CHAPTER II

HISTORICAL

Biological Activity of Isothiazolopyrimidine Derivatives

Isothiazolopyrimidine derivatives have been found to possess many interesting biological activities as mentioned above. Eolfowings are some details of them.

1. Oncostatic activity
2. (4-hydróxybenzylideneimino) -4,6-diketo-4,5, 6,7-tetrahydropyrimidine [4,5-d]-3-methy1isothiazole (II) exerted a significant effect against leukemia, melanoma B-16, Ehrlich careinoma, and Nometh-Keilmer lymphoma (13).

จุหาลงกรณ์มหาวิที่ยาลัย

(II)

Isothiazolopyrimidine (III) show some cytotoxic effect in tumor cell (7).

2. Antiviral activity

Isothiazolopyrimidine (III) have been reported to possess potent antiviral activity (7).
3. Sedative activity

3-(Disubstituted) aminoisothiazolo [3,4-d] pyrimidines? (Iy) havenbeen feported to be useful as sedative (8).

6-amino-4-080-5,4-dihydroisothiazolo [5,4-d]
pyrimidines (V) show psychotropic and hypnotic sedative effects

(V)

$$
\begin{aligned}
\mathrm{R} & =\mathrm{R}_{1}=\mathrm{Me} \\
\mathrm{NR}_{2} \mathrm{R}_{3} & =\text { morpholino }
\end{aligned}
$$

Isothiazolo [3,4-d] pyrimidines (VI) are useful as sedatives (10).

P 46 -Aminoisotniazotol3, 4-d]pyrimidines (VII)
have been reported to exert diuretic activity (11). จุหาลงกิรีณมหาวาวทยาลย

such as
Several aminoisothiazolopyrimidine derivatives pyrimidine-4,6-diones $(15,16) ; 5,7$-dimethy $43-[2,3,6-$ tri-o-acetyl 0 - -D -givcopyranosy19- β-D-giucopyranosy11- -D-g1ucopyranosy1aminoisothiazolo [3,4-d] pyrimidine-4,6dione $(17,18)$ were synthesized as the nucleoside analog.

7. Antionfiammatory activity

For many years, isothiazolo [3,4-d] pyrimidine derivatives have been synthesized and reported to have antiinflammatory activity. Such compounds inciude of (IV) (8), (VI) (10) (VIT) (11).

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Many isothiazolo [3,4-d] pyrimidine derivatives have been synthesized in many laboratories for years. All of them were carried out via either aminouracil or isothiazole ring intermediate.

1. Azine approach

Roff Neiss et al (19) synthesized some isothiazolo [3,4-d] pyrimidine derivatives by the reaction of the aminouracil (X) with isothiocyanate $\left(\mathrm{R}_{3} \mathrm{NCS}\right)$, then oxidative cyclization to give XI.

(XI)
$\mathrm{R}_{1}=\mathrm{H}, \mathrm{Pr} ; \mathrm{R}_{2}=\mathrm{Me}, \mathrm{Bu} ; \mathrm{R}_{3}=\mathrm{H}, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{Me}-4$, cooEt

Later, they prepared some more isothiazolopyrimidine derivatives by cyc1izing XII with sulfuric acid to give XIII which may be accompanied by hydrolysis of R_{2} (11).

Okuda and coworkers (20) prepared 3-methy1thioisothiazolo [3,4-d] pyrimidine-4,6-(5H,7H)-diones (XVI) by treatment of 6-aminouracil with carbon disulphide and dimethy1 sulphate in the presence of alkali. The methy1-6-aminouraci1-5-dithiocarboxylates obtained were reacted with iodine in dimethyl sulfoxide to give XVI in good yields.

 isothiazolo [3,4-d] pyrimidines in one-step by the reaction of 6-aminouraci1 and Vilsmeier reagents.6-amino-1,3-diethyluracil (XVII) reacted with dimethy1formamide-thionyl chloride to afford 5,7-diethy1-3-dimethylaminoisothiazolo [3,4-d] pyrimidine-4,6-(5H,7H)dione (XVIII) and three minor products (XIX, XX, XXI).

2. Azole approach

3-methy1-4-aminoisothiazolo [3,4-d] pyrimidine (XXII) is the first isothiazolo [3,4-d] pyrimidine reported by Hartku K. and Peohkar L.(22). It was carried out by the reaction of 3-amino-4-cyano-5-methy1isothiazole with ethyl orthoformate and acetic anhydride to afford (XXIII) which with an excess of alcoholic ammonia yield (XXII).

(XXII)

Recently, Akarapanichkorn S.(23) has synthesized many isothiazolo [3,4-d] pyrimidine derivatives (XXV) using 3,5-diaminoisothiazole (XXIV) to react with isothiocyanate derivatives.

Of methods described above, the last method seems to correlate with our procedure in that the compounds obtained can be modified to yield target products. Since it has been known that in pyrimidine derivatives, the mercapto group is the most versatile for use in further transformation in its ability to undergo certain replacement reactions (24). It is synthetically comparable to a reactive halogen substitutent, but it also has certain adyantages in this respect, for the mercapto compounds are more readily prepared, are more controllable in synthetic operations and more stable in storage. Therefore, the 5-substituted-3-(substituted) aminoisothiazolo [3,4-d] pyrimidine-4-one-6(7H)-thione (when methyl and pheny1 are the substituting functional group) were first synthesized. These compounds can be performed in 2 steps.

1) Synthesis of 3,5-diaminoisothiazoles
 RNCS

$$
\mathrm{R}=\mathrm{CH}_{3}, \mathrm{Ph}
$$

2) Synthesis of isothiazolo [3,4-d] pyrimidines

Derivatization of Isothiazolopyrimidine Derivatives
A. Synthesis of Methylsulphide of Isothiazolo pyrimidine Derivatives

It has been known that the methy1thio functional group on the heterocyclic rings, as well as some fused ifothiazole derivatives, react with nucleophilic agent to give the corresponding substituted
 (sybstituted) aminoisothiazolo [3,4-d] pyrimidine-4-one, an intermediate for further transformation to the target compounds, were then synthesized.

Methy1thioether compounds can be prepared by direct methylation to the thio functional group. It can
be accomplished by treating with methy1 iodide, methy1 hydrogen sulphate or dimethyl sulphate under alkali condition $(25,26,27)$.

(XXVI)

ค 9 ค 7 since 9 be alky1 sulphates often gives higher

 yield (25) and cheaper (28) than the alkyl halide, it is also the convenient reagent for s-methylation. Therefore, dimethyl sulphate in sodium hydroxide solution was chosen to methylate the thio group in the isothiazolopyrimidine derivatives.B. Replacement of Methy1thio Substitutents by Hydroxy1 Group

The reactive methy1 sulphide of isothiazolopyrimidine derivatives obtained was acid hydrolysed to replace the methy1thio group with hydroxy1 group. The term hydrolysis is applied to reaction of both organic and inorganic chemistry wherein water effects a double decomposition with another compound, hydrogen going to a component, hydroxy to the other (25).

The mercapto ethers have been reported to be cleaved smoothly under (acid condition and yie1d the oxygen analogs. This reaction has been elaborated into an elegant tool, involuing formation of the carboxymethyl sulphide by reaction of the thiol (XXXII) with chloroacetic acid and subsequent acid clevage. The volatile thioglycollic acid is eliminated and excellent yield of the oxygen analog (XXXIV) obtained. The displacement depends on the nucleophilic attack on the positiveny charged carbon atom of the neterocyclic (24). จุหาลงกรณ์มหาวิทยาลัย

From the methylmercapto ether, many success in the acid hydrolysisyreaction have been reported $(29,30$, 31, 32). For example, Elian (29) showed that 1-methy 1 xanthine (XXXVI) was prepared by acid hydrolysis of 1-methy1-2-methylthiopurine-6-one (XXXV) with 6 N hydroch1oric acid under reflux conditions for 24 hours. ศนย์วิทยทรัพยากร

(XXXV)

(XXXVI)

C. Replacement of Methy1thio Substituents by

Amines

The unaccountable difficulty in replacement of alkylthio groups in some pyrimidine derivatives has been noted on more than one occasion. Andrews et al (33) failed to convert the 5-aitro-4-amino-6-hydroxy-2methy1thiopyrimidine to the corresponding 2 -amino by the reaction with ammonia under a variety of conditions. An exhaustive series of/experiments was unsuccessful to directiy replace the methylthio group in 2methy1thioadenine and 2-methy1thio-9-methyladenine with an amino or substifuted amino group. No reaction occured with saturated alcoholic ammonia below $230^{\circ} \mathrm{C}$, and decomposition products to brown material when reaction was taken above 230 c was obtained. No replacement could be effected when sodamide was used under various conditions, with aniline or with methylaniline and methylaniline hydrochloride at $170^{\circ} \mathrm{C}$, or with ammonium chloride or acefamide at $160^{\circ} \mathrm{C}$. a mixfure of aniline and aniline hydrochloride at $170^{\circ} \mathrm{C}$ cause decomposition with formation of an unidentified substance (mp $255^{\circ} \mathrm{C}$).

4,7-diamino-6-methy1-2-methy1thiopteridine
(XXXVII) failed to react with piperidine (34).

(XXXVII)

Elion et al (35) reported the first succession of the replacement of the 2 -methylmercapto group of 6-hydroxy-2-methylmercaptopurine with some substituted amines. The reaction was carried out by heating 6 -hydroxy- 2 -methylmercaptopurine with 3 or 4 molecule equivalent of amine in a seal tube at $140^{\circ} \mathrm{C}$ for 24 hours for alkylamine and 160° for 48 hours for aromatic amine with or without solvents.

