งทำให้ ้ความบริสุทธิ์ลดลงทำให้ต้องเพิ่มกระบว<mark>นการแยก</mark>สารเข้าไปในระบบเพื่อทำให้สารมีความบริสุทธิ์ มากขึ้นและนำไปขายได้ตามมาตรฐานที่กำหนดซึ่งจะต้องเสียค่าใช้จ่ายเพิ่มขึ้น นอกจากนี้จะมีน้ำ เสียที่เกิดจากการล้างเกลือที่เกิดขึ้นในระบบการผลิตเป็นจำนวนมากซึ่งเป็นปัญหาด้านมลพิษและ ้ตัวเร่งปฏิกิริยาไม่สามารถนำกลับมาใช้ใหม่ได้ การเติมกรดเข้าไปในระบบอาจทำให้เกิดการกัด กร่อนระบบและต้องเสียค่าใช้จ่ายในดูแลรักษาระบบ ซึ่งปัญหาทั้งหมดที่กล่าวมาจะทำให้ต้นทุนใน การผลิตสูงขึ้น[3, 4] ดังนั้นในปัจจุบันงานวิจัยจะมุ่งเน้นไปที่การเปลี่ยนไปใช้ตัวเร่งปฏิกิริยาแบบ ้วิวิธพันธ์ในการผลิตไบโอ<mark>ดีเ</mark>ซลเพื่อที่จะแก้ข้อเสียทั้งหมดที่กล่าวมาจากการใช้ตัวเร่งปฏิกิริยาเอก พันธ์เนื่องจากตัวเร่งปฏิกิริยา<mark>วิวิธพันธ์จะเป็นการใช้ตัวเร่งป</mark>ฏิกิ<mark>ริ</mark>ยาที่เป็นคนละสถานะกับสารตั้งต้น ที่ใช้ในการทำปฏิกิริยาจึงทำให้สามารถแยกออกจากระบบได้ง่าย สามารถนำกลับมาใช้ใหม่ได้ ไม่ ้ต้องการขั้นตอนในการทำให้ระบบเป็นกลางทำให้จะลดน้ำเสียที่จะเกิดขึ้นจากการทำความสะอาด ระบบ ดังนั้นการใช้ตัวเร่งปฏิกิริยาแบบวิวิธพันธ์จะลดต้นทุนในการผลิตอย่างมากจึงทำให้ตัวเร่ง ปฏิกิริยาแบบวิวิธพันธ์ได้รับความสนใจในการพัฒนาเพื่อจะใช้แทนตัวเร่งปฏิกิริยาเอกพันธ์ แม้ว่า การใช้ตัวเร่งปฏิกิริยาวิวิธพันธ์จะมีข้อดีตามที่กล่าวมา แต่ตัวเร่งปฏิกิริยาวิวิธพันธ์ที่มีการคิดค้นใน · ปัจจุบันมีข้อจำกัดเนื่องจากตัวเร่งปฏิกิริยาวิวิธพันธ์จะมีอายุการใช้งานที่สั้นไม่เหมาะสมในการใช้ ในระดับอุตสาหกรรม โดยหนึ่งในสาเหตุหลักที่ทำให้อายุการใช้งานสั้นมาจากการที่ตัวเร่งปฏิกิริยา ไม่เสถียรเกิดการละลายเข้าไปในสารสถานะของเหลวในระบบการผลิต ซึ่งการละลายจะทำให้ ตัวเร่งปฏิกิริยาอายุสั้นแล้วยังส่งผลเสียกับการผลิตคือ จะกลายเป็นสารปนเปื้อนทำให้ความ บริสุทธิ์ของไบโอดีเซลและกลีเซอรอลลดลงจนไม่ผ่านมาตรฐานที่มีการกำหนดไว้จนไม่สามารถ นำไปใช้งานหรือขายได้ ดังนั้นในการพัฒนาตัวเร่งปฏิกิริยาวิวิธพันธ์จึงเน้นไปที่การจะทำให้ตัวเร่ง ปฏิกิริยามีความเสถียรและให้ประสิทธิภาพในการเร่งปฏิกิริยาสูง จากความต้องการที่กล่าวจึง สนใจที่จะทำวัสดุผสมระหว่างตัวเร่งปฏิกิริยากับวัสดุรองรับโดยคิดว่าตัวเร่งปฏิกิริยาจะเกิดพันธะ

กับตัวรองรับที่แข็งแรงทำให้มีความเสถียรมากขึ้นซึ่งจะมีอายุการใช้งานที่นานขึ้น นอกจากนี้วัสดุ ผสมที่ได้จะมีพื้นที่ผิวที่มากขึ้นจากวัสดุที่เป็นตัวรองรับซึ่งน่าจะเป็นผลดีในการเร่งปฏิกิริยา

ตัวเร่งปฏิกิริยาของแข็งที่เป็นเบสหลายชนิดถูกนำมาใช้ในปฏิกิริยาทรานเอสเทอริฟิเคชัน ตัวอย่างเช่น สารประกอบโลหะออกไซด์ของธาตุหมู่แอลคาไลน์(Alkaline) แอลคาไลน์เอิธ (Alkaline earth) แรเอิธิ(Rare earth) และสารประกอบโลหะแอลคาไลน์เอิธไฮดรอกไซด์(Alkaline earth metal hydroxide) เป็นต้น หนึ่งในสารประกอบโลหะแอลคาไลน์เอิธออกไซด์ที่ได้รับความ สนใจอย่างมากในการใช้เป็นตัวเร่งปฏิกิริยาทรานเอสเทอริฟิเคชัน คือ แคลเซียมออกไซด์ (CaO) เนื่องมาจากมีความเป็นเบสสูงซึ่งเป็นคุณสมบัติสำคัญที่ปฏิกิริยาทรานเอสเทอริฟิเคชันต้องการ โดยสามารถเร่งให้เกิดปฏิกิริยาได้เกือบสมบูรณ์ภายในเวลา 1 ชั่วโมง[5] นอกจากนี้ยังมีค่าการ ละลายที่ต่ำในเมทานอลซึ่งเป็นสารตั้งต้นในการผลิตไบโอดีเซลและยังมีราคาถูก อย่างไรก็ตาม แคลเซียมออกไซด์ก็ยังมีข้อจำกัด คือ สามารถทำปฏิกิริยากับกลีเซอรอลที่เป็นผลิตภัณฑ์ข้างเคียง ที่เกิดขึ้นจากปฏิกิริยาทรานเอสเทอริฟิเคชันเกิดเป็นแคลเซียมไดกลีเซอรอกไซด์ (calciumdiglyceroxide)[6] จากข้อจำกัดนี้ทำให้แคลเซียมออกไซด์ไม่เสถียรทำให้ไม่สามารถนำ กลับมาใช้ใหม่ได้และยังทำให้กลีเซอรอลที่สามารถนำไปขายได้ลดลง ดังนั้นจึงสนใจที่จะนำ แคลเซียมออกไซด์ไปทำเป็นวัสดุผสมกับตัวรองรับเพื่อเพิ่มความเสถียร

SBA-15 เป็นซิลิกาที่มีอนุภาคขนาดนาโนโดยมีรูพรุนระดับเมโซที่เป็นระเบียบโดยใช้สาร กลุ่ม ไดหรือไตรบลอคโคโพลีเมอร์(di-tri blockcopolymer)มาเป็นแม่แบบในการสังเคราะห์ SBA-15นิยมนำไปใช้ในงานด้านเป็นตัวรองรับตัวเร่งปฏิกิริยา ใช้ในงานการแยกสาร และใช้เป็นแม่แบบ แบบแข็งสำหรับผลิตสารที่มีรูพรุนขนาดเมโซ เนื่องมาจากSBA-15 จะมีพื้นที่ผิว ปริมาตรรูพรุนมาก ทนความร้อนได้ดี และมีรูพรุนขนาดใหญ่ซึ่งโมเลกุลไตรกลีเซอไรด์สามารถผ่านเข้าไปได้[7, 8] และนอกจากนี้ยังมีรูพรุนขนาดไมโครที่เชื่อมต่อกันภายในอนุภาคทำให้SBA-15เหมาะสมที่จะ นำมาใช้เป็นตัวรองรับ[9] ดังนั้นจึงสนใจจะใช้SBA-15มาเป็นตัวรองรับในการสังเคราะห์วัสดุผสม เพื่อนำไปใช้ในการผลิตไบโอดีเซล

ในงานวิจัยนี้จะทำการสังเคราะห์วัสดุผสม Ca/SBA-15 โดยการเติมแคลเซียมไนเตรตซึ่ง เป็นแหล่งแคลเซียมลงไปในระหว่างขั้นตอนการสังเคราะห์ SBA-15 ที่ใช้กระบวนการ โซล-เจล และการไฮโดรเทอร์มอล(Hydrothermal) ในการสังเคราะห์ เพื่อจะให้แคลเซียมเกิดพันธะกับSBA- 15 ทำให้ได้วัสดุผสมที่มีความเสถียรและสามารถนำไปใช้เป็นตัวเร่งปฏิกิริยาในปฏิกิริยาทรานเอ สเทอริฟิเคชันเพื่อใช้ผลิตไบโอดีเซลได้ โดยที่วัสดุผสม Ca/SBA-15 ที่สังเคราะห์ได้ยังคงคุณสมบัติ ที่มีรูพรุนแบบเป็นระเบียบขนาดเมโซ โดยศึกษาผลกระทบจากอัตราส่วนโมล Ca/Si ที่ใช้ในการ สังเคราะห์ ผลกระทบจากอุณหภูมิที่ใช้ในการเผา และผลกระทบจากระยะเวลาในขั้นตอนการ ไฮโดรเทอร์มอล(Hydrothermal) ที่มีต่อคุณสมบัติของอนุภาค Ca/SBA-15 และนำไปทดลองใช้ เป็นตัวเร่งปฏิกิริยาในปฏิกิริยาทรานเอสเทอริฟิเคชันของน้ำมันปาล์มกับเมทานอลเพื่อศึกษา ความสามารถในการเป็นตัวเร่งปฏิกิริยา รวมถึงความสามารถในการนำกลับมาใช้ใหม่เมื่อเทียบ กับการเตรียมตัวเร่งปฏิกิริยาแบบอิมเพร็กเนชัน(Impregnation)

1.2 วัตถุประสงค์ของงานวิจัย

1.2.1 เตรียมอนุภาคผสม Ca/SBA-15 ที่มีรูพรุนแบบเป็นระเบียบขนาดเมโซ

1.2.2 นำอนุภาค Ca/SBA-15 ที่มีรูพรุนแบบเป็นระเบียบขนาดเมโซ ไปใช้เป็นตัวเร่ง ปฏิกิริยาในการผลิตไบโอดีเซลด้วยปฏิกิริยาทรานเอสเทอริฟิเคชัน

1.3 ขอบเขตของงานวิจัย

1.3.1 สังเคราะห์อนุภาคผสม Ca/SBA-15 ที่มีรูพรุนแบบเป็นระเบียบขนาดเมโซ ด้วยการ เติมแคลเซียมในเตรตซึ่งเป็นแหล่งแคลเซียมลงไประหว่างขั้นตอนการสังเคราะห์ SBA-15

1.3.2 เปรียบเทียบคุณสมบัติทางกายภาพและคุณสมบัติทางเคมีของอนุภาคผสม
Ca/SBA-15 ที่สังเคราะห์ได้กับอนุภาค SBA-15 ที่เติมตัวเร่งปฏิกิริยาแคลเซียมออกไซด์ซึ่งเตรียม
ด้วยกระบวนการอิมเพร็กเนชั่น(Impregnation)

1.3.3 ศึกษาผลกระทบจากอัตราส่วนโมล Ca/Si ที่ใช้ในการสังเคราะห์ อุณหภูมิที่ใช้ใน การเผา และระยะเวลาในขั้นตอนไฮโดรเทอร์มอล ที่มีต่อคุณสมบัติทางกายภาพและคุณสมบัติ ทางเคมีของอนุภาค 1.3.4 น้ำอนุภาค Ca/SBA-15 ที่เตรียมได้ไปทดสอบปฏิกิริยาทรานเอสเทอริฟิเคชัน ระหว่างน้ำมันปาล์มกับเมทานอลและตรวจสอบปริมาณไบโอดีเซล หรือ เอสเทอร์ของกรดไขมัน (Fatty Acid Methyl Esters) ด้วยเครื่องวิเคราะห์แก๊สโครมาโทกราฟี(Gas chromatography)

1.3.5 ทดสอบคุณสมบัติการนำกลับมาใช้ใหม่ของอนุภาค Ca/SBA-15 ในปฏิกิริยาทราน เอสเทอริฟิเคซันเปรียบเทียบกับอนุภาค SBA-15 ที่เติมตัวเร่งปฏิกิริยาแคลเซียมออกไซด์ซึ่งเตรียม ด้วยกระบวนการ อิมเพร็กเนชั่น(Impregnation) โดยนำไปใช้ในปฏิกิริยาทรานเอสเทอริฟิเคชัน จำนวน 5 ครั้งและดูองค์ประกอบธาตุที่เหลือในอนุภาค

1.4 ประโยชน์ที่คาดว่าจ<mark>ะได้รับ</mark>

1.4.1 ด้านอุตสาหกรรม : อนุภาค Ca/SBA-15 ที่มีรูพรุนขนาดเมโซแบบเป็นระเบียบมี ความเสถียรต่อการละลายมากขึ้น มีอายุการใช้งานนานขึ้นสามารถนำไปใช้เป็นตัวเร่งปฏิกิริยาใน การเป็นผลิตไบโอดีเซลได้ ซึ่งสามารถลดค่าใช้จ่ายในกระบวนการผลิตได้เป็นจำนวนมาก

1.4.2 ด้านสิ่งแวดล้อม : เมื่อใช้อนุภาค Ca/SBA-15 เป็นตัวเร่งปฏิกิริยาในการผลิตไบโอ ดีเซลแทนที่ตัวเร่งปฏิกิริยาแบบเอกพันธ์ จะช่วยลดน้ำเสียที่เกิดจากระบบการผลิตได้เป็นจำนวน มากเพราะไม่มีขั้นตอนในการล้างเกลือออกจากระบบ นอกจากนี้ยังสิ้นเปลืองพลังงานน้อยกว่า เนื่องจากสามารถแยกตัวเร่งปฏิกิริยาออกจากระบบได้ง่าย

1.4.3 ด้านวิชาการ : สังเคราะห์อนุภาคที่มีรูพรุนขนาดเมโซแบบเป็นระเบียบโดยการใช้ แม่แบบที่เป็นสารจำพวก ไดหรือไตรบลอคโคโพลีเมอร์(di-tri blockcopolymer)ด้วยวิธีการไฮโดร เทอร์มอล

บทที่ 2

ทฤษฎีและเอกสารงานวิจัยที่เกี่ยวข้อง

2.1 กระบวนการ โซล-เจล[10]

กระบวนการ โซล-เจล เป็นกระบวนการที่ใช้อย่างแพร่หลายในสาขาวัสดุศาสตร์ที่ใช้ในการ สังเคราะห์สารพวกเซรามิคออกไซด์โดยจะใช้สารตั้งต้นที่เป็นสารประกอบโลหะแอลคอกไซด์ (Metal alkoxides)เนื่องจากสามารถทำปฏิกิริยาได้ไวกับน้ำ กระบวนการนี้จะประกอบไปด้วย 2 ขั้นตอน คือ ขั้นตอนแรกจะเกิดปฏิกิริยาไอโดรไลซิส(Hydrolysis)เกิดเป็นโซล และขั้นตอนต่อมาจะ เกิดปฏิกิริยาควบแน่นเกิดเป็นเจล โดยในขั้นตอนแรกปฏิกิริยาไฮโดรไลซิสของสารประกอบโลหะ แอลคอกไซด์รวมตัวกับน้ำและเกิดหมู่พังก์ชันไซลานอล Si-OH(Silanol group)ตามสมการที่ 1 จากนั้นหมู่พังก์ชันไซลานอลจะเกิดปฏิกิริยาควบแน่น(Condensation)ระหว่างหมู่ฟังก์ชันไซลา นอลกับหมู่พังก์ชันอีธอกซี(Ethoxy group)เกิดเป็นหมู่พังก์ชันไซลอกเซน Si-O-Si(Siloxane group) ตามสมการที่ 2 และ 3 โดยในขั้นตอนนี้บางที่จะเรียกว่าปฏิกิริยาพอลิเมอไรเซชัน (Polymerization) เนื่องจากจะเกิดการรวมตัวของโมเลกุลไปเรื่อยๆ จนมีขนาดใหญ่เหมือนกับ ปฏิกิริยาพอลิเมอไรเซชัน

<u>ปฏิกิริยาไฮโดรไลซิส (Hydrolysis reaction)</u>

$$Si(OR)_4 + H_2O \longrightarrow HO-Si(OR)_3 + R-OH$$
(1)

<u>ปฏิกิริยาควบแน่น (Alcohol condensation)</u>

$$(OR)_3$$
-Si-OR + HO-Si- $(OR)_3 \rightarrow [(OR)_3Si-O-Si(OR)_3] + R-OH$ (2)

<u>ปฏิกิริยาควบแน่น (Water condensation)</u>

 $(OR)_3$ -Si-OH + HO-Si- $(OR)_3 \rightarrow [(OR)_3$ Si-O-Si $(OR)_3$] + H-O-H(3)

2.1.1 ปัจจัยที่มีผลต่อกระบวนการ โซล-เจล[11]

-อัตราส่วนโดยโมลของ น้ำต่อหมู่ฟังก์ชันแอลคอกไซด์

เมื่ออัตราส่วนโดยโมลของ น้ำต่อหมู่ฟังก์ชันแอล-คอกไซด์ ที่ใช้ในการสังเคราะห์น้อยจะ ทำให้ปฏิกิริยาควบแน่นในส่วนของแอลกอฮอล์ตามสมการที่2 หายไป ทำให้เวลาการเกิดเจ ลนานขึ้นส่งผลให้อนุภาคมีรูพรุนขนาดไมโครมากขึ้น

-ตัวเร่งปฏิกิริยาในกระบวนการ โซล-เจ<mark>ล</mark>

ได้ศึกษาผลกระทบจาก pH ต่อลักษณะโครงสร้างของอนุภาค พบว่าเมื่อมีการ เปลี่ยนแปลง pH ในสารละลายจะทำให้อัตราการเกิดปฏิกิริยาไฮโดรไลซิสต่ออัตราการ เกิดปฏิกิริยาควบแน่นเปลี่ยนไป ถ้า pH เพิ่มขึ้นจะทำให้ผลิตภัณฑ์ที่ได้เปลี่ยนจากลักษณะที่เป็น กิ่งก้านเปลี่ยนไปเป็นลักษณะเป็นอนุภาคทรงกลมมากขึ้น

2.2 สารลดแรงตึงผิว

สารลดแรงตึงผิวมีการใช้อย่างมากมายในอุตสาหกรรมเคมี เช่น การนำไปใช้ในการผลิต น้ำมันเครื่องของรถยนต์ นำไปผลิตยาในการรักษาคนไข้ และนำไปใช้ในการทำความสะอาดเป็น ผงซักฟอก เป็นต้น นอกจากจะใช้ในอุตสาหกรรมเคมีอย่างแพร่หลายแล้วยังถูกนำไปใช้ใน อุตสาหกรรมการพิมพ์ อุตสาหกรรมเกี่ยวกับการบันทึกแถบแม่เหล็กและอุตสาหกรรมชิ้นส่วนอิเล็ก ทรอนิกขนาดเล็ก สารลดแรงตึงผิวจะเป็นสารที่เมื่อละลายลงไปในระบบจะทำหน้าที่ลดแรงตึงผิว ระหว่างผิวสัมผัสของสารที่ไม่ละลายเข้าด้วยกัน เช่น น้ำกับน้ำมัน โดยส่วนประกอบหลักของสาร ลดแรงตึงผิวจะประกอบไปด้วยคุณลักษณะ 2 ส่วน คือ ส่วนที่ไม่มีขั้ว และ ส่วนที่มีขั้ว

รูปที่ 2.1 ลักษณะของสารลดแรงตึงผิว

เมื่อนำสารลดแรงตึงผิวละลายในน้ำซึ่งเป็นตัวทำละลายที่มีขั้ว ส่วนที่มีขั้วของสารลดแรง ตึงผิวจะเรียกว่า ไฮโดรฟิลิก(Hydrophilic) ส่วนที่ไม่มีขั้วจะเรียกว่า ไฮโดรโฟบิก(Hydrophobic) โดยส่วนที่ไม่มีขั้วจะอยู่ที่บริเวณผิวน้ำเพื่อที่จะให้ส่วนที่ไม่มีขั้วสัมผัสกับน้ำน้อยที่สุดซึ่ง จากนั้นเมื่อ ต้องการละลายสารไม่มีขั้วเข้าไปในน้ำ สารที่ไม่มีขั้วนี้จะสัมผัสกับส่วนที่ไม่มีขั้วของสารลดแรงตึง ผิวซึ่งอยู่ที่พื้นผิวน้ำและยึดติดกันและละลายลงไปในน้ำได้ซึ่งแสดงไว้ในรูปที่ 2.2

รูปที่ 2.2 กลไกการทำงานของสารลดแรงตึงผิว

สารลดแรงตึงผิวสามารถแบ่งออกได้หลายกลุ่มซึ่งขึ้นอยู่กับชนิดของประจุไฟฟ้าบนส่วนที่ มีขั้ว โดยสามารถแบ่งออกได้เป็น 4 ประเภท[12]

2.2.1 สารลดแรงตึงผิวประจุลบ (Anionic surfactant)

เป็นสารลดแรงตึงผิวที่ประจุไฟฟ้าบนส่วนที่มีขั้วให้ประจุลบ ส่วนมากแสดงอยู่ในรูป carboxylate, sulfate, sulfonate หรือ phosphate สารลดแรงตึงผิวประเภทนี้ใช้มากใน อุตสาหกรรมประเภท ผงซักฟอก, ผลิตภัณฑ์ทำความสะอาด, น้ำยาล้างชาม เป็นต้น โดยใช้มากถึง 49% ของสารลดแรงตึงผิวทั้งหมด เนื่องจากสามารถใช้ขจัดคราบสกปรกได้ดี ตัวอย่างในรูปที่ 2.3 2.2.2 สารลดแรงตึงผิวประจุบวก (Cationic surfactant)

เป็นสารลดแรงตึงผิวที่ประจุไฟฟ้าบนส่วนที่มีขั้วให้ประจุบวก ส่วนมากมักจะเป็นพวก quaternary ammonium สารลดแรงตึงผิวประเภทนี้จะไม่สามารถทำงานได้ในสภาวะแวดล้อมที่ เป็นด่างสูง เนื่องจากเกลือแอมโมเนียจะมีการสูญเสียประจุบวกทำให้เกิดการตกตะกอนได้ สารลด แรงตึงผิวประเภทประจุบวกจะทำให้เกิดการระคายเคืองมากกว่าสารลดแรงตึงผิวประเภทประจุลบ นิยมใช้ในพวกน้ำยาปรับผ้านุ่ม ครีมนวดผม และผลิตภัณฑ์เกี่ยวกับการจัดแต่งทรงผม เป็นต้น

2.2.3 สารลดแรงตึงผิวไม่มีประจุ (Nonionic surfactant)

สารลดแรงตึงผิวประเภทนี้จะต่างจากสารลดแรงตึงผิวประเภทประจุลบและประจุบวก ตรงที่เป็นโมเลกุลที่ไม่มีประจุ โดยมีพวก polyether หรือ polyhydroxyl เป็นกลุ่มที่แสดงคุณสมบัติ คล้ายพวกที่มีประจุ ใช้มากในผงซักฟอก น้ำยาล้างถ้วยชาม ผลิตภัณฑ์ทำความสะอาดพื้นผิว เป็น ต้น

-ตัวอย่างสารลดแรงตึงผิวไม่มีประจุ

Poloxamer เป็นพอลิเมอร์ที่ประกอบด้วยหน่วยเล็กๆ ของมอนอเมอร์ต่างชนิดกันอย่าง น้อยสองชนิดที่เรียกว่า โคพอลิเมอร์ (Copolymer) ที่มีการจัดเรียงตัวโคพอลิเมอร์แบบบล็อก (Block copolymer) ซึ่งจำแนกออกเป็น 4 แบบ ตามลักษณะการจัดเรียงตัว คือ การจัดเรียงตัว แบบสองบล็อกสาหรับสององค์ประกอบ (DiBlock) การจัดเรียงตัวแบบสามบล็อกสาหรับสอง องค์ประกอบ (ABA triblock) การจัดเรียงตัวแบบสามบล็อกสาหรับสามองค์ประกอบ (ABC triblock) และ การจัดเรียงตัวบล็อกแบบดาวสำหรับสององค์ประกอบ (Star block) แสดงดังรูปที่ 2.3 โดย Poloxamer มีการจัดเรียงตัวแบบสามบล็อกสำหรับสามองค์ประกอบ (ABC triblock)

รูปที่ 2.3 ลักษณะการจัดเรียงตัวโคพอลิเมอร์แบบบล็อก (Block copolymer)

Poloxamer เป็นสารลดแรงตึงผิวประเภทแอมฟิฟิลิกกล่าวคือ เป็นสารลดแรงตึงผิวไร้ ประจุมีลักษณะการจัดเรียงตัวแบบTriblock-copolymer โดยมีโซ่ของพอลีออกซีโพรพิลีน (Polyoxypropylene: Poly (propylene oxide): PPO) ที่เป็นส่วนที่ไม่ชอบน้ำอยู่ตรงแกนกลางและ เชื่อมต่อกับโซ่ของโพลีออกซีเอทิลีน (Polyoxyethylene: Poly (ethylene oxide): PEO) ที่เป็นส่วน ที่ชอบน้ำขนาบข้างทั้งสองด้าน โดย Poloxamer ที่มีการจัดเรียงตัวเช่นนี้มีชื่อทางการค้า คือ Pluronic® โดยโครงสร้างแสดงดังรูปด้านล่างและ Pluronic® ที่นิยมนำมาใช้สังเคราะห์วัสดุที่มี การจัดเรียงตัวของรูพรุนอย่างเป็นระเบียบ (Ordered Mesoporous materials) คือ Pluronic® P123 มีสูตรโครงสร้าง คือ PEO₂₀PPO₇₀PEO₂₀ โดยมีมวลโมเลกุลเท่ากับ 5,800 Da[13]

2.2.4 สารลดแรงตึงผิวชว<mark>ิทเ</mark>ทอเรียน (Zwitterions)

เป็นสารลดแรงตึงผิวที่ประจุไฟฟ้าบนส่วนที่มีขั้วสามารถให้ได้ทั้งประจุบวกและลบ โดยจะ แสดงคุณสมบัติประเภทใดขึ้นอยู่กับสภาพความเป็นกรด-ด่างของสภาวะแวดล้อม ถ้าสภาวะ แวดล้อมเป็นด่าง ประจุไฟฟ้าบนส่วนที่มีขั้วจะให้ประจุลบ ถ้าสภาวะแวดล้อมเป็นกรดประจุไฟฟ้า บนส่วนที่มีขั้วจะให้ประจุบวกและในสภาวะที่เป็นกลางจะไม่เกิดการให้ประจุไฟฟ้าบนส่วนที่มีขั้ว สารลดแรงตึงผิวประเภทนี้นิยมใช้ในผลิตภัณฑ์เกี่ยวกับผิว หรือ ผม ในปัจจุบันยังใช้น้อยกว่าสาร ลดแรงตึงผิวประเภทอื่น

2.3 กระบวนการจัดระเบียบหรือสร้างโครงสร้างได้ด้วยตนเอง (Self-assembly)[14]

กระบวนการจัดระเบียบหรือสร้างโครงสร้างได้ด้วยตนเอง คือ การจัดเรียงองค์ประกอบที่ สามารถเกิดขึ้นได้เองและเป็นไปตามธรรมชาติของวัสดุนั้น ซึ่งจะเชื่อมต่อและเกาะกันด้วยแรง นอน-โควาเลนท์ (Noncovalent interactions) เช่น พันธะไฮโดรเจน (Hydrogen bonding) แรง แวนเดอร์วาลส์ (Van der Waals' force) แรงไฟฟ้าสถิต (Electrostatic force) เป็นต้น รวมไปถึง จะใช้สำหรับการอธิบายหรือกล่าวถึง การมาประกอบหรือรวมตัวกัน (Assemble) ของโมเลกุลที่มี โครงสร้างซับซ้อน (Supramolecules) ซึ่งโดยทั่วไปแล้ว คือ โมเลกุลของสารลดแรงตึงผิวประเภท แอมฟิฟิลิก (Amphiphilic surfactant molecules) หรือ พอลิเมอร์ (Polymers) ที่ประกอบด้วย ส่วนที่ชอบน้ำ (Hydrophilic part) เนื่องจากมีคุณสมบัติที่มีขั้ว และ ส่วนที่ไม่ชอบน้ำ (Hydrophobic part) เนื่องจากมีคุณสมบัติที่ไม่มีขั้วดังรูป 2.4

รูปที่ 2.4 แบบจาลองลักษณะโครงสร้างของสารลดแรงตึงผิวประเภท Amphiphilic

จุฬาลงกรณมหาวทยาลย

ในสารละลายที่ใช้น้ำเป็นตัวทำละลาย (Aqueous solution) เมื่อความเข้มข้นของสารลด แรงตึงผิว ในขณะนั้นมีค่าเหนือกว่าความเข้มข้นวิกฤติการเกิดไมเซลล์ (Critical Micelle Concentration: CMC) สารลดแรงตึงผิวจะประกอบกันขึ้นกลายเป็นโครงสร้างไมเซลล์ (Micelles) ทรงกลม(Spherical) หรือ ทรงกระบอก (Cylindrical) แสดงดังรูป 2.5

รูปที่ 2.5 รูปแบบเบื้องต้นของสารกลุ่ม Pluronic® (PEO-PPO-PEO) ในรูปแบบไมเซลล์

โดยส่วนที่ชอบน้ำสัมผัสกับน้ำ(ส่วนที่ชอบน้ำเป็นส่วนที่สามารถเข้าได้ดีกับน้ำหรือกลุ่ม ของสารละลายที่มีขั้วอาจเป็นคาร์โบไฮเดรต (Carbohydrate) กรดคาร์บอกชิลิก (Carboxylic acid) ฟอสเฟต (Phosphate) ไซโคลเปบไทด์ (Cyclic peptide) และแอลกอฮอล์ (Alcohol) เป็น ต้น ในขณะที่ส่วนที่ไม่ชอบน้ำจะเรียงตัวเป็นแกนกลางอยู่ภายในไมเซลล์ (ส่วนที่ไม่ชอบน้ำเป็น ส่วนที่สามารถเข้าได้ดีกับตัวทำละลายอินทรีย์หรือกลุ่มของสารละลายที่ไม่มีขั้ว เช่น กลุ่มของ สารประกอบไฮโดรคาร์บอนที่ต่อกันเป็นโซ่ (Hydrocarbon chain) กรดไขมันไม่อิ่มตัว (Unsaturated fatty acid) และกรดไขมันอิ่มตัว (Saturated fatty acid)) อย่างไรก็ตามถ้าเพิ่ม ความเข้มข้นของสารลดแรงตึงผิวเหนือกว่าค่า CMC โครงสร้างของไมเซลล์ (Micelles) จะเกิด รูปแบบโครงสร้างที่แตกต่างกันไป ซึ่งขึ้นอยู่กับความเข้มข้นเหนือกว่าค่า CMC ณ ขณะนั้น สามารถอธิบายกลไกที่เกิดขึ้นแสดงดังรูปที่ 2.6 เป็นแผนภาพรูปแบบโครงสร้างไมเซลล์ที่ความ เข้มข้นต่างกันของ Cetyl Trimethyl Ammonium Bromide (CTAB) ซึ่งค่า CMC ถือเป็นคุณสมบัติ เฉพาะตัวของสารลดแรงตึงผิวแต่ละชนิดด้วย

จุฬาลงกรณมหาวิทยาลัย

รูปที่ 2.6 แผนภาพแบบโครงสร้างไมเซลล์ที่ความเข้มข้นต่างกัน ของ Cetyl Trimethyl Ammonium Bromide (CTAB)[14]

2.4 ปฏิกิริยาทรานเอสเท<mark>อริฟิเคชั</mark>น[15, 16]

ในเคมีอินทรีย์ปฏิกิริยาทรานเอสเทอริฟีเคชันเป็นกระบวนการแลกเปลี่ยนหมู่ฟังก์ชัน อินทรีย์ในสารประเภทเอสเทอร์กับหมู่ฟังก์ชันอินทรีย์ในสารประเภทแอลกอฮอล์ โดยใส่ตัวเร่ง ปฏิกิริยาที่เป็นกรดหรือเบสเข้าไปช่วยเร่งปฏิกิริยาและยังสามารถใช้เอนไซม์บางซึ่งเป็นตัวเร่ง ปฏิกิริยาแบบไบโอได้ด้วย

ในปฏิกิริยาทรานเอสเทอริฟิเคชันของน้ำมันพืช ไตรกลีเซอไรด์จะทำปฏิกิริยากับ แอลกอฮอล์โดยมีกรดและเบสที่แรงเป็นตัวเร่งปฏิกิริยา จะได้ไบโอดีเซลหรือเอสเทอร์ของกรดไขมัน และกลีซอรอล โดยปฏิกิริยาทรานเอสเทอริฟิเคชันจะเป็นปฏิกิริยาผันกลับได้และตามสูตรทางเคมี ของปฏิกิริยาต้องใช้ 1 โมลของไตรกลีเซอไรด์ทำปฏิกิริยากับ 3 โมลของแอลกอฮอล์แต่อย่างไรก็ ตามปกติจะนิยมใช้แอลกอฮอล์ที่มากพอเพื่อให้ได้ผลิตภัณฑ์เกิดได้มาก มีหลายปัจจัยที่มีผลต่อ ปฏิกิริยาทรานเอสเทอริฟิเคชัน เช่น ชนิดของตัวเร่งปฏิกิริยา ความบริสุทธิ์ของสารตั้งต้นโดยดู ปริมาณน้ำที่เจือปนเป็นหลัก อุณหภูมิ เป็นต้น แต่ปัจจัยหลักจะเป็นชนิดของตัวเร่งปฏิกิริยา

$H_2C - OCOR'$ HC - OCOR'' $H_2C - OCOR'''$ $H_2C - OCOR'''$	+ 3 ROH	catalyst	ROCOR' + ROCOR" + ROCOR"	+	H ₂ C – OH HC – OH H ₂ C – OH
triglyceride	alcohol		mixture of alkyl esters		glycerol

รูปที่ 2.7 ปฏิกิริยาทรานเอสเทอริฟิเคชัน

2.4.1 กระบวนการที่ใช้ตัวเร่งปฏิกิริยาที่เป็นเบส

การใช้ตัวเร่งปฏิกิริยาที่เป็นเบสจะทำให้ปฏิกิริยาเกิดได้เร็วกว่าการใช้ตัวเร่งปฏิกิริยาที่เป็น กรด นอกจากนี้การใช้ตัวเร่งปฏิกิริยาที่เป็นเบสจะกัดกร่อนระบบน้อยกว่าพวกสารประกอบที่เป็น กรด ดังนั้นในอุตสาหกรรมจึงนิยมใช้ตัวเร่งปฏิกิริยาที่เป็นเบส เช่น สารประกอบโลหะแอลคาไลน์ ไฮดรอกไซด์ โซเดียมหรือโปแทสเซียมคาร์บอเนต เป็นต้น จากรูปที่ 2.8 ปฏิกิริยาจะเริ่มจากเบสทำ ปฏิกิริยากับแอลกอฮอล์ ผลิตแอลคอกไซด์และตัวเร่งปฏิกิริยาที่โปรโตเนต ตามสมการที่ 1 จากนั้น นิวคลีโอฟิลิคจะทำปฏิกิริยากับแอลคอกไซด์ที่หมู่คาร์บอนิลของไตรกลีเซอไรด์เกิดสารประกอบ เซิงซ้อนเตตระฮีดรอล ตามสมการที่ 2 ซึ่งจะเกิดแอลคิลเอสเทอร์และไดกลีเซอรด์ที่มีประจุลบ ตาม สมการที่ 3 สุดท้ายตัวเร่งปฏิกิริยาจะดีโปรโตเนตและได้แอคทีฟไซต์กลับมา ตามสมการที่ 4 เกิด กลับไปกลับมาไปแบบนี้เรื่อยรวมทั้งกับไดกลีเซอไรด์และโมโนกลีเซอไรด์

รูปที่ 2.8 ขั้นตอนการเกิดปฏิกิริยาทรานเอสเทอริฟิเคชันด้วยการใช้ตัวเร่งปฏิกิริยาที่เป็นเบส

2.5 การสังเคราะห์วัสดุผสมโลหะกับSBA-15

ปี 2005 Zhu และคณะได้สังเคราะห์วัสดุผสมระหว่างเงินกับSBA-15ได้สำเร็จ โดยการ เติมเกลือไนเตรตของเงินลงไปในขั้นตอนการสังเคราะห์SBA-15 ซึ่งอนุภาคของเงินไปยึดเกาะกับ พนังภายในรูพรุนที่มีขนาดเมโซโดยที่ยังคงความเป็นรูพรุนที่มีระเบียบอยู่ ซึ่งผลจากการวิเคราะห์ ด้วยเครื่องการดูดซับ-คายซับไนโตรเจน(Nitrogen adsorption-desorption analyzer)และ เครื่อง เอ็กซ์-เรย์ดิฟแฟรกโตมิเตอร์(X-Ray diffractometor หรือ XRD) ที่มุมต่ำจะพบว่าสารที่สังเคราะห์ ได้ยังคงความเป็นรูพรุนแบบมีระเบียบและมีรูพรุนที่มีขนาดเมโซ[17]

รูปที่ 2.9 ผลวิเคราะห์ด้วยเครื่องการดูดซับ-คายซับไนโตรเจน(Nitrogen adsorption-desorption analyzer) และผลวิเคราะห์ด้วยเครื่องเอ็กซ์-เรย์ดิฟแฟรกโตมิเตอร์(X-Ray diffractometor หรือ XRD) ที่มุมต่ำและมุมสูง[17]

นอกจากนี้จากภาพถ่ายที่ถ่ายได้จากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่านพบว่า อนุภาคยังคงมีรูพรุนที่เป็นระเบียบ และบริเวณที่เป็นสีดำ คือ อนุภาคเงินที่เข้าไปเกิดพันธะอยู่ที่ พนังภายในรูพรุนขนาดเมโซ

รูปที่ 2.10 <mark>ภาพถ่ายจากกล้องจุลทรรศ</mark>น์อิเล็กตรอนแบบส่องผ่าน

ของอนุภาค Ag/SBA-15[17]

ในปีเดียวกัน wang และคณะ สามารถเตรียมวัสดุผสมระหว่างโลหะออกไซด์ชนิดต่างๆ กับSBA-15ด้วยการเติมเกลือของโลหะลงไปในขั้นตอนการสังเคราะห์SBA-15 พบว่าโลหะออกไซด์ จะยังคงเหลืออยู่ในวัสดุผสมเมื่อทำสารให้แห้งด้วยการระเหย แต่กับวิธีล้างและกรองไม่พบโลหะ ออกไซด์อยู่เลย เนื่องมาจากโลหะที่เติมลงไปจะทำปฏิกิริยากับหมู่ฟังก์ชันไซลานอลในขั้นตอนการ ระเหยน้ำและเกิดผนังบางๆที่มีพันธะ Si-O-M ขึ้น แต่โลหะบางกลุ่มจะเกิดเป็นโลหะออกไซด์ขึ้น แทนโดยดูได้จากผลการวิเคราะห์ด้วยเครื่องเครื่องเอ็กซ์-เรย์ดิฟแฟรกโตมิเตอร์(X-Ray diffractometor หรือ XRD) จะพบว่าผลที่ได้จะแบ่งเป็น 2 กลุ่ม คือ กลุ่มที่มีกราฟที่แสดงลักษณะ ความเป็นผลึกของโลหะออกไซด์ แต่อีกกลุ่มจะไม่มีลักษณะความเป็นผลึกของโลหะออกไซด์ เกิดขึ้น แสดงไว้ในรูปที่ 2.11 A และ B

จุฬาลงกรณ์มหาวิทยาลัย

รูปที่ 2.11 ผลการวิเคราะห์ด้วยเครื่องเครื่องเอ็กซ์-เรย์ดิฟแฟรกโตมิเตอร์(X-Ray diffractometor หรือ XRD) ที่มุมสูงของ (a)Mn_xO_y/SBA-15, (b)Fe_xO_y/SBA-15, (c) MgO/SBA-15, (d)ZnO/SBA-15, (e) Cr₂O₃/SBA-15, (f) Cr₂O₃/SBA-15 ด้วยวิธีอิมเพร็กเนชัน และ (g) NiO/SBA-15[18]

เนื่องจากว่าโลหะแต่ละชนิดจะละลายเข้าไปในสารลดแรงตึงผิวซึ่งเป็นแม่แบบที่ตำแหน่ง ไม่เหมือนกัน โดยโลหะที่ละลายได้ในส่วนที่ชอบน้ำจะไปเกิดพันธะกับหมู่ฟังก์ชันไซลานอลที่ผิว ของ SBA-15 ทำให้เกิดพันธะ Si-O-M ขึ้นเมื่อเผาแม่แบบทิ้งไป จะเป็นโลหะพวก Mg²⁺,Zn²⁺,Fe³⁺ และ Zr⁴⁺ ส่วนอีกกลุ่มจะละลายได้ดีในส่วนที่ไม่ชอบน้ำทำให้เมื่อเผาแม่แบบออกไปก็จะเกิดโลหะ ออกไซด์อยู่ในรูพรุนทำให้กราฟมีลักษณะแสดงความเป็นผลึกของโลหะออกไซด์ จะเป็นโลหะพวก Cu²⁺,Ni²⁺ and Cr³⁺ นอกจากนี้จากผลการวิเคราะห์ด้วยเครื่อง FT-IR(Fourier transform infrared spectroscopy) ก็จะพบว่าโลหะกลุ่มที่แสดงความเป็นผลึกจะยังมีกราฟแสดงหมู่ฟังก์ชัน ไซลานอลอยู่ แต่ในกลุ่มที่ไม่มีกราฟแสดงความเป็นผลึกจะไม่มีกราฟที่แสดงหมู่ฟังก์ชันไซลานอล ซึ่งเป็นไปตามที่อธิบายไว้ว่าโลหะกลุ่มนี้จะเกิดพันธะกับหมู่ไซลานอลที่ผนังภายในทำให้พีคที่แสดง หมู่ฟังก์ชันไซลานอลหายไป[18]

รูปที่ 2.12 ผลการวิเคราะห์ด้วยเครื่อง FT-IR(Fourier transform infrared spectroscopy) ของ (c) SBA-15, (d) CuO/SBA-15 และ (e) MgO/SBA-15[18]

ในปี 2008 Li และ Rudolph ได้ศึกษาถึงความแตกต่างระหว่างวิธีการเติมแมกนีเซียมด้วย วิธีการอิมเพร็กเนชันกับการเติมแมกนีเซียมด้วยวิธีของ wang พบว่าความแตกต่างระหว่างการเติม 2 วิธีนี้คือ การเตรียมด้วยวิธีอิมเพร็กเนชันจะได้ให้ค่าพื้นผิวที่น้อยกว่า ขนาดรูพรุนและปริมาตรรู พรุนจะน้อยกว่าด้วย แต่ขนาดรูพรุนยังคงมีขนาดเมโซและมีลักษณะรูพรุนที่เป็นระเบียบ นอกจากนี้การกระจายตัวของแมกนีเซียมที่ใส่ลงไปก็จะแตกต่างกัน คือ การเติมด้วยวิธีอิมเพร็ก เนชันจะมีแมกนีเซียมอยู่ที่บนพื้นผิวมากกว่าการเตรียมด้วยวิธีของ wang ซึ่งสาเหตุก็มาจากการ เติมด้วยวิธีอิมเพร็กเนชั่นจะได้ก้อนโลหะออกไซด์ซึ่งบางส่วนจะเข้าไปอยู่ในรูพรุนและบางส่วนจะ เกาะที่ผิวและบดบังรูพรุน ทำให้ค่าพื้นที่ผิว ขนาดรูพรุนและปริมาตรรูพรุนน้อยกว่าการเตรียมจาก วิธีของ wang แมกนีเซียมจะเกิดพันธะกับหมู่ไซลานอลภายในรูพรุนคล้ายเป็นชั้นบางๆเคลือบไว้ ในรูพรุน ซึ่งทำให้ไปบังรูพรุนน้อยกว่า โดยการเติมแมกนีเซียมด้วยวิธีทั้งสองจะไม่ทำให้รูปร่างของ SBA-15 เปลี่ยนไปแต่จะยังคงความเป็นรูพรุนที่มีระเบียบขนาดเมโซอยู่ [19]

2.6 การใช้ CaO เป็นตัวเร่งปฏิกิริยาในปฏิกิริยาทรานเอสเทอริฟิเคชัน

้ ปี 2007 Albuquerqueและคณะ ศึกษาการเติม CaO ลงบนตัวรองรับซิลิกาที่เป็น SBA-15 ด้วยวิธีอิมเพร็กเนชัน เพื่อนำไปใช้เป็นตัวเร่งปฏิกิริยาในปฏิกิริยาทรานเอสเทอริฟิเคชันของ เอธิล บิวทิเรต(ethyl butyrate) กับเมทานอล(methanol) โดยเติม CaO ที่ระหว่าง 4-20% โดย ้น้ำหนักตัวรองรับ พบว่าที่การเติม CaO 14% โดยน้ำหนักตัวรองรับให้ค่าคอนเวอชัน (conversion)ที่ดีที่สุด โดยในการศึกษาได้หาอิทธิพลที่มีผลต่อค่าคอนเวอชัน(conversion) ซึ่ง พบว่า อัตราส่วนโมลระหว่าง เมทาน<mark>อลต่อเอธิล บิว</mark>ทิเรต มีผลมากที่สุด ส่วนอุณหภูมิที่ใช้ในการ ทำปฏกิริยาและความเข้มข้นของตัวเร่งปฏิกิริยามีผลกระทบไม่มาก จากนั้นเมื่อนำเอาตัวเร่ง ปฏิกิริยาที่พบว่าให้ค่าคอนเวอชัน(conversion)มากที่สุด ไปทำปฏิกิริยาทรานเอสเทอริฟิเคชัน ระหว่างน้ำมันดอกทานต<mark>ะวันกับเมทานอล ที่สภาวะอุณหภูมิ</mark> 60°C อัตราส่วนโมลเมทานอล: ้น้ำมันเท่ากับ 12 และความเข้ม้ขนของตัวเร่งปฏิกิริยา 1%โดยน้ำหนักของน้ำมัน พบว่าให้ค่าคอน เวอชัน(conversion) 65.7 และ 95% ที่เวลา 1 และ 5 ชั่วโมงตามลำดับ นอกจากนี้ยังศึกษาความ คงทนของตัวเร่งปฏิกิริยาโ<mark>ดยนำเอา</mark>ตัวเร่งปฏิกิริยาไปปั่นกวนผสมกับเอธิล บิวทิเรตเป็นจำนวน 5 รอบ จากนั้นนำเอธิล บิว<mark>ทิเรต ไปทำปฏิกิริยา</mark>กับเ<mark>มทาน</mark>อลพบว่าไม่เกิดปฏิกิริยา ทำให้ Albuquerqueและคณะ สรุปว่าการเติม CaO ลงบนตัวรองรับ SBA-15 ด้วยวิธีอิมเพร็กเนชัน มี ความแข็งแรงของพันธะมากพอที่ CaO ไม่ละลายลงไปสารตั้งต้น ซึ่งต่างจาก CaO ที่ไม่มีตัว รองรับจะละลายลงไปในสารตั้งต้น[5]

ปี 2008 X.Liu และคณะได้ศึกษาอิทธิพลที่มีผลต่อปฏิกิริยาทรานเอสเทอริฟิเคชันของ น้ำมันถั่วเหลืองกับเมทานอล ที่ใช้ CaO เป็นตัวเร่งปฏิกิริยา โดยอิทธิพลที่ศึกษาประกอบไปด้วย อัตราส่วนโมลระหว่างเมทานอลกับน้ำมัน อุณหภูมิที่ใช้ในการทำปฏิกิริยา อัตราส่วนโดยน้ำหนัก ของตัวเร่งปฏิกิริยาต่อน้ำมันและปริมาณน้ำที่อยู่ในเมทานอล ซึ่งพบว่าปริมาณน้ำในเมทานอลมี ผลกระทบที่น่าสนใจ คือ เมื่อมีน้ำอยู่ในเมทานอล 2% โดยน้ำหนักจะให้ผลิตภัณฑ์ที่มากกว่าการ ใช้เมทานอลที่ไม่มีน้ำเนื่องจากน้ำจะทำให้ CaO กลายเป็น CaOH ซึ่งเป็นตัวเร่งปฏิกิริยาอย่างดี สำหรับปฏิกิริยาทรานเอสเทอริฟิเคชัน แต่เมื่อเมทานอลมีน้ำมากกว่า 2% ผลิตภัณฑ์ที่ได้ก็จะ กลับมาน้อยลง เช่นเดียวกับอุณหภูมิที่ใช้ในการทำปฏิกิริยาเมื่ออุณหภูมิมากขึ้นก็จะเกิดปฏิกิริยา ได้ดีขึ้น แต่เมื่ออุณหภูมิสูงเกินไปจะทำให้เมทานอลระเหยจึงเกิดปฏิริยาได้น้อยลงทำให้เกิด ผลิตภัณฑ์น้อยลง[20]

ปี 2010 Alba-Rubio และคณะ ต้องการจะป้องกันการชะตัวเร่งปฏิกิริยาของสารตั้งต้นที่ ใช้โดยการเติม CaO ลงบน ZnO ด้วยวิธีอิมเพร็กเนซัน พบว่าการใช้ตัวเร่งปฏิกิริยาที่เติมลงบนตัว รองรับนี้จะให้ผลพลอยได้ของผลิตภัณฑ์ที่มากกว่า 90% ในเวลา 2 ชั่วโมง นอกจากนี้ ZnO ยังช่วย ป้องกันการชะของตัวเร่งปฏิกิริยาจากสารตั้งต้นซึ่งในงานวิจัยนี้ทดลองโดยการนำตัวเร่งปฏิกิริยาที่ เติมลงบนตัวรองรับแล้วไปปั่นกวนกับเมทานอลทิ้งไว้ 1 ชั่วโมง จากนั้นจึงนำเมทานอลไปทำ ปฏิกิริยาและเปรียบเทียบกับ CaO ที่ไม่เติมบนตัวรองรับ พบว่าการเติมลงบนตัวรองรับจะไม่ เกิดปฏิกิริยาทรานเอสเทอริฟิเคชัน แต่กับ CaO ที่ไม่มีการเติมไปในตัวรองรับจะเกิดปฏิกิริยาทราน เอสเทอริฟิเคชันโดยให้ค่าคอนเวอชัน (conversion)ประมาณ 8%[1]

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

บทที่ 3

วิธีการดำเนินงานวิจัย

3.1 สารเคมีที่ใช้ในการทดลอง

3.1.1 Pluronic P123 จากบริษัท Sigma-aldrich

3.1.2 สารละลายกรดไฮโดรคลอริกเข้มข้น (HCl,37 %w/w) จากบริษัท Carloerba reagents

3.1.3 แคลเซียมในเตรต (Ca(NO₃)₂.4H₂O) จากบริษัท Ajax finechem

3.1.4 เตตระเอทิลออโธซิลิเกต (TEOS) จากบริษัท Fluka chemical

3.2 การสังเคราะห์ SBA-15

อัตราส่วนโดยโมลของสารที่ใช้ในการสังเคราะห์คือ 1TEOS : 0.02P123 : 6HCl : 192H₂O โดยมีขั้นตอนในการสังเคราะห์ดังนี้

3.2.1 ละลาย Pluronic P123 ในสารละลายกรดไฮโดรคลอริกเข้มข้น 1.6M ปั้นกวนที่ อุณหภูมิ 40°C เป็นเวลา 4 ชั่วโมง

3.2.2 เติม TEOS โดยค่อยๆหยดลงไปในสารละลายที่ปั่นกวนไว้และปั่นกวนต่อไปที่ อุณหภูมิ 40 °C อีก 24 ชั่วโมง จะได้สารผสมสีขาวขุ่น

3.2.3 นำสารผสมใส่ในหม้อนึ่งอัดความอัด(Autoclave) และนำไปให้ความร้อนที่อุณหภูมิ 100°C ทิ้งไว้เป็นเวลา 24 ชั่วโมง

3.2.4 นำสารผสมจากหม้อนึ่งอัดความดันไประเหยน้ำด้วยเครื่องระเหยสุญญากาศที่ อุณหภูมิ 80°C จากนั้นนำไปอบในตู้อบให้แห้งที่อุณหภูมิ 80°C ข้ามคืน
3.2.5 น้ำสารซึ่งเป็นของแข็งสีขาวไปเผาด้วยเตาเผาแบบท่อนอนที่อุณหภูมิ 650°C เป็น เวลา 5 ชั่วโมงในอากาศ โดยใช้อัตราการเพิ่มของอุณหภูมิที่ 1°C/นาที

3.3 การสังเคราะห์ Ca/SBA-15

อัตราส่วนโดยโมลของสารที่ใช้ในการสังเคราะห์คือ 1TEOS : 0.02P123 : 6HCI : 192H₂O : x Ca(NO₃)₂.4H₂O ซึ่ง x คือ 0.2 , 0.5 และ 1 โดยมีขั้นตอนในการสังเคราะห์ดังนี้

3.3.1 ละลาย Pluronic P123 ในสารละลายกรดไฮโดรคลอริกเข้มข้น 1.6M ปั่นกวนที่ อุณหภูมิ 40°C เป็นเวลา 4 ชั่วโมง

3.3.2 เติมแคลเซียมในเตรตลงไปในสารละลายปั่นกวนต่อไปที่อุณหภูมิ 40°C เป็นเวลา
0.5 ชั่วโมง

3.3.3 เติม TEOS โดยค่อยๆหยุดลงไปในสารละลายที่ปั่นกวนไว้และปั่นกวนต่อไปที่ อุณหภูมิ 40 °C อีก 24 ชั่วโมง จะได้สารผสมสีขาวขุ่น

3.3.4 นำสารผสมใส่ในหม้อนึ่งอัดความอัด(Autoclave) และนำไปให้ความร้อนที่อุณหภูมิ 100°C ทิ้งไว้เป็นเวลา 12 และ 24 ชั่วโมง ตามเวลาที่ต้องการศึกษา

3.3.5 นำสารผสมจากหม้อนึ่งอัดความดันไประเหยน้ำด้วยเครื่องระเหยสุญญากาศที่ อุณหภูมิ 80°C จากนั้นนำไปอบในตู้อบให้แห้งที่อุณหภูมิ 80°C ข้ามคืน

3.3.6 นำสารซึ่งเป็นของแข็งสีขาวไปเผาด้วยเตาเผาแบบท่อนอนที่อุณหภูมิ 550 °C , 650 °C และ 750°C ตามที่ต้องการศึกษาเป็นเวลา 5 ชั่วโมงในอากาศ โดยใช้อัตราการเพิ่มของอุณหภูมิ ที่ 1°C/นาที

3.4 การเติมตัวเร่งปฏิกิริยา CaO ลงบน SBA-15 ด้วยวิธีอิมเพร็กเนชั่น(Impregnation)

นำ SBA-15 ที่เตรียมได้มาใช้เป็นตัวรองรับซึ่งจะเตรียมที่อัตราส่วนโดยโมลเท่ากับ 1SBA-15 : 0.5Ca(NO₃)₂.4H₂O โดยมีวิธีการเตรียมคือ ละลายแคลเซียมไนเตรตในน้ำที่มีปริมาตร 10 เท่าของปริมาตรรูพรุนของ SBA-15 จากนั้นค่อยๆหยดลงไปบน SBA-15 บนอ่างน้ำที่อุณหภูมิ 80°C จากนั้นนำสารไปอบแห้งที่อุณหภูมิ 80°C ข้ามคืน และนำไปเผาด้วยเตาเผาแบบท่อนอนที่ อุณหภูมิ 650 °C เป็นเวลา 5 ชั่วโมงในอากาศ โดยใช้อัตราการเพิ่มของอุณหภูมิที่ 1°C/นาที

3.5 การศึกษาคุณสมบัติท<mark>างกายภาพ</mark>และคุณสมบัติทางเคมีของสารตัวอย่าง

3.5.1 คุณสมบัติพื้นผิวของวัสดุด้วยกระบวนการดูดซับและคายซับของแก๊สไนโตรเจน

การวิเคราะห์พื้นที่ผิว (Surface area) ขนาดรูพรุน (Pore diameter) และปริมาตรรูพรุน (Pore volume) ด้วยเครื่องตรวจสอบพื้นที่ผิวจำเพาะ (Brunauer Emmett-Teller adsorption, BET) ยี่ห้อ BELSORP รุ่น BELSORP mini II ก่อนการวิเคราะห์สารตัวอย่างจะถูกนำไปให้ความ ร้อนภายใต้สภาวะสุญญากาศที่อุณหภูมิ 150 องศาเซลเซียส นาน 3 ชั่วโมง จากนั้นทำการ วิเคราะห์ด้วยเทคนิคการวัดการดูดซับไนโตรเจน (N₂ adsorption-desorption measurement) โดยใช้แก๊สไนโตรเจนเป็นตัวดูดซับที่อุณหภูมิ 77 เคลวิน ค่าพื้นที่ผิวและปริมาตรรูพรุนจะคำนวณ ด้วยสมการ BET และการกระจายตัวของขนาดรูพรุนจะคำนวณด้วยวิธี BJH

3.5.2 โครงสร้างผลึก

การวิเคราะห์โครงสร้างผลึกของสารตัวอย่างจะใช้เครื่องเอ็กซ์-เรย์ดิฟแฟรกโตมิเตอร์(X-Ray diffractometor หรือ XRD) โดยใช้หลักการการเลี้ยวเบนของรังสีเอกซ์ที่ตกกระทบที่ผิวของ สารที่มุมต่างๆ โดยทำการวัดที่ 2 ช่วง คือ small-angle ที่มุม 2theta 0.6°-3° และ wide angle ที่ มุม 2theta 10°-80° โดยใช้เครื่อง Bruker รุ่น D8 Advance equipped มีแหล่งพลังงาน Cu K $oldsymbol{\alpha}$ radiation ($oldsymbol{\lambda}$ = 0.15406 nm) ทำงานที่แรงดันไฟฟ้า 40 kV กระแสไฟ 40 mA.

3.5.3 รูปร่างสัณฐานภายนอก

การวิเคราะห์ลักษณะพื้นผิวภายนอกด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscope) ยี่ห้อ JEOL รุ่น JSM-6400 ตัวอย่างที่จะนำมาศึกษาต้องอยู่ ในสภาพผงละเอียดที่แห้ง ปราศจากน้ำหรือความชื้น โดยนำตัวอย่างมาเคลือบผิวด้วยทอง เพื่อ รักษาการทำงานของวงจรไฟฟ้าระหว่างลำอิเล็กตรอนกับชิ้นตัวอย่างให้สมบูรณ์ เครื่องจะทำงานที่ สภาวะความดันจะอยู่ที่ประมาณ 10-5 มิลลิบาร์ ก่อนทำการวิเคราะห์ โดยค่ากำลังขยายที่ใช้อยู่ ในช่วง 3,000-15,000 เท่า

3.5.4 ลักษณะโครงสร้างรู<mark>พรุน</mark>

การวิเคราะห์ลักษณะผลึกด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน (Transmission Electron Microscope) ยี่ห้อ JEOL รุ่น JEM 2010 โดยละลายสารตัวอย่างลงในแอลกอฮอลล์ และทำให้เป็นเนื้อเดียวกันด้วยเครื่องความถี่สูง (Ultrasonic bath) เป็นเวลา 15 นาที จากนั้นหยด สารละลายตัวอย่างที่ได้ลงบนตาข่ายทองแดงที่ใช้สำหรับวิเคราะห์ (Grid) 2-3 หยด วางตาข่าย ทองแดงลงในช่องสำหรับใส่ตัวอย่าง และปั้มอากาศออกเพื่อให้ระบบเป็นสุญญากาศก่อนทำการ วิเคราะห์

3.5.5 หมู่ฟังก์ชันของสารประกอบในอนุภาค

FT-IR(Fourier transform infrared spectroscopy) จะใช้ในการวิเคราะห์หาหมู่ฟังก์ชัน ของสารประกอบอินทรีย์ที่มีอยู่ในอนุภาค โดยต้องนำผลที่ได้ไปเปรียบเทียบกับฐานข้อมูลที่มีอยู่ เพื่อดูว่ามีหมู่ฟังก์ชันใด โดยใช้เครื่องยี่ห้อ Nicolet รุ่น 6700 การวิเคราะห์หาความเป็นกรดหรือเบสของพื้นผิวจะใช้เครื่องมือ TPD(Temperature programmed desorption) โดยใช้แก๊สคาร์บอนไดออกไซด์(CO₂)จะใช้หาพื้นที่ผิวที่เป็นเบส

3.6 ทดสอบการนำไปใช้เป็นตัวเร่งปฏิกิริยาในปฏิกิริยาทรานเอสเทอริฟิเคชัน

เตรียมน้ำมันปาล์ม 10 กรัม เมทานอล 10 กรัม(ที่อัตราส่วนโมล น้ำมัน:เมทานอล ที่ 1:27) และใช้ตัวเร่งปฏิกิริยา 0.5 กรัม ที่ความเข้มข้น 0.5 wt%โดยน้ำมัน จากนั้นนำไปใส่ในหม้ออัด แรงดันและนำไปทำปฏิกิริยาที่ 200°C เป็นเวลา 2 ชั่วโมง จากนั้นนำหม้ออัดแรงดันไปแช่ในน้ำเย็น เพื่อหยุดปฏิกิริยา

เก็บตัวอย่างที่ได้นำแยกเฟสของน้ำมันด้วยเครื่องเหวี่ยง จากนั้นนำน้ำมันไปวิเคราะห์ องค์ประกอบด้วยเครื่องแก๊สโครมาโทรกราฟี (Gas Chromatography) เพื่อนำมาคำนวณหาค่า %FAME ซึ่งเป็นค่าปริมาณร้อยละเมทิลเอสเทอร์โดยน้ำหนักที่บ่งบอกความบริสุทธิ์ของไบโอดีเซล โดยที่ 100%FAME หมายถึง เกิดปฏิกิริยาสมบูรณ์กลายเป็นไบโอดีเซลทั้งหมด

3.7 ทดสอบการนำกลับมาใช้ของตัวเร่งปฏิกิริยา

นำอนุภาคไปใช้เป็นตัวเร่งปฏิกิริยาในปฏิกิริยาทรานเอสเทอริฟิเคชันโดยใช้ น้ำมันปาล์ม 10 กรัม เมทานอล 10 กรัม(ที่อัตราส่วนโมล น้ำมัน:เมทานอล ที่ 1:27) และใช้ตัวเร่งปฏิกิริยา 0.5 กรัม ที่ความเข้มข้น 0.5 wt%โดยน้ำมัน จากนั้นนำไปใส่ในหม้ออัดแรงดันและนำไปทำปฏิกิริยาที่ 200°C เป็นเวลา 2 ชั่วโมง จากนั้นนำหม้ออัดแรงดันไปแช่ในน้ำเย็นเพื่อหยุดปฏิกิริยา กรองเพื่อ แยกอนุภาคของแข็งออกจากของเหลว จากนั้นนำอนุภาคไปเผาเพื่อไล่กลีเซอรอลที่อุณหภูมิ 400°C เป็นเวลา 5 ชั่วโมงและนำกลับมาทำปฏิกิริยาใหม่เป็นจำนวน 3 ครั้ง เก็บตัวอย่างที่ได้นำ แยกเฟสของน้ำมันด้วยเครื่องเหวี่ยง จากนั้นนำน้ำมันไปวิเคราะห์องค์ประกอบด้วยเครื่องแก๊สโคร มาโทรกราฟี (Gas Chromatography)

บทที่ 4

ผลการทดลองและวิเคราะห์ผลการทดลอง

4.1 เปรียบเทียบคุณสมบัติทางกายภาพและคุณสมบัติทางเคมีของ SBA-15, วัสดุผสม Ca/SBA-15 และ SBA-15 ที่เติมตัวเร่งปฏิกิริยา CaO ด้วยวิธีอิมเพร็กเนชัน

ศึกษาผลการวิเคราะห์คุณสมบัติทางกายภาพและคุณสมบัติทางเคมีของวัสดุผสม Ca/SBA-15 และนำไปเปรียบเทียบกับคุณสมบัติทางกายภาพและคุณสมบัติทางเคมีของSBA-15 และSBA-15ที่เติมตัวเร่งปฏิกิริยาCaOด้วยวิธีอิมเพร็กเนชัน เพื่อเปรียบเทียบให้เห็นถึงความ แตกต่างทางคุณสมบัติทางกายภาพและคุณสมบัติทางเคมีเมื่อมีการเติมแคลเซียมเป็นวัสดุผสม จะได้วัสดุที่มีคุณสมบัติแตกต่างจากSBA-15อย่างไร และแสดงให้เห็นถึงความแตกต่างระหว่าง วัสดุผสมCa/SBA-15ที่มีการเติมแคลเซียมโดยการเติมแคลเซียมไนเตรตในระหว่างขั้นตอนการ สังเคราะห์SBA-15กับการเติมแคลเซียมเข้าไปในSBA-15 ด้วยวิธีอิมเพร็กเนชัน

ตัวอย่างที่นำมาเปรียบเทียบเป็นวัสดุผสมCa/SBA-15ที่เตรียมตามหัวข้อ 3.3 โดยมีการ เติมแคลเซียมที่อัตราส่วนโมล Ca/Si เท่ากับ 0.5 เผาที่อุณหภูมิ 650°C (0.5_Ca/SBA-15) ตัวอย่างที่เติมแคลเซียมด้วยวิธีอิมเพร็กเนชันที่เตรียมตามหัวข้อ 3.4 (Imp0.5_CaO/SBA-15) และ SBA-15ที่เตรียมตามหัวข้อ 3.2

4.1.1 รูปร่างสัณฐานภายนอก

รูปร่างสัณฐานภายนอกจะวิเคราะห์ได้จากภาพถ่ายด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบ ส่องกราด(SEM) โดยจะถ่ายภาพที่กำลังขยาย 1000, 5000 และ 15000 เท่า ภาพที่4.1.1 แสดง ภาพถ่ายของSBA-15พบว่าลักษณะอนุภาคจะมีลักษณะเป็นแท่งที่มีการรวมตัวกันเป็นก้อนซึ่งเกิด จากการที่อนุภาคบางส่วนเกิดการงอตัว ซึ่งขนาดของแต่ละอนุภาคที่มีลักษณะเป็นแท่งจะมีผ่าน ศูนย์กลางขนาดประมาณ 300-400 นาโนเมตร ภาพที่ 4.1.2 แสดงภาพถ่ายของ0.5_Ca/SBA-15 พบว่ามีลักษณะอนุภาคเป็นแท่งที่มีเส้นผ่านศูนย์กลางใกล้เคียงกับSBA-15แต่อนุภาคจะมีความ ยาวมากกว่าและยืดตรงมากกว่าSBA-15ที่จะมีลักษณะขดงอซึ่งเป็นผลมาจากการเติมแคลเซียม ในเตรตไปในขั้นตอนการสังเคราะห์SBA-15โดยการเติมแคลเซียมในเตรตซึ่งเป็นเกลือลงไปใน ระบบจะมีผลทำให้ระบบมีค่าศักย์ซีต้า(zeta potential)ลดลง[21] ศักย์ซีต้าที่ลดลงมีผลทำให้ไม เซลที่มีซิลิกาเกาะอยู่กับไมเซลของสารลดแรงตึงผิวสามารถรวมตัวกันได้มากขึ้นทำให้อนุภาคยาว มากกว่าSBA-15ที่ไม่มีการเติมเกลือในระบบ และ0.5_Ca/SBA-15จะมีการรวมตัวของอนุภาคใน ลักษณะเป็นแท่งที่ใหญ่ขึ้นซึ่งเป็นผลมากจากแคลเซียมบางส่วนจะอยู่บนพื้นที่ผิวทำให้เมื่อนำไป เผาแล้วอนุภาคจะเกาะกันมากขึ้น ภาพที่4.1.3 แสดงภาพถ่ายของ Imp0.5_CaO/SBA-15 พบว่า ลักษณะอนุภาคที่เป็นแท่งของSBA-15จะเสียรูปร่างไปและมีการรวมตัวกันแน่น ทำให้ลักษณะแท่ง แต่ละแท่งไม่ชัดเจนเหมือนในตัวอย่างSBA-15และ0.5_Ca/SBA-15

EDXในกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดถูกใช้เพื่อดูปริมาณแคลเซียมในสาร ตัวอย่าง ผลที่ได้ซึ่งแสดงไว้ในตารางที่4.1.1 ตัวอย่างImp0.5_CaO/SBA-15จะวัดได้ค่าอัตราส่วน โมลCa/Siมากกว่าในตัวอย่าง0.5_Ca/SBA-15ผลมาจากการเติมแคลเซียมด้วยวิธีอิมเพร็กเนชัน แคลเซียมจะอยู่ที่บริเวณพื้นผิวมากจนปกคลุมซิลิกาทำให้อนุภาคมีลักษณะรวมตัวกันแน่นตาม ภาพที่4.1.3 แต่ในตัวอย่าง0.5_Ca/SBA-15แคลเซียมสามารถเข้าไปอยู่ภายรูพรุนของอนุภาคได้ ดีกว่า

ตารางที่ 4.1.1 ผลการวิเคราะห์ธาตุองค์ประกอบด้วยเครื่อง EDX ในกล้องจุลทรรศน์อิเล็กตรอน แบบส่องกราด

สารตัวอย่าง –	% น้ำหนัก		amondaulus C-/Ci
	Са	Si	— โดย เพ.ารเทพ Ca/Si
0.5_Ca/SBA-15	39.1	60.9	0.64
Imp0.5_CaO/SBA-15	68.4	31.6	3.61

ภาพที่ 4.1.2 ภาพถ่าย SEM ของ 0.5_Ca/SBA-15 ที่กำลังขยาย

4.1.2 ลักษณะโครงสร้างรูพรุน

ลักษณะโครงสร้างรูพรุนของอนุภาคสามารถวิเคราะห์ได้จากภาพถ่ายกล้องจุลทรรศน์ อิเล็กตรอนแบบส่องผ่าน(Transmission electron microscopy หรือ TEM) ภาพที่4.1.4.ก แสดงผลของSBA-15 พบว่าอนุภาคที่มีลักษณะเป็นแท่งมีหน้าตัดลักษณะหกเหลี่ยมที่มีรูพรุนเรียง ตัวอย่างเป็นระเบียบลักษณะคล้ายรังนึ้งและจะสังเกตเห็นลักษณะริ้วยาวตลอดความยาวอนุภาค โดยริ้วที่สังเกตได้ คือ รูพรุนของอนุภาค ในขณะที่ภาพที่4.1.4.ข แสดงผลของ0.5_Ca/SBA-15จะ สังเกตเห็นบริเวณสีดำเข้มซึ่งเป็นแคลเซียมที่เติมลงไปอยู่ภายในส่วนที่เป็นริ้วซึ่งเป็นรูพรุนของ อนุภาคแสดงให้เห็นว่าแคลเซียมที่เติมจะอยู่ภายในรูพรุนของอนุภาค แต่ในตัวอย่าง Imp0.5_CaO/SBA-15ที่แสดงผลไว้ในภาพที่4.1.4.ค พบว่าลักษณะท่อที่มีริ้วคล้ายกับSBA-15พบ น้อยลงและไม่ชัด อนุภาคจะเกาะกลุ่มกันเป็นก้อนรอบๆบริเวณสีดำที่เป็นแคลเซียมแสดงว่า แคลเซียมที่เติมลงไปจะอยู่ที่บริเวณพื้นที่ผิวของอนุภาคและทำให้เกิดการเกาะตัวของอนุภาคSBA-15 ผลจากภาพถ่ายกล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่านแสดงให้เห็นว่าการเติมแคลเซียมต้วย วิธีอิมเพร็กเนชันจะให้การกระจายตัวของแคลเซียมอยู่ที่พื้นที่ผิวอนุภาคเป็นส่วนใหญ่ ในขณะที่ การเติมแคลเซียมในระหว่างขั้นตอนการสังเคราะห์จะมีการกระจายตัวของแคลเซียมอยู่ภายในรู พรุนได้มากกว่า ดังนั้นการเติมแคลเซียมทั้งสองวิธีจะให้การกระจายตัวของแคลเซียมบนตัวรองรับ ที่แตกต่างกัน

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

ภาพที่ 4.1.4 ภาพถ่ายTEM ของ ก) SBA-15, ข) 0.5_Ca/SBA-15 และ ค) Imp0.5_CaO/SBA-15

รูปที่4.1.5 แสดงกราฟการกระเจิงของรังสีเอ็กซ์ที่มุมสูงเพื่อศึกษาโครงสร้างผลึกของสาร ตัวอย่าง กราฟของSBA-15จะเป็นรูปแบบกราฟของสารที่เป็นวัสดุอสัณฐานเนื่องจากซิลิกาเป็น วัสดุอสัณฐาน คือ ไม่มีความเป็นผลึก เช่นเดียวกับกราฟของ0.5_Ca/SBA-15ที่มีรูปแบบกราฟของ วัสดุอสัณฐาน แต่กราฟของImp0.5_CaO/SBA-15พบว่ามีพีคปรากฏขึ้นแสดงให้เห็นโครงสร้างที่มี ความเป็นผลึกในตัวอย่างImp0.5_CaO/SBA-15 โดยความเป็นผลึกเกิดจากแคลเซียมอยู่ที่บริเวณ พื้นผิวของอนุภาคมากกว่า0.5_Ca/SBA-15 แคลเซียมที่เป็นผลึกจะถูกตรวจพบได้มากขึ้นทำให้ กราฟเริ่มปรากฏรูปแบบของความเป็นผลึกแต่ไม่สามารถระบุได้ว่าเป็นผลึกของแคลเซียมชนิดใด

จากกราฟของ0.5_Ca/SBA-15ที่มีรูปแบบอสัณฐานและภาพถ่ายจากกล้องจุลทรรศน์ อิเล็กตรอนแบบส่องผ่าน พบว่าสอดคล้องกับรายงานของ wang และคณะ [18] ที่อธิบายว่าหลัง การระเหยน้ำด้วยเครื่องระเหยสุญญากาศและผ่านการเผา จะทำให้แคลเซียมอยู่ภายในรูพรุนของ อนุภาคในลักษณะที่เคลือบเป็นชั้นบางๆ ทำให้ไม่สามารถตรวจพบความเป็นผลึกของแคลเซียมที่ เติมลงไปได้ จะตรวจพบได้แต่ซิลิกาที่ป็นวัสดุอสัณฐาน

ภาพที่ 4.1.5 กราฟการกระเจิงของรังสีเอ็กซ์ที่มุมสูงของ SBA-15, 0.5_Ca/SBA-15 และ Imp0.5_CaO/SBA-15 (—SBA-15, — 0.5_Ca/SBA-15 และ— Imp0.5_CaO/SBA-15)

ภาพที่4.1.6 แสดงผลการวิเคราะห์ด้วยเครื่องเอ็กซ์-เรย์ดิฟแฟรกโตมิเตอร์ที่มุมต่ำ ระหว่าง 0.6°-3° กราฟการกระเจิงของรังสีเอ็กซ์ที่มุมต่ำของ0.5_Ca/SBA-15และSBA-15มีพีคขึ้น 3 ตำแหน่ง ซึ่งเป็นพีคของระนาบ (100), (110) และ (200) แสดงลักษณะของ p6mm ที่เป็นหก เหลี่ยมสมมาตร(p6mm hexagonal symmetry)ซึ่งเป็นลักษณะของรูพรุนที่เป็นระเบียบ แต่กราฟ การกระเจิงของรังสีเอ็กซ์ที่มุมต่ำของ0.5_Ca/SBA-15จะมีพีคของตำแหน่ง (100) ที่ต่ำกว่าของ SBA-15 สาเหตุเกิดจากรูปร่างของอนุภาค0.5_Ca/SBA-15จะมีพีคของตำแหน่ง (100) ที่ต่ำกว่าของ SBA-15 สาเหตุเกิดจากรูปร่างของอนุภาค0.5_Ca/SBA-15มีลักษณะโครงสร้างที่เปลี่ยนแปลงจาก เดิม เนื่องจากแคลเซียมที่เติมจะไปเปลี่ยนแปลงรูปร่างและโครงสร้างผนังของอนุภาค [19] ขณะที่ กราฟการกระเจิงของรังสีเอ็กซ์ที่มุมต่ำของImp0.5_CaO/SBA-15กราฟจะไม่มีพีคในรูปแบบ เดียวกับกราฟของSBA-15และ0.5_Ca/SBA-15 ทำให้Imp0.5_CaO/SBA-15ไม่พบคุณสมบัติรู พรุนที่เป็นระเบียบ สาเหตุเกิดจากการเติมแคลเซียมด้วยวิธีอิมเพร็กเนชันจะทำให้อนุภาคเกาะ กลุ่มกันหนาแน่นจนไม่พบลักษณะรูพรุนที่เป็นระเบียบ ซึ่งดูได้จากภาพถ่ายกล้องจุลทรรศน์ อิเล็กตรอนแบบส่องผ่านที่ตัวอย่างImp0.5_CaO/SBA-15ไม่เห็นลักษณะหน้าตัดทรงหกเหลี่ยมที่มี รูพรุนแบบเป็นระเบียบ

ภาพที่ 4.1.6 กราฟการกระเจิงของรังสีเอ็กซ์ที่มุมต่ำของ SBA-15, 0.5_Ca/SBA-15 และ

Imp0.5_CaO/SBA-15 (- SBA-15, - 0.5_Ca/SBA-15 และ - Imp0.5_CaO/SBA-15)

4.1.5 องค์ประกอบของพันธะเคมี

วิเคราะห์หมู่ฟังก์ชันในสารตัวอย่างด้วยเครื่อง FT-IR กราฟผลการวิเคราะห์แสดงไว้ใน ภาพที่4.1.7 พบว่ากราฟของทั้ง 3 ตัวอย่างมีพีคที่ความยาวคลื่น 470 cm⁻¹แสดงหมู่ฟังก์ชันของ Si-O-Si ในโหมด bending ขณะที่พีคกว้างที่ความยาวคลื่นระหว่าง 3200-3600 cm⁻¹ซึ่งพบเพียงใน ตัวอย่าง0.5_Ca_SBA-15จะเกี่ยวข้องกับการดูดซับน้ำหรือความชื้นของสารตัวอย่างเนื่องจากพีค ที่ตำแหน่งนี้จะแสดงหมู่ฟังก์ชันของ O-H ที่เกิดการสั่น[22, 23] ส่วนพีคที่ความยาวคลื่นในช่วง 1000-1300 cm⁻¹แสดงหมู่ฟังก์ชันของพันธะ Si-O-Si ที่เกิดการสั่น โดยพีคนี้จะมีรูปร่างแตกต่างกัน ในตัวอย่างทั้ง3 เกิดจากแคลเซียมที่เติมระหว่างขั้นตอนการสั่งเคราะห์SBA-15และเติมด้วยวิธีอิม เพร็กเนชันมีผลทำให้พันธะทางเคมีและโครงสร้างของSBA-15เปลี่ยนแปลงลักษณะของพีคจึงมี ลักษณะที่ต่างกัน โดยพันธะ Si-O-Si บางส่วนจะเปลี่ยนไปเพราะเกิดพันธะกับแคลเซียมกลายเป็น Si-O-Ca[24] ซึ่งแสดงให้เห็นว่าการเติมแคลเซียมทั้ง 2 วิธีจะทำให้แคลเซียมเกิดพันธะกับ SBA-15 แต่จะเกิดพันธะที่แตกต่างกันเนื่องจากพีคมีรูปร่างต่างกัน

ภาพที่ 4.1.7 กราฟ FT-IR ของ SBA-15, 0.5_Ca/SBA-15 และ Imp0.5_CaO/SBA-15

(— SBA-15, — 0.5_C/SBA-15 และ — Imp0.5_CaO/SBA-15)

4.1.6 ปริมาณพื้นที่ผิวของวัสดุและขนาดรูพรุน

สารตัวอย่าง	ขนาดรูพรุน (nm)	พื้นที่ผิว (m²/g)	ปริมาตรรูพรุน (cm³/g)
SBA-15	6.2	594	1.04
0.5_Ca/SBA-15	4.8	260	0.46
Imp0.5_CaO/SBA-15		48	0.21

ตารางที่ 4.1.2 ผลการวิเคราะห์คุณสมบัติพื้นที่ผิวของ SBA-15, 0.5_Ca/SBA-15 และ Imp0.5_CaO/SBA-15

วัสดุผสมCa/SBA-15ที่สังเคราะห์ได้ต้องการคุณสมบัติเด่นที่คล้ายกับSBA-15 คือ มีรูพรุน ขนาดเมโซและมีค่าพื้นที่ผิวสูง ดังนั้นมีการใช้หลักการดูดชับ-คายชับแก๊สไนโตรเจนที่อุณหภูมิ 77K เพื่อศึกษาคุณสมบัตพื้นที่ผิว ตารางที่4.1.2 แสดงผลค่าพื้นที่ผิว ขนาดรูพรุนและปริมาตรรูพรุนของ สารตัวอย่าง พบว่า0.5_Ca/SBA-15จะมีค่าพื้นที่ผิวลดลงจากSBA-15โดยลดลงจาก 594m²/g เหลือ 260m²/g ในขณะที่Imp0.5_CaO/SBA-15จะเหลือพื้นที่ผิวเพียง 48m²/g ในขณะที่ปริมาตรรู พรุนลดลงเช่นกัน สาเหตุเกิดจากการเติมแคลเซียมที่เติมเข้าไปจะบดบังรูพรุนและเข้าไปอยู่ภายใน รูพรุนซึ่งดูได้จากค่าปริมาตรรูพรุนที่ลดลง เมื่อปริมาตรรูพรุนลดลงการดูดซับแก๊สไนโตรเจนก็จะ น้อยลงทำให้ค่าพื้นที่ผิวลดลงเพราะพื้นที่ผิวของอนุภาคที่มีมากจะมาจากรูตรุขมุนกายในอนุภาคที่ เชื่อมต่อกันทำให้มีพื้นที่ผิวลาก โดย0.5_Ca/SBA-15แคลเซียมที่เข้าไปอยู่ในรูพรุนจะเกิดพันธะ ภายในรูพรุนในลักษณะของชั้นฟิล์มที่เคลือบอยู่ภายในจึงทำให้ปริมาตรรูพรุนลดลงและพื้นที่ผิว ลดลง[18] แต่ยังมีค่ามากกว่าค่าพื้นที่ผิวและปริมาตรรูพรุนของImp0.5_CaO/SBA-15 เนื่องจาก การเติมแคลเซียมด้วยวิธีอิมเพร็กเนชัน แคลเซียมที่เติมลงไปจะอยู่ที่พื้นที่ผิวและบางส่วนจะเป็น อนุภาคที่อยู่ภายในรูพรุนทำให้บดบังรูพรูนค่าพื้นที่ผิวและปริมาตรรูพรุนจึงลดลงมากกว่า

จากภาพที่4.1.8.ก แสดงกราฟการดูดซับ-คายซับ ในโตรเจน พบว่ากราฟจะเป็นลักษณะ IV IUPAC ซึ่งเป็นลักษณะที่บ่งบอกชนิดของรูพรุนว่าเป็นรูพรุนขนาดเมโซ คือ มีรูพรุนขนาด 2-50 นาโนเมตร โดยที่การเติมแคลเซียมลงไปทั้ง 2 วิธี อนุภาคยังคงมีรูพรุนขนาดเมโซเช่นเดียวกับ SBA-15 นอกจากนี้0.5_Ca/SBA-15มีการกระจายตัวของรูพรุนที่แคบเหมือนกับSBA-15ซึ่งแสดง ไว้ในรูปที่4.1.8.ข

ภาพที่ 4.1.8 ก.กราฟดูดซับ- คายซับ ไนโตรเจนของ SBA-15, 0.5_Ca/SBA-15 และ Imp0.5_CaO/SBA-15 ข.กราฟกระจายตัวขนาดรูพรุนของ SBA-15, 0.5_Ca/SBA-15 และ Imp0.5_CaO/SBA-15 (━SBA-15, ━ 0.5_Ca/SBA-15 และ ━ Imp0.5_CaO/SBA-15)

4.2 ผลกระทบจากปริมาณแคลเซียมที่ใช้ในการสังเคราะห์ (อัตราส่วนโมลของ Ca/Si) ต่อ คุณสมบัติทางกายภาพและคุณสมบัติทางเคมี

ศึกษาผลกระทบต่อคุณสมบัติทางกายภาพและคุณสมบัติทางเคมีของCa/SBA-15 จาก ปริมาณแคลเซียมที่เติมในการสังเคราะห์ที่อัตราส่วนโมลของ Ca²⁺/Si⁴⁺ 0.2 , 0.5 และ 1.0 เนื่องจากปริมาณแคลเซียมจะมีผลต่อความเป็นเบสของอนุภาคและมีผลต่อการใช้เป็นตัวเร่ง ปฏิกิริยาในปฏิกิริยาทรานเอสเทอริฟิเคชัน ตัวอย่างที่นำมาวิเคราะห์เป็นตัวอย่างที่เติมแคลเซียมที่ อัตราส่วนโมลของ Ca/Si ที่ 0(SBA-15), 0.2(0.2_Ca/SBA-15) , 0.5(0.5_Ca/SBA-15) และ 1.0(1.0_Ca/SBA-15) เผาที่อุณหภูมิ 650 °C

4.2.1 รูปร่างสัณฐานภายนอก

ภาพที่ 4.2.1 , 4.2.2 , 4.2.3 และ 4.2.4 แสดงภาพถ่ายจากกล้องจุลทรรศน์อิเล็กตรอน แบบส่องกราด(SEM)ของ SBA-15, 0.2_Ca/SBA-15, 0.5_Ca/SBA-15 และ 1.0_Ca/SBA-15 ตามลำดับ เพื่อศึกษาผลกระทบที่มีต่อรูปร่างของอนุภาคเมื่อมีการเติมแคลเซียมในปริมาณที่ ต่างกัน ผลที่ได้พบว่า0.2_Ca/SBA-15มีลักษณะเป็นแท่งที่ยึดตรง อนุภาคมีเส้นผ่านศูนย์กลาง ประมาณ 300-500นาโนเมตร มีการรวมตัวกันอย่างเป็นระเบียบของอนุภาคในลักษณะติดกันเป็น แท่งที่มีเส้นผ่านศูนย์กลางขนาดใหญ่ มีขนาดประมาณ 3-5 ไมโครเมตร แต่ผลของ0.5_Ca/SBA-15และ1.0_Ca/SBA-15มีการรวมตัวกันของอนุภาคแต่ละแท่งในลักษณะหลอมเป็นอนุภาค เดียวกัน โดย0.5_Ca/SBA-15รวมตัวกันมีขนาดประมาณ 4-5 ไมโครเมตร ขณะที่1.0_Ca/SBA-15 รวมตัวกันมีขนาดที่ประมาณ 6-8 ไมโครเมตร จากภาพถ่ายพบว่าเมื่อเติมแคลเซียมที่อัตราล่วน โมล Ca²⁺/Si⁴⁺ มากขึ้นการรวมตัวก็จะรวมตัวกันแน่นมากขึ้นจนอนุภาคเปลี่ยนจากที่รวมตัวแบบ อนุภาคติดกันกลายเป็นหลอมรวมกัน สาเหตุมาจากปริมาณแคลเซียมที่มากจะเข้าไปอยู่ในรูพรุน ได้ไม่หมดทำให้มีบางส่วนอยู่ที่บริเวณพื้นผิวของอนุภาค แคลเซียมที่อยู่บนพื้นผิวจะทำหน้าที่ คล้ายตัวประสานให้อนุภาคมายึดติดกัน และเมื่อเติมแคลเซียมที่ปริมาณมากในตัวอย่าง 1.0_Ca/SBA-15 แคลเซียมจะอยู่ที่พื้นผิวมากที่สุดพบว่าอนุภาคเกาะติดกันจนคล้ายจะเป็นการ เติมแคลเซียมด้วยวิธีอิมเพร็กเนชันดังที่แสดงผลไว้ในภาพที่ 4.1.3

ภาพที่ 4.2.3 รูปถ่าย SEM ของ 0.5_Ca/SBA-15 ที่กำลังขยาย

ภาพที่4.2.5 แสดงภาพถ่ายจากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน(TEM) ภาพที่ 4.2.5.ข แสดงผลของ0.2_Ca/SBA-15จะพบบริเวณสีดำเข้มอยู่ภายในริ้วยาวตลอดอนุภาคแสดง ให้เห็นว่าแคลเซียมที่เติมกระจายตัวอยู่ภายในรูพรุนของอนุภาค และอนุภาคยังมีลักษณะคล้าย กับSBA-15ที่มีริ้วยาวตลอดอนุภาค เช่นเดียวกับ0.5_Ca/SBA-15ที่มีบริเวณสีดำของแคลเซียม กระจายตัวอยู่ภายในริ้วที่เป็นรูพรุนดังแสดงไว้ในภาพที่4.2.5.ค ขณะที่ตัวอย่าง1.0_Ca/SBA-15ที่ แสดงผลในภาพที่4.2.5.ง จะไม่สังเกตเห็นริ้วของรูพรุนบนอนุภาคจะพบแต่อนุภาคที่มีลักษณะเป็น แท่งสีดำเข้มซึ่งต่างจากผลของ2ตัวอย่างที่ผ่านมา เนื่องจากตัวอย่าง1.0_Ca/SBA-15จะมี แคลเซียมปริมาณมากทำให้แคลเซียมมาอยู่ที่บริเวณพื้นผิวมากขึ้นจนปกคลุมอนุภาคไว้จึงเห็นแต่ บริเวณสีดำที่เป็นแคลเซียม

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

ภาพที่ 4.2.5 รูปถ่าย TEM ของ ก) SBA-15 , ข) 0.2_Ca/SBA-15 , ค) 0.5_Ca/SBA-15 และ

থ) 1.0_Ca/SBA-15

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย ผลการวิเคราะห์การกระเจิงของรังสีเอ็กซ์ที่มุมสูงเพื่อศึกษาโครงสร้างผลึกของอนุภาค แสดงไว้ในภาพที่4.2.6 พบว่ากราฟของ0.2_Ca/SBA-15, 0.5_Ca/SBA-15 และ 1.0_Ca/SBA-15 กราฟมีรูปแบบที่แสดงลักษณะของวัสดุอสัณฐานเช่นเดียวกับSBA-15 เมื่อเติมแคลเซียมลงไปมาก ขึ้นจะเห็นว่ากราฟจะเปลี่ยนลักษณะแสดงความเป็นวัสดุอสัณฐานน้อยลง แต่ไม่แสดงลักษณะ ความเป็นผลึกของแคลเซียมที่เติมลงไป

ภาพที่ 4.2.6 กราฟการกระเจิงของรังสีเอ็กซ์ที่มุมสูงของ SBA-15, 0.2_Ca/SBA-15,

0.5_Ca/SBA-15 และ 1.0_Ca/SBA-15(— SBA-15, — 0.2_Ca/SBA-15, — 0.5_Ca/SBA-15 และ — 1.0_Ca/SBA-15)

4.2.4 คุณสมบัติรูพรุนที่เป็นระเบียบ

ภาพที่4.2.7 แสดงกราฟการกระเจิงของรังสีเอ็กซ์ที่ต่ำ กราฟของ0.2_Ca/SBA-15, 0.5_Ca/SBA-15และ1.0_Ca/SBA-15 มีพีคของระนาบ (100), (110) และ (200) ที่แสดงลักษณะ ของ p6mm ที่เป็นหกเหลี่ยมสมมาตร(p6mm hexagonal symmetry)ซึ่งเป็นลักษณะของรูพรุนที่ เป็นระเบียบเช่นเดียวกับSBA-15 เมื่อเติมแคลเซียมมากขึ้นพีคทั้ง3ตำแหน่งจะต่ำลงเพราะ โครงสร้างผนังของอนุภาคเปลี่ยนแปลงจากแคลเซียมที่เติมมากขึ้น เนื่องจากการเติมแคลเซียม มากขึ้นส่งผลให้แคลเซียมอยู่ที่บริเวณพื้นผิวของอนุภาคมากขึ้นและปกคลุมอนุภาคจนความเป็นรู พรุนที่มีระเบียบน้อยลง ผลที่ได้จะสอดคล้องกับภาพถ่ายกล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน ภาพที่4.2.5.ง ซึ่ง1.0_Ca/SBA-15จะมีแคลเซียมปกคลุมอนุภาคไว้ทั้งหมด ทำให้ความเป็นรูพรุนที่ มีระเบียบลดลง

ภาพที่ 4.2.7 กราฟเอ็กซ์-เรย์ดิฟแฟรกชันที่มุมต่ำของ SBA-15, 0.2_Ca/SBA-15, 0.5_Ca/SBA-15 และ 1.0_Ca/SBA-15(── SBA-15, ── 0.2_Ca/SBA-15, ── 0.5_Ca/SBA-15 และ ── 1.0_Ca/SBA-15)

ภาพที่ 4.2.8 แสดงผล FT-IR ที่ใช้วิเคราะห์หมู่ฟังก์ชันในสารตัวอย่าง ผลของทั้ง3ตัวอย่าง กราฟมีลักษณะเหมือนกันและเหมือนกับที่วิเคราะห์ในหัวข้อ 4.1 คือ พีคที่ความยาวคลื่น 470cm⁻¹ แสดงหมู่ฟังก์ชันของ Si-O-Si ในโหมด bending ขณะที่พีคกว้างที่ความยาวคลื่นระหว่าง 3200-3600cm⁻¹แสดงหมู่ฟังก์ชันของ O-H ที่เกิดการสั่น[22, 23] ส่วนพีคที่ความยาวคลื่นในช่วง 1000-1300cm⁻¹แสดงหมู่ฟังก์ชันของพันธะ Si-O-Si ที่เกิดการสั่น โดยพีคนี้จะมีรูปร่างเปลี่ยนแปลงเมื่อ เติมแคลเซียมมากขึ้นเนื่องจากแคลเซียมที่เติมลงไปเปลี่ยนแปลงโครงสร้างของอนุภาค จึงทำให้ กราฟที่ตำแหน่งนี้มีรูปแบบที่ต่างกันในตัวอย่าง0.5_Ca/SBA-15, 1.0_Ca/SBA-15 กับ SBA-15 ขณะที่0.2_Ca/SBA-15 จะมีลักษณะที่คล้ายกับSBA-15เนื่องจากเติมในปริมาณที่น้อย

ภาพที่ 4.2.8 กราฟ FT-IR ของ SBA-15, 0.2_Ca/SBA-15, 0.5_Ca/SBA-15 และ 1.0_Ca/SBA-15(— SBA-15, — 0.2_Ca/SBA-15, — 0.5_Ca/SBA-15 และ — 1.0_Ca/SBA-15)

4.2.6 ปริมาณพื้นที่ผิวของวัสดุและขนาดรูพรุน

สารตัวอย่าง	ขนาดรูพรุน (nm)	พื้นที่ผิว (m²/g)	ปริมาตรรูพรุน (cm³/g)
SBA-15	6.2	594	1.04
0.2_Ca/SBA-15	6.2	367	0.66
0.5_Ca/SBA-15	4.8	260	0.46
1.0_Ca/SBA-15	5.4	193	0.36

ตารางที่ 4.2.1 ผลการวิเคราะห์คุณสมบัติพื้นที่ผิวของ SBA-15, 0.2_Ca/SBA-15, 0.5_Ca/SBA-15 และ 1.0_Ca/SBA-15

กราฟการดูดซับ-คายซับไนโตรเจนของตัวอย่างมีลักษณะชนิด IV IUPAC เป็นลักษณะที่ บ่งบอกชนิดของรูพรุนว่าเป็นรูพรุนขนาดเมโซที่มีขนาดประมาณ2-50นาโนเมตร และกราฟการ กระจายตัวของขนาดรูพรุนแสดงให้เห็นว่า 0.2_Ca/SBA-15 มีขนาดรูพรุนเฉลี่ยที่6.2นาโนเมตร 0.5_Ca/SBA-15มีขนาดรูพรุนเฉลี่ยที่4.8นาโนเมตรและ1.0_Ca/SBA-15มีขนาดรูพรุนเฉลี่ยที่5.4 นาโนเมตร ซึ่งสอดคล้องกับกราฟการดูดซับ-คายซับไนโตรเจนโดยกราฟแสดงไว้ในภาพที่4.2.9

ค่าพื้นที่ผิวและปริมาตรรูพรุนแสดงไว้ในตารางที่ 4.2.1 พบว่าเมื่อเติมปริมาณแคลเซียม มากขึ้นค่าพื้นที่ผิวและปริมาตรรูพรุนลดลง เกิดจากปริมาณแคลเซียมที่มากขึ้นจะเข้าไปอยู่ภายใน รูพรุนมากขึ้นและบดบังรูพรุนมากขึ้นทำให้พื้นที่ที่จะดูดชับแก้สไนโตรเจนลดลง ค่าพื้นที่ผิวที่ได้จึง ลดลงรวมถึงปริมาตรรูพรุน เมื่อดูภาพถ่ายกล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน ภาพที่4.2.5 จะเห็นว่าอนุภาค1.0_Ca/SBA-15ถูกปกคลุมด้วยแคลเซียมทำให้พื้นที่ผิวและปริมาตรรูพรุนน้อย ที่สุด ขณะที่ผลของขนาดรูพรุนพบว่า0.2_Ca/SBA-15มีขนาดรูพรุนเท่ากับSBA-15ที่ไม่มีการเติม แคลเซียมเพราะว่าแคลเซียมที่เติมลงไปมีปริมาณน้อยจึงเข้าไปอยู่ภายในรูพรุนได้หมดทำให้ไม่ ปิดบังรูพรุน ขณะที่0.5_Ca/SBA-15มีขนาดรูพรุนที่เล็กลงเนื่องจากแคลเซียมที่จะเข้าไปเกิดพันธะ ภายในรูพรุนในลักษณะเคลือบภายในรูพรุนเมื่อแคลเซียมมากขึ้นจึงทำให้ชั้นของแคลเซียมหนาขึ้น รูพรุนจึงมีขนาดเล็กลง ในขณะที่1.0_Ca/SBA-15มีขนาดรูพรุนใหญ่กว่า0.5_Ca/SBA-15เกิดจาก แคลเซียมมีมากเกินไปจึงอยู่ที่พื้นผิวเป็นจำนวนมากจึงเข้าไปอยู่ภายในรูพรุนน้อยกว่าทำให้ชั้น

ภาพที่ 4.2.9 ก.กราฟดูดขับ- คายซับ ไนโตรเจนของ SBA-15, 0.2_Ca/SBA-15, 0.5_Ca/SBA-15 และ 1.0_Ca/SBA-15 ข.กราฟกระจายตัวขนาดรูพรุนของ 0.2_Ca/SBA-15, 0.5_Ca/SBA-15 และ 1.0_Ca/SBA-15 (— SBA-15, — 0.2_Ca/SBA-15, — 0.5_Ca/SBA-15 และ — 1.0_Ca/SBA-15)

4.3 ผลกระทบจากอุณหภูมิที่ใช้เผาต่อคุณสมบัติทางกายภาพและคุณสมบัติทางเคมี

เนื่องจากอุณหภูมิใช้เผาจะมีผลต่อการเกิดผลึกและขนาดผลึกของสารที่เป็นโลหะ ทำให้ สนใจศึกษาอุณหภูมิที่ใช้เผามีผลกระทบอย่างไรต่อคุณสมบัติของอนุภาค โดยจะศึกษาที่อุณหภูมิ การเผา 550°C , 650°C และ 750°C ซึ่งอุณหภูมิที่ใช้เผาจะถูกใส่ไว้หลังชื่อของตัวอย่างเพื่อให้รู้ว่า เผาที่อุณหภูมิใด เช่น 0.5_Ca/SBA-15_550°C คือ ตัวอย่างที่สังเคราะห์ที่อัตราส่วนโมล 0.5 และ เผาที่อุณหภูมิ 550°C

4.3.1 รูปร่างสัณฐานภายนอก

ภาพที่4.3.1-4.3.6แสดงภาพถ่ายด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดของ 0.2_Ca/SBA-15และ0.5_Ca/SBA-15ที่อุณหภูมิการเผา 550°C, 650°C และ 750°C พบว่าผล ของอุณหภูมิที่ใช้เผามีผลต่อตัวอย่าง 0.2_Ca/SBA-15 และ 0.5_Ca/SBA-15 เหมือนกัน โดย รูปร่างของอนุภาคจะเป็นลักษณะแท่งที่มีการรวมตัวเป็นลักษณะแท่งที่มีขนาดใหญ่ขึ้น โดยแต่ละ อนุภาคจะมีขนาดเท่าเดิม คือ ประมาณ 300-500 นาโนเมตร ที่ทุกอุณหภูมิการเผา แต่การรวมตัว ของแต่ละอนุภาคที่อุณหภูมิการเผาจะให้ผลที่แตกต่างกัน คือ เมื่อมีการเผาที่อุณหภูมิสูงขึ้นการ รวมตัวของอนุภาคจะรวมตัวมีขนาดใหญ่ขึ้น ซึ่งที่การเผาที่อุณหภูมิการเผา 550°C จะรวมตัวมี ขนาดที่ประมาณ 3-4 ไมโครเมตร เมื่อเพิ่มอุณหภูมิการเผาที่ 750°C พบว่าอนุภาคจะรวมตัวมี ขนาดประมาณ 5-7 ไมโครเมตร

ขณะที่ภาพถ่ายด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดของสารตัวอย่าง 1.0_Ca/SBA-15 ที่อุณหภูมิการเผา 550°C , 650°C และ 750°C แสดงไว้ในภาพที่ 4.3.7 , 4.3.8 และ 4.3.9 ตามลำดับ อุณหภูมิการเผาให้ผลที่แตกต่างกับสารตัวอย่าง0.2_Ca/SBA-15และ 0.5_Ca/SBA-15 คือ เมื่อเผาที่อุณหภูมิสูงขึ้นพบว่าอนุภาคเกิดการรวมตัวในลักษณะที่หลอมตัว เข้าเป็นอนุภาคเดียวกันมากขึ้น

3 um

×15.00 k

ภาพที่ 4.3.3 ภาพถ่าย SEM ของ 0.2_Ca/SBA-15_750°C ที่กำลังขยาย

ภาพที่ 4.3.4 ภาพถ่าย SEM ของ 0.5_Ca/SBA-15_550°C ที่กำลังขยาย

ภาพที่ 4.3.5 ภาพถ่าย SEM ของ 0.5_Ca/SBA-15_650°C ที่กำลังขยาย

ภาพที่ 4.3.6 ภาพถ่าย SEM ของ 0.5_Ca/SBA-15_750°C ที่กำลังขยาย

ภาพที่ 4.3.7 ภาพถ่าย SEM ของ 1.0_Ca/SBA-15_550°C ที่กำลังขยาย

ภาพที่ 4.3.8 ภาพถ่าย SEM ของ 1.0_Ca/SBA-15_650°C ที่กำลังขยาย

ภาพที่ 4.3.9 ภาพถ่าย SEM ของ 1.0_Ca/SBA-15_750°C ที่กำลังขยาย

4.3.2 ลักษณะโครางสร้างรูพรุน

ภาพที่ 4.3.10 แสดงภาพถ่ายด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน(TEM) ของ ตัวอย่าง0.5_Ca/SBA-15_550°C, 0.5_Ca/SBA-15_650°C และ 0.5_Ca/SBA-15_750°C จาก ภาพจะสังเกตเห็นลักษณะริ้วของรูพรุนภายในอนุภาคที่ทุกอุณหภูมิการเผา ในขณะที่หน้าตัดของ อนุภาคที่มีลักษณะทรงหกเหลี่ยมที่มีรูพรุนแบบเป็นระเบียบไม่ถูกพบ สาเหตุเกิดจากอนุภาคมี ความยาวมากทำให้เมื่อหยดตัวอย่างลงในกริดที่ใช้ถ่ายภาพ อนุภาคจะนอนทำให้ไม่สามารถเห็น หน้าตัดของอนุภาคได้

ภาพที่ 4.3.10 ภาพถ่าย TEM ของ ก) 0.5_Ca/SBA-15_550°C , ข) 0.5_Ca/SBA-15_650°C และ ค) 0.5_Ca/SBA-15_750°C

กราฟการกระเจิงของรังสีเอ็กซ์ที่มุมสูงของ0.2_Ca/SBA-15และ0.5_Ca/SBA-15แสดงไว้ ในภาพที่4.3.11 และ4.3.12 ตามลำดับ กราฟแสดงลักษณะของวัสดุอสัณฐานที่ทุกอุณหภูมิการ เผาต่างจากกราฟการกระเจิงของรังสีเอ็กซ์ที่มุมสูงของ1.0_Ca/SBA-15 ที่แสดงไว้ในภาพที่4.3.13 กราฟแสดงลักษณะของความเป็นผลึกที่อุณหภูมิ750°C โดยผลึกที่เกิดเป็นการรวมตัวของ แคลเซียมกับซิลิกากลายเป็นแคลเซียมซิลิเกต โดยการเกิดผลึกแคลเซียมซิลิเกตสามารถยืนยันได้ จากภาพที่4.3.14 และ4.3.15 ที่แสดงผลของกราฟการกระเจิงของรังสีเอ็กซ์ที่มุมสูงของ 1.5_Ca/SBA-15 เมื่อเผาที่อุณหภูมิ550°C กราฟจะแสดงลักษณะของความเป็นอสัณฐาน เมื่อเพิ่ม อุณหภูมิการเป็น650°Cกราฟจะแสดงลักษณะความเป็นผลึกมากขึ้น เมื่อเผาที่อุณหภูมิ750°C พบว่ากราฟที่ได้จะเป็นกราฟที่แสดงลักษณะของผลึกแคลเซียมซิลิเกตซึ่งตำแหน่งพีคของ แคลเซียมซิลิเกตจะแทนด้วยสัญลักษณ์รูปดาวไว้ในภาพที่4.3.14 และเมื่อเทียบตำแหน่งของพีค3 พีคที่ขึ้นในกราฟ1.0_Ca/SBA-15 ที่อุณหภูมิการเผา750°C พบว่าตรงกับตำแหน่งของพีคที่ 27.6°, 31.9° และ 45.9° ของกราฟการกระเจิงรังสีเอ็กซ์ที่มุมสูงของแคลเซียมซิลิเกต

จากผลของกราฟการกระเจิงของรังสีเอ็กซ์ที่มุมสูงของ1.5_Ca/SBA-15 ทำให้ทราบว่าที่ อุณหภูมิการเผา750°Cแคลเซียมจะรวมตัวกับซิลิกาเกิดเป็นผลึกแคลเซียมซิลิเกตได้ แต่สาเหตุที่ กราฟการกระเจิงของรังสีเอ็กซ์ที่มุมสูงของ0.2_Ca/SBA-15,0.5_Ca/SBA-15และ1.0_Ca/SBA-15 กราฟไม่แสดงลักษณะของผลึกแคลเซียมซิลิเกต เพราะที่อัตราส่วน1.5มีแคลเซียมปริมาณมากทำ ให้แคลเซียมปกคลุมSBA-15ไว้ทั้งหมดรวมถึงพื้นที่ผิวจึงทำให้เครื่องสามารถตรวจพบความเป็น ผลึกได้ง่าย ขณะที่0.2_Ca/SBA-15และ0.5_Ca/SBA-15แคลเซียมส่วนใหญ่จะอยู่ในรูพรุนจึงทำ ให้เครื่องไม่สามารถตรวจพบความเป็นผลึกได้ ส่วน1.0_Ca/SBA-15มีแคลเซียมปริมาณมากที่ พื้นผิวอนุภาคเช่นกันทำให้ที่อุณหภูมิการเผา750°Cสามารถตรวจพบความเป็นผลึกได้

ภาพที่ 4.3.11 กราฟการกระเจิงของรังสีเอ็กซ์ที่มุมสูงของ 0.2_Ca/SBA-15_550°C,

0.2_Ca/SBA-15_650°C ແລະ 0.2_Ca/SBA-15_750°C (— 0.2_Ca/SBA-15_550°C, —

0.2_Ca/SBA-15_650°C ແລະ --- 0.2_Ca/SBA-15_750°C)

ภาพที่ 4.3.12 กราฟการกระเจิงของรังสีเอ็กซ์ที่มุมสูงของ 0.5_Ca/SBA-15_550°C, 0.5_Ca/SBA-15_650°C และ 0.5_Ca/SBA-15_750°C (— 0.5_Ca/SBA-15_550°C,— 0.5_Ca/SBA-15_650°C และ — 0.5_Ca/SBA-15_750°C)

ภาพที่ 4.3.13 กราฟการกระเจิงของรังสีเอ็กซ์ที่มุมสูงของ 1.0_Ca/SBA-15_550°C,

1.0_Ca/SBA-15_650°C ແລະ 1.0_Ca/SBA-15_750°C (- 1.0_Ca/SBA-15_550°C, -

1.0_Ca/SBA-15_650°C ແລະ — 1.0_Ca/SBA-15_750°C)

ภาพที่ 4.3.14 กราฟการกระเจิงของรังสีเอ็กซ์ที่มุมสูงของ 1.5_Ca/SBA-15_750°C (★ แทนตำแหน่งของกราฟลักระเจิงของรังสีเอ็กซ์ที่มุมสูงของแคลเซียมซิลิเกต CaSiO₃)

ภาพที่ 4.3.15 กราฟการกระเจิงของรังสีเอ็กซ์ที่มุมสูงของ 1.5_Ca/SBA-15_550°C และ 1.5_Ca/SBA-15_650°C (— 1.5_Ca/SBA-15_550°C และ — 1.5_Ca/SBA-15_650°C)

4.3.4 คุณสมบัติรูพรุนที่เป็นระเบียบ

กราฟการกระเจิงของรังสีเอ็กซ์ที่มุมต่ำของ0.2_Ca/SBA-15 , 0.5_Ca/SBA-15และ 1.0_Ca/SBA-15แสดงในภาพที่4.3.16-4.3.18 พบว่าตัวอย่าง0.5_Ca/SBA-15 เมื่อใช้อุณหภูมิการ เผาเพิ่มขึ้นจาก 550°C เป็น 650°C โครงสร้างรูพรุนที่เป็นระเบียบยังคงอยู่แต่จุดยอดของกราฟจะ เลื่อนไปทางขวาซึ่งเกิดจากมีโลหะอยู่ภายในรูพรุนทำให้ ช่องว่างของ d₁₀₀ น้อยลงเกิดจากการเผา ที่อุณหภูมิสูงขึ้นผลึกของโลหะใหญ่ขึ้นทำให้ผลึกบดบังรูพรุน เมื่อเผาที่750°Cจะทำให้พีค(100) ลดลงเนื่องจากที่อุณหภูมิ750°Cเกิดผลึกของแคลเซียมซิลิเกตทำให้โครงสร้างและผนังของอนุภาค เปลี่ยนไปทำให้จุดยอดกราฟลดลงเหมือนจะไม่แสดงความเป็นรูพรุนที่เป็นระเบียบ

ตัวอย่าง0.2_Ca/SBA-15เมื่อเผาที่อุณหภูมิสูงขึ้นทำให้จุดยอดกราฟของตำแหน่ง (100)ลดลงแต่ไม่มีการเลื่อนของจุดยอดกราฟ สาเหตุมาจากเมื่อเผาที่อุณหภูมิสูงขึ้นทำให้ผลึก ของโลหะโตขึ้นและที่อุณหภูมิการเผา750°Cเกิดผลึกของแคลเซียมซิลิเกตขึ้น ทำให้โครงสร้างและ ผนังของอนุภาคเปลี่ยนไปทำให้จุดยอดกราฟลดลง

ตัวอย่าง 1.0_Ca/SBA-15เมื่ออุณหภูมิการเผาเพิ่มจาก550°Cเป็น650°C จุดยอดกราฟจะ เลื่อนไปทางซ้ายเป็นผลมาจากผลึกโลหะภายในรูพรุนเกิดการเปลี่ยนแปลงมีขนาดใหญ่ขึ้นทำให้ บดบังรูพรุนกราฟจึงเลื่อนไปทางซ้าย และที่อุณหภูมิการเผา750°Cพบว่าจุดยอดกราฟจะลดลงจน เหมือนจะไม่แสดงความเป็นรูพรุนที่เป็นระเบียบเนื่องจากจะเกิดการรวมตัวเป็นผลึกของแคลเซียม ซิลิเกตจึงส่งผลให้โครงสร้างของอนุภาคเปลี่ยนไปจากSBA-15จุดยอดกราฟจึงต่ำลง

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

ภาพที่ 4.3.16 กราฟการกระเจิงของรังสีเอ็กซ์ที่มุมต่ำของ 0.2_Ca/SBA-15_550°C,

0.2_Ca/SBA-15_650°C ແລະ 0.2_Ca/SBA-15_750°C (- 0.2_Ca/SBA-15_550°C, - 0.2_Ca/SBA-15_650°C ແລະ - 0.2_Ca/SBA-15_750°C)

ภาพที่ 4.3.17 กราฟการกระเจิงของรังสีเอ็กซ์ที่มุมต่ำของ 0.5_Ca/SBA-15_550°C, 0.5_Ca/SBA-15_650°C และ 0.5_Ca/SBA-15_750°C (**—** 0.5_Ca/SBA-15_550°C, **—** 0.5_Ca/SBA-15_650°C และ **—** 0.5_Ca/SBA-15_750°C)

ภาพที่ 4.3.18 กราฟการกระเจิงของรังสีเอ็กซ์ที่มุมต่ำของ 1.0_Ca/SBA-15_550°C,

1.0_Ca/SBA-15_650°C ແລະ 1.0_Ca/SBA-15_750°C(- 1.0_Ca/SBA-15_550°C,---

1.0_Ca/SBA-15_650°C ແລະ — 1.0_Ca/SBA-15_750°C)

4.3.5 ปริมาณพื้นที่ผิวของวัสดุและขนาดรูพรุน

กราฟการดูดขับ-คายขับแก๊สไนโตรเจนของตัวอย่าง0.2_Ca/SBA-15และ0.5_Ca/SBA-15 เป็นแบบชนิด IV IUPAC ซึ่งเป็นลักษณะที่บ่งบอกชนิดของรูพรุนว่าเป็นรูพรุนขนาดเมโซที่ทุก อุณหภูมิการเผา ดังแสดงในภาพที่4.3.19.ก และ4.3.20.ก ค่าพื้นที่ผิว ปริมาตรรูพรุน และขนาด ของรูพรุนแสดงไว้ในตาราง4.3.1 และ4.3.2 พบว่าเมื่ออุณหภูมิการเผาสูงขึ้นค่าพื้นที่ผิวและ ปริมาตรรูพรุนลดลง สาเหตุเกิดจากอุณหภูมิการเผามีผลกับชนิดของรูพรุนในอนุภาค โดยปกติ อนุภาคSBA-15จะมีรูพรุนทั้งขนาดไมโครและขนาดเมโซเมื่ออุณหภูมิการเผาสูงขึ้นจะทำให้รูพรุน ขนาดไมโครหายไปทำ[25] ซึ่งค่าพื้นที่ผิวที่มากจะมาจากส่วนที่เป็นรูพรุนขนาดไมโครที่เชื่อมต่อกัน ภายในอนุภาคเมื่อส่วนของรูพรุนขนาดไมโครหายไปจึงทำให้พื้นที่ผิวลดลง นอกจากนี้การเผา อุณหภูมิสูงขึ้นผลึกของโลหะเกิดการเปลี่ยนแปลงทำให้โครงสร้างSBA-15เดิมเปลี่ยนแปลงค่าพื้นที่ ผิวและปริมาตรรูพรุนจึงลดลง ขณะที่ขนาดรูพรุนของ0.2_Ca/SBA-15เดิมเปลี่ยนแปลงค่าพื้นที่ อุณหภูมิสูงขึ้น ต่างจากขนาดรูพรุนของ0.5_Ca/SBA-15ที่เผาที่อุณหภูมิสูงขึ้นผลึกของแคลเซียมจะมี งนาดใหญ่ขึ้นผลึกของแคลเซียมในปริมาณที่มากกว่าเมื่อเผาที่อุณหภูมิสูงขึ้นผลึกของแคลเซียมจะมี ขนาดใหญ่ขึ้นหลึกของโลหะแกลเซียมในปริมาณที่มากกว่าเมื่อเผาที่อุณหภูมิสูงขึ้นผลึกของแคลเซียมจะมี

ผลของอุณหภูมิการเผาต่อสารตัวอย่าง1.0_Ca/SBA-15จะให้ผลการทดลองที่แตกต่างกับ ผลของตัวอย่าง0.2_Ca/SBA-15และ0.5_Ca/SBA-15 เมื่อพิจารณาค่าพื้นที่ผิว ปริมาตรรูพรุนและ ขนาดรูพรุนที่แสดงในตารางที่ 4.3.3 พบว่าเมื่ออุณหภูมิการเผาเพิ่มจาก550°Cเป็น650°C ค่าพื้นที่ ผิวและปริมาตรของรูพรุนเพิ่มมากขึ้นแต่เมื่อเผาที่อุณหภูมิ750°Cค่าพื้นที่ผิวและปริมาตรของรูพรุน กลับลดลง สาเหตุมาจากสารตัวอย่าง1.0_Ca/SBA-15มีแคลเซียมปริมาณมากปกคลุมอนุภาค สามารถดูได้จากภาพถ่ายด้วยกล้องจุลทรรศ์อิเล็กตรอนแบบส่องผ่านที่แสดงในภาพที่4.2.5.ง ที่มี ลักษณะเป็นแท่งปกคลุมด้วยบริเวณสีดำที่เป็นแคลเซียม ทำให้สารลดแรงตึงผิวจะถูกทำลายได้ ยากขึ้นเนื่องจากแคลเซียมปกคลุมอยู่ เมื่อเพิ่มอุณหภูมิการเผาจาก550°Cเป็น650°Cทำให้เผา ทำลายสารลดแรงตึงผิวที่เป็นแม่แบบได้มากขึ้น พื้นที่ผิวและปริมาตรรูพรุนจึงมีค่าเพิ่ขึ้น แต่เมื่อ เพิ่มอุณหภูมิการเผาไปจนถึง750°Cจะทำให้เกิดการรวมตัวกลายเป็นผลึกของแคลเซียมซิลิเกต จากโครงสร้างที่เป็นอลัณฐานกลายเป็นโครงสร้างที่มีความเป็นผลึกซึ่งแสดงไว้ในภาพที่4.3.13 ทำ ให้โครงสร้างเปลี่ยนแปลงส่งผลให้ค่าพื้นที่ผิว ปริมาตรรูพรูนและขนาดรูพรุนลดลง แต่รูพรูนยังเป็น รูพรุนขนาดเมโซที่ทุกอุณหภูมิการเผา เนื่องจากกราฟการดูดซับ-คายซับแก๊สไนโตรเจนเป็นชนิดIV IUPAC ซึ่งเป็นลักษณะที่บ่งบอกชนิดของรูพรุนว่าเป็นรูพรุนขนาดเมโซ ดังแสดงไว้ในภาพที่ 4.3.21.ก

ตารางที่ 4.3.1 ผลการวิเคราะห์คุณสมบัติพื้นที่ผิวของ 0.2_Ca/SBA-15_550°C, 0.2_Ca/SBA-15_650°C และ 0.2_Ca/SBA-15_750°C

สารตัวอย่าง	ขนาดรูพรุน (nm)	พื้นที่ผิว (m²/g)	ปริมาตรรูพรุน (cm³/g)
0.2 Ca/SBA-15 ,550°C	6.2	384	0.71
0.2 Ca/SBA-15 ,650°C	6.2	366	0.66
0.2 Ca/SBA-15 ,750 [°] C	6.2	350	0.56

ตารางที่ 4.3.2 ผลการวิเคราะห์คุณสมบัติพื้นที่ผิวของ 0.5_Ca/SBA-15_550°C, 0.5_Ca/SBA-

15_650°C ແລະ 0.5_Ca/SB<mark>A-</mark>15_750°C

สารตัวอย่าง	ขนาดรูพรุน (nm)	พื้นที่ผิว (m²/g)	ปริมาตรรูพรุน (cm³/g)
0.5_Ca/SBA-15_550°C	6.2	300	0.59
0.5_Ca/SBA-15_650°C	4.7	260	0.46
0.5_Ca/SBA-15_750°C	3.7	224	0.4

สูนยวิทยทรีพยากร

ตารางที่ 4.3.3 ผลการวิเคราะห์คุณสมบัติพื้นที่ผิวของ 1.0_Ca/SBA-15_550°C, 1.0_Ca/SBA-15_650°C และ 1.0_Ca/SBA-15_750°C

สารตัวอย่าง	ขนาดรูพรุน (nm)	พื้นที่ผิว (m²/g)	ปริมาตรรูพรุน (cm³/g)
1 Ca/SBA-15 ,550°C	6.2	138	0.32
1 Ca/SBA-15 ,650°C	5.4	193	0.36
1 Ca/SBA-15 ,750°C	5.4	111	0.23

ภาพที่ 4.3.19 ก.กราฟดูดซับ-คายซับไนโตรเจนของ 0.2_Ca/SBA-15_550°C, 0.2_Ca/SBA-15_650°C และ 0.2_Ca/SBA-15_750°C ข.กราฟกระจายตัวขนาดรูพรุนของ 0.2_Ca/SBA-15_550°C, 0.2_Ca/SBA-15_650°C และ 0.2_Ca/SBA-15_750°C (━ 0.2_Ca/SBA-15_550°C, ━ 0.2_Ca/SBA-15_650°C และ ━ 0.2_Ca/SBA-15_750°C)

ภาพที่ 4.3.20 ก.กราฟดูดซับ- คายซับ ไนโตรเจนของ 0.5_Ca/SBA-15_550°C, 0.5_Ca/SBA-15_650°C และ 0.5_Ca/SBA-15_750°C ข.กราฟกระจายตัวขนาดรูพรุนของ 0.5_Ca/SBA-15_550°C, 0.5_Ca/SBA-15_650°C และ 0.5_Ca/SBA-15_750°C (— 0.5_Ca/SBA-15_550°C, — 0.5_Ca/SBA-15_650°C และ — 0.5_Ca/SBA-15_750°C)

4.4 ผลกระทบจากเวลาที่ใช้ในหม้อนึ่งอัดความดันต่อคุณสมบัติทางกายภาพและ คุณสมบัติทางเคมี

ทำการทดลองโดยใช้เวลาที่ 1 วันและ 2 วัน กับตัวอย่าง0.5_Ca/SBA-15และ 1.0_Ca/SBA-15ที่อุณหภูมิการเผา550°Cและ650°C โดยชื่อของสารตัวอย่างจะเขียนในรูปแบบ ของ 0.5_Ca/SBA15_550°C_1 วัน คือ สารตัวอย่างจะสังเคราะห์ที่อัตราส่วนโมล Ca/Si ที่ 0.5 เผาที่อุณหภูมิ 550°C และใช้เวลาในหม้อนึ่งอัดความดัน 1 วัน

4.4.1 รูปร่างสัณฐานภายนอ<mark>ก</mark>

รูปร่างของอนุภาคจากภาพถ่ายกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดแสดงไว้ในภาพ ที่4.4.1,4.4.2,4.4.3และ4.4.4 ผลที่ได้แสดงให้เห็นว่าเวลาที่ใช้ในหม้อนึ่งอัดความดันเปลี่ยนไปมี ผลต่อรูปร่างของอนุภาค จากภาพที่4.4.1 ตัวอย่าง0.5_Ca/SBA-15_550°C_1 วัน มีลักษณะ อนุภาคเป็นแท่งยาวและรวมตัวกันในลักษณะติดกันเป็นแท่งขนาดใหญ่ขึ้น ในขณะที่ภาพที่ 4.4.2 แสดงผลของ0.5_Ca/SBA-15_550°C_2 วัน พบว่าอนุภาคจะเป็นแท่งที่สั้นลง รวมตัวกันในได้ น้อยลงและรวมตัวกันในลักษณะเป็นก้อนซึ่งที่อุณหภูมิการเผา650°Cให้ผลเช่นเดียวกัน สาเหตุเกิด จากการใช้เวลาในหม้อนึ่งอัดความดันมากขึ้นจะทำให้โครงสร้างผนังของอนุภาคที่เป็นซิลิกาบาง ลง[26] เมื่อเผาไล่สารแม่แบบออกมาทำให้โครงสร้างของอนุภาคพังได้ง่ายจึงมีความยาวอนุภาค สั้นลง

ภาพถ่ายกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดของตัวอย่าง1.0_Ca/SBA-15แสดงไว้ ในภาพที่4.4.5-4.4.8 ผลที่ได้จะเหมือนกับตัวอย่าง0.5_Ca/SBA-15 คือ เมื่อใช้เวลาในหม้อนึ่ง ความดันมากขึ้นอนุภาคลักษณะเป็นแท่งจะมีความยาวลดลงแต่เส้นผ่านศูนย์กลางยังขนาดเท่า เดิมและรวมตัวกันน้อยลงในลักษณะเป็นก้อน

ภาพที่ 4.4.3 _ถูปถ่าย SEM ของ 0.5_Ca/SBA15_650°C_1 วัน ที่กำลังขยาย

ภาพที่ 4.4.4 รูปถ่าย SEM ของ 0.5_Ca/SBA15_650°C_2 วัน ที่กำลังขยาย

ภาพที่ 4.4.8 รูปถ่าย SEM ของ 1.0_Ca/SBA-15_650°C_2 วัน ที่กำลังขยาย

4.4.2 ลักษณะโครงสร้างรูพรุน

ภาพถ่ายด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน(TEM)ของ 0.5_Ca/SBA15_650°C_1 วัน และ 0.5_Ca/SBA15_650°C_2 วัน แสดงไว้ในภาพที่4.4.9 พบว่า เมื่อใช้เวลาในหม้อนึ่งอัดความดันเป็น 2 วัน อนุภาคจะไม่มีลักษณะของริ้วรูพรุน ในขณะที่ใช้เวลา ในหม้อนึ่งอัดความดันเป็น 1 วัน มีลักษณะของริ้วรูพรุนตลอดอนุภาค แสดงให้เห็นว่าเมื่อใช้เวลา ในหม้อนึ่งอัดความดันเพิ่มขึ้นทำให้โครงสร้างของอนุภาคพัง

ภาพที่ 4.4.9 รูปถ่าย TEM ของ ก) 0.5_Ca/SBA15_650°C_1 วัน

และ ข) 0.5_Ca/SBA15_650°C_2 วัน

4.4.3 โครงสร้างผลึก

กราฟการกระเจิงของรังสีเอ็กซ์ที่มุมสูงแสดงไว้ในภาพที่4.4.10และ4.4.11 พบว่ากราฟของ สารตัวอย่างทุกตัวแสดงลักษณะเป็นวัสดุอสัณฐาน ยกเว้นตัวอย่าง1.0_Ca/SBA15_650°C_2 วัน ที่มีกราฟแสดงความเป็นผลึกมากขึ้น สาเหตุเกิดจากการใช้เวลาในหม้อนึ่งอัดความดันมากขึ้นทำ ให้แคลเซียมมีโอกาสที่จะเกิดผลึกของโลหะแคลเซียมขึ้นในหม้อนึ่งอัดความดัน และเมื่อเป็น อนุภาคCa/SBA-15 ผลึกโลหะแคลเซียมเหล่านี้ยังคงอยู่และจะที่พื้นที่ผิวมากขึ้นในสารตัวอย่าง 1.0_Ca/SBA15 จึงทำให้เครื่องตรวจพบความเป็นผลึกมากขึ้น

คูนยวทยทรพยากร จุฬาลงกรณ์มหาวิทยาลัย

ภาพที่ 4.4.10 กราฟเอ็กซ์-เรย์ดิฟแฟรกชันที่มุมสูงของของ 0.5_Ca/SBA-15_550°C_1 วัน, 0.5_Ca/SBA-15_550°C_2 วัน , 0.5_Ca/SBA15_650°C_1 วัน และ 0.5_Ca/SBA15_650°C_2 วัน (━ 0.5_Ca/SBA-15_550°C_1 วัน, ━ 0.5_Ca/SBA-15_650°C_1 วัน , ━0.5_Ca/SBA-15_550°C_2 วัน และ ━ 0.5_Ca/SBA-15_650°C_2 วัน)

ภาพที่ 4.4.11 กราฟเอ็กซ์-เรย์ดิฟแฟรกชันที่มุมสูงของของ 1.0_Ca/SBA-15_550°C_1 วัน, 1.0_Ca/SBA-15_550°C_2 วัน , 1.0_Ca/SBA15_650°C_1 วัน และ 1.0_Ca/SBA15_650°C_2 วัน (— 1.0_Ca/SBA-15_550°C_1 วัน, — 1.0_Ca/SBA-15_650°C_1 วัน , — 1.0_Ca/SBA-15_550°C_2 วัน และ — 1.0_Ca/SBA-15_650°C_2 วัน)

4.4.4 คุณสมบัติรูพรุนที่เป็นระเบียบ

กราฟการกระเจิงของรังสีเอ็กซ์ที่มุมต่ำมีเพียงสารตัวอย่าง0.5_Ca/SBA15_650°C_2 วัน ที่กราฟไม่เป็นลักษณะของรูพจุนที่เป็นระเบียบดังแสดงไว้ในภาพที่4.4.12 สาเหตุเกิดจากการที่ โครงสร้างอนุภาคเปลี่ยนแปลงโดยโครงสร้างผนังของอนุภาคบางลงจากการใช้เวลาในหม้อนึ่งอัด ความดันมากขึ้นทำให้โครงสร้างของอนุภาคอ่อนแอลง เมื่อเผาที่อุณหภูมิสูงขึ้นสารแม่แบบที่ ต้องการเผาไล่จะมีความดันมากขึ้นทำให้ทำลายโครงสร้างของอนุภาคจนโครงสร้างรูพรุนพังจึงไม่ เหลือความเป็นรูพรุนที่มีระเบียบ ขณะที่สารตัวอย่างอื่นยังคงมีรูพรุนที่เป็นระเบียบโดยลักษณะ กราฟจะแตกต่างกัน จุดยอดกราฟที่แสดงตำแหน่งระนาบ(100)จะต่ำลงที่ตัวอย่าง 0.5_Ca/SBA15_550 °C เมื่อใช้เวลาในหม้อนึ่งอัดความดันมากขึ้นจาก 1 วันเป็น 2 วัน มาจากการ ที่โครงสร้างอนุภาคเปลี่ยนแปลงโดยโครงสร้างผนังของอนุภาคบางลงจากการใช้เวลาในหม้อนึ่งอัด ความดันมากขึ้น

กราฟการกระเจิงของรังสีเอ็กซ์ที่มุมต่ำของตัวอย่าง1.0_Ca/SBA-15ให้ผลเช่นเดียวกับ 0.5_Ca/SBA-15 คือ 1.0_Ca/SBA15_550 °C เมื่อใช้เวลาในหม้อนึ่งอัดความดันเพิ่มขึ้นจาก 1 วัน เป็น 2 วัน จะไม่มีรูพรุนที่เป็นระเบียบดังแสดงไว้ในภาพที่4.4.13

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

ภาพที่ 4.4.12 กราฟเอ็กซ์-เรย์ดิฟแฟรกโตมิเตอร์ที่มุมต่ำของของ 0.5_Ca/SBA-15_550°C_1 วัน, 0.5_Ca/SBA-15_550°C_2 วัน , 0.5_Ca/SBA15_650°C_1 วัน และ 0.5_Ca/SBA15_650°C_2 วัน (— 0.5_Ca/SBA-15_550°C_1 วัน, — 0.5_Ca/SBA-15_650°C_1 วัน , — 0.5_Ca/SBA-15_550°C_2 วัน และ — 0.5_Ca/SBA-15_650°C_2 วัน)

ภาพที่ 4.4.13 กราฟเอ็กซ์-เรย์ดิฟแฟรกโตมิเตอร์ที่มุมต่ำของของ 1.0_Ca/SBA-15_550°C_1 วัน, 1.0_Ca/SBA-15_550°C_2 วัน , 1.0_Ca/SBA15_650°C_1 วัน และ 1.0_Ca/SBA15_650°C_2 วัน (—1.0_Ca/SBA-15_550°C_1 วัน, — 1.0_Ca/SBA-15_650°C_1 วัน , — 1.0_Ca/SBA-15_550°C_2 วัน และ — 1.0_Ca/SBA-15_650°C_2 วัน)

4.4.5 ปริมาณพื้นที่ผิวของวัสดุและขนาดรูพรุน

ตารางที่ 4.4.1 แสดงผลการวิเคราะห์ปริมาณพื้นที่ผิวของสารตัวอย่างด้วยเครื่องดูดซับ-คายซับแก๊สไนโตรเจน พบว่าสารตัวอย่าง 0.5_Ca/SBA-15 ที่เผาที่อุณหภูมิ 550°C เมื่อใช้เวลาใน หม้อนึ่งอัดความดันเพิ่มขึ้นจาก1วันเป็น2วันจะทำให้ค่าพื้นที่ผิวและปริมาตรรูพรุนลดลง เมื่อ วิเคราะห์กราฟการดูดซับ-คายซับแก๊สไนโตรเจนที่แสดงไว้ในภาพที่4.4.14.ก พบว่ากราฟทั้งสอง เป็นกราฟชนิด IV IUPAC ซึ่งเป็นลักษณะที่บ่งบอกชนิดของรูพรุนว่าเป็นรูพรุนขนาดเมโซ เมื่อ นำไปเผาที่อุณหภูมิ650°Cที่การใช้เวลาในหม้อนึ่งอัดความดัน1วัน กราฟการดูดซับ-คายซับแก๊ส ในโตรเจนจะเป็นชนิด IV IUPAC แต่ในตัวอย่างที่ใช้เวลาในหม้อนึ่งอัดความดัน 2 วัน กราฟการดูด ซับ-คายซับแก๊สไนโตรเจนเป็นกราฟของลักษณะที่ไม่มีรูพรุนและพื้นที่ผิวก็จะเหลือเพียงแค่39 ตารางเมตรต่อกรัมและปริมาตรรูพรุนเหลือเพียง0.3ลูกบาศก์เซนติเมตรต่อกรัม สาเหตุที่ทำให้ พื้นที่ผิวลดลงเมื่อใช้เวลาในหม้อนึ่งอัดความดันมากขึ้นที่อุณหภูมิการเผา550°Cเนื่องจากการใช้ เวลาในหม้อนึ่งอัดความตันมากขึ้นจะทำให้ผนังโครงสร้างที่เป็นซิลิกาบางลงและส่วนที่เป็นรูพรุน ขนาดไมโครจะลดลงทำให้พื้นที่ผิวที่มาจากส่วนที่เป็นรูพรุนขนาดไมโครหายไปค่าพื้นที่ผิวจึงลดลง [26]

ผลจากเวลาที่ใช้ในหม้อนึ่งความดันต่อตัวอย่าง1.0_Ca/SBA-15จะให้ผลการทดลองที่ เหมือนกับสารตัวอย่าง0.5_Ca/SBA-15 คือ เมื่อใช้เวลาในหม้อนึ่งความดันจาก1วันเป็น2วันเมื่อ นำไปเผาที่ 650°C รูพรุนขนาดเมโซจะหายไป ซึ่งกราฟการดูดซับ-คายซับแก๊สไนโตรเจนแสดงไว้ใน ภาพที่4.4.15.ก ที่อุณหภูมิ550°Cจะให้ค่าพื้นผิวที่เพิ่มขึ้นเมื่อใช้เวลาในหม้อนึ่งอัดความดันเป็น 2 วัน ซึ่งคาดว่าจะเกิดจากอนุภาคที่เล็กลงจึงทำให้พื้นที่เพิ่มขึ้น

จุฬาลงกรณ์มหาวิทยาลัย

ตารางที่ 4.4.1 ผลการวิเคราะห์คุณสมบัติพื้นที่ผิวของ 0.5_Ca/SBA-15_550°C_1 วัน, 0.5_Ca/SBA-15_550°C_2 วัน , 0.5_Ca/SBA15_650°C_1 วัน และ 0.5_Ca/SBA15_650°C_2 วัน

สารตัวอย่าง	ขนาดรูพรุน	พื้นที่ผิว	ปริมาตรรูพรุน
	(nm)	(m²/g)	(cm ³ /g)
0.5_Ca/SBA-15_550°C_1 วัน	6.2	301	0.59
0.5_Ca/SBA-15_550 [°] C_2 วัน	6.2	161	0.4
0.5_Ca/SBA15_650°C_1 วัน	4.7	260	0.46
0.5_Ca/SBA15_650°C_2 วัน		39	0.3

ตารางที่ 4.4.2 ผลการวิเคราะห์คุณสมบัติพื้นที่ผิวของ 1.0_Ca/SBA-15_550°C_1 วัน, 1.0_Ca/SBA-15_550°C_2 วัน , 1.0_Ca/SBA15_650°C_1 วัน และ 1.0_Ca/SBA15_650°C_2 วัน

สารตัวอย่าง	ขนาดรูพรุน (nm)	<mark>พื้นที่ผิว</mark> (m ² /g)	ปริมาตรรูพรุน (cm ³ /g)
1.0_Ca/SBA-15_550°C_1 วัน	6.2	138	0.32
1.0_Ca/SBA-15_550°C_2 วัน	6.2	167	0.4
1.0_Ca/SBA15_650 [°] C_1 วัน	5.4	193	0.41
1.0_Ca/SBA15_650°C_2 วัน	-	6	0.04

คูนยวทยทรพยากร จุฬาลงกรณ์มหาวิทยาลัย

ภาพที่ 4.4.14 ก.กราฟดูดซับ- คายซับ ไนโตรเจน 0.5_Ca/SBA-15_550°C_1 วัน, 0.5_Ca/SBA-15_550°C_2 วัน , 0.5_Ca/SBA15_650°C_1 วัน และ 0.5_Ca/SBA15_650°C_2 วัน

ข.กราฟกระจายตัวขนาดรูพรุนของ 0.5_Ca/SBA-15_550°C_1 วัน, 0.5_Ca/SBA-15_550°C_2 วัน , 0.5_Ca/SBA15_650°C_1 วัน และ 0.5_Ca/SBA15_650°C_2 วัน

(— 0.5_Ca/SBA-15_550°C_1 วัน, — 0.5_Ca/SBA-15_650°C_1 วัน, — 0.5_Ca/SBA-15_550°C_2 วัน และ — 0.5_Ca/SBA-15_650°C_2 วัน)

ภาพที่ 4.4.15 ก.กราฟดูดซับ- คายซับ ในโตรเจน 1.0_Ca/SBA-15_550°C_1 วัน, 1.0_Ca/SBA-15_550°C_2 วัน , 1.0_Ca/SBA15_650°C_1 วัน และ 1.0_Ca/SBA15_650°C_2 วัน

ข.กราฟกระจายตัวขนาดรูพรุนของ 1.0_Ca/SBA-15_550°C_1 วัน, 1.0_Ca/SBA-15_550°C_2 วัน , 1.0_Ca/SBA15_650°C_1 วัน และ 1.0_Ca/SBA15_650°C_2 วัน

(— 1.0_Ca/SBA-15_550°C_1 วัน, — 1.0_Ca/SBA-15_650°C_1 วัน , — 1.0_Ca/SBA-15_550°C_2 วัน และ — 1.0_Ca/SBA-15_650°C_2 วัน)

4.5 ประสิทธิภาพในการนำไปใช้เป็นตัวเร่งปฏิกิริยาในปฏิกิริยาทรานเอสเทอริฟิเคชัน

ในการทดลองจะนำสารที่สังเคราะห์ได้ไปใช้เป็นตัวเร่งปฏิกิริยาในปฏิกิริยาทรานเอสเทอ ริฟิเคชันระหว่างน้ำมันปาล์มกับเมทานอล ทำปฏิกิริยาที่สภาวะ200°Cเป็นเวลา2ชั่วโมง โดยใช้ อัตราส่วนโมล น้ำมันปาล์ม : เมทานอล ที่ 1:27 และใช้ตัวเร่งปฏิกิริยา 5%โดยน้ำหนักน้ำมัน เพื่อ ศึกษาประสิทธิภาพของการนำวัสดุผสมCa/SBA-15ในการเป็นตัวเร่งปฏิกิริยาทรานเอสเทอริฟิเค ขัน

สารตัวอย่าง	%FAME
ไม่มีตัวเร่งปฏิกิริยา	8
SBA-15	14
Imp0.5_CaO/SBA-15	95
0.5_Ca/ <mark>SBA-</mark> 15_550°C	96
0.5_Ca/SBA-15_650°C	91
0.5_Ca/SBA-15_750°C	67
0.2_Ca/SBA-15_650°C	88
1.0_Ca/SBA-15_650°C	92
1.0_Ca/SBA-15_550°C_2 วัน	88
1.0_Ca/SBA-15_650°C_2 วัน	93

ตารางที่ 4.5.1 ผลปฏิกิริยา<mark>ทรานเอสเทอ</mark>ริฟีเ<mark>ค</mark>ชัน

งหาดงกวณมหาวทยาดย

ตารางที่ 4.5.1 แสดงผลการนำสารที่สังเคราะห์ได้ไปใช้เป็นตัวเร่งปฏิกิริยา พบว่าในการ ทำปฏิกิริยาโดยไม่มีตัวเร่งปฏิกิริยาได้%FAMEที่8% เมื่อใช้SBA-15ที่ไม่มีการเติมแคลเซียมที่เป็น ตัวเร่งปฏิกิริยาได้%FAMEที่14% ตัวอย่างImp0.5_CaO/SBA-15ที่มีการเติมแคลเซียมด้วยวิธีอิม เพร็กเนซันได้%FAMEที่95% และวัสดุผสมที่ให้%FAMEมากที่สุด คือ 0.5_Ca/SBA-15_550°C ให้%FAMEที่96% ซึ่งใกล้เคียงกับImp0.5_CaO/SBA-15 เมื่อวิเคราะห์ผลที่ได้พบว่าอุณหภูมิที่ใช้ในการเผาจะมีผลต่อ%FAME คือ เมื่ออุณหภูมิ การเผาเพิ่มขึ้นจะให้%FAMEน้อยลงเมื่อพิจารณาจากผลของ0.5_Ca/SBA-15_550°Cกับ 0.5_Ca/SBA-15_750°C สาเหตุเกิดจากที่อุณหภูมิการเผา750°Cทำให้แคลเซียมรวมตัวกับ ซิลิกอนกลายเป็นแคลเซียมซิลิเกต ขณะที่อุณหภูมิการเผาต่ำลงมาแคลเซียมจะยังคงอยู่ในรูป แคลเซียมออกไซด์ โดยแคลเซียมซิลิเกตจะมีความเป็นเบสน้อยกว่าแคลเซียมออกไซด์[27, 28] ซึ่ง สามารถยืนยันได้จากผลของ CO₂-TPD ที่ใช้ในการวิเคราะห์หาความเป็นเบสของสารตัวอย่างที่ แสดงไว้ในภาพที่ 4.5.1

จากผลการทดลองที่ได้ทุกตัวอย่างจะมีพีคกว้างที่ช่วงอุณหภูมิระหว่าง 200-600°C ที่ แสดงความเป็นเบสอ่อนและเบสกลาง โดยตัวอย่าง 0.5_Ca/SBA-15_550°C มีปริมาณเบสอ่อน และเบสกลางมากที่สุด ขณะที่ตัวอย่าง 0.5_Ca/SBA-15_750°C มีพีคต่ำมาก แสดงให้เห็นว่ามี ปริมาณเบสอ่อนและเบสกลางที่น้อยมาก นอกจากนี้ตัวอย่าง 0.5_Ca/SBA-15_550°C จะมีพีคสูง ที่ตำแหน่ง 939°C แสดงปริมาณเบสแก่ ขณะที่ตัวอย่าง 0.5_Ca/SBA-15_650° จะมีพีคที่อุณหภูมิ 787°C ซึ่งเป็นเบสอ่อนกว่าที่อุณหภูมิ 900°C ขึ้นไป เมื่อพิจารณาผลของตัวอย่าง 0.5_Ca/SBA-15_750° พบว่ามีพีคที่อุณหภูมิ 955°C แต่มีปริมาณน้อยมากเนื่องจากมีพีคที่ต่ำ ดังนั้นจากกราฟ CO₂-TPD ยืนยันได้ว่า0.5_Ca/SBA-15_550°C มีความเป็นเบสที่มากกว่า 0.5_Ca/SBA-15_650° และ 0.5_Ca/SBA-15_750° เนื่องจากมีปริมาณเบสมากกว่า ซึ่งสามารช่วยยืนยันได้ว่าเมื่อมีการ เผาที่อุณหภูมิสูงขึ้นทำให้แคลเซียมรวมตัวกับซิลิกาเกิดการเปลี่ยนเฟสทำให้ความเป็นเบสลดลง จึงส่งผลให้นำไปใช้เป็นตัวเร่งปฏิกิริยาได้ไม่ดีทำให้ %FAME ลดลง

ศูนยวิทยทริพยากร จุฬาลงกรณ์มหาวิทยาลัย

ภาพที่ 4.5.1 กราฟ CO₂-TPD ของ 0.5_Ca/SBA-15_550°C, 0.5_Ca/SBA-15_650°C และ 0.5_Ca/SBA-15_750°C (— 0.5_Ca/SBA-15_550°C, — 0.5_Ca/SBA-15_650°C และ — 0.5_Ca/SBA-15_750°C)

4.6 ประสิทธิภาพในการนำกลับไปใช้ใหม่

ในการทดลองจะเลือกวัสดุผสมที่ให้%FAMEมากที่สุดมาทดสอบประสิทธิภาพ การนำกลับมาใช้ใหม่ คือ 0.5_Ca/SBA-15_550°C เปรียบเทียบกับ Imp0.5_CaO/SBA-15 โดย นำตัวอย่างไปใช้ทำปฏิกิริยาจำนวน3รอบ ผลที่ได้ คือ 0.5_Ca/SBA-15_550°C ให้%FAMEที่ 92% ขณะที่ Imp0.5_CaO/SBA-15ให้%FAMEที่ 89% จากผลการทดลองที่ได้แสดงให้เห็นว่าวัสดุผสม Ca/SBA-15จะมีประสิทธิภาพในการนำกลับมาใช้ใหม่ได้ดีกว่าการเติมCaOบนSBA-15ด้วยวิธีอิม เพร็กเนชัน เนื่องจากวัสดุCa/SBA-15จะมีแคลเซียมอยู่ภายในรูพรุนมากกว่าการเติมCaOบนSBA-15ด้วยวิธีอิมเพร็กเนชัน ทำให้แคลเซียมเกิดพันธะกับโครงสร้างSBA-15ได้ดีกว่าจึงมีความทนทาน มากกว่าทำให้มีประสิทธิภาพในการนำกลับมาใช้ใหม่ดีกว่า
บทที่ 5

สรุปผลงานวิจัยและข้อเสนอแนะ

5.1สรุปผลงานวิจัย

5.1.1วัสดุผสม Ca/SBA-15 สามารถสังเคราะห์ได้โดยการเติมแคลเซียมไนเตรตระหว่าง ขั้นตอนการสังเคราะห์SBA-15 วัสดุที่สังเคราะห์ได้จะยังคงมีรูพรุนที่เป็นระเบียบขนาดเมโซ เช่นเดียวกับSBA-15 ตามที่ต้องการแต่ค่าพื้นที่ผิวและปริมาตรรูพรุนลดลง แคลเซียมที่เติมลงไปจะ อยู่ภายในรูพรุนและเกิดพันธะกับโครงสร้างของSBA-15ในลักษณะเป็นชั้นภายในรูพรุน วัสดุผสม Ca/SBA-15ที่สังเคราะห์ได้จะมีคุณสมบัติทางกายภาพและคุณสมบัติทางเคมีที่ต่างจากการเติม CaOลงบนSBA-15ด้วยวิธีอิมเพร็กเนซัน โดยการเติมCaOด้วยวิธีอิมเพร็กเนซันจะทำให้รูพรุนที่ เป็นระเบียบหายไปและแสดงความเป็นผลึกในขณะที่วัสดุผสมCa/SBA-15จะเป็นอสัณฐาน นอกจากนี้การเติม CaO ลงบน SBA-15 ด้วยวิธีอิมเพร็กเนซันจะให้ค่าพื้นที่ผิวและปริมาตรรูพรุนที่ น้อยกว่า

5.1.2ปริมาณแคลเซียมที่ใช้ในการสังเคราะห์จะมีผลต่อรูปร่างของอนุภาค คือ เมื่อใช้ ปริมาณแคลเซียมในการสังเคราะห์มากขึ้นจะทำให้แคลเซียมออกมาอยู่ที่พื้นผิวของอนุภาคมาก ขึ้นทำให้เกิดการรวมตัวของอนุภาคได้มากขึ้น นอกจากนี้ยังเป็นผลทำให้การเผาไล่สารแม่แบบทำ ได้ยากขึ้นเนื่องจากแคลเซียมจะขัดขวางทำให้สารแม่แบบสลายตัวได้ยากขึ้น

5.1.3อุณหภูมิที่ใช้เผามีผลกระทบในการเปลี่ยนเฟสและการรวมตัวเป็นแคลเซียมซิลิเกต ของสารตัวอย่าง โดยที่อุณหภูมิการเผา750°Cจะเกิดการรวมตัวของแคลเซียมกับซิลิกากลายเป็น ผลึกแคลเซียมซิลิเกต โดยการเกิดเป็นแคลเซียมซิลิเกตจะทำให้ความเป็นเบสลดลงต่างจากที่ อุณหภูมิการเผา550°Cและ650°ที่ให้ความเป็นเบสสูงกว่า ดูได้จากกการนำไปใช้เป็นตัวเร่ง ปฏิกิริยาทรานเอสเทอริฟิเคชันที่ให้%FAMEสูงกว่า

5.1.4ผลกระทบจากเวลาที่ใช้ในหม้อนึ่งอัดความดันจะมีผลทำให้โครงสร้างของรูพรุน เปลี่ยนแปลง คือ เมื่อใช้เวลาในหม้อนึ่งอัดความดันมากขึ้นความแข็งแรงโครงสร้างของอนุภาคจะ ลดลงเพราะการใช้เวลาในหม้อนึ่งอัดความดันมากขึ้นส่งผลให้โครงสร้างผนังของอนุภาคที่เป็นซิลิ กาบางลง ทำให้โครงสร้างผนังของอนุภาคอ่อนแอลง เมื่อเผาที่อุณหภูมิสูงขึ้นทำให้สารแม่แบบมี ความดันมากขึ้นจึงทำลายโครงสร้างของอนุภาคสูญเสียคุณสมบัติรูพรุนที่เป็นระเบียบขนาดเมโซ

5.1.5การนำวัสดุผสม Ca/SBA-15 ที่สังเคราะห์ได้ไปใช้เป็นตัวเร่งปฏิกิริยาในปฏิกิริยาท รานเอสเทอริฟิเคชันพบว่าวัสดุผสม Ca/SBA-15 สามารถเร่งปฏิกิริยาทรานเอสเทอริฟิเคชันได้ดี โดยสามารถให้%FAME ที่สูงถึง 96% โดย%FAME ที่จะขึ้นอยู่กับสถานะแคลเซียมว่าอยู่ในรูปไหน ถ้าเป็นแคลเซียมซิลิเกตจะทำให้%FAMEลดลงเพราะมีความเป็นเบสน้อยกว่าแคลเซียมออกไซด์

5.1.6.วัสดุผสม Ca/SBA-15 จะมีประสิทธิภาพในการนำกลับมาใช้ใหม่ดีกว่าการเติมCaO ลงบนSBA-15ด้วยวิธีอิมเพร็กเนชัน เนื่องจากหลังการนำไปใช้กับปฏิกิริยาทรานเอสเทอริฟิเคชัน จำนวน3รอบวัสดุผสม Ca/SBA-15ให้%FAMEที่92% ขณะที่การเติมCaOลงบนSBA-15ด้วย วิธีอิมเพร็กเนชันให้%FAMEที่89%

5.2ข้อเสนอแนะ

5.2.1.ลองเปลี่ยนขั้นตอนสังเคราะห์โดยการเติมแคลเซียมไนเตรตลงในสารละลายที่ออก จากหม้อนึ่งอัดความดันแล้วจึงนำไประเหยที่สุญญากาศเพื่อศึกษาปรากฏการณ์ที่เกิดขึ้นในหม้อ นึ่งอัดความดัน

5.2.3ในการทำปฏิกิริยาควรเพิ่มจำนวนครั้งในเก็บตัวอย่างวิเคราะห์หา%FAMEที่เวลา ก่อน2ชั่วโมง เพื่อดูว่าตัวเร่งปฏิกิริยามีประสิทธิภาพเท่าใดเนื่องจากที่เวลา2ชั่วโมงอาจจะเป็นช่วง ปฏิกิริยาเข้าสู่ค่าสูงสุดแล้ว

5.2.3หาวิธีวิเคราะห์เทียบว่าในตัวอย่างมีปริมาณแคลเซียมอยู่เท่าใด เพื่อเปรียบเทียบว่า ตัวอย่าง Ca/SBA-15ที่ใช้มีปริมาณแคลเซียมเท่ากับในตัวอย่างที่เติมCaOลงบนSBA-15หรือไม่

5.3.4เพิ่มจำนวนครั้งในการทำปฏิกิริยาทรานเอสเทอริฟิเคชัน เพื่อดูว่ายิ่งจำนวนครั้งใน การใช้มากขึ้น%FAMEที่ได้จากการใช้Ca/SBA-15ยังมากกว่าการใช้ตัวอย่างที่เติมCaOลงบน SBA-15

รายการอ้างอิง

- [1] Alba-Rubio, A.C., et al. Heterogeneous transesterification processes by using CaO supported on zinc oxide as basic catalysts. <u>Catalysis Today</u>, 149 (3-4): p. 281-287.
- [2] Ngamcharussrivichai, C., Totarat, P., and Bunyakiat, K. Ca and Zn mixed oxide as a heterogeneous base catalyst for transesterification of palm kernel oil. <u>Applied Catalysis A: General</u>, 2008. 341(1-2): p. 77-85.
- [3] Ma, F., and Hanna, M.A. Biodiesel production: A review. <u>Bioresource</u> <u>Technology</u>, 1999. 70(1): p. 1-15.
- [4] MacLeod, C.S., et al. Evaluation of the activity and stability of alkali-doped metal oxide catalysts for application to an intensified method of biodiesel production. <u>Chemical Engineering Journal</u>, 2008. 135(1-2): p. 63-70.
- [5] Albuquerque, M.C.G., et al. CaO supported on mesoporous silicas as basic catalysts for transesterification reactions. <u>Applied Catalysis A: General</u>, 2008. 334(1-2): p. 35-43.
- [6] Granados, M.L., et al. Leaching and homogeneous contribution in liquid phase reaction catalysed by solids: The case of triglycerides methanolysis using CaO. <u>Applied Catalysis B: Environmental</u>, 2009. 89(1-2): p. 265-272.
- [7] Hsin, T.M., et al. Calcium containing silicate mixed oxide-based heterogeneous catalysts for biodiesel production. <u>Topics in Catalysis</u>. 53(11-12): p. 746-754.
- [8] Shah, P., et al. Direct hydrothermal synthesis of mesoporous Sn-SBA-15 materials under weak acidic conditions. <u>Microporous and Mesoporous</u> <u>Materials</u>, 2007. 100(1-3): p. 210-226.
- [9] Fulvio, P.F., Pikus, S., and Jaroniec, M. Short-time synthesis of SBA-15 using various silica sources. <u>Journal of Colloid and Interface Science</u>, 2005. 287(2): p. 717-720.
- [10] Klein, L.C. Sol-Gel Processing of Silicates. <u>Annual Review of Materials Science</u>, 1985. 15(1): p. 227-248.

- [11] Brinker, C.J., and Scherer, G.W. <u>The Physics and Chemistry of Sol-Gel</u> <u>Processing</u>. 1990: Academic Press Inc.
- [12] Holmberg, K. <u>Surfactants and Polymers in Aqueous Solution</u>. 2001.
- [13] Kabanov, A.V., et al. Pluronic block copolymers: Novel functional molecules for gene therapy. <u>Advanced Drug Delivery Reviews</u>, 2002. 54(2): p. 223-233.
- [14] Brinker, C.J. Evaporation-induced self-assembly: Functional nanostructures made easy. <u>MRS Bulletin</u>, 2004. 29(9): p. 631-640.
- [15] Freedman, B., Butterfield, R.O., and Pryde, E.H. Transesterification kinetics of soybean oil 1. Journal of the American Oil Chemists' Society, 1986.
 63(10): p. 1375-1380.
- [16] Schuchardt, U., Sercheli, R., and Vargas, R.M. Transesterification of vegetable oils: A review. <u>Journal of the Brazilian Chemical Society</u>, 1998. 9(3): p. 199-210.
- [17] Zhu, W., Han, Y., and An, L. Silver nanoparticles synthesized from mesoporous Ag/SBA-15 composites. <u>Microporous and Mesoporous Materials</u>, 2005.
 80(1-3): p. 221-226.
- [18] Wang, Y.M., et al. In situ coating metal oxide on SBA-15 in one-pot synthesis.
 <u>Microporous and Mesoporous Materials</u>, 2005. 84(1-3): p. 127-136.
- [19] Li, E., and Rudolph, V. Transesterification of vegetable oil to biodiesel over MgO-functionalized mesoporous catalysts. <u>Energy and Fuels</u>, 2008.
 22(1): p. 145-149.
- [20] Liu, X., et al. Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. <u>Fuel</u>, 2008. 87(2): p. 216-221.
- [21] Mesa, M., Sierra, L., and Guth, J.L. Contribution to the study of the formation mechanism of mesoporous SBA-15 and SBA-16 type silica particles in aqueous acid solutions. <u>Microporous and Mesoporous Materials</u>, 2008. 112(1-3): p. 338-350.
- [22] Cranston, R.W., and Inkley, F.A. 17 The Determination of Pore Structures from Nitrogen Adsorption Isotherms, <u>in Advances in Catalysis</u>. 1957. p. 143-154.

- [23] G.V. Lisichkin, A.Y.F., A.A. Serdan, P.N. Nesterenko, P.G. Mingalyov, D.B. and Furman. <u>Chemisry of Surface Grafted Compounds</u>. 2003, Moscow: Fizmatlit.
- [24] Ponomarenko, I.V., et al. Synthesis and water sorption properties of a new composite "CaCl2 confined into SBA-15 pores". <u>Microporous and</u> <u>Mesoporous Materials</u>. 129(1-2): p. 243-250.
- [25] Berube, F., and Kaliaguine, S. Calcination and thermal degradation mechanisms of triblock copolymer template in SBA-15 materials. <u>Microporous and Mesoporous Materials</u>, 2008. 115(3): p. 469-479.
- [26] Ruthstein, S., et al. Study of the formation of the mesoporous material SBA-15 by EPR spectroscopy. <u>Journal of Physical Chemistry B</u>, 2003. 107(8): p. 1739-1748.
- [27] Bolognini, M., et al. Heterogeneous basic catalysts as alternatives to homogeneous catalysts: Reactivity of Mg/Al mixed oxides in the alkylation of m-cresol with methanol. <u>Catalysis Today</u>, 2002. 75(1-4): p. 103-111.
- [28] Di Cosimo, J.I., et al. Structure and surface and catalytic properties of Mg-Al basic oxides. Journal of Catalysis, 1998. 178(2): p. 499-510.

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

ภาคผนวก

ภาคผนวก ก

การศึกษาคุณสมบัติทางกายภาพและคุณสมบัติทางเคมีของสารตัวอย่าง

S	BA-15	Imp0.5_CaO/SBA-15							
p/p ₀	V _a /cm ³ (STP) g ⁻¹	p/p ₀	V_a /cm ³ (STP) g ⁻¹						
	Adsorption								
0.000042738	20.655	0.0015478	6.0157						
0.00041503	42.234	0.026915	9.2326						
0.00072973	49.338	0.045498	10.014						
0.005026	77.539	0.050376	10.198						
0.016654	99.142	0.076146	10.927						
0.038908	116.37	0.099921	11.515						
0.040023	117	0.1254	12.078						
0.049949	122.1	0.1511	12.595						
0.076494	132.96	0.1765	13.081						
0.09998	140.74	0.2019	13.566						
0.1253	147.91	0.2274	14.007						
0.1523	154.85	0.2526	14.454						
0.1744	160.06	0.2779	14.903						
0.1998	165.69	0.3035	15.323						
0.2239	170.84	0.3519	16.162						
0.2497	176.24	0.4033	17.087						
0.2756	181.48	0.4538	18.042						
0.3012	186.69	0.5036	19.041						
0.3485	196.29	0.5533	20.153						
0.3989	206.69	0.6024	21.481						
0.4479	217.3	0.6473	23.547						

ตารางที่ ก-1 ค่าการดูดซับ-คายซับแก๊สไนโตรเจนของสารตัวอย่าง

0.5001	229.38	0.6931	26.46
0.5488	241.78	0.744	29.7
0.5961	255.18	0.7884	33.194
0.6503	273.18	0.8018	34.492
0.6955	292.32	0.833	38.789
0.7279	324.31	0.8441	41.183
0.7362	349.5	0.8897	63.553
0.7407	373. <mark>5</mark> 3	0.8962	67.037
0.7448	405.72	0.9345	93.134
0.7519	445.5	0.949	98.003
0.7723	476.15	0.9701	108
0.7954	487.64	0.9754	111.98
0.8461	512.33	0.9899	136.47
0.895	<mark>538.12</mark>	0.9915	151.21
0.9345	5 <mark>6</mark> 8.57		
0.9495	584.67		
0.9666	611.03		
0.9823	640.23	and a second	
0.9895	666.66	1	ſ
0.9919	684.73	- i	
	Desor	ption	
0.9817	652.14	0.9872	144.17
0.9659	616.22	0.9843	137.88
0.9503	596.48	0.9792	128.62
0.9209	567.46	0.9526	104.18
0.8971	549.36	0.8829	85.181
0.8518	522.12	0.868	80.991
0.7986	497.36	0.8425	70.916
0.765	482.69	0.8251	63.387
0.7475	475.37	0.7907	51.522

0.7008	452.1	0.7653	45.661
0.6866	420.61	0.744	42.116
0.6802	385.69	0.7075	37.502
0.6767	368.91	0.6887	35.576
0.6723	337.19	0.6545	31.725
0.6629	300.53	0.6142	26.592
0.6318	273.03	0.5945	24.116
0.5984	260.66	0.5513	20.895
0.5333	241.46	0.4929	18.998
0.4985	232.58	0.4406	17.741
0.4329	215.22	0.3907	16.805
0.3977	207.32	0.342	15.927
0.3491	197.18	0.293	15.075
0.2998	187.08		

0.2_Ca/SBA-15_550°C		0.2_Ca/SBA-15_650°C		0.2_Ca/SBA-15_750°C				
p/p ₀	$V_a/\text{cm}^3(\text{STP}) \text{ g}^{-1}$	p/p ₀	V_a/cm^3 (STP) g ⁻¹	p/p ₀	$V_a/\text{cm}^3(\text{STP}) \text{ g}^{-1}$			
	Adsorption							
0.000068	22.085	0.00023	21.919	0.0009048	25.776			
0.001	40.299	0.00103	38.803	0.0030333	36.41			
0.0050078	54.617	0.00529	53.601	0.0077492	45.938			
0.023904	71.686	0.026207	70.492	0.023535	58.778			
0.041088	78.641	0.040707	75.912	0.040516	65.994			
0.053605	82.36	0.051806	79.132	0.050533	69.113			
0.075482	87.63	0.078289	85.148	0.077255	75.921			
0.1004	92.588	0.1	89.16	0.1036	81.283			
0.1287	97.408	0.1296	93.9	0.1247	85.03			
0.1498	100.74	0.1518	97.053	0.153	89.606			
0.1798	105.18	0.1753	100.29	0.1759	93.053			

0.2013	108.24	0.1998	103.48	0.2052	97.256
0.2247	111.48	0.2253	106.71	0.2248	99.96
0.2498	114.99	0.251	109.88	0.25	103.31
0.2755	118.58	0.2765	113.05	0.2753	106.69
0.3005	122.07	0.3014	116.17	0.3011	110.03
0.3503	129.2	0.3524	122.7	0.351	116.6
0.4011	136.86	0.3985	128.93	0.3996	123.11
0.4505	144.83	0.4472	135.93	0.4482	130.1
0.4975	153.04	0.4991	144.14	0.5028	138.59
0.5477	162.75	0.5526	153.65	0.5526	147.88
0.5968	173.39	0.6002	163.43	0.5985	158.63
0.6492	187.05	0.6463	174.74	0.6448	174.68
0.6948	202.5	0.6866	190.24	0.678	194.93
0.7192	225.21	0.6988	197.76	0.7005	215
0.7509	322.84	0.7113	215.13	0.713	239.04
0.7564	347.64	0.7214	236.28	0.7624	320.24
0.9086	426.8	0.7555	351.34	0.8013	324.65
0.9475	432.64	0.7652	370.34	0.8541	329.27
0.9694	438.4	0.8288	385.51	0.9067	333.26
0.9914	459.89	0.8532	388.3	0.9504	338.33
	1.0	0.8983	393.4	0.9705	343.73
		0.9476	399.69	0.9882	359.56
		0.9708	405.28	0.9918	370.24
্বা		0.9887	421.04	ยาลย	
9		0.991	426.74		
		De	esorption		
0.972	441.79	0.9707	407.58	0.9766	350.78
0.9447	434.09	0.9414	400.32	0.9524	341.04
0.8949	426.94	0.8873	394.08	0.8916	333.37
0.841	420.88	0.8361	388.99	0.8333	328.87

0.7913	414.57	0.789	383.37	0.7848	324.72
0.7462	407.91	0.7431	377.13	0.7379	320.27
0.7075	391.49	0.6991	362.33	0.6955	313.94
0.7037	385.29	0.6906	331.63	0.6748	290.78
0.6976	353.88	0.6419	198.08	0.6678	272.94
0.6927	326.19	0.6139	177.05	0.6401	223.41
0.6429	193.54	0.6013	170.6	0.6079	206.5
0.6028	175.1	0.5504	154.09	0.5971	201.42
0.5373	160.42	0.4974	144.08	0.5609	184.98
0.4993	153.17	0.4501	136.19	0.5481	180.15
0.4329	141.32	0.3994	128.79	0.5045	162.4
0.3975	135.69	0.3483	121.97	0.4687	140.73
0.3497	128.53	0.2983	115.67	0.4431	129.79
0.3002	121.44	1 3	10	0.3986	123.04
0.272	117.51	2.440		0.3476	116.22
				0.2983	109.71
		Constanting of			

0.5_Ca/SBA-15_550°C		0.5_Ca/\$	0.5_Ca/SBA-15_650°C		0.5_Ca/SBA-15_750°C			
p/p ₀	$V_a/\text{cm}^3(\text{STP}) \text{ g}^{-1}$	p/p ₀	V_a/cm^3 (STP) g ⁻¹	p/p ₀	$V_a/\text{cm}^3(\text{STP}) \text{ g}^{-1}$			
	Adsorption							
0.000308	25.937	0.001515	25.586	0.00065485	18.765			
0.000959	32.079	0.009092	37.331	0.0061609	30.067			
0.008413	46.476	0.032012	47.693	0.019309	37.546			
0.032922	58.263	0.040644	49.951	0.040918	43.38			
0.042199	60.842	0.052001	52.422	0.050134	45.119			
0.052987	63.305	0.075422	56.584	0.075224	49.026			
0.07654	67.77	0.1018	60.411	0.1036	52.563			
0.1001	71.441	0.1284	63.9	0.1303	55.439			
0.1258	74.976	0.1487	66.304	0.1495	57.35			

0.1489	77.978	0.174	69.107	0.1743	59.76
0.1745	81.084	0.1997	71.827	0.2	62.069
0.2	84.065	0.2252	74.43	0.2256	64.347
0.2256	86.964	0.2508	77.036	0.251	66.61
0.251	89.956	0.2764	79.569	0.276	68.829
0.2766	92.788	0.3017	82.095	0.302	71.141
0.3018	95.671	0.3532	87.288	0.3527	75.846
0.3535	101.68	0.401	92.284	0.3999	80.527
0.4006	107.36	0.4503	97.791	0.4484	85.994
0.4497	113.84	0.4992	103.93	0.5041	93.555
0.499	120.88	0.5473	111.02	0.5496	101.74
0.5474	128.7	0.5982	121.45	0.5946	113.12
0.6028	139.34	0.6391	136.78	0.6281	125.37
0.6497	150.83	0.6469	140.92	0.65	135.23
0.6915	167.85	0.6689	158. <mark>3</mark> 1	0.6712	148.22
0.6974	172.45	0.6856	173.37	0.6976	165.35
0.7085	197.29	0.6994	187.46	0.7173	179.4
0.7143	217.96	0.7121	205.91	0.7485	189.19
0.7656	317.96	0.7589	239.88	0.8005	193.72
0.7988	323.88	0.8	244.95	0.8515	198.1
0.8472	331.66	0.8493	250.91	0.8984	202.72
0.8979	339.35	0.8989	257.11	0.9446	209.37
0.9465	347.82	0.9448	265.03	0.9735	220
0.9705	355.78	0.9702	272.01	0.9836	231.49
0.9875	372.72	0.9872	287.5	0.9918	266.93
0.9909	385.11	0.9908	301.39		
		D	esorption		
0.9811	370.33	0.9778	281.14	0.9869	252.55
0.9608	353.64	0.9552	268.61	0.9824	240.22
0.938	346.87	0.8974	258.85	0.9721	223.71

0.8907	338.87	0.8412	251.81	0.9351	208.77
0.8399	331.7	0.7891	246.37	0.888	202.63
0.7899	325.23	0.7379	241.69	0.8354	197.72
0.7387	319.63	0.6919	236.39	0.7847	193.76
0.6962	311.61	0.6582	217.19	0.7342	190.35
0.6774	291.16	0.6483	211.24	0.6865	186.73
0.6646	267.8	0.6268	194.33	0.6467	173.79
0.649	221.52	0.6054	178.91	0.61	161.2
0.6416	196.8	0.5684	149.46	0.593	156.55
0.6333	174.26	0.5513	139.04	0.5577	145.1
0.6138	148.48	0.5285	121.06	0.5462	140.86
0.599	141.46	0.4948	107.23	0.5096	124.85
0.5414	127.81	0.4491	97.959	0.4984	120.39
0.4961	120.37	0.3963	91.667	0.473	106.93
0.447	112.89	0.3458	86.312	0.4579	92.395
0.396	106.19	0.2963	81.334	0.444	87.34
0.3461	100.07		and a second	0.4005	80.881
0.2967	94.341			0.3469	75.549
	Č4			0.2967	70.902
•		•			

1.0_Ca/SBA-15_550°C		1.0_Ca/S	BA-15_650°C	0.5_Ca/SBA-15_750°C			
p/p ₀	V_a/cm^3 (STP) g ⁻¹	p/p_0	$V_a/\text{cm}^3(\text{STP}) \text{ g}^{-1}$	p/p ₀	V_a/cm^3 (STP) g ⁻¹		
2	Adsorption						
0.00069	15.141	0.0004748	13.426	0.0017242	10.954		
0.01567	24.456	0.0014257	19.034	0.020171	18.821		
0.043494	28.74	0.0078113	27.382	0.041298	21.595		
0.054323	29.8	0.030939	35.501	0.054592	22.821		
0.078353	31.694	0.040113	37.267	0.075564	24.418		
0.1007	33.209	0.050417	38.928	0.1011	25.962		

0.1243	34.638	0.076307	42.29	0.1245	27.267
0.1497	36.083	0.1001	44.85	0.1501	28.552
0.1753	37.48	0.1295	47.597	0.1757	29.721
0.2006	38.855	0.149	49.305	0.2011	30.88
0.2261	40.201	0.1739	51.351	0.2267	31.952
0.2513	41.575	0.1996	53.363	0.2519	33.097
0.2769	42.94	0.2252	55.303	0.2773	34.178
0.3021	44.304	0.2508	57.229	0.3027	35.27
0.3485	46.952	0.2765	59.119	0.3502	37.398
0.4012	49.995	0.3017	60.98	0.4025	39.82
0.4506	53.076	0.353	64.748	0.4523	42.371
0.5007	56.37 <mark>9</mark>	0.3999	68.434	0.5012	45.326
0.5494	60.041	0.4495	72.568	0.5499	48.905
0.598	64.417	0.4983	77.067	0.596	53.709
0.6432	70.045	0.546	82.194	0.6383	61.209
0.6523	71.524	0.6002	89.67	0.6494	64.107
0.6872	78.12	0.6433	99.568	0.6742	75.115
0.6989	80.889	0.6495	101.64	0.6863	81.891
0.7251	91.72	0.6708	112.7	0.7019	91.991
0.7342	98.982	0.6856	123.16	0.7281	101.95
0.7469	120.46	0.6967	134.25	0.754	105.83
0.7526	136.52	0.7056	148.15	0.7953	110.85
0.8154	178.65	0.783	192.32	0.844	116.62
0.8401	184.59	0.8008	194.81	0.9011	121.45
0.852	187.21	0.8516	202.2	0.9476	126.27
0.8903	193.64	0.9006	209.41	0.9683	132.21
0.9053	195.1	0.9454	218.43	0.9793	139.03
0.9504	198.78	0.9709	222.87	0.9926	155.21
0.9745	202.28	0.9882	232.11		
0.9891	208.8	0.9927	239.02		

0.9922	213.45							
	Desorption							
0.9775	204.69	0.9767	227.04	0.9813	144.48			
0.9412	199.03	0.9459	220.29	0.9564	134.09			
0.8834	195.68	0.8928	214.19	0.9032	124.85			
0.8341	192.77	0.8468	207.64	0.8324	120.06			
0.7925	187.92	0.7953	201.79	0.7866	116.69			
0.7505	181.12	0.7454	196.23	0.7418	112.19			
0.7141	171.12	0.6996	190.2	0.6945	107.34			
0.7034	163.59	0.6515	178.21	0.6526	100.49			
0.6932	145.95	0.6339	164.99	0.5968	76.575			
0.6678	87.831	0.5991	131.23	0.57	65.712			
0.6579	80.359	0.5799	112.92	0.5474	59.334			
0.6472	75.762	0.5638	101.58	0.5103	50.955			
0.6098	66.942	0.5497	93.22	0.4936	48.249			
0.5904	64.353	0.514	81.757	0.4526	42.592			
0.5449	59.915	0.4948	78.669	0.3945	39.231			
0.4942	55.995	0.4481	72.345	0.3437	36.865			
0.4435	52.605	0.3965	67.905	0.2943	34.687			
0.3942	49.51	0.3459	63.976					
0.3446	46.631	0.2964	60.298					
0.2955	43.854	A G I A C	เวพยา	กร				

155	43.854		9 N D 1	l l d
ລາ	มาลง	กรณ์แห	หาวิท	ยาลัย
	0.5_Ca/SB/	A-15_550°C_2 วัน	0.5_Ca/SBA	-15_650°C_2 วัน
	p/p ₀	V_a/cm^3 (STP) g ⁻¹	p/p_0	V_a/cm^3 (STP) g ⁻¹
		Adsor	rption	
	0.0036361	21.385	0.00068331	3.3159
	0.032791	31.417	0.030672	7.4821
	0.042291	32.784	0.040753	7.8946

0.052511	34.029	0.050092	8.1784
0.077306	36.455	0.07486	8.8177
0.1039	38.565	0.1004	9.3343
0.1243	40.008	0.1259	9.7946
0.1495	41.719	0.1512	10.214
0.175	43.358	0.1768	10.577
0.2006	44.988	0.2018	10.967
0.2257	46.574	0.2273	11.301
0.2512	48.204	0.2525	11.645
0.2765 🥌	49.859	0.2774	11.992
0.302	51.513	0.3032	12.377
0.3475	54.577	0.3517	13.075
0.4002	58.267	0.403	13.861
0.4502	<mark>61.976</mark>	0.453	14.609
0.4996	65.908	0.5034	15.439
0.5485	70.266	0.5537	16.289
0.5962	75.333	0.6036	17.248
0.6488	82.884	0.6535	18.321
0.6831	91.25	0.7033	19.609
0.6962	95.642	0.7517	21.436
0.7174	107.41	0.8018	23.43
0.7275	116.02	0.8497	25.846
0.752	158.43	0.8985	29.344
0.7647	170.82	0.9451	45.961
0.8151	192.03	0.9519	69.582
0.8437	201.01	0.9563	92.861
0.9152	214.78	0.9604	114.47
0.9436	220.05	0.9663	134.32
0.9725	229.3	0.9747	158.39
0.9827	238.07	0.9854	179.38

0.9913	262	0.9902	198.99
	Desor	ption	
0.9858	251.5	0.9847	187.95
0.9796	242.6	0.9748	172.82
0.9683	230.47	0.9625	161.38
0.9381	220.07	0.9531	150.41
0.8955	213.68	0.9423	126.5
0.8444	207.96	0.9298	92.624
0.7951	202.37	0.9196	63.874
0.7504	195.75	0.9046	40.103
0.7132	186.44	0.823	24.915
0.7005	180.03	0.783	23.136
0.689	164.5	0.7339	21.316
0.6822	151.14	0.685	19.624
0.6353	92.197	0.6356	18.154
0.6113	84.527	0.5857	17.111
0.5967	80.584	0.5366	16.177
0.5558	73.199	0.4883	15.27
0.54	71.299	0.4397	14.349
0.4965	66.751	0.3903	13.532
0.4488	61.848	0.3417	12.831
0.3966	57.748	0.2932	12.146
0.3458	54.16		v
0.2965	50.876	กาวท	ยาลย

p/p_0	V_a/cm^3 (STP) g ⁻¹	p/p_0	$V_a/\text{cm}^3(\text{STP}) \text{ g}^{-1}$
Adsorption			
0.0027235 21.22		0.00085595	0.4611
0.016502	28.957	0.038534	1.2173
0.039764	33.647	0.046284	1.2774
0.051171	35.146	0.054108	1.3032
0.077782	37. <mark>895</mark>	0.076024	1.4028
0.1048	40.169	0.1014	1.4751
0.1243	41.619	0.1268	1.5354
0.149	43.421	0.1521	1.5823
0.1748	45.173	0.1775	1.6127
0.2003	46.835	0.2026	1.6747
0.2257	48.513	0.2281	1.7216
0.2512	50.197	0.2531	1.7529
0.2767	51.887	0.2786	1.7889
0.3019	53.591	0.3038	1.844
0.3541	57.213	0.3541	1.9459
0.3998	60.508	0.4046	2.0517
0.4492	64.271	0.4551	2.1273
0.4983	68.302	0.5059	2.2346
0.5471	72.733	0.5558	2.3259
0.6023	78.773	0.6065	2.4417
0.6482	85.466	0.6567	2.5782
0.6814	93.238	0.7072	2.7185
0.6977	98.746	0.7572	2.8235
0.7169	109.53	0.8078	3.1305
0.7304	121.4	0.8573	3.4675
0.7481	157.67	0.9068	4.2177
0.7542	170.03	0.9498	6.3174
0.8165	201.75	0.9661	10.555

	0.8431	209.62	0.9741	16.867
	0.913	222.39	0.9795	22.045
	0.9502	229.38	0.9858	26.061
	0.9742	238.59	0.9898	29.301
	0.9824	246.31	0.9912	31.288
	0.9913	270.3		
		Deso	rption	
	0.9868	260.54	0.9764	24.588
	0.9816	251.89	0.9576	16.823
	0.9716	240.15	0.9261	6.1338
	0.9411	228.28	0.8788	4.0278
	0.8978	221.5	0.8256	3.3287
	0.8458	215.61	0.7764	2.9936
	0.7962	210.05	0.7271	2.7427
	0.7508	203.83	0.6787	2.5764
	0.7157	194.98	0.6302	2.4303
	0.7016	187.55	0.5819	2.2889
	0.6609	107.72	0.5334	2.1967
	0.6464	99.612	0.4853	2.0692
	0.6215	89.632	0.4367	1.9975
	0.6027	84.387	0.3884	1.9039
	0.5604	76.528	0.3402	1.8187
	0.5413	74.087	0.2917	1.7165
	0.4978	69.427	1131	ยาลย
	0.4503	64.362		
	0.3973	60.14		
ſ	0.3463	56.498		
ſ	0.2969	53.074		

	d\	/ _p /dlogr _p
1 _p (1111)	SBA-15	Imp0.5_CaO/SBA-15
10.651	0.3075	0.074253
9.2279	0.292	0.087405
7.985	0.3497	0.1058
6.9462	0.3465	0.1275
6.0589	0.3634	0.1502
5.2867	0.4103	0.1707
4.6128	0.4556	0.1944
4.0284	0.5945	0.2919
3.5256	2.3329	1.2077
3.0877	5.4481	2.9573
2.7075	0.6723	0.5015
2.3795	0.3334	0.2613
2.0972	0.3316	0.1563
1.8527	0.3894	0.2139
1.6395	0.3026	0.087101

ตารางที่ ก-2 ค่าการกระจายตัวของขนาดรูพรุนของสารตัวอย่าง

	r _p (nm)	dV _p /dlogr _p			
		0.2_Ca/SBA-15_550°C	0.2_Ca/SBA-15_650°C	0.2_Ca/SBA-15_750°C	
	10.651	0.059384	0.046938	0.051523	
	9.2279	0.054307	0.051425	0.04051	
	7.985	0.065047	0.057067	0.042753	
	6.9462	0.078561	0.067625	0.051051	
	6.0589	0.1023	0.095326	0.065804	
	5.2867	0.1219	0.1133	0.078253	
	4.6128	0.1633	0.1504	0.1024	
	4.0284	0.4662	0.3491	0.1552	

3.5256	4.0468	2.4114	0.7083
3.0877	4.8022	5.0932	3.3138
2.7075	0.5765	1.1076	1.0699
2.3795	0.1839	0.4433	0.8782
2.0972	0.1673	0.161	1.0112
1.8527	0.1581	0.1277	1.2986
1.6395	0.1252	0.086009	0.1241
		1122	

	dV _p /dlogr _p		
r _p (nm)	0.5_Ca/SBA-15_550°C	0.5_Ca/SBA-15_650°C	0.5_Ca/SBA-15_750°C
10.651	0.068736	0.066154	0.049887
9.2279	0.071203	0.059567	0.048974
7.985	0.081057	0.071741	0.050045
6.9462	0.0 <mark>95259</mark>	0.082649	0.060206
6.0589	0.1014	0.08082	0.058662
5.2867	0.1157	0.093132	0.067222
4.6128	0.1143	0.095039	0.068075
4.0284	0.188	0.1263	0.082893
3.5256	0.7551	0.3219	0.1316
3.0877	4.4839	1.1269	0.6002
2.7075	2.5198	1.5898	0.6612
2.3795	0.2704	1.6978	0.7612
2.0972	0.148	1.3412	1.1341
1.8527	0.1199	0.3215	1.7113
1.6395	0.076073	0.090443	0.2096

	dV _p /dlogr _p			
<i>r_p</i> (nm)	1.0_Ca/SBA-15_550°C	1.0_Ca/SBA-15_650°C	1.0_Ca/SBA-15_750°C	
10.651	0.023519	0.048041	0.044807	
9.2279	0.028358	0.069934	0.030185	
7.985	0.034467	0.085301	0.036932	
6.9462	0.04072	0.091193	0.04423	
6.0589	0.090125	0.091136	0.055993	
5.2867	0.1229	0.1049	0.066693	
4.6128	0.1855	0.1208	0.1105	
4.0284	0.346	0.1591	0.1294	
3.5256	2.0651	0.2721	0.1775	
3.0877	2.1781	0.6582	0.4149	
2.7075	0.2705	1.9889	0.9014	
2.3795	0.064802	1.7091	0.7978	
2.0972	0.026593	0.5346	0.4795	
1.8527	0.010111	0.1644	0.2489	
1.6395	0.0066343	0.029233	0.038403	

	dV _p /dlogr _p		
<i>r_p</i> (nm)	0.5_Ca/SBA-15_550°C_2 วัน	1.0_Ca/SBA-15_550°C_2 วัน	
10.651	0.059627	0.059351	
9.2279	0.051872	0.052547	
7.985	0.062893	0.06368	
6.9462	0.07522	0.075478	
6.0589	0.088832	0.087609	
5.2867	0.1141	0.1107	
4.6128	0.1627	0.1498	
4.0284	0.3082	0.3106	
3.5256	1.4345	1.8489	

3.0877	2.3657	2.403
2.7075	0.7958	0.5179
2.3795	0.2257	0.2222
2.0972	0.08956	0.093857
1.8527	0.092601	0.09685
1.6395	0.032204	0.030766

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

	Intensity (a.u.)					
2111618	SBA-15	Imp0.5_CaO/SBA-15	0.2_Ca/SBA-15_550°C	0.2_Ca/SBA-15_650°C		
0.6	408490	199452	476136	365959		
0.6205	390790	187734	455253	346202		
0.6409	378735	177503	438733	329547		
0.6614	367215	168783	427099	316724		
0.6818	360174	159178	419526	307687		
0.7023	354894	150984	416481	298657		
0.7227	351756	144492	417039	293564		
0.7432	350061	138643	421264	290307		
0.7637	353069	132636	429082	288329		
0.7841	357161	126575	441319	288824		
0.8046	364095	121708	460930	291808		
0.825	373000	116636	486316	298343		
0.8455	388600	113220	526042	308317		
0.8659	405640	109122	586485	322224		
0.8864	431501	105669	677775	344098		
0.9069	467195	101813	794795	376772		
0.9273	515361	99094	833462	415507		
0.9478	574185	96764	664726	449810		
0.9682	592852	94376	426376	468121		
0.9887	539690	92167	283595	463024		
1.0091	458079	91250	224110	459284		
1.0296	365108	89118	200263	443996		
1.0501	277603	84287	183860	358357		
1.0705	215096	78446	172975	255065		
1.091	182982	74079	164674	189068		
1.1114	165566	70319	157388	155950		

ตารางที่ ก-3 ค่าการกระเจิงของรังสีเอ็กซ์ที่มุมสูงของสารตัวอย่าง

1.1319	154958	67310	151682	139268
1.1523	146940	64931	146267	129381
1.1728	139982	63006	141920	121799
1.1933	135797	60739	137529	116431
1.2137	130624	58996	134078	111558
1.2342	126671	57245	130606	107290
1.2546	124328	55065	128110	104002
1.2751	121378	53884	125564	101764
1.2955	119147	52316	123964	98785
1.316	116707	50732	121673	97154
1.3365	114483	49453	120973	95161
1.3569	113254	48333	120041	93608
1.3774	111544	46947	119707	92763
1.3978	110240	45377	121299	91205
1.4183	110560	44800	122640	90122
1.4387	110158	43096	124732	89773
1.4592	110867	42151	128566	89482
1.4797	110804	40709	133096	90683
1.5001	110882	39763	142395	92259
1.5206	112970	38429	153702	93725
1.541	114605	37703	165582	96338
1.5615	118332	36707	166098	99545
1.5819	123726	35819	147079	102909
1.6024	130102	34871	121721	104552
1.6229	132697	34049	105365	104615
1.6433	128823	32905	96174	103883
1.6638	120256	32335	91228	103646
1.6842	111565	31340	90010	98719
1.7047	104516	30855	90497	90073
1.7251	99311	29625	92918	81233

1.7456	95349	29272	96477	76043
1.7661	95030	28280	99840	72718
1.7865	95350	27531	102578	71291
1.807	97311	26656	96821	71156
1.8274	99721	25792	84194	71361
1.8479	102181	25248	73322	70164
1.8684	102071	25115	63447	68207
1.8888	96291	239 <mark>56</mark>	57484	66894
1.9093	87811	23642	53205	64668
1.9297	79327	23140	50532	60624
1.9502	73211	22319	48507	54590
1.9706	66964	21792	46635	49832
1.9911	63253	21054	45093	46678
2.0116	60146	20701	43747	44313
2.032	58293	20038	42712	42382
2.0525	56305	19389	41049	40376
2.0729	55398	18647	39722	39082
2.0934	53582	18219	38815	38106
2.1138	52303	17583	37864	37059
2.1343	51131	16841	37174	35830
2.1548	50352	16486	36155	35059
2.1752	49103	16068	35471	34258
2.1957	48230	15527	34878	33382
2.2161	47711	14993	34520	32792
2.2366	46256	14575	33643	31732
2.257	45549	13945	33293	31126
2.2775	45086	13563	33320	30829
2.298	44325	13021	33480	30156
2.3184	43526	12977	33428	29663
2.3389	42760	12266	33138	29490

2.3593	42119	12046	31826	28750
2.3798	41738	11376	29797	28386
2.4002	41407	10979	27224	28248
2.4207	41029	10529	25661	27464
2.4412	40443	10210	24527	26593
2.4616	39672	9673	23731	26186
2.4821	38446	9442	22969	25259
2.5025	36716	9172	22200	23898
2.523	35617	8712	21601	22968
2.5434	34160	8418	21389	21742
2.5639	33273	8008	20736	21071
2.5844	32440	7464	20786	20111
2.6048	31627	7222	20916	19594
2.6253	31235	6868	20928	18899
2.6457	30304	6558	20621	18214
2.6662	29532	6226	19855	18279
2.6866	29182	5815	18405	17543
2.7071	29069	5462	16930	17015
2.7276	28713	5082	15503	16406
2.748	28297	4829	14224	15974
2.7685	27637	4521	13403	15638
2.7889	26513	4007	12487	14895
2.8094	25380	3889	11515	13889
2.8298	24340	3648	11071	13396
2.8503	22921	3320	10759	12782
2.8708	22461	3085	9978	12422
2.8912	21348	2831	9681	11965
2.9117	20606	2563	9354	11057
2.9321	20158	2440	9126	10769
2.9526	19450	2205	8580	10483

2.973	18915	2254	8396	10001
2.9935	18408	2106	8215	9807

	Intensity (a.u.)				
2Theta	0.2_Ca/SBA-15	0.5_Ca/SBA-15	0.5_Ca/SBA-15	0.5_Ca/SBA-15	
	750°C	750°C	750°C	750°C	
0.6	415775	402467	404377	395717	
0.6205	393869	374861	381227	371634	
0.6409	378237	352660	362274	351563	
0.6614	365420	338667	347140	336132	
0.6818	354335	329260	335793	323685	
0.7023	345480	323930	325098	311525	
0.7227	3398 <mark>6</mark> 5	325052	316415	301228	
0.7432	33591 <mark>6</mark>	332044	311194	291876	
0.7637	334369	349139	305618	284059	
0.7841	333952	381454	304233	278959	
0.8046	337993	422584	303649	273907	
0.825	342855	432772	305825	270793	
0.8455	348937	371115	309685	270135	
0.8659	358735	270981	319186	269181	
0.8864	372169	197223	331312	271289	
0.9069	389337	169826	351316	273760	
0.9273	412448	156346	378312	280024	
0.9478	444309	145977	413348	290876	
0.9682	487099	138243	439275	302517	
0.9887	547425	132015	437320	309142	
1.0091	617657	125442	407279	302131	
1.0296	641695	120157	358954	282220	
1.0501	578023	114161	305341	261380	
1.0705	461688	110955	256131	239124	

1.091	353354	106347	215881	219683
1.1114	277024	103817	184778	200347
1.1319	226910	100377	164824	180408
1.1523	189591	98157	151264	165651
1.1728	162628	95630	141299	152355
1.1933	143955	94021	134068	141479
1.2137	132031	93196	128229	132263
1.2342	122540	92421	123370	125222
1.2546	115525	93286	118347	119388
1.2751	110200	94013	115130	114094
1.2955	105721	92790	111013	109912
1.316	1025 <mark>73</mark>	88350	108066	106753
1.3365	99836	80207	104813	102700
1.3569	96739	74658	102595	99630
1.3774	94361	71235	100090	96935
1.3978	92808	69528	97365	93923
1.4183	91571	69016	95271	91995
1.4387	89649	69385	93626	89510
1.4592	89189	69657	91737	87175
1.4797	88631	67732	89832	84649
1.5001	88205	61801	88919	83216
1.5206	87959	55424	88132	81493
1.541	88057	48630	87566	79588
1.5615	88558	45155	87503	78488
1.5819	90207	42474	88271	77851
1.6024	92995	40241	88006	76812
1.6229	96250	38678	89169	76273
1.6433	100428	37248	88048	75836
1.6638	106096	35255	85085	74903
1.6842	109119	33686	82208	73195

1.7047	105603	32345	78193	70425
1.7251	97163	31064	74562	67304
1.7456	86857	29729	70553	64632
1.7661	79256	28214	67560	62578
1.7865	74362	27319	65894	60632
1.807	71675	26576	63690	58576
1.8274	69987	25097	61926	56905
1.8479	69118	23934	62626	55580
1.8684	69365	23356	61125	54011
1.8888	70109	22031	60041	53500
1.9093	71246	20648	58150	52403
1.9297	70870	19680	56800	50552
1.9502	67352	18529	54778	48913
1.9706	61554	17407	52376	47395
1.9911	55831	16503	49500	45175
2.0116	50938	15524	47158	43112
2.032	46961	14656	44469	42168
2.0525	44195	13836	42703	40363
2.0729	41846	13377	41334	38829
2.0934	40120	12635	39134	37563
2.1138	37934	11913	37353	36110
2.1343	36507	10921	35374	35101
2.1548	34970	10091	33868	33957
2.1752	33825	9171	32864	33021
2.1957	32263	8563	31751	31722
2.2161	31658	7787	30680	30834
2.2366	30352	7029	29562	29714
2.257	29545	6689	28707	28696
2.2775	29030	6247	27799	28038
2.298	28042	5996	26635	27171

2.3184	27131		26117	26332
2.3389	26727		25183	25442
2.3593	25370		24533	24782
2.3798	25322		23665	23854
2.4002	24546		22845	23099
2.4207	24104		22347	22269
2.4412	23626		21528	21836
2.4616	23240		20706	21443
2.4821	23225		20034	20578
2.5025	22899		19247	19971
2.523	21883		18589	19521
2.5434	20899		17641	18828
2.5639	19511		17014	18121
2.5844	18780		16322	17471
2.6048	18017	3.4400000	15598	17030
2.6253	17303	Assistant	15229	16641
2.6457	16519	a set a s	14334	16314
2.6662	16269	-20204 3434	14209	15873
2.6866	15489		13410	15128
2.7071	15142		13008	14504
2.7276	14626	~	12331	13996
2.748	14450	YEIYIJY	11731	13446
2.7685	13941	6	11416	12829
2.7889	14036	รณมหา	11033	12438
2.8094	13579		10321	11666
2.8298	13299		9783	11098
2.8503	12731		9304	10469
2.8708	12145		8854	10113
2.8912	11056		8169	9343
2.9117	10510		8018	8821

2.9321	9774	7586	8357
2.9526	9397	7258	7998
2.973	9020	7002	7594
2.9935	8752	6751	7073

	Intensity (a.u.)				
2Theta	1.0_Ca/SBA-15	1.0_Ca/SBA-15	1.0_Ca/SBA-15	0.5_Ca/SBA-15	
	550°C	650°C	750°C	550 [°] C_2 วัน	
0.6	367302	434988	380795	413581	
0.6205	343923	406790	353280	385432	
0.6409	323825	385836	332906	362039	
0.6614	307442	367276	314697	342438	
0.6818	293023	351282	297055	325757	
0.7023	280892	338558	281977	310563	
0.7227	270738	327506	268537	299410	
0.7432	262249	317884	256741	288839	
0.7637	256074	309407	247012	278628	
0.7841	250444	303376	237786	272601	
0.8046	246347	298095	228233	265696	
0.825	244531	294838	220770	263369	
0.8455	243867	294718	213493	263162	
0.8659	244575	295383	208018	263514	
0.8864	249937	298409	202252	269034	
0.9069	257321	305306	197928	279073	
0.9273	271709	317263	193507	292954	
0.9478	294619	337219	191062	296136	
0.9682	326265	367427	187473	274191	
0.9887	340345	403815	187699	234649	
1.0091	311322	407194	188265	193789	
1.0296	253599	366155	190499	166390	

1.0501	193689	293792	190122	148700
1.0705	152000	228744	184593	137180
1.091	130006	185541	172777	127983
1.1114	119129	160690	156412	121828
1.1319	111827	145075	138336	117342
1.1523	106354	136899	125940	111888
1.1728	101285	130017	115830	107762
1.1933	97780	124855	107997	103645
1.2137	94334	119201	103337	100551
1.2342	91075	115385	98317	97056
1.2546	87856	111437	94471	93728
1.2751	84548	108558	91060	91501
1.2955	82289	104685	88244	88615
1.316	79765	101811	85417	85452
1.3365	77646	99332	83216	83499
1.3569	75275	97285	79900	80920
1.3774	73601	94208	77595	78903
1.3978	71750	92097	75642	77401
1.4183	69833	90106	73407	75029
1.4387	68244	88202	71187	73093
1.4592	66934	86561	69630	71545
1.4797	66409	85378	67693	70264
1.5001	64754	84263	65612	69059
1.5206	64371	83038	64254	67821
1.541	63909	81702	62692	67572
1.5615	63838	81585	61597	66471
1.5819	63545	80798	59425	65094
1.6024	64222	81721	58460	63867
1.6229	65207	81807	57101	61217
1.6433	65148	83676	55601	58882
		•		

1.6638	62339	84617	55064	56500
1.6842	58169	83641	53836	54186
1.7047	53544	79863	52664	52786
1.7251	50659	74920	52170	50864
1.7456	48376	69400	50797	49831
1.7661	46884	65147	49778	49106
1.7865	46362	61801	48704	48236
1.807	45806	58876	46926	47804
1.8274	45846	56928	45671	46575
1.8479	45779	55934	43476	45048
1.8684	46087	55153	42138	43190
1.8888	45050	54833	40868	41364
1.9093	43267	54511	40001	39280
1.9297	40194	53240	3 <mark>8634</mark>	37472
1.9502	36447	51168	37805	36116
1.9706	34226	48786	36392	34433
1.9911	32209	45926	35827	33222
2.0116	30300	43700	34662	32171
2.032	29420	40818	34035	31087
2.0525	28122	38955	32618	30103
2.0729	27334	36910	31848	29256
2.0934	26348	35543	30778	28376
2.1138	25462	33942	29349	27673
2.1343	24808	32847	28208	26919
2.1548	23660	31751	27285	25798
2.1752	22925	30713	26261	25243
2.1957	22369	29719	25468	24287
2.2161	21697	28266	24293	23528
2.2366	20795	27793	23456	22667
2.257	20346	26635	22797	22044

2.2775	19851	25787	21929	21212
2.298	19246	25041	20969	20583
2.3184	18365	24377	20432	20153
2.3389	17949	23633	19577	19634
2.3593	17364	22837	18780	18893
2.3798	17026	22107	18536	18336
2.4002	16492	21278	17844	17415
2.4207	15957	20627	16996	17192
2.4412	15635	19953	16127	16435
2.4616	15164	19403	15504	15759
2.4821	14674	18657	15235	15272
2.5025	13464	17908	14413	14721
2.523	13419	17163	14136	14123
2.5434	12767	16713	13354	13437
2.5639	12070	15934	12815	12754
2.5844	11686	15184	12321	12384
2.6048	11031	14432	11879	11841
2.6253	10984	14009	11078	11300
2.6457	10454	13156	10605	10722
2.6662	10023	12593	10123	10357
2.6866	9630	12003	9542	10033
2.7071	9042	11604	9355	9277
2.7276	8750	11052	8773	9048
2.748	8470	10728	8238	8569
2.7685	8257	9982	7860	8072
2.7889	7901	9779	7281	7487
2.8094	7321	9216	7065	7185
2.8298	6824	8621	6418	6686
2.8503	6424	8427	6110	6410
2.8708	6115	7932	5785	5968

2.8912	5605	7508	5489	5785
2.9117	5396	6975	5065	5469
2.9321	4939	6599	4892	5046
2.9526	4736	6426	4475	4780
2.973	4612	5958	4447	4510
2.9935	4292	5589	4216	4391

	Intensity (a.u.)				
2Theta	0.5_Ca/S <mark>BA-15</mark>	1.0_Ca/SBA-15	1.0_Ca/SBA-15		
	650 [°] C_2 วัน	<mark>550[°]C_2 วัน</mark>	650 [°] C_2 วัน		
0.6	3 <mark>32056</mark>	377148	246422		
0.6205	307488	351976	226141		
0.6409	2 <mark>87138</mark>	332086	208579		
0.6614	2 <mark>69</mark> 915	315314	194463		
0.6818	254 <mark>5</mark> 13	29 <mark>84</mark> 69	183074		
0.7023	240547	286355	171277		
0.7227	228417	273932	161340		
0.7432	216839	264066	153112		
0.7637	206186	255866	145238		
0.7841	197673	249270	138345		
0.8046	189221	243014	131592		
0.825	180367	238252	125163		
0.8455	174056	234031	120129		
0.8659	166298	233452	115001		
0.8864	160300	234442	110726		
0.9069	154006	238695	105529		
0.9273	147834	245840	102037		
0.9478	142906	256697	97716		
0.9682	136905	262955	93772		
0.9887	133046	248545	90761		
1.0091	127541	216530	87549		
--------	-------------------------	--------	-------		
1.0296	123517	178374	83623		
1.0501	118906	151066	81269		
1.0705	115180	134068	78480		
1.091	110637	123605	75686		
1.1114	107305	116418	73222		
1.1319	103316	110630	70659		
1.1523	100337	106740	67926		
1.1728	9687 <mark>9</mark>	101991	66097		
1.1933	94209	98099	63886		
1.2137	91009	94548	61590		
1.2342	88366	92334	60304		
1.2546	86112	88604	58474		
1.2751	83533	85919	56692		
1.2955	802 <mark>30 802</mark>	83133	54729		
1.316	79039	80554	53281		
1.3365	76122	78271	51915		
1.3569	73841	76210	50225		
1.3774	71352	73916	48070		
1.3978	69411	72269	47101		
1.4183	67802	70434	45993		
1.4387	65527	68686	44164		
1.4592	63982	67213	43545		
1.4797	62423	66177	42156		
1.5001	60587	64316	40683		
1.5206	58533	63345	39868		
1.541	57449	62474	38639		
1.5615	55565	61358	37528		
1.5819	54412	60482	36395		
1.6024	52768	59477	35414		

1.6229	51111	58495	34577
1.6433	50502	56441	33225
1.6638	48435	53796	33098
1.6842	47213	52023	31789
1.7047	45460	49564	30741
1.7251	44557	47808	30072
1.7456	43795	47254	29296
1.7661	42451	45466	28750
1.7865	41156	44695	27877
1.807	40000	43702	27231
1.8274	38909	43387	26213
1.8479	37600	42683	25754
1.8684	36 <mark>6</mark> 08	41238	24795
1.8888	35 <mark>9</mark> 35	40006	24075
1.9093	34474	38098	23501
1.9297	33713	36365	22629
1.9502	32694	34713	22163
1.9706	31871	32935	21599
1.9911	30903	31984	20771
2.0116	30154	31171	20639
2.032	28889	30074	19828
2.0525	28081	29195	19176
2.0729	26805	28237	18681
2.0934	26568	27370	17889
2.1138	25649	26446	17314
2.1343	25071	25676	16764
2.1548	24005	25125	16526
2.1752	23174	24484	15993
2.1957	22589	23574	15172
2.2161	21981	22559	14841

2.2366	20897	21836	14289
2.257	20498	21384	14038
2.2775	19872	20817	13529
2.298	18791	20175	12915
2.3184	18361	19515	12637
2.3389	17687	18955	12087
2.3593	17317	18286	11717
2.3798	16415	17825	11257
2.4002	16043	17435	11054
2.4207	15365	16337	10730
2.4412	14752	16244	10018
2.4616	14188	15739	9713
2.4821	13593	15194	9447
2.5025	129 <mark>3</mark> 8	14330	8835
2.523	124 <mark>4</mark> 5	13880	8581
2.5434	12093	13134	8139
2.5639	11425	12525	7792
2.5844	11027	12116	7408
2.6048	10518	11571	7202
2.6253	9926	11014	7008
2.6457	9332	10598	6392
2.6662	9057	10023	6080
2.6866	8531	9621	5888
2.7071	8216	9202	5492
2.7276	7629	8697	5186
2.748	7264	8373	4889
2.7685	6600	7859	4616
2.7889	6307	7581	4206
2.8094	5904	6984	4033
2.8298	5578	6614	3663
	-	-	-

2.8503	5136	6308	3310
2.8708	4621	5767	3052
2.8912	4386	5654	2739
2.9117	4195	5236	2583
2.9321	3932	4913	2398
2.9526	3691	4740	2130
2.973	3343	4515	1983
2.9935	3078	4217	1724

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

ภาคผนวก ข

การคำนวณค่า %FAME

สามารถคำนวณได้จากสมการ

$$C = \left(\frac{\sum A - A_{EI}}{A_{EI}}\right) \times \left(\frac{C_{EI} \times V_{EI}}{m}\right) \times 100$$

โดย

- C คือ %FAME หรือปริมาณร้อยละเมทิลเอสเทอร์โดยน้ำหนัก
- ∑ A คือ พื้นที่ใต้พีก<mark>รวมทั้งหมด</mark>
- A_{ei} คือ พื้นที่ใต้พ<mark>ืกของ standard</mark>
- C_{EI} คือ ความเข้มข้นของ standard
- V_{EI} คือ ปริมาตรของ standard
- m คือ น้ำหนักตัวอย่าง

	ไม่มีตัวเร่งปฏิกิริยา	SBA-15	Imp0.5_CaO/SBA-15
$\sum A$	1124580	1338393	4437547
A _{EI}	809359	781789	785164
C _{EI}	10.86	10.86	10.86
V _{EI}	1	1	1
m	56.2	54.7	53.2
С	8	14	95

จุฬาลงกรณมหาวิทยาลัย

	0.5_Ca/SBA-15_550°C	0.5_Ca/SBA-15_650°C	0.5_Ca/SBA-15_750 [°] C
$\sum A$	5311074	4522805	3466682
A _{EI}	854951	801804	782420
C _{EI}	10.63	10.86	10.86
V _{EI}	1	1	1
m	57.9	55.2	55.9
С	96	91	67

	0.2_Ca/SBA-15_650 [°] C	1.0_Ca/SBA-15_650°C	1.0_Ca/SBA-15_550°C_2 วัน
ΣA	4490006	4666083	4486656
A _{EI}	828976	799472	849253
C _{EI}	10.86	10.86	10.63
V _{EI}	1	1	1
m	54.8	56.8	51.5
С	88	92	88
		Assistan	

	1.0 Ca/SBA-15 650°C 2 01	0.5_Ca/SBA-15_550°C	Imp0.5_CaO/SBA-15
	1.0_0a/30A-13_000 0_2 3k	reuse	reuse
ΣA	5255748	3893291	6927923
A _{EI}	882783	745444	737270
C _{EI}	10.63	10.47	10.47
V_{EI}		1	1
m	56.7	55.6	51.7
С	88	92	89
	4		

ประวัติผู้เขียนวิทยานิพนธ์

นาย กฤตนัย นิลวัชราภรณ์ เกิดเมื่อวันที่ 6 มีนาคม 2530 ที่จังหวัดอุทัยธานี เข้าศึกษา ระดับชั้นมัธยมศึกษาที่โรงเรียน นครสวรรค์ สำเร็จการศึกษาวิศวกรรมศาสตร์บัณฑิต สาขาวิชา วิศวกรรมเคมี คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ในปีการศึกษา 2551 และเข้า ศึกษาต่อในหลักสูตรวิศวกรรมศาสตร์มหาบัณฑิตที่จุฬาลงกรณ์มหาวิทยาลัย ในปีการศึกษา 2552

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย