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Chapter I

INTRODUCTION

At present, we know that our universe is expanding with acceleration [1, 2, 3],

but we do not know the exact cause. We believe that the expansion of the universe

is driven by some energy. The popular solution for the problem is called dark

energy where we use the word “dark” because we do not know what kind of energy

it is. The dark energy has many candidates such as the cosmological constant

[4], the 3-form field [5] and the scalar field [6]. The famous models are scalar-

tensor theories [7] because it clearly explains how the universe can expand with

acceleration. It also explains the inflation [8] generated by the scalar field to drive

the exponential expansion of the universe. However, these models have a crucial

problem that if we have the scalar field filling space throughout the universe, then

why we have never detected it. For example, Quintessence model [6, 9] uses scalar

field to drive the universe by supposing that the scalar field is rolling down a

potential in a runaway form. At late-time the kinetic energy of the scalar field

can be neglected because the driving force from the potential is very small and

the friction force from the Hubble parameter is large. We call this the slow-roll

condition. This condition can cause the equation of state parameter equal to

negative one. The required parameter in the equation of state for the accelerated

expansion is less than −1/3. Moreover, from the observation data the equation

of state parameter today is −1.1 ± 0.14 [3]. But the scalar field of the model is

massless, namely interaction range of the scalar field is infinity. Thus, we should

have detected the interaction of the scalar field, but we never have. Model which

can solve this problem is the Chameleon dark energy model [10, 11, 12, 13, 14]

which we will review in chapter 2. The model is one of the scalar-tensor theories

as a Quintessence model, but the chameleon scalar field is not massless. The

model is situated on the hypothesis that the scalar field has coupling with matter

through the conformal coupling term, then mass of the scalar field depends on

the local density. Therefore, we call the scalar field a chameleon. The model can

address the vital problem of the scalar-tensor theories because in the high density

region, the mass of the scalar field is very large, but it is tiny in the low density
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region. Thus, we cannot see the effects of the scalar field on the earth because

the interaction range is very short due to large density with respect to outer space

density. Experiments for finding interaction of the chameleon found constraints

on the chameleon-photon coupling [15, 16] and the strongest constraints on the

chameleon-matter coupling come from particle colliders [17, 18]. Namely, the

coupling constant is not arbitrary and the exact value has not been found.

From observation of the rotation curve of galaxies, we found that the circular

velocity of objects which orbit around the center of the galaxy is nearly constant,

while the Newton’s law predicts that the velocity should reduce at large distance.

In order to keep the Newton’s law, the galaxy must have more unobserved mass

which we call dark matter. The dark matter does not interact with anything

except through gravity. The dark matter should forms a halo that covers the

entire galaxy (or galaxies). Moreover, from gravitational lensing data, it is found

that we need more mass of the galaxy in the same order with the rotation curve’s

missing mass. Since we do not know the exact profile of dark matter in the halo,

many theoretical profiles for dark matter halo are proposed which we review briefly

in chapter 2.

In chapter 3, we calculate effects of the chameleon scalar field on the rotation

curves by using fifth force. The fifth force comes from the coupling of matter with

the scalar field in the Einstein frame. We calculate effects in the gravitational

lensing by using the effective density and effective pressure of the dark matter

halo. In addition, in this chapter we establish constraints of the chameleon-matter

coupling constant on the galaxies. The results are shown in chapter 4, and our

conclusions are available in chapter 5.



Chapter II

THEORETICAL REVIEWS

2.1 Dark Energy from the Scalar-Tensor Theo-

ries

∗ Note : We use signature (− + ++) and Roman indices (e.g. µ, ν) are 0, 1, 2, 3

while English character indices (e.g. i, j) are 1, 2, 3. ∗

Dark Energy and Equation of State Parameter

Our universe has two large scale properties, isotropy and homogeneity. Namely,

the universe looks the same in all directions and everywhere. The two properties

lead to Friedmann-Robertson-Walker (FRW) metric as the following [19, 20]

ds2 = −dt2 + a2(t)

(
dr2

1−Kr2
+ r2(dθ2 + sin2 θdϕ2)

)
, (2.1)

where a(t) is the scale factor which represents an expansion factor for the distance

in the universe and K is a constant which describes the geometry of the spatial

section of spacetime. From the observational data [1, 2, 3], we can assume the

FRW metric to be flat FRW metric (K = 0). Then, the flat FRW metric with

cartesian coordinate is

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2). (2.2)

At present, we knew that our universe is expanding with acceleration. We can

calculate an acceleration of the universe as the following.

From the flat FRW metric, we obtain the metric tensor for expanding uni-

verse as the following

gµν =


−1

a2

a2

a2

 , (2.3)
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and

gµν =


−1

a−2

a−2

a−2

 . (2.4)

We choose matter in the universe to be perfect fluid which rest in the comoving

coordinates and have isotropic pressure for satisfying the isotropic property. Then,

the energy-momentum tensor is given by

Tµν = (ρ+ P )UµUν + Pgµν , (2.5)

where ρ is a matter density of the fluid which equal to energy density in the

Natural unit, P is pressure of the fluid and Uµ is a four-velocity of the fluid. Since

the perfect fluid is at rest in the comoving coordinates, the four-velocity becomes

Uµ = (1, 0, 0, 0), (2.6)

Thus, the energy-momentum tensor for the (rest) perfect fluid becomes

Tµν =


ρ

a2P

a2P

a2P

 . (2.7)

From definition of the Christoffel symbol:

Γρ
µν =

1

2
gρλ(∂µgνλ + ∂νgλµ − ∂λgµν). (2.8)

The non-zero Christoffel symbols are

Γ0
ij =

1

2
g0λ(∂igjλ + ∂jgλi − ∂λgij),

=
1

2
g00(∂igj0 + ∂jg0i − ∂0gij),

=
1

2
g00(−∂0gij),

=
1

2
(−1)(−∂0a2δij),

=
1

2
(−1)(−2)ȧaδij,

∴ Γ0
ij = ȧaδij. (2.9)
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In the similar way, we obtain

Γi
j0 =

1

2
giλ(∂jg0λ + ∂0gλj − ∂λgj0),

=
1

2
gii(∂jg0i + ∂0gij − ∂igj0),

=
1

2
gii(∂0gij),

=
1

2
a−2(∂0a

2δij),

=
1

2
a−2(2aȧδij),

∴ Γi
j0 =

ȧ

a
δij, (2.10)

where the other Christoffel symbols are zero. From the Einstein’s field equation

Rµν −
1

2
gµνR = 8πGTµν , (2.11)

where Rµν is the Ricci tensor and R is the Ricci scalar. Take the metric tensor on

the equation, we obtain

gµν(Rµν −
1

2
gµνR = 8πGTµν),

R− 1

2
(4)R = 8πGT,

∴ R = −8πGT, (2.12)

where T is a trace of the energy-momentum tensor. Then, the Einstein’s field

equation can be written as

Rµν −
1

2
gµν(−8πGT ) = 8πGTµν ,

Rµν = 8πG

(
Tµν −

1

2
Tgµν

)
. (2.13)

The trace of energy-momentum tensor of the perfect fluid is

T = T µ
µ = gµνTµν ,

= Tr



−1

a−2

a−2

a−2



ρ

a2P

a2P

a2P


 ,

= Tr


−ρ

P

P

P

 ,

= −ρ+ 3P. (2.14)
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For µν = 00, the Einstein’s field equation becomes

R00 = 8πG

(
T00 −

1

2
Tg00

)
.

From a definition of the Ricci tensor

Rσν = Rλ
σλµ = ∂λΓ

λ
σν − ∂νΓ

λ
σλ + Γλ

λωΓ
ω
σν − Γλ

µωΓ
ω
σλ, (2.15)

the Ricci tensor component 00 is

R00 = ∂λΓ
λ
00 − ∂0Γ

λ
0λ + Γλ

λωΓ
ω
00 − Γλ

0ωΓ
ω
0λ,

= 0− ∂0

(
3
ȧ

a

)
+ 0−

(
ȧ

a

)2

δijδ
j
i ,

= −3∂0

(
ȧ

a

)
− 3

(
ȧ

a

)2

,

= −3

(
ä

a
−
(
ȧ

a

)2
)

− 3

(
ȧ

a

)2

,

= −3
ä

a
. (2.16)

Thus

−3
ä

a
= 8πG

(
ρ− 1

2
(−ρ+ 3P )(−1)

)
,

−3
ä

a
= 4πG (ρ+ 3P ) ,

∴ ä

a
= −4πG

3
(ρ+ 3P ) . (2.17)

The above equation is called the acceleration equation of the universe. If we take

the covariance derivative on the Einstein’s field equations, we obtain

∇µ

(
Rµν −

1

2
gµνR

)
= 8πG∇µTµν . (2.18)

The left hand side (LHS) is equal to zero because of the Bianchi identity,∇[λRρσ]µν =

0. Therefore, the right hand side (RHS) is equal to zero too. We obtain

∇µTµν = 0. (2.19)

The above equation means the energy-momentum tensor is conserved. Since µ are

dummy indices and we can contract with the metric tensor, then

∇µTµν = ∇µT
µ
ν = gαν(∇µT

µα). (2.20)
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The best way to obtain density and pressure from the energy-momentum tensor

is to obtain from T µ
ν because it does not depend on any coordinates (invariance).

The T µ
ν can be written as

T µ
ν = Tµσg

σν ,

=


ρ

a2P

a2P

a2P



−1

a−2

a−2

a−2

 ,

=


−ρ

P

P

P

 . (2.21)

For ν = 0, we obtain

0 = ∇µT
µ
0 ,

= ∂µT
µ
0 + Γµ

µλT
λ
0 − Γλ

µ0T
µ
λ ,

= ∂0T
0
0 +

3∑
i=1

Γi
i0T

0
0 −

3∑
i=1

Γi
i0T

i
i , ∵ Γ0

00 = 0,

= −ρ̇− 3

(
ȧ

a

)
ρ− 3

(
ȧ

a

)
P, ∵ Γi

i0 =
ȧ

a
,

∴ 0 = ρ̇+ 3
ȧ

a
(ρ+ P ). (2.22)

The above equation is called the continuity equation which is very important in

cosmology. The equation of state, relationship between ρ and P , is

P = wρ. (2.23)

Substitute the equation of state into the continuity equation. Then

0 = ρ̇+ 3
ȧ

a
(ρ+ wρ),

0 =
ρ̇

ρ
+ 3

ȧ

a
(1 + w),

∴ ρ̇

ρ
= −3(1 + w)

ȧ

a
. (2.24)

If w is a constant, the equation can be solved,

1

ρ

dρ

dt
= −3(1 + w)

1

a

da

dt
,

d

dt
(lnρ) = −3(1 + w)

d

dt
(lna),∫

d(lnρ) = −3(1 + w)

∫
d(lna),

lnρ = −3(1 + w)(lna) + Const.,
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At present, we define t = t0, a = a0 and ρ = ρ0. For simplicity, we define a0 equal

to 1. Then

lnρ0 = −3(1 + w)(ln1) + Const.,

∴ lnρ0 = Const. (2.25)

The solution becomes

lnρ = −3(1 + w)(lna) + lnρ0,

ln

(
ρ

ρ0

)
= lna−3(1+w),

∴ ρ = ρ0a
−3(1+w). (2.26)

The pressure from matter which acts on the universe can be approximated to be

zero because we take the matter to be non-relativistic particles. We call the matter

that is a dust form. From P = wρ and the density ρ is not equal to zero. Thus

wmatter = 0, (2.27)

and we obtain

ρm ∝ a−3. (2.28)

Then, the energy density of matter decreases as the universe expands. For radia-

tion that includes photon and relativistic matters, the Lagrangian density is

LEM = −1

4
F µνFµν , (2.29)

where Fµν is the field strength tensor. From a definition of the energy-momentum

tensor

T µν ≡ 2√
−g

δ(
√
−gL)
δgµν

. (2.30)

Thus, the energy-momentum tensor of radiation is

T µν =
2√
−g

(
δ
√
−g

δgµν
LEM +

√
−g δLEM

δgµν

)
,

where

δ
√
−g =

√
−g
2

gµνδgµν ,

δLEM

δgµν
= −1

4

(
δF λσ

δgµν
Fλσ + F λσ δFλσ

δgµν

)
,
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δLEM

δgµν
= −1

4

(
2F λσ δFλσ

δgµν

)
,

= −1

2
F λσ δFλσ

δgµν
,

= −1

2
F λσ δ(gσνF

ν
λ )

δgµν
,

= −1

2
δµσF

λσF ν
λ ,

= −1

2
F λµF ν

λ ,

=
1

2
F µλF ν

λ , ∵ F µν = −F νµ. (2.31)

∴ T µν =
2√
−g

(√
−g
2

gµνLEM +
√
−g δLEM

δgµν

)
,

= gµνLEM + 2
δLEM

δgµν
,

= −1

4
gµνF λσFλσ + 2

δLEM

δgµν
. (2.32)

Therefore, the energy-momentum tensor of radiation is

T µν = −1

4
gµνF λσFλσ + F µλF ν

λ . (2.33)

Trace of the energy-momentum tensor of radiation is

T = T µ
µ = gµνT

µν ,

= gµν

(
F µλF ν

λ − 1

4
gµνF λσFλσ

)
,

= F µλFµλ −
1

4
(4)F λσFλσ,

= 0, (2.34)

Since the trace of energy-momentum tensor for the radiation equal to zero, thus

−ρr + 3Pr = 0,

−ρr + 3(wρr) = 0,

∴ wradiation =
1

3
. (2.35)

Then, we obtain

ρr ∝ a−4. (2.36)

The energy density of radiation reduces as universe expands where the decreasing

rate faster than the energy density of matter.
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From the acceleration equation of the universe, we found that the universe

can expand with acceleration when w < −1
3
.

ä

a
= −4πG

3
(ρ+ 3wρ) ,

ä

a
= −4πG

3
(1 + 3w) ρ,

∴ ä > 0 when w < −1

3
. (2.37)

Thus, matter and radiation are not the cause of accelerated expansion, and dark

energy must have equation of state parameter as

wdark energy < −1

3
. (2.38)

This is a condition for all of the dark energy candidates.

For example, the cosmological constant, Λ, is one of the dark energy can-

didates proposed by Einstein. Original model was proposed to obtain a static

universe, namely Einstein believed that our universe does not expand or shrink.

Then, energy density of this model is constant (ρΛ = Const.). From the continuity

equation, we obtain

ρ̇Λ + 3
ȧ

a
(ρΛ + P ) = 0,

0 + 3
ȧ

a
(ρΛ + P ) = 0,

P = −ρΛ, ∵ a, ȧ ̸= 0

∴ wΛ = −1. (2.39)

Then, the cosmological constant can be the dark energy. However, it is not defini-

tive because from the observational data the equation of state parameter is not

exactly equal to minus one. It has uncertainties around the minus one value

(−1.1± 0.14 [3]).

Therefore, the equation of state parameter (w) can tell us whether something

is or is not a dark energy candidate. The equation of state parameter of dark

energy must be less than minus one-third (wDE < −1
3
) in order to accelerate the

expansion of the universe.
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Scalar-Tensor Theories

The theory is situated on a hypothesis that we have scalar field in the space

throughout the universe, and it is rolling down a scalar potential. Then, at the

late-time, the scalar field becomes dark energy because of the slow-roll condition

[19, 20]. We can illustrate this mechanism as in Figure 2.1.

Figure 2.1: The scalar field rolls down along the scalar potential by driving force.

Consider the following action

S =

∫
d4x

√
−g
(
−1

2
gµν∇µϕ∇νϕ− V (ϕ)

)
, (2.40)

where ϕ is the scalar field and V (ϕ) is the scalar potential. The energy-momentum

tensor for the scalar field is (we will prove in section 2.2.1)

T (ϕ)
µν = ∇µϕ∇νϕ− gµν

(
1

2
gαβ∇αϕ∇βϕ+ V (ϕ)

)
. (2.41)

Since ϕ is a scalar quantity, then ∇ϕ = ∂ϕ. We obtain

T µ(ϕ)
ν = ∂µϕ∂νϕ− δµν

(
1

2
gαβ∂αϕ∂βϕ+ V (ϕ)

)
. (2.42)

The energy density of scalar field is (the energy-momentum tensor component

µν = 00)

−ρ = g00∂0ϕ∂0ϕ− (1)

(
1

2
g00∂0ϕ∂0ϕ+

1

2
gii∂iϕ∂iϕ+ V (ϕ)

)
,

We assume that the scalar field is homogeneous throughout the space (∂iϕ = 0).
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Then, we obtain

ρ = ∂0ϕ∂0ϕ+

(
1

2
g00∂0ϕ∂0ϕ+ V (ϕ)

)
,

= ϕ̇2 +

(
−1

2
ϕ̇2 + V (ϕ)

)
,

=
1

2
ϕ̇2 + V (ϕ). (2.43)

And the pressure of the scalar field is (the energy-momentum tensor component

µν = ii)

P = gii∂iϕ∂iϕ− (1)

(
1

2
g00∂0ϕ∂0ϕ+

1

2
gii∂iϕ∂iϕ+ V (ϕ)

)
,

= −
(
1

2
(−1)∂0ϕ∂0ϕ+ V (ϕ)

)
,

=
1

2
ϕ̇2 − V (ϕ). (2.44)

Therefore, the equation of state parameter of the scalar field is

wϕ =
P

ρ
=

1
2
ϕ̇2 − V (ϕ)

1
2
ϕ̇2 + V (ϕ)

. (2.45)

The wϕ depends on kinetic energy and scalar potential of the scalar field. Equation

of motion of the scalar field can be obtained after varying the action with respect

to the field as the following

δS =

∫
d4x

√
−g
(
−δ
(
1

2
gµν∇µϕ∇νϕ

)
− δV (ϕ)

)
+

∫
d4xδ

√
−g
(
−1

2
gµν∇µϕ∇νϕ− V (ϕ)

)
, (2.46)

where

δ

(
1

2
gµν∇µϕ∇νϕ

)
=

1

2
(δ∇µϕ∇µϕ+∇µϕδ∇µϕ) ,

= ∇µϕδ∇µϕ,

= ∇µϕ∇µδϕ, (2.47)

δV (ϕ) =
∂V

∂ϕ
δϕ, (2.48)

δ
√
−g = −

√
−g
2

gµνδg
µν . (2.49)

Then

δS =

∫
d4x

√
−g
(
−∇µϕ∇µδϕ− ∂V

∂ϕ
δϕ

)
−
∫
d4x

√
−g
2

gµνδg
µν

(
−1

2
gµν∇µϕ∇νϕ− V (ϕ)

)
. (2.50)
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Integrate by parts on the first term of RHS∫
d4x

√
−g (−∇µϕ∇µδϕ) = −

√
−g∇µϕδϕ|boundary +

∫
d4xδϕ∇µ(∇µϕ

√
−g),

=

∫
d4x

√
−g(∇µ∇µϕ)δϕ, ∵ at boundary δϕ = 0,

=

∫
d4x

√
−g(∇2ϕ)δϕ. (2.51)

So, we obtain

δS

δϕ
=

√
−g
(
∇2ϕ− ∂V

∂ϕ

)
. (2.52)

Since δS
δϕ

= 0, the equation of motion of the scalar field is

∇2ϕ− ∂V

∂ϕ
= 0. (2.53)

For flat spacetime (Minkowski spacetime), ∇2 = ∂µ∂
µ ≡ �, the equation is called

the Klein-Gordon equation. From the assumption that the scalar field is homoge-

neous throughout the space,

∇2ϕ = ∇µ(∇µϕ) = ∇µ(∂
µϕ),

= ∂µ(∂
µϕ) + Γµ

µλ(∂
λϕ),

= g00∂0(∂0ϕ) + Γµ
µ0(∂

0ϕ), ∵ ∂iϕ = 0,

= −ϕ̈+ 3
ȧ

a
g00∂0ϕ,

= −ϕ̈− 3
ȧ

a
ϕ̇. (2.54)

From a definition of the Hubble parameter, H, which is a ratio of the relative

velocity and distance to the earth of a galaxy H ≡ v

d
=
ȧ

a
. The equation of

motion becomes

ϕ̈+ 3Hϕ̇+
dV

dϕ
= 0, (2.55)

where the Hubble parameter acts as a friction term and
dV

dϕ
acts as a driving term.

Thus, if the scalar potential is in the runaway form such as a power-law potential

in the Quintessence model, V (ϕ) =
M4+n

ϕn
, the field will roll down the potential.

And the field slow rolls when the driving force is small and the friction is large

where H is large at late-time. Then, the kinetic term is much smaller than the

potential term, and it can be neglected. The equation of state parameter can be

approximated to be

wϕ ≈ −V (ϕ)

V (ϕ)
,

∴ wϕ ≈ −1. (2.56)
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So, the scalar field can be the dark energy and also flexible value than the cos-

mological constant because if we keep the kinetic term, the equation of state

parameter can change from minus one a little.

2.2 Chameleon Dark Energy Model

The chameleon dark energy model is one of the scalar-tensor theories, which can

explain why we have never found an interaction of the scalar field on the earth.

However, the scalar-tensor theories do not have only one problem. The other

problem is the scalar-tensor theories assume that our universe is dominated by

the scalar field. One way to solve this problem is coupling the scalar field with

matter. This coupling also solves the coincidence problem [21, 22]. The coin-

cidence problem is the question of why in the present day we have the matter

density in roughly the same order of magnitude as the dark energy density (the

density parameter of matter is about 0.276 and of dark energy about 0.72 [3])

while the density parameter of radiation is nearly zero (about 8.24× 10−5 [3]). If

scalar field couples with matter, it will increase the matter density and reduce the

dark energy density to the same order of magnitude. In the chameleon model, the

scalar field couple with matter through the conformal coupling term which come

from conformal transformation. The conformal transformation is a transformation

between general action of the scalar-tensor theories in the Jordan frame and ac-

tion in the Einstein frame which has the Einstein-Hilbert action term. We choose

the Einstein frame to be our frame because the Einstein-Hilbert action term leads

to the Einstein’s field equation. Moreover, the matter and the scalar field couple

together in this frame.

2.2.1 Chameleon Equation of Motion

We consider a general action with a single scalar field:

S =

∫
d4x

√
−g

(
M2

Pl

2
R− (∂ϕ)2

2
− V (ϕ)

)
−
∫
d4xLm (ψm, g̃µν) , (2.57)

where ϕ is the chameleon scalar field, MPl is the reduced Planck’s mass (MPl =

2.43 × 1018GeV) and ψm is the fermion field. The key point of this model is the

conformal coupling of the scalar field and fermion field where the fermion field

follows the geodesics of a metric g̃µν . The metric g̃µν relates to the Einstein frame
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metric gµν as the following

g̃µν = A2(ϕ)gµν , (2.58)

where A(ϕ) is the conformal coupling term. We now vary this action in order to

obtain the equation of motion of chameleon scalar field:

δS =

∫
d4x

√
−g

(
M2

Pl

2
δR− δ

(∂ϕ)2

2
− δV (ϕ)

)
−
∫
d4xδLm (ψm, g̃µν)

+

∫
d4xδ

√
−g

(
M2

Pl

2
R− (∂ϕ)2

2
− V (ϕ)

)
, (2.59)

where

δR = δRµνg
µν +Rµνδg

µν , (2.60)

δV (ϕ) =
∂V

∂ϕ
δϕ,

δ
√
−g = −

√
−g
2

gµνδg
µν ,

and

δ
(∂ϕ)2

2
= δ

(∇ϕ)2

2
,

=
1

2
(δ∇µϕ∇µϕ+∇µϕδ∇µϕ) ,

= ∇µϕδ∇µϕ,

= ∇µϕ∇µδϕ, (2.61)

δLm =
∂Lm

∂g̃µν
δg̃µν +

∂Lm

∂ψm

δψm. (2.62)

Then, we obtain

δS =

∫
d4x

√
−g
(
M2

Pl

2
(δRµνg

µν +Rµνδg
µν)−∇µϕ∇µδϕ− ∂V

∂ϕ
δϕ

)
−
∫
d4x

(
∂Lm

∂g̃µν
δg̃µν +

∂Lm

∂ψm

δψm

)
−
∫
d4x

√
−g
2

gµνδg
µν

(
M2

Pl

2
R− (∂ϕ)2

2
− V (ϕ)

)
. (2.63)

Integrate by parts the second term of the RHS:∫
d4x

√
−g (−∇µϕ∇µδϕ) = −

√
−g∇µϕδϕ|boundary +

∫
d4xδϕ∇µ(∇µϕ

√
−g),

=

∫
d4x

√
−g(∇µ∇µϕ)δϕ, ∵ at boundary δϕ = 0,

=

∫
d4x

√
−g(∇2ϕ)δϕ. (2.64)
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Thus

δS =

∫
d4x

√
−g
(
M2

Pl

2
(δRµνg

µν +Rµνδg
µν) + (∇2ϕ)δϕ− ∂V

∂ϕ
δϕ

)
−
∫
d4x

(
∂Lm

∂g̃µν
δg̃µν +

∂Lm

∂ψm

δψm

)
−
∫
d4x

√
−g
2

gµνδg
µν

(
M2

Pl

2
R− (∂ϕ)2

2
− V (ϕ)

)
. (2.65)

After variation with respect to ϕ, we obtain

√
−g
(
∇2ϕ− ∂V

∂ϕ

)
− ∂Lm

∂g̃µν

∂g̃µν
∂ϕ

= 0, ∵ δS

δϕ
= 0,

∇2ϕ− ∂V

∂ϕ
− 1√

−g
∂Lm

∂g̃µν

∂g̃µν
∂ϕ

= 0,

where

∂g̃µν
∂ϕ

= 2A
∂A

∂ϕ
gµν . (2.66)

Then, we obtain

∇2ϕ− ∂V

∂ϕ
− 2√

−g
∂Lm

∂g̃µν
A
∂A

∂ϕ
gµν = 0,

∇2ϕ− ∂V

∂ϕ
− 2√

−g
∂Lm

∂g̃µν

(
1

A

∂A

∂ϕ

)
A2gµν = 0,

∇2ϕ− ∂V

∂ϕ
− 2√

−g
∂Lm

∂gµν

(
∂gµν
∂g̃µν

)(
1

A

∂A

∂ϕ

)
A2gµν = 0.

From a definition of the energy-momentum tensor of the matter:

T µν ≡ 2√
−g

δSm

δgµν
. (2.67)

From action (2.57), the matter Lagrangian is Sm = −
∫
d4xLm (ψm, A

2 (ϕ) gµν).

Thus, the energy-momentum tensor becomes

T µν = − 2√
−g

∂Lm

∂gµν
. (2.68)

We obtain

∇2ϕ− ∂V

∂ϕ
+ T µν

(
∂gµν
∂g̃µν

)(
1

A

∂A

∂ϕ

)
A2gµν = 0,

where

1

A

∂A

∂ϕ
=

∂lnA

∂ϕ
≡ αϕ, (2.69)

∂g̃µν
∂gµν

= A2(ϕ) ⇒ ∂gµν
∂g̃µν

=
1

A2(ϕ)
, (2.70)

∂V

∂ϕ
≡ V,ϕ (2.71)
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Thus

∇2ϕ− V,ϕ+αϕT
µνgµν = 0. (2.72)

The trace of energy-momentum tensor can be written as

T µνgµν = Tµνg
µν = T µ

µ = T. (2.73)

Therefore, the equation of motion of the chameleon scalar field in the Einstein

frame is

∇2ϕ = V,ϕ −αϕT
µ
µ . (2.74)

We approximate that matter in the universe is a perfect fluid which is pressureless

(non-relativistic). Therefore, the trace of energy-momentum tensor of matter is

−ρm. But the energy-momentum tensor in the Einstein frame does not conserve

because the matter couples with the scalar field. Thus, the conserved energy-

momentum tensor becomes the total energy-momentum tensor.

∇µT (total)
µν = ∇µT (m)

µν +∇µT (ϕ)
µν = 0. (2.75)

In order to get T
(ϕ)
µν we consider action for scalar field from the action (2.57):

Sϕ =

∫
d4x

√
−g

(
−(∂ϕ)2

2
− V (ϕ)

)
. (2.76)

We now vary the above action

δSϕ =

∫
d4x

√
−g

(
−δ (∂ϕ)

2

2
− δV (ϕ)

)
+

∫
d4xδ

√
−g

(
−(∂ϕ)2

2
− V (ϕ)

)
,

(2.77)

where

δ
√
−g = −

√
−g
2

gµνδg
µν ,

(∂ϕ)2

2
=

1

2
gαβ∇αϕ∇βϕ, (2.78)

δ
(∂ϕ)2

2
=

1

2
δgµν∇µϕ∇νϕ+

1

2
gµνδ∇µϕ∇νϕ+

1

2
gµν∇µϕδ∇νϕ, (2.79)

δV (ϕ) =
∂V

∂ϕ
δϕ.

Then

δSϕ =

∫
d4x

√
−g
(
−1

2
δgµν∇µϕ∇νϕ− 1

2
gµνδ∇µϕ∇νϕ− 1

2
gµν∇µϕδ∇νϕ− ∂V

∂ϕ
δϕ

)
+

∫
d4x

(
−
√
−g
2

gµνδg
µν

)(
−(∇ϕ)2

2
− V (ϕ)

)
. (2.80)
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After variation with respect to gµν , we obtain

δSϕ

δgµν
=

√
−g
(
−1

2
∇µϕ∇νϕ

)
+
√
−g
(
−gµν

2

)(
−1

2
gαβ∇αϕ∇βϕ− V (ϕ)

)
,

= −
√
−g
2

(
∇µϕ∇νϕ− gµν

(
1

2
gαβ∇αϕ∇βϕ+ V (ϕ)

))
. (2.81)

From a definition of the energy-momentum tensor of the scalar field:

T (ϕ)
µν ≡ − 2√

−g
δSϕ

δgµν
. (2.82)

Therefore

T (ϕ)
µν = ∇µϕ∇νϕ− gµν

(
1

2
gαβ∇αϕ∇βϕ+ V (ϕ)

)
. (2.83)

Since the covariant derivative of the scalar field corresponds to the partial deriva-

tive, thus

T (ϕ)
µν = ∂µϕ∂νϕ− gµν

(
1

2
gαβ∂αϕ∂βϕ+ V (ϕ)

)
. (2.84)

The covariant derivative of the energy-momentum tensor of scalar field is

∇µT (ϕ)
µν = (∇µ∂µϕ)∂νϕ+ ∂µϕ(∇µ∂νϕ)− (∇µgµν)

(
1

2
gαβ∂αϕ∂βϕ+ V (ϕ)

)
−gµν∇µ

(
1

2
gαβ∂αϕ∂βϕ+ V (ϕ)

)
. (2.85)

From the metric compatibility (∇µgµν = 0), we obtain

∇µT (ϕ)
µν = (∇µ∂µϕ)∂νϕ+ ∂µϕ(∇µ∂νϕ)− gµν∇µ

(
1

2
gαβ∂αϕ∂βϕ+ V (ϕ)

)
,

= (∇µ∇µϕ)∂νϕ+ ∂µϕ(∇µ∂νϕ)− gµν(∇µ(
1

2
∂αϕ∂

αϕ) +∇µV (ϕ)).

We use chain rule at the last term (∇µV (ϕ) = ∂µV (ϕ) = V,ϕ ∂
µϕ). Then

∇µT (ϕ)
µν = (∇2ϕ)∂νϕ+ ∂µϕ(∇µ∂νϕ)− gµν∂

αϕ∇µ∂αϕ− gµνV,ϕ ∂
µϕ,

= (∇2ϕ)∂νϕ+ ∂µϕ(∇µ∂νϕ)− ∂αϕ∇ν∂αϕ− V,ϕ ∂νϕ,

= (∇2ϕ− V,ϕ )∂νϕ+ ∂µϕ(∇µ∂νϕ)− ∂αϕ∇ν∂αϕ,

where

∇ν∂αϕ = ∂ν∂αϕ− Γλ
να∂λϕ, (2.86)

∇µ∂νϕ = gµα∂α∂νϕ− gµαΓλ
αν∂λϕ,

= ∂µ∂νϕ− gµαΓλ
αν∂λϕ. (2.87)

Then

∂µϕ(∇µ∂νϕ)− ∂αϕ∇ν∂αϕ = ∂µϕ(∂
µ∂νϕ− gµαΓλ

αν∂λϕ)− ∂αϕ(∂ν∂αϕ− Γλ
να∂λϕ),

= −∂αϕΓλ
αν∂λϕ+ ∂αϕΓλ

να∂λϕ,

= 0. (2.88)
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From the equation of motion, we obtain

∇µT (ϕ)
µν = (∇2ϕ− V,ϕ )∂νϕ,

= −αϕT
(m)∂νϕ, (2.89)

and

∇µT (m)
µν = αϕT

(m)∂νϕ. (2.90)

We now see that the energy-momentum tensor of matter in Einstein frame is not

conserved. Nevertheless, the density in the Einstein frame must obey the conti-

nuity equation (ρ ∝ a−3(1+w)). Then, we have to define a new density which is

conserved in Einstein frame.

From ∇µT
(m)
µν = ∇µT

µ(m)
ν and we know that for ν = 0 the covariant derivative of

energy-momentum tensor is the continuity equation. Therefore, we obtain

−ρ̇− 3

(
ȧ

a

)
ρ− 3

(
ȧ

a

)
P = αϕT

(m)∂0ϕ, (2.91)

or

ρ̇+ 3H(ρ+ P ) = −αϕϕ̇(−ρ+ 3P ). (2.92)

Since we assume that the matter in the universe is pressureless (P = 0). Then

ρ̇+ 3Hρ = αϕϕ̇ρ. (2.93)

We define a new density which conserve in the Einstein frame as

ρ ≡ ρ(c)A(ϕ), (2.94)

where ρ(c) is the conserved density and ρ is the non-conserved density from the

energy-momentum tensor. From the continuity equation, we obtain

ρ(c)Ȧ+ ρ̇(c)A+ 3Hρ(c)A = αϕϕ̇ρ
(c)A,

ρ(c)
∂A

∂ϕ
ϕ̇+ ρ̇(c)A+ 3Hρ(c)A = αϕϕ̇ρ

(c)A,

ρ(c)
(
1

A

∂A

∂ϕ

)
ϕ̇+ ρ̇(c) + 3Hρ(c) = αϕϕ̇ρ

(c),

αϕϕ̇ρ
(c) + ρ̇(c) + 3Hρ(c) = αϕϕ̇ρ

(c),

∴ ρ̇(c) + 3Hρ(c) = 0. (2.95)

Finally, the equation of motion of the chameleon scalar field which depends on

conserved density is

∇2ϕ = V,ϕ +αϕρ
(c)
m A(ϕ). (2.96)
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However, the definition of conserved density in the most of original chameleon

models is ρ(c) ≡ ρ̃A3(ϕ). Because, there define with respect to T̃ µ
µ while the pre-

vious definition defines with respect to T µ
µ . We will show a consistency of the two

definitions as the following.

Since det(CAn×n) = Cn det(An×n), we obtain

det(g̃µν) = det(A2(ϕ)gµν),

= A8(ϕ) det(gµν),

∴
√
−g̃ = A4(ϕ)

√
−g. (2.97)

Therefore, the trace of energy-momentum tensor can transform to be

T µνgµν = − 2√
−g

∂Lm

∂gµν
gµν ,

= − 2A4

√
−g̃

∂Lm

∂gµν
gµν ,

= − 2A4

√
−g̃

∂Lm

∂g̃µν

g̃µν
gµν

gµν ,

= A4

(
− 2√

−g̃
∂Lm

∂g̃µν

)
A2gµν ,

∴ T µνgµν = A4(ϕ)T̃ µν g̃µν . (2.98)

Thus

ρ = ρ̃A4(ϕ), (2.99)

P = P̃A4(ϕ). (2.100)

From ρ ≡ ρ(c)A(ϕ), we obtain

ρ(c) ≡ ρ̃A3(ϕ). (2.101)

Therefore, the two definitions are consistent with each other.

2.2.2 Chameleon Mechanism

ϕmin and Mass of the Chameleon Scalar Field

Since we define the scalar field to be dark energy, the scalar potential V (ϕ) must be

a runaway form because it can satisfy slow-roll condition in the late-time universe.
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We thus choose the scalar potential in a power-law potential as in quintessence

models.

V (ϕ) =
M4+n

ϕn
, (2.102)

where M is a constant in unit of mass. From the Klein-Gordon equation, ∇2ϕ−
V,ϕ= 0, we found that the equation of motion of chameleon had effective potential:

∇2ϕ = V,ϕ+αϕρmA(ϕ),

= V,ϕ+

(
1

A

∂A

∂ϕ

)
ρmA,

= V,ϕ+

(
∂A

∂ϕ

)
ρm,

=
∂

∂ϕ
(V (ϕ) + ρmA(ϕ)) ,

∴ Veff (ϕ) = V (ϕ) + ρmA(ϕ). (2.103)

We choose the conformal coupling is the exponential form A(ϕ) = eβϕ/MPl where

β is coupling constant between the matter and chameleon scalar field. We can

illustrate the effective potential of the chameleon scalar field as in Figure 2.2.

Figure 2.2: The chameleon effective potential is sum of the two lines: one from

the scalar potential V (ϕ), and the other from its coupling to matter density ρ.

We now see that the potential has minimum when β is positive. Then, value

of the scalar field which minimize the effective potential (ϕmin) is

∂Veff
∂ϕ

|ϕmin
= 0 =

∂

∂ϕ
(V (ϕ) + ρmA(ϕ)) |ϕmin

,

0 = −nM
4+n

ϕn+1
min

+
β

MPl

ρme
βϕmin/MPl ,
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n
M4+n

ϕn+1
min

=
β

MPl

ρme
βϕmin/MPl ,

ϕn+1
min =

n

β

MPl

ρm
M4+n 1

eβϕmin/MPl
,

ϕn+1
min =

n

β

M5+n
P l

ρm

M4+n

M4+n
P l

1

eβϕmin/MPl
.

Since reduced Planck’s mass is a very large value (MPl = 2.43 × 1018GeV), we

assume that eβϕmin/MPl ≃ 1. Thus

ϕmin =MPl

(
n

β

M4
Pl

ρm

(
M

MPl

)4+n
)1/(n+1)

. (2.104)

And then, mass of small fluctuation about minimum is

m2 =
∂2Veff
∂ϕ2

|ϕmin
, (2.105)

=
∂

∂ϕ

(
−nM

4+n

ϕn+1
+

β

MPl

ρme
βϕ/MPl

)
|ϕmin

,

= n(n+ 1)
M4+n

ϕn+2
min

+
β2

M2
Pl

ρme
βϕ/MPl ,

and again we assume eβϕmin/MPl ≃ 1, thus

m =

(
n(n+ 1)

M4+n

ϕn+2
min

+
β2

M2
Pl

ρm

)1/2

. (2.106)

We now see that mass and ϕmin depend on local density where at the higher

density region such as Earth, the mass is higher than the mass in empty space.

Namely, interaction range of the mediated scalar field on the Earth is very short.

We then have never detected its effects. So, this scalar field is called a chameleon.

The mechanism of ϕmin and mass of chameleon are illustrated as in Figure 2.3.

Moreover, when the scalar field stays at the minimum (ϕmin) we can ne-

glect the kinetic energy term. This leads to the slow-roll condition and late-time

acceleration of the universe. Therefore, it is called that chameleon dark energy

model.
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Figure 2.3: Left picture represents the effective potential for large matter density

and right picture represents the effective potential for small matter density.

Thin-shell and Thick-shell Regimes

The dynamics of the chameleon scalar field on a massive object can be separated

into two regimes, the thin-shell and the thick-shell regime. We consider a massive

object has spherical symmetry with homogeneous density, ρc, and radius, Rc.

From

∇2ϕ = ∇µ(∇µϕ) = ∇µ(∂
µϕ),

= ∂µ(∂
µϕ) + Γµ

µλ∂
λϕ.

We assume that the chameleon scalar field is static (does not depend on time) and

has spherical symmetry for consistency with the object. Thus

∇2ϕ = ∂r(∂
rϕ) + Γµ

µr∂
rϕ,

= ∂r(g
rr∂rϕ) + Γµ

µr(g
rr∂rϕ).

The metric tensor of the flat spherical coordinate is

gµν =


−1

1
1
r2

1
r2 sin2 θ

 . (2.107)

We use the flat spherical coordinate because we neglect effect of the spacetime

curvature on the chameleon scalar field. Then, we obtain

∇2ϕ = ∂r∂rϕ+ Γθ
θr∂rϕ+ Γϕ

ϕr∂rϕ, ∵ Γt
tr = Γr

rr = 0,

= ∂2rϕ+
1

r
∂rϕ+

1

r
∂rϕ, ∵ Γθ

θr = Γϕ
ϕr =

1

r
,

= ∂2rϕ+
2

r
∂rϕ. (2.108)
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Then, the equation of motion of the chameleon is reduced to

d2ϕ

dr2
+

2

r

dϕ

dr
= V,ϕ+αϕρ(r)A(ϕ). (2.109)

where ρ(r) = ρc for r < Rc and ρ(r) = ρ∞ (density outside the object) for r > Rc.

We now see that solution or profile of chameleon on massive object depends on the

boundary conditions. If we demand the solution to be non-singular at the origin

and the field value outside the object depends on the outside density. Then, the

boundary conditions are

dϕ

dr
= 0 at r = 0, (2.110)

ϕ→ ϕ∞ as r → ∞, (2.111)

where ϕ∞ is the field value which minimizes the effective potential at the density

ρ∞ (outside the object) according to Eqn. (2.104) and for inside the object (den-

sity ρc) we denote by ϕc. The ϕmin will change into the new minimum when local

density changes because of the driving force,
dVeff
dϕ

. During the change, the field

is not at rest at the minimum; instead it is rolling on effective potential. Then, ϕ

and
dϕ

dr
must be continuous.

The field begins at rest at the center of the object according to the boundary

condition dϕ/dr = 0 at r = 0, from some initial value (does not necessarily be

ϕmin) which we define as the following

ϕi ≡ ϕ(r = 0). (2.112)

Thin-shell regime: (ϕi − ϕc) ≪ ϕc. The driving term is negligible and the

dynamics are dominated by the friction term,
1

r

dϕ

dr
. So, the field value stays at

the initial value ϕi ≈ ϕc until the friction force becomes small (when r becomes

large). Namely

ϕ(r) ≈ ϕc for 0 < r < Rroll, (2.113)

dϕ

dr
= 0 at r = Rroll, (2.114)

where Rroll is a radius which the field begins to roll (Rroll < Rc). Then, in this

regime, we have the short range that the chameleon scalar field rolls out from the

minimum point of the effective potential between the two difference density (ρc

and ρ∞).
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Thick-shell regimes: The friction term is not dominating in this case, then

the field is displaced from ϕc and begin to rolls on the effective potential as soon

as it is released at origin (or Rroll → 0). Then

ϕi & ϕc at r = 0, (2.115)

Therefore, in this regime, the range that the chameleon scalar field rolls out from

the minimum point of the effective potential is a long range.

2.3 Gravitational lensing

The gravitational lensing is a phenomenon of bending of light trajectory by a

massive object. Then, star or galaxy that we see in the universe near a galaxy (or

galaxies) is an only image. We can see the effect of gravitational lensing from a

galaxy better than a star because it has more mass. The trajectory of light around

a galaxy can be illustrated as in Figure 2.4.

Figure 2.4: A galaxy can bend the light path which cause image of star or galaxy

in the background universe.

First, we consider the metric which has a spherical symmetry:

ds2 = −A (r) c2dt2 +B (r) dr2 + r2dθ2 + r2 sin2 θdϕ2. (2.116)

Divide the metric by proper time, dτ , we obtain a Lagrangian.

L = −A (r) c2
dt2

dτ 2
+B (r)

dr2

dτ 2
+ r2

dθ2

dτ 2
+ r2 sin2 θ

dϕ2

dτ 2
,

= −A (r) c2ṫ2 +B (r) ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2. (2.117)

For simplicity, we suppose that light travels on θ = π
2
plane. Then

L = −A (r) c2ṫ2 +B (r) ṙ2 + r2ϕ̇2. (2.118)
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We now take this Lagrangian into the Euler-Lagrange equation:

∂L

∂qi
= ∂τ

(
∂L

∂q̇i

)
. (2.119)

For component t:

∂L

∂t
= ∂τ

(
∂L

∂ṫ

)
, (2.120)

0 = ∂τ (−2Ac2ṫ),

∴ Ac2ṫ = constant.

For component ϕ:

∂L

∂ϕ
= ∂τ

(
∂L

∂ϕ̇

)
(2.121)

0 = ∂τ (2r
2ϕ̇),

∴ r2ϕ̇ = constant.

We define two constants of motion as

E ≡ Acṫ, (2.122)

L ≡ r2ϕ̇, (2.123)

where L is the angular momentum of light. Therefore, the Lagrangian becomes

L = −Ac2
(
E

Ac

)2

+Bṙ2 + r2
(
L

r2

)2

,

= −E
2

A
+Bṙ2 +

L2

r2
. (2.124)

Since the trajectory of light is a null path, ds2 of light equal to zero. Then,

L =
ds2

dτ 2
= 0. We obtain

0 = −E
2

A
+Bṙ2 +

L2

r2
,

Bṙ2 =
E2

A
− L2

r2
,

ṙ2 =
E2

AB
− L2

Br2
. (2.125)
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For simplicity, we define u ≡ 1/r. Then

ṙ2 =

(
dr

dτ

)2

,

=

(
−r2du

dτ

)2

, ∵ du = − 1

r2
dr,

=

(
−r2 du

dϕ

dϕ

dτ

)2

,

=

(
−r2ϕ̇ du

dϕ

)2

,

= L2

(
du

dϕ

)2

. (2.126)

Therefore, we obtain

L2

(
du

dϕ

)2

=
E2

AB
− L2u2

B
,(

du

dϕ

)2

=
1

AB

E2

L2
− u2

B
,

∴ du

dϕ
=

√
1

AB

E2

L2
− u2

B
. (2.127)

From the above equation, we can calculate the deflection angle of light when we

know the metric component A(r) and B(r). The deflection angle of light defines

as in Figure 2.5.

Figure 2.5: θ is the deflection angle of light, b is the impact parameter and r⊥ is a

shortest distance between the trajectory of light and center of the lensing galaxy.

In addition, we can fix the constants E and L by the boundary conditions

at infinity [23, 24].
dt

dτ
= 1 as r → ∞, (2.128)

and A(outside object) = A(Schwarzschild) = 1− 2GM
rc2

. Then

A = 1 as r → ∞. (2.129)
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The constant E at infinity becomes

E = Acṫ = c. (2.130)

Since E is constant, it equals to E inside the spherical symmetry metric. Moreover,

the constant L is the angular momentum of light. Then

L = r2ϕ̇ = r⊥c ≈ bc. (2.131)

Because if the deflection angle is very small, we can assume r⊥ ≈ b (in fact, the

deflection angle of the galaxy or galaxy cluster has value in unit of arcsec, then this

approximation is justified). Therefore, we obtain the simple equation to calculate

the deflection angle of light as [23, 24]

du

dϕ
=

√
1

AB

1

b2
− u2

B
. (2.132)

2.4 Spherically Symmetric Metric Inside a Star

From a spherically symmetric metric in natural unit (c = 1, ~ = 1)

ds2 = −A (r) dt2 +B (r) dr2 + r2dθ2 + r2 sin2 θdϕ2. (2.133)

The components of Ricci tensor can be written as [25]

Rt
t = Rtr

tr +Rtθ
tθ +Rtϕ

tϕ,

= − A′′

2AB
+

A′B′

4AB2
+

A′2

4A2B
− A′

rAB
, (2.134)

Rr
r = Rrt

rt +Rrθ
rθ +Rrϕ

rϕ,

= − A′′

2AB
+

A′B′

4AB2
+

A′2

4A2B
+

B′

rB2
, (2.135)

Rθ
θ = Rθt

θt +Rθr
θr +Rθϕ

θϕ,

= − A′

2rAB
+

B′

2rB2
+

(B − 1)

Br2
, (2.136)

Rϕ
ϕ = Rθ

θ, ∵ spherical symmetry,

where A′ ≡ ∂A

∂r
,B′ ≡ ∂B

∂r
and A′′ ≡ ∂2A

∂r2
respectively. From the Einstein’s field

equation:

Rµν −
1

2
gµνR = 8πGTµν ,
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or

Rµ
ν −

1

2
δµνR ≡ Gµ

ν , (2.137)

where Gµ
ν is the Einstein’s tensor (Gµ

ν = 8πGT µ
ν ). For component t and r, we

obtain

Gt
t = Rt

t −
1

2
R,

= Rt
t −

1

2

(
Rt

t +Rr
r +Rθ

θ +Rϕ
ϕ

)
,

= −(B − 1)

Br2
− B′

B2r
, (2.138)

Gr
r = Rr

r −
1

2
R,

= Rr
r −

1

2

(
Rt

t +Rr
r +Rθ

θ +Rϕ
ϕ

)
,

= −(B − 1)

Br2
+

A′

rAB
. (2.139)

We assume that matter inside a star is perfect fluid. Thus, the energy-momentum

tensor is

T µ
ν =


−ρ

P

P

P

 . (2.140)

Then, Eqn. (2.138) and (2.139) become

Gt
t = −(B − 1)

Br2
− B′

B2r
= 8πGT t

t = −8πGρ,

∴ (B − 1)

Br2
+

B′

B2r
= 8πGρ, (2.141)

Gr
r = −(B − 1)

Br2
+

A′

rAB
= 8πGT r

r = 8πGP,

∴ (B − 1)

Br2
− A′

rAB
= −8πGP. (2.142)

Therefore, we can calculate the metric A(r) and B(r) inside the star when we

know density and pressure or vise verse.

2.5 Rotation Curve and Dark Matter Halo

From observation of circular velocity of star orbiting around the center of galaxies,

we found that the velocity is higher than predicted. The predicted value comes
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from the Newton’s law through gravity. Then, the Newton’s law for an object

circularly orbiting around the galactic center can be written as

GM(r)m

r2
=
mv2c
r
, (2.143)

where m is a mass of an object, vc is a circular velocity and M(r) is a mass of a

galaxy at radius r. Thus, the circular velocity is

vc =

√
GM(r)

r
. (2.144)

Now, we see that at large distance the velocity must be decreasing because far

from the galactic center the M(r) is a constant. Plot of circular velocity versus

distance is called a rotation curve. From observational data the average velocity is

quite constant and higher than the predicted value in the far region. According to

the Newton’s law, we must have more mass in the galaxy than observed, however

we had never detected it. We should also assume that those invisible masses

do not have any other interactions except gravity. We call the invisible mass

is a dark matter. For the dark matter covering a galaxy called a dark matter

halo. Then, the rotation curve is a crucial evidence for the existence of dark

matter. After calculating the whole mass of the galaxy from observation velocity,

we found that dark matter is much more than the visible mass. Furthermore, in

the gravitational lensing phenomenon we found that the mass of the galaxy which

causes the deflection of light is more than the observed mass. It has the same order

of magnitude as those implied from the rotation curves. If we assert that the dark

matter does not exist, it means the theory of gravitation such as Newton’s law or

General Relativity is incomplete and need certain modifications.

Although, we know the amount of masses of the dark matter halo, but we

do not know the exact profile of dark matter because it had never been detected

directly. Several profiles of dark matter were proposed. We will show some profiles

that we are using in this work.

2.5.1 NFW Profile

The Navarro-Frenk-White (NFW) profile [26], which comes from the N-body sim-

ulation of the cold dark matter (CDM) is often used to describe the mass distribu-

tion of dark matter halo because the density is proportional to 1/r3. However, the

profile has a singularity at the origin of the halo. The mathematical expression is

ρNFW (r) =
ρ0

r
a

(
1 + r

a

)2 , (2.145)
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where a is the scale radius, ρ0 is the characteristic density which depends on

critical density of the universe determined by the Hubble parameter. The two

parameters are used to fit data of the rotation curves. Mass at arbitrary distance

can be obtained from

M(r) =

∫ r

0

4πρ(r)r2dr. (2.146)

Since the density diverges at the origin, the physical mass of a galaxy is then given

by

M(r) =

∫ r

0

4πρ(r)r2dr,

=

∫ r

0

4π
ρ0

r
a

(
1 + r

a

)2 r2dr,
= 4πa3ρ0

(
a

a+ r
− a

a
+ ln(a+ r)− ln(a)

)
,

= 4πa3ρ0

(
ln

(
a+ r

a

)
− r

a+ r

)
. (2.147)

As r → ∞ the mass became divergent. We then take the edge of the halo to be

the virial radius, r200, where the average kinetic energy is equal to 1/2 of average

potential energy of the system. It has relation as the following

r200 = ca, (2.148)

where c is the concentration parameter (dimensionless). Then, the accumulated

mass is

M(r200) = 4πa3ρ0

(
ln

(
a+ r200

a

)
− r200
a+ r200

)
,

= 4πa3ρ0

(
ln

(
a+ ca

a

)
− ca

a+ ca

)
,

= 4πa3ρ0

(
ln (1 + c)− c

1 + c

)
. (2.149)

Since the bracket term in RHS is a constant, then it can be written as mean

density within the virial radius, r200. Therefore

M(r200) = 4πa3ρ0

(
ln (1 + c)− c

1 + c

)
,

= 4π
r3200
c3

ρ0

(
ln (1 + c)− c

1 + c

)
,

=
4πr3200

3
ρ0

3

c3

(
ln (1 + c)− c

1 + c

)
,

=
4πr3200

3
ρmean, (2.150)
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where ρmean = ρ0
3
c3

(
ln (1 + c)− c

1+c

)
. In addition, we know that the characteristic

density of the halo and the critical density of the universe are related by

ρ0 = δcρcrit, (2.151)

where δc is a dimensionless constant which is called the characteristic overdensity

of the halo and ρcrit =
3H2

8πG
(where H is the Hubble parameter). Then

ρmean = δcρcrit
3

c3

(
ln (1 + c)− c

1 + c

)
, (2.152)

and the mean density within r200 is 200× ρcrit. Thus, we obtain

200× ρcrit = δcρcrit
3

c3

(
ln (1 + c)− c

1 + c

)
, (2.153)

∴ δc =
200

3

c3

(ln (1 + c)− c/(1 + c))
. (2.154)

Therefore, the accumulated mass is

M(r200) = 200ρcrit

(
4πr3200

3

)
. (2.155)

Now, we will find the circular velocity of the star in the NFW profile. From Eqn.

(2.147), we obtain

M(r) = 4πa3ρ0

(
ln
(
1 +

r

a

)
− r/a

1 + r/a

)
,

=
4πr3200ρ0

c3

(
ln

(
1 +

rc

r200

)
− rc/r200

1 + rc/r200

)
,

=
4πr3200ρ0

c3

(
ln (1 + cx)− cx

1 + cx

)
, (2.156)

where x = r/r200. We obtain the circular velocity at virial radius:

V200 =

√
GM(r200)

r200
. (2.157)

Then

v2c (r)

V 2
200

=
GM(r)

r

r200
GM(r200)

,

=
M(r)

M(r200)

r200
r
,

=
M(r)

M(r200)

1

x
,

=
4πr3200ρ0/c

3
(
ln (1 + cx)− cx

1+cx

)
4πr3200ρ0/c

3
(
ln (1 + c)− c

1+c

) 1

x
,
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because x = 1 at r = r200.

∴ v2c (r)

V 2
200

=

(
ln (1 + cx)− cx

1+cx

)(
ln (1 + c)− c

1+c

) 1

x
.

Therefore, the circular velocity of the NFW profile is

vc(r) = V200

√
1

x

ln (1 + cx)− cx/(1 + cx)

ln (1 + c)− c/(1 + c)
. (2.158)

Although, the NFW profile is supported by simulation from the ΛCDM model

(model of the universe which contains only cold dark matter and the cosmological

constant), but results from simulation and observational data have contrast. From

observations on low surface brightness (LSB) galaxies and gas-rich dwarf galaxies,

the rotation curves around the center of galaxies quite are a constant slope while

the simulations indicate a steep slope which called the cusp. This is known as

the core-cusp problem [27] where the word “core” means the density around the

center of LSB galaxies is approximately constant.

2.5.2 ISO Profile

Pseudo-isothermal (ISO) profile [28] supposes that dark matter stay in the isother-

mal sphere because we want the constant circular velocity at large distance, then

the kinetic energy of each dark matter particle should be equal. The expression

of the pseudo-isothermal profile is

ρISO(r) =
ρ0

1 +
(

r
Rc

)2 , (2.159)

where ρ0 and Rc are the central density and core radius of the dark matter halo

respectively. At large distance, the profile becomes the singular isothermal sphere

(SIS) profile (the SIS profile depends on 1/r2) which can produce the constant

circular velocity. The pseudo-isothermal profile can produce a constant slope of

the rotation curves around the center of the galaxy. The mass of ISO halo can be

written as

M(r) =

∫ r

0

4πρ(r)r2dr,

=

∫ r

0

4π
ρ0

1 +
(

r
Rc

)2 r2dr,
= 4πρ0R

2
c

(
r −Rc arctan

(
r

Rc

))
.
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The above equation is equal to zero when r = 0, then M(0) = 0.

∴M(r) = 4πρ0R
2
c

(
r −Rc arctan

(
r

Rc

))
. (2.160)

Then the circular speed becomes

vc =

√
GM(r)

r
,

∴ vc =

√
4πGρ0R2

c

(
1− Rc

r
arctan

(
r

Rc

))
. (2.161)

The circular velocity of the ISO halo depends on two fitting parameter (ρ0 and

Rc).

2.6 Equation of Motion of the Perfect Fluid

From the energy-momentum tensor of perfect fluid in SI unit:

T µν
perfect fluid = (ρ+

P

c2
)UµU ν + Pgµν , (2.162)

and Uµ = (c, v⃗). Then, in the cartesian coordinate, we obtain

T µν =


ρc2 ρcvx + P vx

c
ρcvy + P vy

c
ρcvz + P vz

c

ρcvx + P vx
c

ρv2x + P v2x
c2

+ P ρvxvy + P vxvy
c2

ρvxvz + P vxvz
c2

ρcvy + P vy
c

ρvyvx + P vyvx
c2

ρv2y + P
v2y
c2

+ P ρvyvz + P vyvz
c2

ρcvz + P vz
c

ρvzvx + P vzvx
c2

ρvzvy + P vzvy
c2

ρv2z + P v2z
c2

+ P

 ,

(2.163)

where
v

c
= β. For the non-relativistic fluid, β ≪ 1, we will neglect the terms that

contain β for the non-relativistic fluid. Thus

T µν =


ρc2 ρcvx ρcvy ρcvz

ρcvx ρv2x + P ρvxvy ρvxvz

ρcvy ρvyvx ρv2y + P ρvyvz

ρcvz ρvzvx ρvzvy ρv2z + P

 . (2.164)

For approximately flat cartesian spacetime, we obtain

∇νT
µν = ∂νT

µν = 0.

For µ = 0

∂0T
00 + ∂iT

0i = 0,
1

c
∂t(ρc

2) + ∂i(ρcv
i) = 0,

∴ ∂tρ+ ∇⃗ · (ρv⃗) = 0, (2.165)
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which is the continuity equation.

For µ = i

∂0T
i0 + ∂jT

ij = 0,

1

c
∂t(ρcv

i) + ∂i(ρv
ivi + P ) + ∂j(ρv

ivj) = 0,

∂t(ρv
i) + ∂i(ρv

ivi) + ∂j(ρv
ivj) = −∂iP,

ρ(∂tv
i + vj∂jv

i + vi∂jv
j + 2vi∂iv

i) = −∂iP.

If the fluid does not have source for the flow, we can neglect the divergence term

(∂iv
i). Then

ρ(∂tv
i + v⃗ · ∇⃗vi) = −∂iP.

Therefore, we obtain

ρ(∂tv⃗ + v⃗ · ∇⃗v⃗) = −∇⃗P. (2.166)

The above equation is the equation of motion or the Euler equation of fluid.



Chapter III

EFFECTS OF CHAMELEON SCALAR FIELD

In order to find effects of the chameleon scalar field on the rotation curve

and gravitational lensing, the essential components are pressure and density of the

scalar field. Since the chameleon scalar field has coupling with matter, energy-

momentum tensor of matter is not conserved. The energy-momentum tensor of

the scalar field can have visible effects on the dark matter halo.

3.1 Effective Pressure and Effective Density

We suppose the dark matter is perfect fluid and has spherically symmetry. Then,

from spherically symmetric metric inside a star, the Einstein’s field equation can

be written as

(B − 1)

Br2
+

B′

B2r
= 8πGρ, (3.1)

(B − 1)

Br2
− A′

rAB
= −8πGP. (3.2)

From Bianchi’s identity the energy-momentum tensor must be conserved, but the

energy-momentum tensor of matter is not served because of the coupling with the

scalar field. Then, conserved quantity in Einstein’s field equations becomes the

total energy-momentum tensor.

∇µT
µν
(total) = 0, (3.3)

where

∇µT
µν
(total) = ∇µT

µν
(matter) +∇µT

µν
(ϕ). (3.4)



37

The energy-momentum tensor of matter (perfect fluid) and scalar field are

T µ(matter)
ν =


−ρ

P

P

P

 , (3.5)

T µ(ϕ)
ν = ∂µϕ∂νϕ− δµν

(
1

2
gαβ∂αϕ∂βϕ+ V (ϕ)

)
. (3.6)

Since we suppose that the halo has spherical symmetry, for consistency, we suppose

the chameleon has spherical symmetry and static too. Then

T
t(ϕ)
t = ∂tϕ∂tϕ− δtt

(
1

2
(gtt∂tϕ∂tϕ+ grr∂rϕ∂rϕ+ gθθ∂θϕ∂θϕ+ gϕϕ∂ϕϕ∂ϕϕ) + V (ϕ)

)
,

= gtt∂tϕ∂tϕ−
(
1

2
(gtt∂tϕ∂tϕ+ grr∂rϕ∂rϕ) + V (ϕ)

)
,

= −1

2
grr∂rϕ∂rϕ− V (ϕ), (3.7)

and

T r(ϕ)
r = ∂rϕ∂rϕ− δrr

(
1

2
(gtt∂tϕ∂tϕ+ grr∂rϕ∂rϕ+ gθθ∂θϕ∂θϕ+ gϕϕ∂ϕϕ∂ϕϕ) + V (ϕ)

)
,

= grr∂rϕ∂rϕ−
(
1

2
(gtt∂tϕ∂tϕ+ grr∂rϕ∂rϕ) + V (ϕ)

)
,

=
1

2
grr∂rϕ∂rϕ− V (ϕ). (3.8)

From spherical symmetry metric, the inverse metric tensor is

gµν =


− 1

A(r)

1
B(r)

1
r2

1
r2 sin2 θ

 . (3.9)

Therefore, the density and pressure of the chameleon scalar field are [29]

T
t(ϕ)
t = −ρ(ϕ) ⇒ ρ(ϕ) =

ϕ′2

2B
+ V (ϕ), (3.10)

T r(ϕ)
r = P r

(ϕ) ⇒ P r
(ϕ) =

ϕ′2

2B
− V (ϕ). (3.11)

Then, the Einstein’s field equations with total energy-momentum tensor can be

written as

(B − 1)

Br2
+

B′

B2r
= 8πG(ρm +

ϕ′2

2B
+ V (ϕ)), (3.12)

(B − 1)

Br2
− A′

rAB
= 8πG(−Pm − ϕ′2

2B
+ V (ϕ)). (3.13)
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We will set the pressure of matter to zero by assuming that the dark matter is the

non-relativistic fluid. We now define the effective density and effective pressure as

ρeff ≡ ρm +
ϕ′2

2B
+ V (ϕ), (3.14)

Peff ≡ ϕ′2

2B
− V (ϕ). (3.15)

There are useful tools to find the effect on gravitational lensing, but we must know

a profile of the scalar field in the dark matter halo. We will calculate the profile

in the next section.

3.2 Chameleon Profile for Dark Matter Halo

First, we consider the equation of motion of the chameleon scalar field

∇2ϕ = V,ϕ +αϕρmA(ϕ). (3.16)

We assume that the scalar field is static and spherical symmetric. The effect of

the spacetime curvature for the halo on the scalar field is negligible. Then

d2ϕ

dr2
+

2

r

dϕ

dr
= V,ϕ+αϕρ(r)A(ϕ), (3.17)

where ρ(r) depends on profile of dark matter halo such as Navarro-Frenk-White

(NFW) or pseudo-isothermal (ISO). We choose a self-interacting potential (power-

law potential), V (ϕ) =
M4+n

ϕn
, and conformal coupling in the exponential form

A(ϕ) = eβϕ/MPl as the original chameleon dark energy model. Therefore

d2ϕ

dr2
+

2

r

dϕ

dr
= −nM

4+n

ϕn+1
+

β

MPl

ρ(r)eβϕ/MPl . (3.18)

We can obtain the profile of the chameleon by a numerical method because this

is a non-linear differential equation. We set the dynamics of chameleon in the

thick-shell regime [30]. Namely, we assume that the value of the scalar field which

minimizes the effective potential (ϕmin) only stay at the exterior of dark matter

halo. The value of the scalar field in the interior of halo is not ϕmin but ϕ(r) that

is determined by the matter density of the halo.

Then, we will solve Eqn. (3.18) from the edge to the center of dark matter

halo. In this work, we choose a constant in a self-interacting potentialM = 10−3eV

because we want to refer the constraint of M from profile of the chameleon scalar

field on the Earth [10, 11, 12, 13, 14].
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For an analytic solution, we approximate the equation to be a linear differ-

ential equation by neglect the potential term and set eβϕ/MPl ≃ 1 sinceMPl is very

large and M is small. We obtain

d2ϕ

dr2
+

2

r

dϕ

dr
=

β

MPl

ρ(r), (3.19)

1

r2
d

dr
(ϕ′r2) =

β

MPl

ρ(r).

We integrate the above equation from r = 0 to r:∫ ϕ′r2

ϕ′r2|r=0

d(ϕ′r2) =
β

MPl

∫ r

0

ρ(r)r2dr,

ϕ′r2 − (ϕ′r2)|r=0 =
β

4πMPl

∫ r

0

4πρ(r)r2dr.

The integral on the RHS becomes the mass. Thus

ϕ′r2 − (ϕ′r2)|r=0 =
β

4πMPl

(M(r)−M(0)).

We define M(r)−M(0) ≡M(r). Then

ϕ′r2 − (ϕ′r2)|r=0 =
β

4πMPl

M(r),

ϕ′(r) =
β

4πMPl

M(r)

r2
+

1

r2
(ϕ′r2)|r=0. (3.20)

Since (ϕ′r2)|r=0 is a constant, we define to be a constant C.

ϕ′(r) =
β

4πMPl

M(r)

r2
+
C

r2
. (3.21)

The ϕ′(r) at rmax is not necessarily equal to zero, we suppose ϕ′(rmax) = α. The

rmax is the distance at the density of dark matter equal to the density of the

background universe (≈ 10−26kg/m3). Then

α =
β

4πMPl

M(rmax)

r2max

+
C

r2max

,

∴ C = αr2max −
β

4πMPl

M(rmax).

Substitute C into Eqn. (3.21), we obtain

ϕ′(r) =
β

4πMPl

M(r)

r2
+

1

r2

(
αr2max −

β

4πMPl

M(rmax)

)
,

=
β

4πMPlr2
(M(r)−M(rmax)) +

αr2max

r2
.

We define

αr2max ≡ βα′

4πMPl

. (3.22)
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Thus

ϕ′(r) =
β

4πMPlr2
(M(r)−M(rmax) + α′), (3.23)

where M(rmax) is an accumulated mass of the halo and α′ relates to changing of

field value at the edge of halo. This is a chameleon profile for the dark matter halo

when we approximate the equation of motion to be a linear differential equation.

3 Solutions of Chameleon Profile

From the above equation beside the dark matter profiles, the chameleon profile

depends on α′ (or α) so that we can separate into 4 cases as the following;

Case I : α′ = 0. We obtain

ϕ′(r) =
β

4πMPlr2
(M(r)−M(rmax)). (3.24)

For r < rmax, M(r) −M(rmax) is always negative. So, the chameleon field will

increase from the edge to the center of halo and become to singular as r → 0.

Case II : α′ < M(rmax).

For r → rmax, the mass of halo can assume to be M(r) ≃M(rmax). Thus

ϕ′(rmax) =
β

4πMPlr2
(α′). (3.25)

The field decrease from the edge to the center of halo. But, for r → 0 the mass of

halo tends to zero M(r) → 0. Then

ϕ′(r → 0) =
β

4πMPl(r → 0)2
(−M(rmax) + α′). (3.26)

The field dramatically increases and becomes singular. Therefore, the profile looks

like a valley.

Case III : α′ =M(rmax). Then

ϕ′(r) =
β

4πMPlr2
(M(r)). (3.27)

The field always decreases from the edge to the center of halo, and for r = 0 we

obtain the non-singular boundary condition

dϕ

dr
(r = 0) = 0. (3.28)



41

Then, in this case, the field does not become singular at the origin which it is a

physical boundary condition and always used in all the original chameleon dark

energy models.

Case IV : α′ > M(rmax). Therefore, as r → 0

ϕ′(r → 0) =
β

4πMPl(r → 0)2
(−M(rmax) + α′). (3.29)

The field always decreases similar to case III, but it truncates at finite r (before

r → 0) because ϕ′(r) is very large. This case is unphysical.

3.3 Constraints on Matter-Chameleon Coupling

Constant

Normally, we require there is no singularity of the field anywhere in the entire

space. Then, the boundary conditions are

dϕ

dr
= 0 at r = 0,

ϕ→ ϕ∞ as r → ∞.

The solution which matches with these boundary conditions is case III. Thus, the

profile is

ϕ′(r) =
β

4πMPlr2
(M(r)). (3.30)

Integrate the above equation from r = 0 to r = rmax. Then∫ ϕ∞

ϕ(0)

dϕ =
β

4πMPl

∫ rmax

0

M(r)

r2
dr,

ϕ∞ − ϕ(0) =
β

4πMPl

∫ rmax

0

M(r)

r2
dr,

β = (ϕ∞ − ϕ(0))
4πMPl∫ rmax

0
M(r)
r2

dr
, (3.31)

where ϕ(0) is the field value at the origin (r = 0). Now, we see that the coupling

constant will be the maximum when ϕ(0) = 0. Moreover, the maximum value will

decrease when the halo becomes more massive. Therefore

βmax =
4πMPlϕ∞∫ rmax

0
M(r)
r2

dr
. (3.32)
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Since we have

ϕ∞ =MPl

(
n

β

M4
Pl

ρ∞

(
M

MPl

)4+n
)1/(n+1)

, (3.33)

where ρ∞ is the background density of universe (≈ 10−26kg/m3), then

βmax =
4πMPl∫ rmax

0
M(r)
r2

dr
MPl

(
n

βmax

M4
Pl

ρ∞

(
M

MPl

)4+n
)1/(n+1)

,

=
4πMPl∫ rmax

0
M(r)
r2

dr
MPl

(
n
M4

Pl

ρ∞

(
M

MPl

)4+n
)1/(n+1)(

1

βmax

)1/n+1

,

β
1+ 1

n+1
max =

4πM2
Pl∫ rmax

0
M(r)
r2

dr

(
n
M4

Pl

ρ∞

(
M

MPl

)4+n
)1/(n+1)

,

β
n+2
n+1
max =

4πM2
Pl∫ rmax

0
M(r)
r2

dr

(
n
M4

Pl

ρ∞

(
M

MPl

)4+n
)1/(n+1)

,

∴ βmax =

(
4πM2

Pl∫ rmax

0
M(r)
r2

dr

)n+1
n+2
(
n
M4

Pl

ρ∞

(
M

MPl

)4+n
)1/(n+2)

. (3.34)

Surprisingly, we found that the coupling constant has maximum value which de-

pends on profile of the dark matter. But, in the case I and case II we do not have

the constraint because ϕ(0) becomes ∞, then the β becomes −∞ (no constraint)

accordingly.

3.4 Rotation Curves

3.4.1 The Fifth Force

Since the chameleon scalar field couples with matter, the energy-momentum tensor

of matter is not conserved. From

∇µT
µν
(total) = ∇µT

µν
(matter) +∇µT

µν
(ϕ) = 0,

and

∇µT
µν
(ϕ) = −αϕT(m)∂

νϕ,

∴ ∇µT
µν
(matter) = αϕT(m)∂

νϕ.

From the approximation that the dark matter is the non-relativistic fluid (pres-

sureless), we obtain

∇µT
µν
(matter) = −αϕρ∂

νϕ. (3.35)
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If ν = i, the LHS will equal to the equation of motion of the fluid. Thus

ρ(∂tv
i + v⃗ · ∇⃗vi) = −αϕρ∂iϕ, ∵ P = 0. (3.36)

In this case the fluid has only rotation while the gradient has only the radial

direction due to spherical symmetry, then v⃗ · ∇⃗ = 0. We obtain

ρ(∂tv
i) = −αϕρ∂iϕ, (3.37)

∴ a⃗ = −αϕ∇⃗ϕ. (3.38)

This is the acceleration of the fifth force [13] which acts on matter in the Einstein

frame (gµν). The fifth force does not occur in the g̃µν frame because we set the

fermions follow the geodesics of the metric g̃µν .

3.4.2 Effects on Rotation Curves

Since we choose the Einstein frame to be our frame, the object which orbits around

the center of a galaxy has gravitational force and the fifth force acts on it (we ignore

pressure of dark matter from annihilation in Ref. [31]). Then, the Newton’s laws

can be written as

F⃗Gravity + F⃗5th = ma⃗.

As we suppose that the dark matter halo has spherical symmetry, then the fifth

force has only direction in the radial direction.

F⃗5th = −mαϕ
dϕ

dr
r̂. (3.39)

Moreover, the gravitational force has only radial direction, then the object has a

centripetal acceleration (ac).(
−GM(r)m

r2

)
r̂ +

(
−mαϕ

dϕ

dr

)
r̂ =

(
−mv

2
c

r

)
r̂, (∵ a⃗c = −v

2
c

r
r̂)

GM(r)m

r2
+mαϕ

dϕ

dr
=

mv2c
r
.

Therefore, the circular velocity which includes the fifth force is

vc(r) =

√
GM(r)

r
+ αϕr

dϕ

dr
. (3.40)

In this work, we use the exponential form for the coupling term (A(ϕ) = eβϕ/MPl),

then

∴ vc(r) =

√
GM(r)

r
+

βr

MPl

dϕ

dr
. (3.41)
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Thus, the circular velocity depends on the profile of the dark matter halo and the

profile of the chameleon scalar field. Furthermore, from Eqn. (3.23) the fifth force

depends on β2. Then, if the chameleon scalar field does not couple with matter

(or β = 0), the effect from the fifth force will not occur.

NFW Halo

From the NFW profile, ρNFW (r) =
ρ0

r
a

(
1 + r

a

)2 , the mass of NFW halo is

MNFW (r) = 4πa3ρ0

(
ln

(
a+ r

a

)
− r

a+ r

)
. (3.42)

It depends on the characteristic density, ρ0, and the scale radius, a. In this work,

we use data from Ref. [32]. The paper tells us only the concentration parameter, c,

and circular velocity at virial radius, V200. Then, we have to find the relationship

between the parameters in Eqn. (3.42) and the given parameters in Ref. [32].

From the accumulated mass at the virial radius, r200,

M(r200) = 200ρcrit

(
4πr3200

3

)
,

and circular velocity at virial radius is

V200 =

√
GM(r200)

r200
. (3.43)

We obtain

V200 =

√
G

r200
(200ρcrit)

(
4πr3200

3

)
,

=

√
G

r200
(200

3H2

8πG
)

(
4πr3200

3

)
,

=
√

100H2r2002 ,

∴ V200 = 10Hr200. (3.44)

And we have r200 = ca. Therefore, we obtain the scale radius which depends on

V200 and c (where H = 72km s−1Mpc−1 [3]).

∴ a =
V200
10Hc

. (3.45)

For the characteristic density, we start at the circular velocity of the NFW profile

vc(r) = V200

√
1

x

ln (1 + cx)− cx/(1 + cx)

ln (1 + c)− c/(1 + c)
.
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Then √
GM(r)

r
= V200

√
1

x

ln (1 + cx)− cx/(1 + cx)

ln (1 + c)− c/(1 + c)
,

GM(r)

r
= V 2

200

r200
r

ln (1 + cx)− cx/(1 + cx)

ln (1 + c)− c/(1 + c)
,

∴M(r) =
V 2
200r200
G

(
ln (1 + cx)− cx/(1 + cx)

ln (1 + c)− c/(1 + c)

)
, (3.46)

=
V 2
200r200
G

(
ln (1 + cr/r200)− cr/r200/(1 + cr/r200)

ln (1 + c)− c/(1 + c)

)
. (3.47)

And since

ρ(r) =
dM(r)

dV
=

1

4πr2
dM(r)

dr
, (3.48)

then

dM(r)

dr
=

V 2
200r200
G

(
1

ln (1 + c)− c/(1 + c)

)(
1

1 + cr/r200
(c/r200)

−(1 + cr/r200)c/r200 − (cr/r200)(c/r200)

(1 + cr/r200)2

)
,

=
V 2
200r200
G

(
1

ln (1 + c)− c/(1 + c)

)(
c2r/r2200

(1 + cr/r200)2

)
. (3.49)

Thus

ρ(r) =
V 2
200c

4πr2G

(
1

ln (1 + c)− c/(1 + c)

)(
cr/r200

(1 + cr/r200)2

)
. (3.50)

From the NFW profile, the characteristic density is

ρ0
r
a

(
1 + r

a

)2 =
V 2
200c

4πr2G

(
1

ln (1 + c)− c/(1 + c)

)(
cr/r200

(1 + cr/r200)2

)
,

ρ0

cr/r200 (1 + cr/r200)
2 =

V 2
200c

4πr2G

(
1

ln (1 + c)− c/(1 + c)

)(
cr/r200

(1 + cr/r200)2

)
,

ρ0 =
V 2
200c

4πr2G

(
c2r2/r2200

ln (1 + c)− c/(1 + c)

)
,

=
V 2
200c

4πG

(
c2/r2200

ln (1 + c)− c/(1 + c)

)
,

∴ ρ0 =
V 2
200

4πGa2

(
c

ln (1 + c)− c/(1 + c)

)
. (3.51)

The above equation uses only the concentration parameter (c) and the circular

velocity at virial radius (V200) where we can calculate the scale radius (a) from

Eqn. (3.45). Therefore, from these relations, we can find the mass of the NFW

halo by the data from Ref. [32].
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ISO Halo

From ISO profile, ρISO(r) =
ρ0

1 +
(

r
Rc

)2 , the mass of the ISO halo is

MISO(r) = 4πρ0R
2
c

(
r −Rc arctan

(
r

Rc

))
.

Then, the mass depends on the central density, ρ0, and the core radius, Rc. For-

tunately, the two parameters are available in [32], then it is easy to calculate.

The Parametrized Model

General form of the NFW profile can be written as

ρPM(r) =
ρ0(

r
rs

)α (
1 + r

rs

)3−α , (3.52)

where α is a parameter, ρ0 and rs are fitting parameters. If α = 1, it becomes the

NFW profile. Mass of the model can be written as

M(r) =

∫ r

0

4πρ(r)r2dr,

=

∫ r

0

4π
ρ0(

r
rs

)α (
1 + r

rs

)3−α r
2dr,

= 4πρ0r
3−αrαs

2F1(3− α, 3− α, 4− α,−r/rs)
3− α

, (3.53)

where 2F1 is a hypergeometric function. We obtain

M(r) =
4πρ0r

3

3− α

(
r

rs

)−α

2F1(3− α, 3− α, 4− α,−r/rs). (3.54)

Then, the circular velocity of parametrized model is

vc(r) =

√
4πGρ0r2

3− α

(
r

rs

)−α

2F1(3− α, 3− α, 4− α,−r/rs), (3.55)

where we fit the parameters α, rs and ρ0 with the observational data.

3.5 Gravitational Lensing

We suppose that light comes from infinity (outside the dark matter halo), and

then travels through the dark matter halo as in Figure 3.1.
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Figure 3.1: Light travels through the dark matter halo.

The metric inside and outside the halo then are not unique, but they still

have continuity conditions together. The metric outside the halo is the Schwarzschild

metric:

ds2 = −
(
1− 2GM

rc2

)
c2dt2 +

dr2(
1− 2GM

rc2

) + r2dθ2 + r2 sin2 θdϕ2. (3.56)

While we do not know the exact metric inside the halo, we use a general form of

spherically symmetry metric inside a star for the metric inside the halo:

ds2 = −A(r)c2dt2 +B(r)dr2 + r2dθ2 + r2 sin2 θdϕ2. (3.57)

We can calculate the deflection angle of light by Eqn. (2.132) as

du

dϕ
=

√
1

A(r)B(r)

1

b2
− u2

B(r)
.

For the Schwarzschild metric we know the metric components A(r) and B(r), then

we can find the deflection angle easily. But, for the metric inside the halo we must

find the way to obtain those parameters.

3.5.1 Deflection Angle from the Schwarzschild Metric

For Schwarzschild metric used outside the halo, the light comes from infinity and

then approaches the dark matter halo. Thus, the metric components are

ASC(r) = 1− 2GM

rc2
, (3.58)

BSC(r) =
1

1− 2GM
rc2

, (3.59)
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where M is a total mass of the halo. We then obtain

du

dϕ
=

√
1

b2
− u2

(
1− 2GM

rc2

)
,

=

√
1

b2
− u2

(
1− 2GMu

c2

)
. (3.60)

The limit of integration is from u = 0 (or r = ∞) to u = 1
Rhalo

because the metric

is the Schwarzschild metric until light reaches the edge of halo. Thus

∆ϕ =

∫ u=1/Rhalo

u=0

1√
1
b2
− u2

(
1− 2GMu

c2

) du, (3.61)

where ∆ϕ is the angle between u = 0 and u = 1
Rhalo

as in Figure 3.2.

Figure 3.2: The ∆ϕ is a sweeping angle in the Schwarzschild metric.

3.5.2 Deflection Angle from Metric Inside the Halo

From the spherically symmetry metric inside a star, we obtain the Einstein’s field

equations as Eqn. (3.1) and (3.2). In order to find effects of the chameleon

scalar field on a deflection angle in the dark matter halo, we also add the energy-

momentum tensor of the scalar field in these equations. Since we assume the

pressure of dark matter in the halo to be zero, then the Einstein’s field equations

inside the halo with effective pressure and effective density are

(B − 1)

Br2
+

B′

B2r
= 8πG

(
ρm +

ϕ′2

2B
+
M4+n

ϕn

)
, (3.62)

(B − 1)

Br2
− A′

rAB
= 8πG

(
−ϕ′2

2B
+
M4+n

ϕn

)
. (3.63)
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In this work, we use a numerical method to find the functions A(r) and B(r) where

we solve B(r) by the upper equation and then solve A(r) by the lower equation. We

substitute A(r) and B(r) from the numerical method into the following equation

du

dϕ
=

√
1

AB

1

b2
− u2

B
,

where the limit of integration is from u = 1
Rhalo

to umax (rmin = r⊥). We cannot

integrate from u = 0 (incoming light at infinity) to u = 0 (outgoing light at

infinity) because the result of the integral becomes zero.

We define the angle from the Schwarzschild metric between u = 0 and

u = 1
Rhalo

to be D1 and the angle from metric inside the halo between u = 1
Rhalo

and umax to be D2. Thus, the deflection angle of light, δ, is

δ = 2
(
D1 +D2− π

2

)
. (3.64)

We can illustrate the definitions of each angle as Figure 3.3.

Figure 3.3: The essential angles for calculating the deflection angle.



Chapter IV

RESULTS AND DISCUSSIONS

In this work, we use low surface brightness (LSB) galaxies for the inves-

tigation of effects from the chameleon scalar field because the LSB galaxies are

dominated by dark matter. For LSB galaxies DDO47, U4325 and U3371 the

NFW profile cannot fit data without unrealistic values for the rotation velocities.

Therefore, we calculate only the ISO profile.

4.1 Constraints on Matter-Chameleon Coupling

Constant from the Non-Singular Solution

The constraints on matter-chameleon coupling constant for the non-singular solu-

tion can be obtained from Eqn. (3.34) where we choose n = 1 and M = 10−3eV

(MPl = 2.43× 1018GeV and ρ∞ = 10−26kg/m3).

Name Profiles βmax

U5750 NFW 1.53092× 10−7

ISO 2.06357× 10−7

U5005 NFW 1.76533× 10−7

ISO 1.69763× 10−7

DDO189 NFW 3.55203× 10−7

ISO 2.79221× 10−7

DDO47 ISO 1.75644× 10−7

U4325 ISO 7.30803× 10−8

U3371 ISO 1.67904× 10−7

Table 4.1: Constraints on the matter-chameleon coupling constant from the non

singular solution.
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The maximum values of matter-chameleon coupling constant are about 10−7.

Then, the chameleon effects on the rotation curves from the non-singular solution

of case III are hardly detected.

4.2 Chameleon Profiles

We use the numerical method with Eqn. (3.18) because we need actually profile

where n = 1,M = 10−3eV. While β, we choose from Table 4.1 because we want to

see the chameleon profile in all cases of solutions. In order to avoid the singularity

in the numerical method, we will solve Eqn. (3.18) from the edge of dark matter

halo to rmin = 0.001 kpc. The chameleon profiles from numerical method are

represented in the black lines.

Chameleon Profiles of the Case α′ = 0
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Figure 4.1: The chameleon profiles in the ISO halo of U5005, U4325, U3371 and

DDO189 galaxy with α′ = 0.

The profiles of all galaxies for the case α′ = 0 are singular at the origin as

Eqn. (3.24).
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Figure 4.2: The chameleon profiles in the NFW halo of U5005 and DDO189 galaxy

with α′ = 0.

Chameleon Profiles of the Case α′ > 0
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Figure 4.3: The chameleon profiles of U5005, DDO189, U4325 and U3271 galaxy

with increasing α′ from top to bottom where the red lines represent the analytic

approximation of case III.

The profiles of the case α′ > 0 obey Eqn. (3.25), (3.27) and (3.29). Since

the potential term is negligible, the approximate solutions can adequately explain

behavior of the chameleon scalar field in the dark matter halo.
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Figure 4.4: The chameleon profiles of U5005 and DDO189 galaxy with increasing

α′ from top to bottom where the red lines represent the analytic approximation

of case III.

4.3 Acceleration of the Fifth Force

Since the coupling constant for case III has constrained value, which is very small

(≈ 10−7), then we cannot see the effects of the chameleon scalar field from the

profiles in case III. Additionally, the case II at larger coupling constant has quite

the same shape with case I. Thus, in this work, we use only the case I (α′ =

0) to find the effects of the chameleon scalar field on the rotation curves and

gravitational lensing.
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Figure 4.5: The acceleration of the fifth force in the NFW halo of U5005 and

DDO189 galaxy increases with the coupling β.

The acceleration of the fifth force at the origin of all galaxies and dark

matter profiles are considerably larger than the outside region because the main

contribution of the acceleration comes from derivative of the field. We use the

chameleon profile of case I, which the profile becomes singular at the origin. Thus,

the gradient of the field becomes very high accordingly. Therefore, the fifth force

pushes all objects which orbit around the center of the galaxy radially outward.
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Figure 4.6: The acceleration of the fifth force in the ISO halo of U5005, U4325,

U3371 and DDO189 galaxy increases with the coupling β.

4.4 Equation of State Parameter

Normally, the equation of state parameter of scalar field is equal to −1 because

of the slow-roll condition. The chameleon scalar field becomes dark energy only

outside the halo because it stays at the minimum only outside the halo. We can

neglect the kinetic energy term of the scalar field due to the slow-roll condition.

Since we choose the dynamics of the chameleon scalar field is the thick-shell regime.

Inside the halo, the scalar field becomes singular and the derivative of the scalar

field is very large, then the kinetic term dominates and the equation of state

parameter of chameleon scalar field is equal to 1 accordingly.

In these results we use a very low coupling constant because we want to

show the changing of equation of state parameter of the chameleon scalar field. If

we use the coupling constant in the same order as the rotation curves, we will not

see the difference of each line.
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Figure 4.7: The equation of state parameter in the NFW halo of U5005 and

DDO189 galaxy.
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Figure 4.8: The equation of state parameter in the ISO halo of U5005, U4325,

U3371 and DDO189 galaxy.
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4.5 Rotation Curves

We found that the fifth force from the chameleon scalar field can cause the slope

of rotation curves steeper (cuspier) around the central region in any dark matter

profile of any galaxies. Since the direction of the fifth force is outward, then the

circular velocity is reduced. Furthermore, the rotation curves more cusps when

we increase the coupling constant.

4.5.1 ISO Halo
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Figure 4.9: Rotation curves of U5005, DDO189, U4325 and U3371 ISO galaxy

around the core region for varying β. The red lines represent rotation curves of

the galaxy without the fifth force.
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4.5.2 Parametrized Model

The parametrized model with α = 0.7 cannot fit U4325 and U3371 without making

unrealistically circular velocity.
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Figure 4.10: Rotation curves of U5005, DDO189, U4325 and U3371 parametrized

model galaxy around the core region for varying β. The red lines represent the

rotation curves of the galaxy without the fifth force.
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4.5.3 NFW Halo
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Figure 4.11: Rotation curves of U5005 and DDO189 NFW galaxy around the core

region for varying β. The red lines represent the rotation curve of the galaxy

without the fifth force.

4.5.4 Dependence on the Power of the Self-Interaction Po-

tential

There are two parameters which can be varied, the power n in the scalar potential

and the constant M in the scalar potential. From the chameleon dark energy

model, parameter n can be an arbitrary value. If n is large, the scalar potential

is very steep, then we often choose n in the order one, O(1). For example, the

simplest case is n = 1. For constant M , we still set M = 10−3eV.

We found that the rotation curves change very little for various n and the

equation of state parameter inside the halo approaches closer to −1 when the

power n is reduced.
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Figure 4.12: Rotation curves of galaxy U5005, DDO189 with n = 0.1− 4 (left to

right) using NFW, ISO profile. The red lines are the rotation curves without the

chameleon.
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Figure 4.13: Equation of state parameter of galaxy U5005, DDO189 with n =

0.5− 0.8 (left to right) using NFW, ISO profile.
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4.6 Constraints on Matter-Chameleon Coupling

Constant from the Rotation Curves of LSB

Galaxies

Since the chameleon scalar field can make the rotation curve more cusp, too large

value of β will cause result in the rotation curves contradictory to the observation.

So, we use the reduced chi-square method to find an upper bound of matter-

chameleon coupling at 95% C.L. from rotation curves where degree of freedom

of each galaxy is the following: U5005 d.o.f. = 11 − 3 = 8, DDO189 d.o.f.

= 11− 3 = 8, U4325 d.o.f. = 16− 3 = 13 and U3371 = 17− 3 = 14 respectively.

The −3 come from three parameters which control the rotation curves: power n

in self-interaction potential, two parameters for each LSB galaxy as Table A.1 and

A.2.

LSB galaxy upper bound on β at 95 % C.L.

U5005 (NFW) 6× 10−3

U5005 (ISO) 2× 10−3

U5005 (PM α = 0.2) 6× 10−3

U5005 (PM α = 0.7) 9× 10−3

DDO189 (NFW) 1.75× 10−2

DDO189 (ISO) 4.8× 10−3

DDO189 (PM α = 0.2) 1.75× 10−2

DDO189 (PM α = 0.7) 1.85× 10−2

U4325 (ISO) 1× 10−3

U4325 (PM α = 0.2) 5.4× 10−3

U3371 (ISO) 2.7× 10−3

U3371 (PM α = 0.2) 9.5× 10−3

Table 4.2: Constraints on the matter-chameleon coupling constant from the LSB

galaxies.

According to Table 4.2, the ISO profile has the strongest constraint than

other profiles which is about 1× 10−3 − 4.8× 10−3 where other profiles are about

1.75×10−2−6×10−3 for NFW profile, 1.75×10−2−9.5×10−3 for the parametrized

model with α = 0.2 and 1.85× 10−2 − 9× 10−3 for the parametrized model with

α = 0.7.
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4.7 Deflection Angle of Light
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Figure 4.14: Deflection angle of galaxy U5005 and U5750 with β = 1.

The results are shown in multiple dots because we must set the impact

parameter, b, and run the parameter as an integer number from the center (b = 1)

to the edge (b = rmax) of dark matter halo. The red dots represent the deflection

angle with chameleon while the black dots without chameleon. Moreover, the

results are shown with β = 1 because the coupling of matter-chameleon is stronger

than the low β (≈ 10−3). Nevertheless, we found that there is no difference

between the red dots and the black dots. Because the chameleon density is much

smaller than the dark matter density and the effective pressure is very small which

can be neglected. The effective density is dominated by the dark matter density.

Therefore, the chameleon scalar field does not have any effects on the gravitational

lensing.



Chapter V

CONCLUSIONS

The chameleon scalar field can modify the rotation curves of galaxies by the

fifth force which comes from the derivative of the chameleon scalar field. The fifth

force makes the rotation curve reduce (cuspier) around the center of the galaxies

because the direction of the force is outward along the radial direction. Moreover,

the effects on the rotation curves are controlled by the coupling constant because

the fifth force is proportional to the matter-chameleon coupling β2.

The non-singular boundary condition of the chameleon profile leads to strin-

gent constraint on matter-chameleon coupling, which is a very small value (β .
10−7). In such cases, we cannot see the effects of the chameleon scalar field. How-

ever, there are no physical reasons to prohibit the singular solution. We show that

the central singularity is more likely to occur in general physical situation. Then,

we investigate the effects of the chameleon from the profile with singularity at the

origin.

For the singular chameleon solution, the upper bound of the matter-chameleon

coupling from the rotation curves of LSB galaxies at 95% C.L. are 1.75×10−2−6×
10−3 for NFW profile, 1×10−3−4.8×10−3 for ISO profile, 1.75×10−2−9.5×10−3

for the parametrized model with α = 0.2 and 1.85 × 10−2 − 9 × 10−3 for the

parametrized model with α = 0.7. Additionally, the change of parameter n in the

scalar self-interacting potential has very small effects on the rotation curves.

Finally, we cannot see effect of the chameleon scalar field on the gravitational

lensing because the density of the scalar field is much smaller than the matter

density.
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Appendix A

DATA OF THE LSB GALAXIES

These tables are partial data of Ref. [32] where Msun = 1.98892 × 1030Kg.

and 1pc(parsec) = 3.08568025× 1016m.

Name c V200(km/s)

U5750 1.9 145.7

U5005 3.3 124.6

U4325 0.1 3331.6

U3371 0.1 875.6

DDO189 9.9 59.2408

DDO47 0.1 1332.5

Table A.1: Parameters for the NFW profile.

Name Rc(kpc) ρ0(Msun/1000pc
3)

U5750 5.0 7.9

U5005 4.7 11.5

U4325 2.7 100.1

U3371 3.7 18.0

DDO189 1.0 97.9

DDO47 2.1 47.5

Table A.2: Parameters for the ISO profile.
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Appendix B

UNIT TRANSLATIONAL TABLE

Natural unit → SI unit

1 GeV = 1.8× 10−27kg (mass)

1 GeV−1 = 0.197× 10−15 m (length)

1 GeV−1 = 6.58× 10−25 s (time)

SI unit → Natural unit

1 m (length) = 5.07614× 1015 GeV−1

1 kg (mass) = 5.55556× 1026 GeV

1 s (time) = 1.51976× 1024 GeV−1

Table B.1: Unit translational table.

This table is more useful during calculations because most of the cosmologi-

cal models use the natural unit (c = 1 and ~ = 1) while the data from observation

are in the SI units.
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