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Chapter I

Introduction

In 1963, E.T. Jaynes and F.W. Cummings [1] published a paper entitled

“comparison of quantum and semiclassical radiation theories, with application to

the beam maser”. This paper was written at a time when the quantum theory of

the laser had not yet been worked out, and presented an attempt at discussing

the new behavior that could be expected from treating the field quantum me-

chanically instead of classically. Jaynes and Cummings began by considering the

interaction between a single two-level atom and a near-resonant single field mode,

a simple situation which has been known as the Jaynes-Cummings model (JCM).

This model is a soluble fully quantum mechanical model of an atom in a field

which was first used to examine the classical aspects of spontaneous emission and

to reveal the existence of Rabi oscillation in the atomic excitation probability for

fields with sharply defined energy (or photon number). For field having a statis-

tical distribution of photon number, the oscillations are damped in time and the

excitation probability reaches an asymptotic steady value. This is known as the

Cummings collapse following the work of Cummings in 1965 [2] who studied the

long-time behavior of a two-level system interacting with a quantized single-mode

field initially in a coherent state. He found that the atomic upper state popula-

tion, for a resonance situation and for intermediate values of time, collapses such

that the peak probability follows a Gaussian envelope and then becomes constant

(equal to one for lower state) after an interaction time of the order of the inverse

atom-field dipole coupling constant. Further in 1980, Eberly and coworkers [3]

found that the Cummings collapse is followed, at much later times, by a sequence

of revivals of atomic inversion. This behavior, specifically the phenomenon of

revival, represents direct evidence for the discreteness of photons and thus veri-
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fies the existence of the field quantization concept. The remarkable fact is that

this collapse and revival has been observed experimentally in cavity QED exper-

iments, which were performed first by Rempe et al. [4] in 1987 and followed, for

example, by Brune et al. in 1995 [5]. It was also found that the cavity field,

once modified by the JCM interaction with the atom, has statistical properties

not found in classical fields. In this thesis, we will study the JCM in two main

aspects described in Chapters 2 and 3 respectively.

In Chapter 2, the classical limit of the JCM, in the sense that the single-

mode field becomes classical, will be studied and compared closely with the semi-

classical model in which the field is treated classically from the outset. At first

sight, it is rather surprising that while the coherent state is the most classical

state allowed by the uncertainly principle, it leads to a result qualitatively dif-

ferent from the classical Rabi flopping formula. This turns out to be due to

the interference of Rabi floppings at different frequencies leading to the collapse.

By contrast, the extreme quantum mechanical number state exhibits a nice semi-

classical correspondence. However, the direct comparison between the probability

expression of the JCM and the semiclassical model leads to the following results.

For the coupled atom-field system described by JCM, the classical limit of the

field does not bring the JCM in correspondence with the semiclassical one for

“general” initial states of the system but here we will show that there are three

examples of initial states in which the classical correspondence of JCM can be

established. The first one is the initial product state where the field is initially

prepared in a state belonging to coherent class, the class containing states whose

properties are generalized directly from some appropriate properties of the co-

herent states. The second one is again a product state where the field is initially

prepared in a number state. The third one is the specific entangled atom-field

state in the two-dimensional subspace of the upper atomic state with n photons

in the field and the lower atomic state with (n + 1) photons. The remarkable
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behavior of these three initial states is that their classical correspondence have

their own specific initial phase only if the two-level atom is prepared in a mixed

state.

In the last few years there has been an explosive increase of interest

in the question of the entanglement of quantum states. This is in connection

with quantum information processing and the possible development of quantum

computers. In Chapter 3, we will investigate the separability of the thermal

Jaynes-Cummings (JC) state, i.e., the state of the atom-field system (described by

JCM) in thermal equilibrium specified by some fixed temperature. By using the

definition of separable state (introduced by Werner [6]) and the positive partial

transposed criterion (introduced by Peres [7]), we will show that the thermal JC

state is never separable, no matter how high the temperature would be, in contrast

to the coupled atom-atom and field-field cases where their thermal states are

separable at high enough temperature. Moreover, we will use the negativity (as

a measure of entanglement), introduced by Vidal and Werner [8], to investigate

the degree of entanglement of thermal JC states at various temperatures. We

show that the negativity (and thus entanglement) is maximal when their thermal

energy is of the same order as the vacuum coupling energy. In addition, as to be

expected, the entanglement approaches zero at both low- and high-temperature

limits while for any finite temperatures, however large or small, there is always

residual entanglement.



Chapter II

The Classical Correspondence Rules

of the Jaynes-Cummings Model

2.1 Jaynes-Cummings model

In this section, we will give a review of the celebrated Jaynes-Cummings

model (JCM) [1] which is the soluble fully quantum mechanical model of an atom

(molecule) interacting with the classical electromagnetic (e.m.) field. Before go-

ing to that, let us first consider the semiclassical model in which an atom is treated

quantum mechanically while the e.m. field is a classical one. Without loss of gen-

erality (in the frame work of the JCM), consider the classical monochromatic

single-mode e.m. field, polarized in x̂-direction, in a cavity of volume V closed by

two perfectly reflecting mirrors which are placed orthogonal to the propagating

direction ẑ at z = 0 and z = L. In this case, the electric field has the form [9]

E(z, t) = x̂q(t)[2Ω2/ε0V ]1/2 sin kz , (2.1)

where q(t) = q0cos(Ωt− φ) is the measure of the field amplitude (φ is the initial

phase), k = Ω/c is the wave vector, and Ω is the single-mode field oscillation

frequency. Now, let an atom (molecule) enters the cavity and, of course, it in-

teracts with this e.m. field. In general, the Hamiltonian of this system has the

form H =
∑N

i=1
1

2mi
|Pi − qiA(ri, t)|2 + VCoul +

∑N
i=1 qiU(ri, t), where mi, ri, pi,

and qi are the mass, position operator, momentum operator, and charge of the

ith electron of the atom respectively. Here, VCoul is the potential energy due to

the Coulomb interactions in an atom, and A(r, t) and U(r, t) are the vector and

scalar potential of the e.m. field respectively from which the electric and mag-

netic field can be derived. In most practical cases, the wavelength of the field is
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large compared with the size of an atom, which is typically the order of 10−8 cm,

so the variation of the e.m. field over the atom can be ignored. This would be

the case if the field frequency is less than about 1018 Hz. In this case, the long-

wavelength approximation can be used in the following ways [10]. Expanding the

potentials A(ri, t) and U(ri, t) in powers of ri around the position of an atom

(i.e., the center of mass of an atom, rcm, which is usually set to be the origin of

the reference frame) leads to the multipole moments of increasing order for the

system of charges with respect to the position of an atom. By keeping the lowest

order terms together with the globally neutral condition
∑N

i=1 qi = 0, the above

Hamiltonian becomes H =
∑N

i=1
1

2mi
|Pi − qiA(rcm, t)|2 + VCoul + d · ∇U(rcm, t),

where Pi = miṙi − qiA(rcm, t), and d :=
∑N

i=1 qiri is the electric dipole mo-

ment operator. By using the Göppert-Mayer transformation [11] (see also [10]),

the vector potential term is removed and the above Hamiltonian can be simply

written as

H = HED := Hatom − d · E(rcm, t) , (2.2)

where Hatom :=
∑N

i=1(|P′|2 /2mi) + VCoul with P′ = miṙi. It is clear from the

electric dipole Hamiltonian (2.2) that, in the long-wavelength approximation, the

interaction of an atom with the external e.m. field is simply described in this

new representation by a coupling term between the dipole moment operator d of

the atom and the external electric field E(rcm, t) evaluated at the position of an

atom. Since only the electric dipole interaction appears here, this long-wavelength

approximation is also called the dipole approximation. Although this derivation is

based on the Lagrangian formalism, it can be derived based on the Hamiltonian

formalism also by using an appropriate unitary transformation. Moreover, this

way of derivation can be generalized to derive the electric dipole Hamiltonian

when the field is treated as a quantized field from the beginning [10, 12]. Note

that, in the long-wavelength approximation, the electric dipole Hamiltonian is
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a good approximation (for describing any atomic transition between states |ψ1〉
and |ψ2〉 due to the absorption or emission between atom and field) when a

transition is electric-dipole allowed, i.e., 〈ψ1|HED |ψ2〉 6= 0. In case of the electric-

dipole forbidden, i.e., 〈ψ1|HED |ψ2〉 = 0 , the Hamiltonian described by electric-

quadrupole and magnetic-dipole interaction corresponding to the higher order

terms in the expansion may become important [13]. For the JCM and, therefore,

in this thesis, the situations are restricted only to the case of electric-dipole

allowed so it is enough here to use the electric dipole Hamiltonian HED (2.2)

in order to describe the interaction of atom and field. Substituting the electric

field (2.1) into (2.2), we get the interaction term of (2.2) in the form

−d · E(rcm, t) = −dxE0 cos(Ωt− φ) , (2.3)

where dx = d·x̂ and E0 = q0 [2Ω2/ε0V ]
1/2

sin(kzcm) with zcm = rcm·ẑ. Now, let

the set of the energy eigenstates of an atom be {|1〉 , |2〉 , ..} with the corresponding

eigenenergies {E1, E2, ...} (E1 > E2 > ...). Then the first order time-dependent

perturbation theory shows that the interaction picture probability amplitude for

an atom initially in the state |i〉 to be found in the state |n〉 at any time t > 0

(assume, without loss of generality, that Ei < En) is [9]

C(1)
n (t) = −iVni

2~

[
ei[(ωni+Ω)t−φ]

i(ωni + Ω)
+

ei[(ωni−Ω)t+φ]

i(ωni − Ω)

]
, (2.4)

where Vni = −E0〈n|dx|i〉 and ωni = ωn − ωi (Ei = ~ωi). Here, the superscript

(1) on Cn(t) indicates that the exact Cn(x) is estimated by C
(1)
n (t) derived from

the “first” order time-dependent perturbation theory. Note that the formula

(2.4) is generally obtained for any sinusoidal perturbation of the form V0cos(Ωt−
φ), where V0 in our case is −dxE0. Notice that the second term of (2.4) with

the relatively small denominator (ωni − Ω) is larger than the first term with

denominator (ωni + Ω) especially when the near resonance condition, i.e., (ωni ≈
Ω) is satisfied. So, it is reasonable for this near resonance condition to neglect the
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first term in (2.4). The first and second terms in (2.4) are called antirotating-wave

and rotating-wave contribution respectively and neglect of the first term is then

called the rotating-wave approximation. In a similar way, one may neglect the

term corresponding to the transitions ωmi (m 6= n) in comparison with the term

corresponding to ωni ≈ Ω. Since the antirotating-wave contribution is actually

smaller than many nonresonant contributions [9], it follows that the two-level

atom approximation is usually only consistent if made simultaneously with the

rotating-wave approximation and if one decides to keep the antirotating wave

contribution, one must also keep all the nonresonant contributions as well. Since

all of the above discussions are based on C
(1)
n (t) in (2.4) which, as it is a first order

time-dependent perturbation result, is valid only for small |Vni|, one may ask what

differences may occur if the exact result is used instead of (2.4). Fortunately,

the exact result for the transition between two states coupled by the sinusoidal

form of interaction is available. In (2.4), notice that the first and second terms

clearly come from the antirotating-wave ei(Ωt−φ) and rotating-wave e−i(Ωt−φ) parts

of cos(Ωt − φ) in (2.3) respectively. Now, let us consider first the rotating-wave

part −(dxE0/2)e−i(Ωt−φ) of the interaction in (2.3). In this case, the exact result

(at times t > 0) is |Cn(t)|2 ∝ [(ωni − Ω)2 + 4|Vni|2/~2]−1 (see, e.g., [14]). In

contrast, for the antirotating-wave part of interaction, i.e., −(dxE0/2)ei(Ωt−φ),

|Cn(t)|2 ∝ [(ωni + Ω)2 + 4|Vni|2/~2]−1. It is clear from these results that besides

the nearly resonant condition needed for the rotating-wave and two-level atom

approximations, the weak interaction (|Vni|/~ ¿ Ω) is also needed. This is why

we cannot see this conclusion via (2.4) since the small value of Vni in (2.4) has

been assumed from the beginning. Another problem in realistic situations is

that the cavity usually contains multimode of the field rather than a single one.

However, this problem can be reduced to the case of a two-level atom interacting

with the specific single-mode field for the situation that, while ωni and Ω are

both varied, there exists only one pair (ωni, Ω) in which the transition from state
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|i〉 to |n〉 is the most dominating one or, in other words, this pair is much more

close to the resonance condition than all other pairs. In this case, an atom can

be approximated by a two-level atom specified by states |i〉 and |n〉 and the field

can be approximated by a single-mode with frequency Ω. Moreover, if their

interaction is weak enough, the rotating-wave approximation can also be used so

the problem of this atom-field interaction can be fully solved analytically. The

simple model of these approximations allows us to learn a great deal about the

atom-field interaction, and hopefully this knowledge can be generalized to more

realistic situations.

For the reasons mentioned above, let us now consider a two-level atom

specified by two energy eigenstates |a〉 (the upper state) and |b〉 (the lower state)

with the corresponding eigenenergies Ea = ~ωa and Eb = ~ωb respectively, i.e.,

Hatom|a〉 = Ea|a〉 and Hatom|b〉 = Eb|b〉. Let a cavity contains only a single-

mode field of the form (2.1) and this single-mode field interacts with a two-level

atom by the dipole interaction described by (2.3) which, in the rotating-wave

approximation, is −(dxE0/2)e−i(Ωt−φ). For this system, the Hamiltonian (2.2)

becomes HED = Hatom − (dxE0/2)e−i(Ωt−φ). This Hamiltonian is written in the

two-level atom basis {|a〉, |b〉} as

Hsc(t) := HED(t) =
~ω
2

σz − ℘E0

2

(
σ+e−i(Ωt−φ) + σ−ei(Ωt−φ)

)
, (2.5)

where ω := ωa−ωb is the frequency difference of the two levels (we have chosen the

energy zero to be half way between the upper and lower levels), ℘ : = 〈a|dx|b〉 =

〈a|d|b〉 · x̂ is the component of a matrix element of the electric dipole operator

along the polarization (we have chosen, without loss of generality, the atomic

quantization axis such that ℘ is real), σz = |a〉〈a| − |b〉〈b|, σ+ = |a〉〈b|, and

σ− = |b〉〈a|. Here, HED in (2.5) is rewritten by Hsc. This subscript sc denotes the

abbreviated name of the semiclassical which emphasizes that we are considering

now the semiclassical model where the e.m. field is treated classically. Note that
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σz, σ+ and σ−, which are exactly the same as the Pauli spin matrices used for

the “real” two-level spin1
2

system, are sometimes called the pseudo-spin operators

since there is the correspondence between them and electron (Fermi) operators for

an approximated two-level atom [15]. Note also that 〈a|d|a〉 = 〈b|d|b〉 = 0 (which

is usually true unless the system has a permanent dipole moment like H2O) have

been assumed, without loss of generality, in order to obtain (2.5) since if they do

not vanish, then they can be absorbed in the definition of ωa and ωb leading to

a new effective two-level atom without these diagonal terms of interaction. The

main quantity which we shall first find from the semiclassical model described by

(2.5) is the probability amplitude for finding a two-level atom in state |a〉 or |b〉
at time t > 0 when the initial conditions at time t = 0 are given. Now, let the

general state at time t, denoted by |ψ(t)〉sc ∈ Ha, the Hilbert space describing a

two-level atom, be in the form

|ψ(t)〉sc = Ca(t)e
iδt/2e−iωat |a〉+ Cb(t)e

−iδt/2e−iωbt |b〉 , (2.6)

where δ := ω−Ω is called the detuning. Here, Ca(t) and Cb(t) are the probability

amplitudes (in the special interaction picture) for finding a two-level atom in the

upper state |a〉 and lower state |b〉 respectively. Substituting (2.6) into the time-

dependent Schrödinger equation i~∂|ψ(t)〉sc/∂t = Hsc|ψ(t)〉sc, with Hsc in (2.5),

leads to the matrix equation for determining Ca(t) and Cb(t) from the initial

condition Ca := Ca(0) and Cb := Cb(0)

[
Ca(t)
Cb(t)

]
=

[
cos(Rt/2)− iδR−1 sin(Rt/2) iR0R

−1eiφ sin(Rt/2)
iR0R

−1e−iφ sin(Rt/2) cos(Rt/2) + iδR−1 sin(Rt/2)

] [
Ca

Cb

]
,(2.7)

where R :=
√

δ2 + R2
0 is called the generalized Rabi flopping frequency, and

R0 := ℘E0/~ (|R0| is called the Rabi flopping frequency). This flopping frequency

(R → |R0| as δ → 0) is used for describing the oscillation of the population

between upper and lower levels. For example, for δ = 0 (the resonance case)
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and Cb = 1 (the initially ground state atom), (2.7) can be easily solved to get

|Ca(t)|2 = sin2(|R0| t/2) and |Cb(t)|2 = cos2(|R0| t/2). This result clearly shows

the oscillation (with frequency |R0|) between upper and lower levels and since

|Ca(t)|2 or |Cb(t)|2 is equal to unity for some specific times, the oscillation in this

case is called the complete oscillation. For δ 6= 0, the oscillation is never complete.

The reason for this will become clear when the field is treated quantum mechan-

ically as a quantized field. Note that the name Rabi of the flopping frequency

is due to Rabi [16] in 1936 who studied the similar system of a spin1
2

magnetic

dipole in nuclear magnetic resonance. In general, any two-level system can be

viewed geometrically as a spin1
2

particle in the magnetic field. This is called the

fictitious spin1
2

(see e.g., [12, 17]). From (2.7), the general expression of prob-

ability for finding a two-level atom in an upper state |a〉, denoted by P
(sc)
a (t),

is

P (sc)
a (t) := |Ca(t)|2

=
|Ca|2 δ2

R2
+

(
R0

R

)2 [|Ca|2 cos2(Rt/2) + |Cb|2 sin2(Rt/2)
]

+
R0

R
|Ca| |Cb|

{
sin [(θa − θb)− φ] sin(Rt) +

δ

R
cos [(θa − θb)− φ]

×cos(Rt)− δ

R
cos [(θa − θb)− φ]

}
, (2.8)

where θa := Arg(Ca) and θb := Arg(Cb). Here, again the superscript (sc) on

Pa(t) emphasizes the use of semiclassical model described by (2.5).

Now, let us consider the full quantum case where the e.m. field part is

treated quantum mechanically. In quantum mechanics, the classical e.m. field is

replaced by its quantized form in the following ways. From (2.1), one can derive

the magnetic field from the Maxwell’s equations (in vacuum) and then obtain

the Hamiltonian (or total energy denoted by Hf) in the form Hf = 1
2
(p2 + Ω2q2),

where p(t) =
.
q(t) with q(t) defined as in (2.1) (see, e.g., [9]). This Hamiltonian is

clearly a simple harmonic oscillator with unit mass so the quantization procedure
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is simply the replacement of the dynamical variables q(t) and p(t) by the operators

q and p respectively. Now, the electric field (2.1) can be quantized by using an

operator q =
√
~/2Ω(a + a†) instead of the classical q(t), where a and a† are the

annihilation and creation operators respectively. Substituting this quantized field

obtained from the above procedure, i.e., E(z) = x̂εΩ(a + a†) sin kz (where εΩ :=
√
~Ω/ε0V is the electric field per photon) into (2.2), we obtain the total (time-

independent) electric dipole Hamiltonian, denoted by Haf , of the full quantum

atom-field interaction in the form Haf = Hatom + ~Ωa†a− dxεΩ sin(kzcm)(a + a†).

Here, the term ~Ωa†a is the total energy of the free field (without zero point

energy) which has been neglected in (2.2) for the “semiclassical” case (where the

field was treated classically) since its total energy is just a constant. Again, like

what we have done in (2.5), the above Haf can be written in terms of σz, σ−, and

σ+ as

Haf =
~ω
2

σz + ~Ωa†a + ~g(σ+ + σ−)(a + a†) (2.9)

where g = −(℘EΩ/~) sin(kzcm). Notice that this Hamiltonian is still not the

one within the rotating-wave approximation since the whole of q(t) (not only

e−i(Ωt−φ) part of cos(Ωt − φ)) is replaced by an operator q. However, doing

a rotating-wave approximation of the full quantum Hamiltonian (2.9) is quite

similar to one we have done for the semiclassical model. To see that, let us

consider the interaction term of (2.9), i.e., (σ+ + σ−)(a + a†) = (aσ+ + a†σ−) +

(aσ− + a†σ+). The first term on the right-hand side (called the rotating-wave

term) couples the atom-field states |an〉 and |bn + 1〉 for all n = 0, 1, 2, ... and the

second term (called the antirotating-wave term) couples the atom-field states |an〉
and |bn− 1〉. Here, |an〉 := |a〉⊗ |n〉 and |bn〉 := |b〉⊗ |n〉 (where {|n〉}∞n=0 are the

energy eigenstates of the quantized field, with the corresponding eigenenergies

n~Ω, spanning the Hilbert space of field) so {|an〉 , |bn〉}∞n=0 clearly forms the

basis (called the bare-atom basis) of the composite quantum system of the atom
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and field described by the total Hilbert space Haf = Ha⊗Hf . By considering, for

example, the antirotating-wave term (aσ− + a†σ+) for the transition from |b0〉 to

|a1〉, the transition probability is proportional to [(ω + Ω)2 + 4g2]−1. In contrast,

the rotating-wave (aσ+ + a†σ−) induces a transition from |a0〉 to |b1〉 with the

probability proportional to [(ω − Ω)2 + 4g2]−1 (see [14]). It is clear from these

probabilities that, for ω ≈ Ω (resonance condition) and weak interaction (instead

of condition |Vni| /~¿ Ω in the semiclassical case, we have here |g|
√
〈a†a〉 ¿ Ω

[18]), the rotating-wave term is (again as in the semiclassical case) the dominating

one. Note that one can also see the time-dependent form of both rotating-and

antirotating-wave terms, in analogy to the semiclassical one, by considering their

time evolution in the interaction picture, i.e., the free evolution g = 0 of them [9].

Now, making the rotating-wave approximation (i.e., neglecting the antirotating-

wave term (aσ− + a†σ+) in (2.9)) leads to

Haf =
~ω
2

σz + ~Ωa†a + ~g(aσ+ + a†σ−) . (2.10)

The model specified by this Hamiltonian is called the Jaynes-Cummings model

(JCM). In fact, neglecting the antirotating-wave term in order to get (2.10) is to

ignore the small probability contribution due to the energy non-conserving terms

in which emission (absorption) of a photon is accompanied by the transition of the

atom from its lower (upper) to its upper (lower) states. Although the antirotating-

wave contribution is small, it can profoundly affect the long-time behavior of the

system. In particular, the semiclassical version of the JCM (2.5) is perfectly

periodic, whereas the inclusion of antirotating-wave term in the semiclassical

equation leads to chaotic behavior [19, 20]. Moreover, an error introduced by the

rotating-wave approximation in some specific cases was also studied [21]. Note

that a more careful treatment of the rotating-wave approximation leads to a

diagonal energy shift, which we have ignored in (2.10), in the atomic frequency

ω. It is known as the Bloch-Siegert shift [22, 18]. Although the JCM (2.10) gives
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inaccurate or wrong answers in some situations described above, it is adequate

for our analysis of this chapter, because the long-time behavior will not affect the

situations in which (as we will discuss in Section 2.4) the average photon number

is very large.

2.2 Dynamics of the Jaynes-Cummings model

In terms of the bare-atom basis, i.e., {|an〉 , |bn〉}∞n=0, the Hamiltonian

(2.10) can be written in the form

Haf =

( ∞∑
n=0

Hn

)
− ~ω

2
|b0〉 〈b0| , (2.11)

where

Hn =

[
(n +

1

2
)~Ω +

~δ
2

]
|an〉 〈an|+

(
~g
√

n + 1
)

(|an〉 〈bn + 1|+ |bn + 1〉 〈an|)

+

[
(n +

1

2
)~Ω− ~δ

2

]
|bn + 1〉 〈bn + 1| , ∀n = 0, 1, 2, ....

Notice that Hn couples only the atom-field states |an〉 and |bn + 1〉 for each n. By

this reason, the whole Hilbert space Ha⊗Hf should be decomposed into the “mu-

tually orthogonal” two-dimensional subspaces Pn spanned by {| an 〉, |bn + 1〉}
(∀n = 0, 1, 2, . . .) and a one-dimensional subspace L0 spanned by {| b0 〉}, i.e.,

Ha ⊗Hf = L0 ⊕ (⊕∞n=0Pn). Doing in this way, Hn will look like an operator act-

ing only on Pn in the sense that Hn(Pm) = Hn(L0) = 0 ∀m 6= n, and the matrix

representation of Hn is then simply a 2 × 2 matrix which provides us an easy

way to calculate its eigenvectors (called the dressed-atom basis) and their corre-

sponding eigenenergies (splitting energies). The standard eigenvalue problem for

2 × 2 matrices leads to the dressed-atom basis {|b0〉 , |1n〉 , |2n〉}∞n=0, where |1n〉
and |2n〉 satisfy Hn |1n〉 = E1n |1n〉 and Hn |2n〉 = E2n |2n〉 respectively with

the energies E1n := (n + 1/2)~Ω + ~Rn/2 and E2n := (n + 1/2)~Ω − ~Rn/2,

where Rn :=
√

δ2 + 4g2(n + 1) is called the quantized generalized Rabi flop-

ping frequency (see e.g., [9]). The dressed states |1n〉 and |2n〉 are related to
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the bare states |an〉 and |bn + 1〉 by the transformation formulae |1n〉 = sin θn

|an〉 + cos θn |bn + 1〉 and |2n〉 = cos θn |an〉 − sin θn |bn + 1〉. Here, sin θn :=

2g
√

n + 1/
√

(Rn − δ)2 + 4g2(n + 1). Now, let the general initial state be

|Ψ(0)〉 =
∞∑

n=0

[
Can(0) |an〉+ Cbn(0) |bn〉

]

=
∞∑

n=0

[
Can(0) |an〉+ Cbn+1(0) |bn + 1〉

]
+ Cb0(0) |b0〉 . (2.12)

Then the time evolution of this state generated by the Hamiltonian (2.11) can be

written as (by using |Ψ(t)〉 = exp(−iHaft/~) |Ψ(0)〉 and [Hn, |b0〉 〈b0|] = 0 ∀n ≥ 0)

|Ψ(t)〉 =
∞∑

n=0

[
Can(t)eiδt/2e−iEant/~ |an〉+ Cbn+1(t)e

−iδt/2e−iEbn+1t/~ |bn + 1〉
]

+Cb0(t)e
−iδt/2eiωt/2 |b0〉 , (2.13)

where Ean = n~Ω + ~ω/2 and Ebn+1 = (n + 1)~Ω − ~ω/2 are the unper-

turbed energy eigenvalues, and Cb0(t) = Cb0(0)eiδt/2. Here, (2.13) is written

in the same special interaction picture as in (2.6). Notice that |Cb0(t)|2 =

|Cb0(0)|2 is time independent, as it should be since |b0〉 itself is an energy eigen-

state of Haf . This implies, from the normalization condition of |Ψ(t)〉 (i.e.,
∑∞

n=0(|Can(t)|2 + |Cbn(t)|2) = 1 ∀t ≥ 0), that the dynamics (Rabi’s oscillation

between the unperturbed two-level states) must be occurred in ⊕∞n=0Pn only. By

this reason, we shall consider only the evolution of states in ⊕∞n=0Pn (the first two

terms on the right-hand side of (2.13)) and write, for convenience, |Ψ(t)〉 only for

this part, i.e.,

|Ψ(t)〉 =
∞∑

n=0

Can(t)eiδt/2e−iEant/~ |an〉+Cbn+1(t)e
−iδt/2e−iEbn+1t/~ |bn + 1〉 . (2.14)

Similar to (2.7), (2.14) and the time-dependent Schrödinger equation with Hamil-

tonian Hn in (2.11) lead to the matrix equation for Can(t) and Cbn+1(t),
[

Can(t)
Cbn+1(t)

]
=

[
cos(Rnt/2)− iδR−1

n sin(Rnt/2) −2igR−1
n

√
n + 1sin(Rnt/2)

−2igR−1
n

√
n + 1sin(Rnt/2) cos(Rnt/2) + iδR−1

n sin(Rnt/2)

] [
Can(0)

Cbn+1(0)

]
.

(2.15)
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Notice that, for δ = 0 and Cbn+1(0) = 1 (i.e., a resonant atom initially in the

lower level), |Can(t)|2 = sin2(gt
√

n + 1) and |Can(t)|2 = cos2(gt
√

n + 1) showing

the complete oscillation. In contrast, for δ 6= 0, the complete oscillation never

occurs. It is clear now that the complete oscillation occurs due to the “complete”

exchange of the quantum energy ~Ω with the two-level atom of energy ~ω (which

is equal to ~Ω). The complete oscillation will be destroyed more and more as the

field is further and further from resonance. Similar to (2.8), for the atom-field

initial state |Ψ(0)〉 = |φ〉 ⊗ |ϕ〉 (where |φ〉 = Ca|a〉 + Cb|b〉 ∈ Ha and |ϕ〉 ∈ Hf),

the general expression for the probability of finding a two-level atom in an upper

state (at time t), denoted for this full quantum case by Pa(t), is

Pa(t) :=
∞∑

n=0

|Can(t)|2 =

∞∑
n=0

{
|Ca|2 δ2ϕ2

n

R2
n

+
2g2(n + 1)

R2
n

(|Ca|2 ϕ2
n − |Cb|2 ϕ2

n+1)cos(Rnt)

+
2g2(n + 1)

R2
n

(|Ca|2 ϕ2
n + |Cb|2 ϕ2

n+1) +
2δg |Ca| |Cb|ϕnϕn+1

√
n + 1

R2
n

[1− cos(Rnt)]

×cos [(θa − θb)− (θn+1 − θn)]− 2g |Ca| |Cb|ϕnϕn+1

√
n + 1

Rn

sin(Rnt)

×sin [(θa − θb)− (θn+1 − θn)]

}
, (2.16)

where ϕn := |〈n|ϕ〉| = √
Pn, θn := Arg(〈n|ϕ〉), θa := Arg(Ca), and θb := Arg(Cb).

The difference between the quantum Pa(t) (2.16) and the semiclassical

(2.8) is that in the quantum case, the probability of finding a two-level atom in

an upper state |a〉 has contributions (expressed in (2.16) via the discrete sum)

from many number states |n〉, n = 0, 1, 2, ... while the semiclassical probability

(2.8) does not have it. This contribution leads (in contrast to the semiclassical

perfect periodicity) to the collapse of Pa(t) due to the interference of Rabi flopping

at different frequencies. This behavior will be explored in the next section.
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2.3 Cummings collapse and its generalization

From the previous section, it is clear that the mathematics is simplest

when one considers a single atom of precisely known energy (i.e., a particular

upper or lower level) brought suddenly into a cavity with precisely known energy

(i.e., a definite number of photons). However, this situation is not a realistic one.

Usually, one can only specify the statistical properties of the cavity single-mode

field. Over the years, there have been studies of the JCM with a great variety of

initial single-mode fields. These studies have shown that there can be remarkable

differences in the behavior of the system with different initial conditions. One of

the important initial fields, which is experimentally the most prepared one, is the

field expressed as a coherent superposition of the number states called the coherent

state and denoted by |α〉. It is also called the quasi-classical state since the

expectation values (with respect to |α〉) of position, momentum, and thus energy

reproduce the results from the classical harmonic oscillator as the average energy

n̄~Ω (n̄ = |α|2) reaches the classical energy limit. Note that the coherent state |α〉
has many interesting properties, such as (1) it is an eigenstate of the annihilation

operator, i.e., a|α〉 = α|α〉, (2) it satisfies the minimum uncertainty for all time of

evolution, (3) 〈n|α〉 = e−|α|
2/2αn/

√
n! so |〈n|α〉|2 = n̄ne−n̄/n! is the Poisson type

of distribution with the average n̄ = |α|2 , and (4) the evolution of |α0〉 at any

time t is still a coherent state |α(t)〉 with α(t) = α0e
−iΩt = |α0| e−(iΩt−φ), where

φ = Arg(α0) is the initial phase of the corresponding classical oscillator. In our

context, φ here is the initial phase of the electric field (2.1) whose amplitude is

simply described by q(t) = q0 cos(Ωt − φ). For atom and field initially prepared

(independently) in an upper state |a〉 and a coherent state |α〉 respectively (i.e.,

|Ψ(0)〉 = |a〉⊗ |α〉), the probability Pa(t) (for δ = 0) in (2.16) reduces to the form

Pa(t) = e−|α|
2 ∑∞

n=0(|α|2/n!) cos2 (gt
√

n + 1). For sufficiently “intense field” and
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“short enough time” (t ¿ |α|/g), this sum can be shown to reduce to (see [9])

Pa(t) =
1

2
+

1

2
cos(2 |α| gt)e−(gt)2/2. (2.17)

Similarly, for a two-level atom initially in the lower state, we have (see [23])

Pa(t) =
1

2
− 1

2
cos(2 |α| gt)e−(gt)2/2. (2.18)

The above forms of Pa(t) show that the Rabi oscillations are damped with a

Gaussian envelope whose width is independent of the photon number n̄ = |α|2,
a result sometimes called the Cummings collapse due to Cummings who first

showed this behavior in 1965 [2]. Note that Eberly and coworkers [3] and

also other works such as [24, 25, 26] found that the Cummings collapse is fol-

lowed, at much later time, by a sequence of revivals. However, although this

revival is a very important phenomenon that represents direct evidence for the

discreteness of photons, we will not concern ourselves with it. This is because

the classical limit behavior of the JCM, which we will discuss in the next sec-

tion, needs only the (intermediate) collapse formula when the collapse time

(∼ g−1) tends to infinity in the limit of large photon numbers. Note that be-

sides Pa(t), another quantity frequently used to describe this collapse behavior

in many works is the so-called atomic inversion denoted by w(t). It is defined

by w(t) := Pa(t) − Pb(t) = 2Pa(t) − 1 (= 〈σz(t)〉) which clearly behaves in the

same way as Pa(t). To derive (2.17) or (2.18), one may use the Poisson summa-

tion formula (see, e.g., [27, 23]) or directly use the Taylor expansion. One of the

very important properties leading to (2.17) is that, for sufficiently intense field

(|α|2 = n̄ À 1),
[
(n̄ + ∆n)1/2 − (n̄−∆n)1/2

] ≈ 1 for a Poisson distribution (i.e.,

for a coherent state of the initial field) where ∆n =
√

n̄ = |α|. This property can

be immediately generalized to
[
(n̄ + ∆n)1/2 − (n̄−∆n)1/2

] ≈ ∆n/
√

n̄ for suffi-

ciently large n̄ such that n̄3 À (∆n)4. This means that any initial state of the

field, which is not necessarily a coherent state, having large average photon num-

ber n̄ À 1 (compared with the deviation ∆n in such a way that n̄3/(∆n)4 À 1)
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may lead to the similar behavior of collapse described by (2.17). However, since

the coherent state has the specific form of phase, i.e., 〈n|α〉 =
(
e−|α|

2/2 αn√
n!

)
einφ,

we will define the class of states as follows.

Definition: Let N := {0, 1, 2, ...} and β ∈ [0, 2π]. Let
{ |γ〉

∣∣ 〈n|γ〉 =
√

Pn einβ

∀n ∈ N , where the probability Pn has the property that n̄3 À (∆n)4
}

be denoted

by Coh(β). We shall call Coh(β) the coherent class of β.

Note that the coherent state |α〉 with n̄ À 1 belongs to Coh(β), where β =

Arg(α) = φ, the initial phase of the classical field. Physically, the corresponding

probability of the state belonging to Coh(β) moves back and forth in the harmonic

well like the coherent state with a little shape distortion. The phase β plays a

similar role to the classical initial phase φ of the coherent state. To see what

form of Pa(t) for the initial field belongs to the class, let that initial state of the

atom-field be |Ψ(0)〉 = |φ〉 ⊗ |ψ〉, where |φ〉 = Ca |a〉 + Cb |b〉 and |ψ〉 ∈ Coh(β).

Here, the initial state of the two-level atom is a general linear combination of

upper and lower states rather than exclusively the upper or lower state, as in the

simple previous setting for obtaining (2.17) or (2.18). This linear combination

will lead to the classical correspondence rules concerning the initial phase of the

classical field which will be described in the next section. Now, for sufficiently

large n̄ such that n̄+1 ≈ n̄ and δ2/g4n̄2 ¿ 1 (this relation is automatically satis-

fied for the near resonance case, i.e., δ ≈ 0) and sufficiently small time such that

t ¿ √
n̄/g, one can use the properties of Coh(β) to show that (i) each term of the

summand (excluding ϕ2
n, and ϕnϕn+1) in (2.16) are the slowly varying functions

of n between n̄−∆n and n̄+∆n around n̄, (ii) Pn = ϕ2
n has a main contribution

around n̄ from n̄−∆n to n̄+∆n and, around this n̄, Pn+1 ≈ Pn and ϕnϕn+1 ≈ Pn,

(iii) θn+1 − θn = β. From these facts, one can do a Taylor’s expansion of each

summand (excluding Pn) in (2.16) around n̄ up to the second order of (n− n̄) (ex-
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pansion up to zeroth or first order is not enough to show the behavior of collapse

which will be discussed later). After this expansion, some of the terms can be

neglected compared to the others and by the use of
∑∞

n=0 Pn = 1,
∑∞

n=0 nPn = n̄,

and
∑∞

n=0(n− n̄)2Pn = (∆n)2, we finally obtain

Pa(t) ≈ C1(|Ca| , n̄, (∆n)2, δ) + C2(|Ca| , n̄, δ, ∆θ, β) +

[
C3(|Ca| , n̄, δ, ∆θ, β)

×sin(Rn̄t) + C4(|Ca| , n̄, δ, ∆θ, β)cos(Rn̄t)

]

×exp
(−C5(n̄, (∆n)2, δ)t2

)
, (2.19)

where

C1(|Ca| , n̄, (∆n)2, δ) = 2g2n̄+δ2|Ca|2
R2

n̄
+ 8g4δ2(∆n)2(2|Ca|2−1)

R6
n̄

,

C2(|Ca| , n̄, δ, ∆θ, β) = 2gδ
√

n̄
R2

n̄
|Ca|

√
1− |Ca|2cos(∆θ − β) ,

C3(|Ca| , n̄, δ, ∆θ, β) = −2g
√

n̄
Rn̄

|Ca|
√

1− |Ca|2sin(∆θ − β) ,

C4(|Ca| , n̄, δ, ∆θ, β) = 2g
√

n̄
R2

n̄

[
g
√

n̄(2 |Ca|2 − 1)

− δ |Ca|
√

1− |Ca|2cos(∆θ − β)

]
,

and

C5(n̄, (∆n)2, δ) = 2g4(∆n)2

R2
n̄

≥ 0.

Here, ∆θ = θa − θb and Rn̄ =
√

δ2 + 4g2n̄. Note that the collapse terminated by

the Gaussian envelope, exp(−C5t
2), in (2.19) comes from the approximation of

the parabolic one, i.e., (1 − C5t
2) when time t is small enough. So, in the case

that time is not small enough for this approximation (but still must be small

enough for the condition t ¿ √
n̄/g), one can use the parabolic envelope instead

of the Gaussian one in order to get the more accurate result. One can verify
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the expression (2.19) in the special case when |ϕ〉 = |α〉, the coherent state, and

Ca = 1 or Ca = 0 (Cb = 1) which means that a two-level atom is initially pre-

pared in the upper or lower level respectively. In this special case, the expression

(2.19) reduces to the simple one with C5 = 2n̄g4/(δ2 + 4g2n̄) which is the same

form of the exponent of (3) in [3]. In the more special case, i.e., the previous

case together with δ = 0 (resonance condition), the expression (2.19) reduces, for

Ca = 1, to (2.17) or, for Ca = 0, to (2.18). It is clear now that the evolution of

atom-field systems when the initial field states belong to Coh(β) (which contains

the coherent states) exhibits the behavior of Cummings collapse described by

(2.19). This equation may be called the generalized collapse formula.

2.4 The classical correspondence rules of the

Jaynes-Cummings model

One of the interesting questions about the JCM is whether or not it re-

duces to the semiclassical model in the limit of large photon number. There are

some methods which show directly how the Hamiltonian (2.10) reduces to the

semiclassical one (2.5). For example, (1) by replacing the annihilation operator a

by 〈a〉e−iΩt [18] (where 〈a〉 is the expectation value of a with respect to the initial

state of the field), (2.10) then reduces to (2.5) with the amplitude of the field pro-

portional to 〈a〉, and (2) by assuming that the state of the atom-field is separable

at all time, i.e., |Ψ(t)〉 ≈ |φ(t)〉⊗|ψ(t)〉 [14], (2.10) then again reduces to (2.5) with

the amplitude of the field proportional to 〈a〉 = 〈ψ(0)|a|ψ(0)〉. Notice that the

resulting (2.5) from (2.10) described above appears correct if 〈a〉 6= 0 especially

when the initial field state is the coherent state |α〉. However, these methods fail

to describe the classical correspondence if the initial state of the field is the spe-

cific number state |n〉 since 〈a〉 = 〈n|a|n〉 = 0 for all n = 0, 1, 2, .... This zero of

the expectation value leads to (2.5) describing the evolution of a two-level atom
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alone so there are no Rabi oscillations in the system dynamics. This is in con-

trast with our results which will be shown below (see Case 2). In our method, the

classical correspondence will be investigate by direct comparison between P sc
a (t)

in (2.8) and Pa(t) in (2.16) instead of dealing with the direct reduction of the

Hamiltonian (2.10) to (2.5). We will show that there is a classical correspondence

from the JCM to the semiclassical model if Pa(t) → P sc
a (t) as the average photon

number of the initial field n̄ →∞ such that the average energy n̄~Ω reaches the

order of magnitude of classical energies. In general, any initial state of the field

cannot make this classical correspondence possible, e.g., when the field cavity is

maintained at a finite temperature T so that the photon number distribution is

that of one mode black-body radiation. In other words, the initial state |ψ(0)〉
of the field is the one which satisfies |〈n|ψ(0)〉|2 = (1 + n̄)−1 [n̄/(1 + n̄)]n, where

n̄ = (eβ~Ω − 1)−1. In this case, as n increases, the probability of finding a two-

level atom in an upper state stays “constant” very quickly after the short collapse

instead of flopping up and down (Rabi oscillation) predicted by the semiclassical

model (see [25, 28]). Now, we will give three cases of the initial state of atom-field

in which the classical correspondence will be established. However, before going

to that, let us first consider an important remark.

Remark: Let n̄ ≥ 0 be the average photon number. Then, we have

−2g
√

n̄ = R0 if and only if n̄~Ω = Ecl , (2.20)

where Ecl is the energy of the classical field. This remark can be proved from (2.1)

(which implies that E0 = q0

√
2Ω2/ε0V sinkzcm), and the relation Ecl = (Ωq0)

2/2.

Note that the relation n~Ω ≈ Ecl (≈ sign is used because n here is the integral

part of n̄) is also equivalent to
〈|E|2〉

n
≈ 〈|Ecl(t)|2

〉
t
(2n + 1 ≈ 2n, for large n,

is used), where 〈〉n and 〈〉t denote the quantum average with respect to number
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state |n〉 and cycle average respectively. Here, Ecl and means E defined respec-

tively in (2.1) and the quantized field E =x̂εΩ(a + a†) sin kz.

Case 1: |Ψ(0)〉 = |φ〉 ⊗ |ϕ〉, where |φ〉 = Ca |a〉+ Cb |b〉, and |ϕ〉 ∈ Coh(β).

With this initial condition, we will now try to find Pa(t) where n̄ → ∞
such that n̄~Ω = Ecl. For some fixed Rabi flopping frequency, R0, relevant to

the semiclassical situation which is a two-level atom interacting with the classical

e.m. field, (2.20) implies that g must be very small, say g → 0. Combining this

g → 0 and the expression −2g
√

n̄ = R0 obtained from (2.20), the classical limit

n̄~Ω = Ecl implies that the probability Pa(t) in (2.19) can be expressed as

Pa(t) := |Ca(t)|2

=
|Ca|2 δ2

R2
+

(
R0

R

)2 [|Ca|2 cos2(Rt/2) + |Cb|2 sin2(Rt/2)
]

+
R0

R
|Ca| |Cb|

{
sin [(θa − θb)− β] sin(Rt) +

δ

R
cos [(θa − θb)− β]

×cos(Rt)− δ

R
cos [(θa − θb)− β]

}
,

where R =
√

δ2 + R2
0, reduces to P

(sc)
a (t) in (2.8) (with φ = β) which is the

probability obtained from the semiclassical approach where the field is treated

classically. In other words, if the total system is initially prepared in the state

|φ〉 ⊗ |ϕ〉, where |ϕ〉 ∈ Coh(β) is any coherent-like state, the classical limit of

the field (n̄~Ω = Ecl) leads to the semiclassical result (where the initial phase of

classical field is equal to β) while |ϕ〉 itself has no classical field as its classical

limit. Hence, not only the exact coherent state |α〉 (which has, by itself, the

classical field of initial phase φ = Arg(α) as its classical limit) satisfies this clas-

sical correspondence but also the states in Coh(β)∀β ∈ [0, 2π] (which have the

same phase structure (of their overlap with the number states) as the coherent

state and ∆n small compared to n̄ (here, in the way that n̄3 À (∆n)4)), where
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Pn is not necessarily the Poisson type of distributions. In contrast, from (2.16)

and (2.20), it seems to be impossible that the states, which has no properties of

Coh(β) especially the phase structure, will satisfy this classical correspondence.

These are the reasons why we call Coh(β) the coherent class of β. Note that since

g → 0 for the classical limit of the field, the (small time) collapse formula (2.19)

can be used for all time in this situation, since the collapse time tc ∼ g−1 →∞ .

This is not a surprise since we get the Rabi oscillation, as a result, in the classical

limit of the field.

Case 2: |Ψ(0)〉 = |φ〉⊗ |N〉, where |φ〉 = Ca |a〉+Cb |b〉, and N ∈ N is arbitrary.

Note that |N〉 /∈ Coh(β)∀β ∈ [0, 2π] (even for large enough N), because ∀n 6= N ,

〈n|N〉 = 0 which is the complex number of modulus zero with arbitrary argument.

This is why we have to consider this initial condition as another case. By using

this initial condition, one can derive (like in (2.16)) from (2.12) and (2.15) that

Pa(t) = |Ca|2
[
cos2(RN t/2) +

(
δ

RN

)2

sin2(RN t/2)

]

+
4g2 |Cb|2 N

R2
N−1

sin2(RN−1t/2). (2.21)

Notice that there is no collapse in this case since the fixed number state |N〉
cannot provide the interference (of Rabi flopping at different frequencies) which

leads to the collapse like in Case 1. In the classical limit of field, i.e., N~Ω = Ecl,

(2.21) reduces, by the use of N + 1 ≈ N and (2.20), to

Pa(t) =
|Ca|2 δ2

R2
+

(
R0

R

)2 [|Ca|2 cos2(Rt/2) + |Cb|2 sin2(Rt/2)
]
. (2.22)

Comparing (2.22) to (2.8), one can see that Pa(t) ≈ P
(sc)
a (t) if and only if (here,

R0 6= 0 ) (i) Ca = 0 or Cb = 0, or (ii) δ = 0 with φ = (θa − θb) ± nπ, n ∈ N .

These mean that the system of a two-level atom, initially prepared in the state

|φ〉, interacting with the classical e.m. field of initial phase φ has a classical cor-

respondence from the full quantum approach, where the state of the total system
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is initially prepared in |φ〉 ⊗ |N〉, if and only if (i) or (ii) above is satisfied. Note

that if (i) and (ii) (only δ = 0 is enough) are both satisfied, the situation is

simply the complete oscillation between the upper and lower states. Note also

that if the two-level atom is prepared in the mixed state, then the classical corre-

spondence cannot be established if the resonance condition (δ = 0) is not satisfied.

Case 3: |Ψ(0)〉 ∈ PN , where N ∈ N is arbitrary.

Since PN is a two-dimensional subspace spanned by {| aN 〉, |bN + 1〉},
|Ψ(0)〉 here is simply |Ψ(0)〉 = CaN(0) |aN〉 + CbN+1(0) |bN + 1〉 with the prob-

ability amplitudes CaN(0) = Ca and CbN+1(0) = Cb because there is only one

number state possible for each upper and lower state of a two-level atom, i.e.,

Can(0) = Cbn+1(0) = 0 ∀n 6= N . Now, from ( 2.15), we get the matrix equation

[
CaN(t)

CbN+1(t)

]
=

[
cos(RN t/2)− iδR−1

N sin(RN t/2) −2igR−1
N

√
N + 1sin(RN t/2)

−2igR−1
N

√
N + 1sin(RN t/2) cos(RN t/2) + iδR−1

N sin(RN t/2)

] [
Ca

Cb

]
.

(2.23)

In the classical limit of field, i.e., N~Ω = Ecl, comparing (2.23) to (2.7) tells us (by

the use of N+1 ≈ N , (2.8), and (2.20)) that the probability Pa(t) ≈ P
(sc)
a (t) (here,

Pa(t) := |CaN |2) if and only if (i) Ca = 0 or Cb = 0, or (ii) φ = ±2nπ, n ∈ N .

This condition (i) is just a verification of condition (i) in Case 2 because of the

fact that both cases (for this condition) have the same form of |Ψ(0)〉 which leads

to the same result in the classical limit of field. However, condition (ii) for both

cases are not the same. Condition (ii) in this case shows that the system of a

two-level atom interacting with the classical e.m. field of initial phase φ has a

classical correspondence from the full quantum approach, where |Ψ(0)〉 ∈ PN , if

and only if initially the classical e.m. field has “only the electric field component”

(since φ = ±2nπ).
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From these three cases, one can see that the initial mixture of the two-

level atom states is very important for the rules of classical correspondence. If a

two-level atom is initially prepared in the mixed state (between upper and lower

states), the initial phase φ of the classical field plays an important roles. In

contrast, if it is initially prepared in the upper or lower state, the initial phase φ

is not important and we can group all these three cases into a more compact form

by defining the similar but bigger class Coh :=
{
|γ〉

∣∣ |〈n|γ〉|2 = Pn, where the

probability Pn has the property that n̄3 À (∆n)4
}

, which is the same definition

of Coh(β) without the restriction of phase structure. Now, Coh(β) ⊂ Coh ∀β ∈
[0, 2π] and the number state |n〉 ∈ Coh for large enough n. By this definition, we

can conclude that if a two-level atom is initially prepared in the upper or lower

state, then the probability Pa(t) can be calculated directly from (2.19) for all

initial states |Ψ(0)〉 = |φ〉 ⊗ |ϕ〉 (where |φ〉 = |a〉 or |b〉 and |ϕ〉 ∈ Coh) and Pa(t)

can be approximated by P
(sc)
a (t) in the classical limit of field, i.e., Pa(t) ≈ P

(sc)
a (t)

when n̄~Ω = Ecl. Here P
(sc)
a (t) is the probability obtained from the semiclassical

approach where the initial phase of the classical e.m. field is “arbitrary”. Note

that, for |ϕ〉 = |n〉, we have n̄ = n, ∆n = 0 which implies C5 = 0 (no collapse),

and n̄3 À (∆n)4, i.e., n3 À 0 which is true even for small n. Moreover, the

small time condition t ¿ √
n̄/g for (2.19) can be neglected for |ϕ〉 = |n〉 or any

|ϕ〉 ∈ Coh which the interference of Rabi flopping frequencies does not lead to

the collapse.



Chapter III

Inseparability of Light and Matter

3.1 Definition of the separable state

A composite quantum system consisting of two subsystems, described

by the Hilbert space H1 and H2, is physically described by Hilbert space H =

H1 ⊗ H2. If these subsystems 1 and 2 are prepared respectively in the states

described by the density operators ρ1 and ρ2 which are prepared by devices for

each subsystem that function independently, then it is clear from the physical

point of view that the density operator of the composite quantum system (denoted

by ρ ) can be written in the product form ρ = ρ1 ⊗ ρ2. In this case, the density

operator ρ is called uncorrelated state. In general, an operator A acting on H is

called the state if TrA = 1 and A is positive (denoted by A ≥ 0 ), i.e., Tr(AP ) ≥ 0

for any projector P . In other words, an operator A (where A is Hermitian) is the

state if all of its eigenvalues are positive and its trace is equal to unity. From this

definition, it is clear that any density operator is the state and we will use the

term state instead of density operator or density matrix throughout this thesis

unless specified.

In contrast to the uncorrelated state, one may expect that any correlated

states, which produce nonclassical phenomena of the composite quantum system,

are originated only from the nature of quantum mechanics. This is not true.

Werner [6] showed that the correlated states in which their statistical properties

can be reproduced by a classical mechanism can exist in the following way. Sup-

pose that (1) each of two preparing devices (for each subsystem) has a switch

with setting n = 1, ..., k and that, (2) with setting n of the device i, produces

system in the state ρ
(n)
i , and (3) we have also a random generator which produces
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numbers n = 1, ..., k with probability pn, we can then combine these three devices

into a new preparing apparatus by first, in each individual experiment, drawing

a random number n ∈ {1, ..., k} and then setting the switches of two preparing

devices according to the result. In short, this kind of correlated states can be

prepared by two distant observers who receive instructions from a common source

by a classical communication channel. It is clear from this preparation processes

that the expectation value of the joint measurement of observables A1 (of subsys-

tem 1) and A2 (of subsystem 2) is Tr(ρA1⊗A2) =
∑k

n=1 pnTr(ρ
(n)
1 A1)Tr(ρ

(n)
2 A2),

which implies that the correlated state ρ is in the form

ρ =
k∑

n=1

pnρ
(n)
1 ⊗ ρ

(n)
2 . (3.1)

Werner [6] called the states, which can be written or approximated in the trace

norm by the form (3.1), the classically correlated states and called any states,

which are not classically correlated states, the EPR correlated states in order to

emphasize the crucial role of such states in the Einstein-Podolsky-Rosen (EPR)

paradox [29]. From many subsequent works, the classically and EPR correlated

states are also called the separable and inseparable states respectively and the

inseparable state is sometimes called the entangled state.

3.2 Positive partial transposed criterion and neg-

ativity

One of the main problems about the composite quantum system is how

we can tell whether or not it is separable, i.e., it is in the separable state expressed

by (3.1). It has been shown also by Werner [6] that the separable states always

admit hidden-variable models [30] (where the sample space of the hidden-variable

space is, in fact, the common source {1, ..., k}), and hence satisfied the Bell’s

inequalities [31]. In other words, Bell’s inequalities are the necessary conditions

for separability, i.e., every state violating Bell’s inequalities must be inseparable.
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Note that this necessary condition is not sufficient since there are inseparable

states satisfying Bell’s inequalities, i.e., admitting a hidden-variable model [6].

So far, only some necessary conditions of separability in general systems have

been found [32, 33, 34, 35] and the important step is due to Peres [7], who

has provided a very strong condition. He started with (3.1) and noticed that

the partial transposition of ρ (denoted by ρT1), defined by 〈m|〈µ|ρT1|n〉|ν〉 :=

〈n|〈µ|ρ|m〉|ν〉 for all n,m, µ, ν (where {|n〉|ν〉} is the basis set of H), is also a

(separable) state. Note that this conclusion is independent of what subsystems

are chosen to be transposed, i.e., one can use ρT1 or ρT2 in order to obtain the

same criterion. This criterion can be simply verified as follows. From (3.1),

ρT1 =
∑k

n=1 pn(ρ
(n)
1 )T ⊗ ρ

(n)
2 and (ρ

(n)
1 )T = (ρ

(n)
1 )∗ since ρ

(n)
1 is Hermitian. Let

{λ(n)
i } be the set of eigenvalues of ρ

(n)
i . Then, since λ

(n)
i > 0 is the positive real

number for all i, {λ(n)
i } is also the set of eigenvalues of (ρ

(n)
1 )∗ which implies that

(ρ
(n)
1 )T = (ρ

(n)
1 )∗ > 0 . Moreover, it is clear that since ρ

(n)
1 is Hermitian for all

n, Tr(ρ
(n)
1 )T = Tr(ρ

(n)
1 ) = 1 ∀n. Now, we have (ρ

(n)
1 )T > 0 and Tr(ρ

(n)
1 ) =

1 which implies that (ρ
(n)
1 )T is a state and, hence, ρT1 is a (separable) state.

Since ρT1 is a state for separable state ρ, the necessary condition for separability

is that ρT1 has only non-negative eigenvalues. In other words, if there exists

even a single negative eigenvalue of ρT1 , then the composite quantum system is

inseparable or entangled. This criterion is called the positive partial transposed

(ppt) criterion. Peres [7, 36] also showed that this criterion is more sensitive than

Bell’s inequalities for detecting quantum inseparability. Note that, in contrast to

Peres’s conjecture, i.e., this necessary condition is also sufficient, it was shown by

Horodeckis [37] that it is true only for some specific systems such as 2 × 2 and

2× 3 systems but this ceases to be true for general larger composite systems.

Suppose now we know from the ppt criterion that the composite quantum

system is inseparable or entangled (i.e., the negative eigenvalues of ρT1 are found),

this criterion still does not tell us about the degree of entanglement, i.e., how
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much or how strong this entangled state is. The problem of defining a quantity

capable of measuring a degree of entanglement is a subject of several recent studies

[38, 39, 40, 41]. The one which is suitable for us to compute the degree of

entanglement of the thermal Jaynes-Cummings state (which will be done in the

next section) is called the negativity. It was introduced by Vidal and Werner

[8] based on the trace norm of the partial transpose ρT1 , denoted by
∥∥ρT1

∥∥
1

:=

Tr
√

(ρT1)†ρT1 . It essentially measures the degree to which ρT1 fails to be positive

and therefore it can be regarded as a quantitative version of Peres’s ppt criterion

for separability. To see how it is defined, notice that, since ρT1 satisfies Tr(ρT1) =

1 while it may have negative eigenvalues µk < 0 (µk := λk < 0, where {λi} is the

set of eigenvalues of ρT1), one can obtain

∥∥ρT1
∥∥

1
:= Tr

√
(ρT1)†ρT1 =

∑
i

|λi| = 1 + 2

∣∣∣∣∣
∑

k

µk

∣∣∣∣∣ =: 1 + 2N(ρ) (3.2)

where N(ρ) := |∑k µk| =
∑

k |µk| is called the negativity which is the absolute

value of the sum of negative eigenvalues of ρT1 . Note that, in (3.2),
∑

i is a

finite (infinite) sum for finite(infinite) dimensional Hilbert space H and
∑

k is

clearly a finite sum for finite dimensional H while it can be both finite or infinite

sum for infinite dimensional H depending on each specific problem. It is clear

that any separable state implies N(ρ) = 0 (since its partial transpose is also a

state) but, as the Peres’s necessary condition is not sufficient, the converse is not

true. A simple example of this negativity is the entangled state belonging to a

2 × 2 system [42]. In this case, all separable states have N(ρ) = 0 while the

maximally entangled state, which has the set of eigenvalues {−1
2
, 1

2
, 1

2
, 1

2
} of its

partial transpose, leads to N(ρ) = 1/2.
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3.3 Inseparability of the thermal Jaynes-

Cummings state

From (3.1), one can see that the unitary time evolution of the compos-

ite quantum system, under which all separable initial states remain separable,

necessarily factorizes into a product of two separate time evolutions, i.e., the sub-

systems must have no interaction with each other. This means that an interaction

time evolution automatically generates inseparable states at (almost) later times.

It may happen that the state is separable at some specific times, e.g., the evolu-

tion of the initial separable state |an〉 in the JCM is a linear combination of |an〉
and |bn + 1〉 (see section 2.2) so in the resonance case the complete Rabi oscilla-

tion ensures that, at some specific times, the state is in the separable state |an〉 or

|bn + 1〉 which their corresponding density operators are clearly uncorrelated, i.e.,

the most simple case of separable state. However, one may expect in general that

the composite quantum system in nature should be (mostly) inseparable due to

the interactions between subsystems. This should be true if the composite quan-

tum system of interest is an isolated system. In real life, there is no such (perfect)

isolated system or even in the laboratories. To be precise, all composite quantum

systems should be associated with some temperature T due to contact with a

heat reservoir. In contrast to the case of an isolated system that the inseparable

state will always be generated by the interaction time evolution, the temperature

effect brings the evolution of states into stable thermal equilibrium state which

will be separated at large enough temperature. For finite systems described by

finite dimensional Hilbert spaces, this result is clearly expected since the thermal

state or Gibbs state becomes proportional to the product of identity operator

as the temperature approaches infinity. Thus, by continuity, any finite quantum

system is separable at large enough temperature. For example, consider the ther-

mal state of two coupled (atomic) two-level systems or qubits (by a dipole-dipole
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interaction) described by the Hamiltonian

Haa =
~ω1

2
σ(1)

z +
~ω2

2
σ(2)

z + ~g(σ
(1)
− σ

(2)
+ σ

(1)
+ σ

(2)
− ) (3.3)

Here, the operators superscripted by (1) and (2) are the extended operators [17] of

subsystems (1) and (2) respectively. Applying the ppt criterion (be reminded that

from Horodecki’s work [37] ppt criterion is also sufficient for this 2×2 case) to the

thermal state ρaa = e−βHaa/Z with β = (kT )−1 shows that ρaa is separable for all

temperatures large enough such that the inequality sinh(~g/kT ) < (δ2 +4g2)/4g2

holds [43], where δ = ω1 − ω2 is the detuning between the two-level energies.

Roughly speaking, we see that the two-coupled qubits are in a separable state

as soon as the thermal energy is much larger than the interaction energy, and

entangled at lower energies (Zero temperature is singular as the ground state is

separable). For continuous system described by the infinite dimensional Hilbert

spaces, Simon [44] showed that the ppt criterion may also be applied successfully

to continuous variable Gaussian states, i.e., the states whose Wigner function is

a Gaussian in phase space. For the subclass of bipartite Gaussian state with a

single oscillator for subsystem 1 and an arbitrary number for subsystem 2, the

ppt criterion is again necessary and sufficient for separability, as shown by Werner

and Wolf [45]. A simple example for this class is the two linearly coupled field

modes (with frequencies Ω1 and Ω2 ) described by the Hamiltonian

Hff = ~Ω1a
†a + ~Ω2b

†b + ~g(ab† + a†b) (3.4)

The thermal state ρff = e−βHff/Z is obviously Gaussian and the application of

ppt criterion reveals that ρff is separable for any choice of parameters and for

all temperatures [43]. Besides these two examples, another interesting one is the

correlation in quantum Brownian motion. It was shown by Eisert an Plenio [46]

that there exists a large class of initial states (i.e., Gaussian states of the whole

system with some appropriate parameters including environment temperature)
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for which no entanglement will be created at all times between the system of

interest and the environment. These states and also ρff above are rather special.

As shown by Clifton and Halvorson [47], one expects bipartite mixed states of

infinite-dimensional systems to be generically inseparable: the set of inseparable

states is dense in the set of all states (with respect to trace norm topology).

Complementing the known results about the coupled atom-atom (3.3) and

field-field (3.4) model, we will apply the ppt criterion to a composite quantum

system consisting of atomic two-level system and a continuous variable single-

mode quantized field based on the JCM which has been described in Chapter 2.

To be precise, we will use the ppt criterion to investigate the entanglement of the

coupled atom-field in thermal equilibrium where the interaction of atom and field

in the cavity is described by the JCM with Hamiltonian

Haf =
~ω
2

σz + ~Ωa†a + ~g(aσ+ + a†σ−) , (3.5)

which has been defined in (2.10). Now, the thermal Jaynes-Cummings (JC) state

(denoted by ρaf) corresponding to Hamiltonian (3.5), which will be investigated

by the ppt criterion, is

ρaf =
e−βHaf

Z
, (3.6)

where Z = Tr(e−βHaf ) is the partition function, and β = 1/kT is the inverse

temperature. The next step is to find its partial transpose. To do that first

inserting (2.11) into (3.6), we get

ρaf =
1

Z
e

β~ω
2
|b0〉〈b0|

∞∏
n=0

e−βHn , (3.7)

since [|b0〉 〈b0| , Hn] = [Hm, Hn] = 0 ∀m 6= n. Let l ∈ N := {0, 1, 2, 3, ...}. Then

an operator e−βHl can be written in the dressed-atom basis of Ha ⊗ Hf , i.e.,

{|b0〉 , |1n〉 , |2n〉}∞n=0 (with the completeness relation |b0〉 〈b0|+
2∑

i=1

∞∑
n=0

|in〉 〈in| =
1) in the form

e−βHl =
2∑

i=1

[
e−βEil |il〉 〈il|

]
+ |b0〉 〈b0|+ 1′l , (3.8)
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where 1′l :=
∑2

i=1

∑
n6=l |in〉 〈in| is an identity operator of the subspace ⊕n 6=lPn ⊂

Ha ⊗ Hf (see the definitions of Pn,Ha and Hf in Section 2.2 of Chapter 2).

To obtain (3.8), we have used the fact that L0 ⊥ Pn ∀n, Pn ⊥ Pm∀n 6= m,

Hn(Pn) = 0 ∀n 6= m (see Section 2.2), and Hn |in〉 = Ein |in〉 (i = 1, 2), where

Ein have been defined below (2.11). Next, consider e−βHl−11′l (for l > 1) which is,

from (3.8), e−βHl−11′l =
[ ∑2

i=1(e
−βEil−1 |il − 1〉 〈il − 1|) + |b0〉 〈b0|+ 1′l−1

]
1′l. From

the definition of 1′l defined below (3.8), the above equation becomes

e−βHl−11′l =
2∑

i=1

[
e−βEil−1 |il − 1〉 〈il − 1|

]
+ 1′l−1,l , (3.9)

where 1′l−1,l :=
∑2

i=1

∑
n 6=l,l−1 |in〉 〈in| is an identity operator in the subspace

⊕n 6=l,l−1Pn. Operating e−βHl−1 on (3.8) and using (3.9), we get

e−βHl−1e−βHl =
2∑

i=1

[
e−βEil |il〉 〈il|+ e−βEil−1 |il − 1〉 〈il − 1|

]

+ |b0〉 〈b0|+ 1′l−1,l .

Successively doing this for l − 2, l − 3, ..., 0, we obtain

∞∏
n=0

e−βHn = lim
l→∞

l∏
n=0

e−βHn =
2∑

i=1

∞∑
n=0

[
e−βEin |in〉 〈in|

]
+ |b0〉 〈b0| , (3.10)

since lim
l→∞

1′0,1,2,...,l = 0 . Substituting (3.10) into (3.7), we get

ρaf =
1

Z

{
eβ~ω/2 |b0〉 〈b0|+

2∑
i=1

∞∑
n=0

[
e−βEin |in〉 〈in|

]}
.

By using the transformation formula between bare-atom and dressed-atom basis

defined below (2.11), the above equation becomes

ρaf =
1

Z

∞∑
n=0

[An |an〉 〈an|+ Cn(|an〉 〈bn + 1|+ |bn + 1〉 〈an|) + Bn |bn〉 〈bn|] ,
(3.11)

where

B0 := eβ~ω/2, Bn+1 = e−βE1n cos2 θn + e−βE2n sin2 θn ,

An := e−βE1n sin2 θn + e−βE2n cos2 θn ,

Cn :=
1

2
sin(2θn)(e−βE1n − e−βE2n) .
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From the definition of partial transpose defined in Section 3.2 (where the two-

level atom and field parts are identified with subsystem 1 and 2 respectively),

i.e., 〈an|ρTa
af |bm〉 := 〈bn|ρaf |am〉 ∀n,m, the partial transposition of ρaf in (3.11)

can be written as

ρTa
af =

1

Z

[
A0 |a0〉 〈a0|+

∞∑
n=0

ρTa
n

]
, (3.12)

where

ρTa
n := Bn |bn〉 〈bn|+ Cn(|bn〉 〈an + 1|+ |an + 1〉 〈bn|)

+An+1 |an + 1〉 〈an + 1| .

Here, the superscript Ta on both ρaf and ρn indicates that a two-level atom part

is chosen to be transposed.

At this point, we will use (3.12), in contrast to (3.3) and (3.4), to show

that the negative eigenvalues of ρTa
af always exist at any temperature T > 0 which

implies by the ppt criterion that the thermal Jaynes-Cummings state is always

inseparable or entangled. It is clear from (3.12) that the matrix representation

of ρTa
af is a block diagonal matrix, one block being a 1× 1 matrix with eigenvalue

A0/Z > 0, and the others, which are the matrix representation of ρTa
n /Z for

n = 0, 1, 2, ..., are the 2× 2 matrices.

From the definition of ρTa
n defined below (3.12), it is clear that its matrix

representation is

ρTa
n =

(
Bn Cn

Cn An+1

)
(3.13)

with the simple eigenvalues

λ(±)
n =

(Bn + An+1)±
√

(Bn + An+1)2 − 4(BnAn+1 − C2
n)

2Z
. (3.14)

Since our aim is to check for negative eigenvalues, the only relevant one is λ
(−)
n

and it is clear that λ
(−)
n < 0 if BnAn+1 − C2

n < 0 . Note that, up to now, there

are no theorems proving that the ppt criterion for this case is also sufficient for
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separability, i.e., we cannot make any conclusions (about separability) for the

situations where a positive eigenvalue is found. However, as we will show that

the negative eigenvalues always exist at any temperature, only the necessary

condition is enough for our case. Now, for further convenience, we introduce the

scaled dimensionless parameters

x := β~ |g| = ~ |g|
kT

, d :=
Ω

|g| , and ∆ :=
δ

|g| (3.15)

so that x is the ratio of (vacuum) coupling energy to thermal energy inversely

proportional to the absolute temperature T . The parameters d and ∆ are scaled

field mode frequency and detuning respectively. Note that, for most realistic

settings (for instance in quantum optics), not only d > 1 but, in fact, d À 1.

Therefore, we will consider the case d > 1 only in this thesis. From the definitions

of Bn, An, and Cn defined below (3.11), one obtains

BnAn+1 − C2
n = e−(2n+1)xd

[
cosh

(x

2

√
∆2 + 4n

)
cosh

(x

2

√
∆2 + 4(n + 2)

)

+
∆ sinh

(
x
2

√
∆2 + 4n

)
cosh

(
x
2

√
∆2 + 4(n + 2)

)
√

∆2 + 4n

−
∆ sinh

(
x
2

√
∆2 + 4(n + 2)

)
cosh

(
x
2

√
∆2 + 4n

)
√

∆2 + 4(n + 2)

−
∆2 sinh

(
x
2

√
∆2 + 4(n + 2)

)
sinh

(
x
2

√
∆2 + 4n

)
√

[∆2 + 4(n + 2)][∆2 + 4n]

−
4(n + 1) sinh2

(
x
2

√
∆2 + 4(n + 1)

)

∆2 + 4(n + 1)

]
. (3.16)

At any given x, one can see that the relevant terms in (3.16) are only the first

and the last term so that, for sufficiently large n, we have (BnAn+1 − C2
n) ∼

e−(2n+1)xdfn(x), where

fn(x) := cosh(x
√

n) cosh(x
√

n + 2)− sinh2(x
√

n + 1). (3.17)
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One can see that, since e−(2n+1)xd > 0, BnAn+1 − C2
n < 0 if fn(x) < 0. From

(3.17), the systematic expansion of fn(x) (for fixed x) reveals that asymptotically

fn(x) ∼ fas
n (x) := 1− xe2x

√
n+1

16n3/2
(3.18)

for large n (see Appendix). It is clear from this expression that if n is large

enough, fn(x) will be negative and will stay negative for greater values of n.

Therefore, based on the ppt criterion, we can state that, for all parameters of

our model (i.e., the frequency pair of atom-field (ω, Ω), the coupling constant

g, and the inverse temperature β = 1/kT ), the thermal Jaynes-Cummings state

is always entangled. Seen in the light of the work of Clifton and Halvorson

[47], this result confirms the generic expectation of inseparability for an infinite-

dimensional bipartite system. Note that since the JCM is the simplest model of

the coupled matter-light systems, it seems that (at any temperature) the coupled

systems of light and matter, in general, are never in a separable state.

3.4 Negativity of the thermal Jaynes-Cummings

state

By the definition of negativity (3.2), the negativity (at given x) for the

thermal Jaynes-Cummings state is N(ρaf) =
∑

n∈I |λ(−)
n (x)|, where the index set

I is one which λ
(−)
n (x) < 0 ∀n ∈ I at x. Here, λ

(−)
n in (3.14) is rewritten by

λ
(−)
n (x) to stress its dependence on x ∝ 1/T . To proceed, we shall simplify the

following considerations by restricting ourselves to the case of resonance, i.e.,

δ = ω − Ω = 0. In this case, BnAn+1 − C2
n in (3.16) has the exact simple form

BnAn+1 − C2
n = e−(2n+1)xdfn(x), (3.19)

with fn(x) from (3.17) and d here can either be Ω/|g| or ω/|g| since we are

considering δ = 0 case. Now, in order to see what index I described above is,
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Figure 3.1: The strictly decreasing functions fn(x) as a function of x for n = 0,
1, 2, 3. The sequence of their zeros, i.e., x0(0), x0(1), x0(2), ..., where x0(0) >
x0(1) > x0(2) > ..., is clearly a decreasing sequence (converging to zero).

notice that (at each x) λ
(−)
n (x) < 0 if BnAn+1 − C2

n < 0 which, by (3.19), is true

if fn(x) < 0.

In Fig. 3.1, it is clear that fn(x) is a strictly decreasing function of x

(for each n) and its zero (denoted by x0(n)) has the property that x0(n) → 0

as n → ∞. This property can be (formally) proved by combining the strictly

decreasing property of fn(x) (which may be proved, for example, by Taylor’s

series method) and its asymptotic form (3.18) showing that there always exists

n such that fn(x) < 0 at any given x (even when x → 0). From that property

of x0(n), one can see that, at each x, there exists the smallest integer n−(x)

such that fn(x) < 0 ∀n ≥ n−(x)(fn(x) > 0∀n < n−(x)) which implies that

λ
(−)
n (x) < 0∀n ≥ n−(x) (λ

(−)
n (x) > 0∀n < n−(x)). Now, it is clear that the index

set I is I = {n |n ≥ n−(x)} so the negativity of the thermal Jaynes-Cummings

state (at given x) is

N(ρaf) =
∞∑

n=n−(x)

∣∣λ(−)
n (x)

∣∣ . (3.20)

Before computing this sum, let us consider the graphs of λ
(−)
n (x) at various n in
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Figure 3.2: The eigenvalues λ
(−)
n (x) as a function of x for d = 2 and n = 0, 1, 2, 3.

Each λ
(−)
n (x) is plotted with their own scale (see text) and its zero is, in fact, the

zero of fn(x) i.e., x0(n) (see Fig. 3.1).

order to have a feeling with it. From Fig. 3.2 (d = 2 is set), it is clear that

(at each x) λ
(−)
n (x) quickly goes to zero as n (≥ n−(x)) increases. This behavior

suggests that this infinite sum should converge very quickly after a few n have

summed so the easiest approximation of the negativity is N(ρaf) ≈ |λ(−)
n−(x)(x)| at

each x. Note that since λ
(−)
n (x) < 0(= 0) if and only if fn(x) < 0(= 0) implies

λ
(−)
n (x) < 0∀x > x0(0), we have n−(x) = 0 ∀x > x0(0) so the negativity has a

simple approximation (for large x), i.e., N(ρaf) ≈ |λ(−)
0 (x)| ∀x > x0(0).

Moreover, Fig. 3.2 shows that this approximation is more and more

accurate for both small x (x → 0) and large x (x → ∞) where the negativity

tends to zero because, in these regions, λ
(−)
n (x) → 0 more faster than that in the

moderate region. In both these regions, the asymptotic formula of N(ρaf) can

be derived as follows. First, consider the large x (x → ∞) case. In this case

we have, from the above discussions, N(ρaf) ≈ |λ(−)
0 (x)| . From the definition

of An and Bn defined below (3.11), we have (for δ = 0) B0 = exd/2, A1 =

e−3xd/2 cos(x
√

2) and, from (3.19), B0A1−C2
0 = e−xdf0(x). Notice that B0+A1 =
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exd/2 +e−3xd/2 cos(x
√

2) = exd/2 + [e(
√

2−3d/2)x +e−(
√

2+3d/2)x]/2 ∼ exd/2 for x →∞
(since d > 1), and −4(B0A1 − C2

0) = −4e−xdf0(x) ∼ e(2−d)x since (for fixed

n)fn(x) ∼ −e2x
√

n+1/4 (see Appendix) for x → ∞. Substituting these formulae

into (3.14), we obtain (for x →∞)

N(ρaf) ≈
∣∣∣λ(−)

0 (x)
∣∣∣ ∼

exd/2
∣∣∣1−

√
1 + e2(1−d)x

∣∣∣
2Z

≈ exd/2e2(1−d)x

4Z
. (3.21)

To obtain (3.21), we have applied the formula
√

1 + t ≈ 1 + t/2 for t ≈ 0 to the

square root term where e2(1−d)x ≈ 0 for x → ∞. Next, we have to determine z

for x →∞. From (3.11), it is clear that

Z = Tr(ρaf) =
∞∑

n=0

(An + Bn)

= exd/2[−1 + 2
∞∑

n=0

e−nxd cos(x
√

n)] . (3.22)

For x → ∞, only n = 0 contributes to the sum in (3.22) so we get Z ∼ exd/2.

Substituting this asymptotic form of Z to (3.21), we obtain N(ρaf) ≈ e2(1−d)x/4

or

log[N(ρaf)] ≈ −2x(d− 1)− log(4) for x →∞. (3.23)

Second, consider the small x(x → 0) care. In this case, similar to x →∞, we have

again N(ρaf) ≈
∣∣∣λ(−)

n−(x)

∣∣∣. From the property of x0(n), i.e., x0(n) → 0 as n → ∞,

we have n−(x) → ∞ as x → 0. Applying large n−(x) to Bn, one gets Bn−(x) =
(
e−[(n−(x)−1/2)d−

√
n−(x)]x + e−[(n−(x)−1/2)d+

√
n−(x)]x

)
/2 ∼ e−n−(x)xd for large n−(x).

Similarly, An−(x)+1 ∼ e−n−(x)xd. From ( 3.19), we have Bn−(x)An−(x)+1−C2
n−(x) ∼

e−2n−(x)xdf as
n−(x). Substituting these formulae to (3.14), we obtain (for x → 0)

N(ρaf) ≈
∣∣∣λ(−)

n−(x)(x)
∣∣∣ ∼ e−n−(x)xd

Z

∣∣∣1−
√

1− f as
n−(x)(x)

∣∣∣ . (3.24)

To proceed, consider (for given x) fy(x), where y is the continuous version of n

in (3.18). For any y À 1, f as
y (x) ≈ 1 + x e2x

√
y

16
y3/2. Differentiating with respect
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to y leads to ∂yf
as
y (x) ≈ x(f as

y (x) − 1)/(16)2√y. For given x(→ 0), let y0(x)(→
∞) satisfy f as

y0(x)(x) = 0. Then ∂y f as
y0(x)(x) ≈ −x/(16)2

√
y0(x) ≈ 0. Since

x0(n) → 0 as n → ∞ implies |x0(n− 1)− x0(n)| → 0 as n → ∞, (for give x)

x0(y0(x)) ∈ [x0(n−(x)), x0(n−(x)) − 1] implies |y0(x)− n−(x)| → 0 as n → ∞
(since n−(x) → ∞ as x → 0). This means that, for given x → 0, n−(x) is

very close to y0(x) so, together with the above ∂yf
as
y0(x)(x) ≈ 0, we can conclude

that f as
n−(x)(x) ≈ 0 (but still less than zero). From this approximation, applying

√
1 + t ≈ 1 + t/2 for t ≈ 0 to the square root term in (3.24), we get

N(ρaf) ≈
e−n−(x)xd

∣∣∣f as
n−(x)(x)

∣∣∣
2Z

. (3.25)

For the partition function Z, the derivation of its asymptotic form is not so

simple as in the previous x →∞ case. Notice that, for given x → 0, there exists

n′ À 1 such that xn′ ¿ 1 but still large enough so that e−n′xd
cosh(x

√
n′) =

[
e−(n′d−

√
n′)x + e−(n′d+

√
n′)x

]
/2 ∼ e−n′xd. Substituting this formula in (3.22), one

obtains (for x → 0)

Z = e−xd/2

[
−1 + 2

(
n′∑

n=0

e−nxd cosh(x
√

n) +
∞∑

n=n′
e−nxd cosh(x

√
n)

)]

≈ −1 + 2

[
(n′ + 1)−

n′−1∑
n=0

e−nxd +
∞∑

n=0

e−nxd

]

≈ −1 + 2

[
(n′ + 1)− n′ +

∞∑
n=0

(e−xd)n

]

= 1 +
2

1− e−xd
≈ 2

xd
,

since e−xd ≈ 1− xd for x → 0. Substituting this Z into (3.25) and using (3.18),

we get

N(ρaf) =
xde−n−(x)xd

4

∣∣∣∣∣1−
xe2x

√
n−(x)

16n
3/2
− (x)

∣∣∣∣∣

≈ xde−n−(x)xd

4

∣∣∣∣∣1−
1

16n
3/2
− (x)

∣∣∣∣∣

≈ xde−n−(x)xd

4
,
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Figure 3.3: Numerical computation of the logarithm of the negativity N [ρaf ]
of the thermal state for the JCM as a function of scaled inverse temperature
x = ~|g|/kT for the case of resonance δ = 0 at three different scaled frequencies
d = Ω/|g| = 2, 5, 10. Negativity is maximal for thermal energies close to the
(vacuum) coupling energy, i.e. x ≈ 1.5. In both the high-temperature (x → 0)
and low-temperature (x → ∞) limit the negativity approaches zero. Both these
limiting cases are well described by simple analytical expressions (empty circle
for small x and full circles for large x), see text. Note that near the maximum
the negativity displays step-type behavior near x = 1.42, x = 1.32, x = 1.25, . . .
which reflects the discrete nature of the quantized field (see inset and text).



42

since n−(x) → ∞ as x → 0. Taking log to this formula leads to log[N(ρaf)] ≈
−n−(x)xd + log(xd)− log(4) for x → 0. As we know that n−(x) →∞ as x → 0,

it happens that n−(x) increases very rapidly (as x goes to zero) so that −n−(x)xd

is a dominant term in log[N(ρaf)] and log[N(ρaf)] is then enough to be written as

log[N(ρaf)] ≈ −n−(x)xd for x → 0. (3.26)

Unlike the simple formula (3.23) for the large x case in (3.26), where n−(x) can be

approximated by y0(x) for small x, in this case n−(x) has to be determined from

the transcendental equation f as
n−(x)(x) = 0. To see how precise (3.23) and (3.26)

are, let us look at Fig. 3.3, a numerical computation of (the logarithm of) the

negativity N(ρaf) is displayed as a function of scaled inverse temperature x for

three different values of scaled frequency d. The solid line represents d = 2, the

dashed line is d = 5, and the dotted line d = 10. Qualitatively, the three curves

follow the same pattern. Negativity (and thus entanglement) is maximal for val-

ues of x ≈ 1.5, i.e., when the thermal energy is of the same order as the (vacuum)

coupling energy. In both high (x → 0) - and low (x → ∞) - temperature limit,

negativity approaches zero. The high-temperature case displays a more drastic

loss of negativity. This decay of the negativity (in these both temperature limits)

can be described as follows. For the low-temperature (x → ∞) limit, the lower

the temperature, the smaller is the Boltzmann weight of those eigenvalues which

implies that, eventually, when the temperature approaches zero, only the (separa-

ble) ground state |b0〉 is populated and the negativity approaches zero as x →∞.

For high temperature (x → 0) limit, the decay of the negativity has quite a differ-

ent origin. Here, fewer and fewer eigenvalues λ
(−)
n (x) contribute to N(ρaf) so that

despite a growing thermal occupation of the levels, the negativity due to
∣∣∣λ(−)

n (x)
∣∣∣

only occurs for larger and larger values of n. Both asymptotic behaviors described

by (3.23) for the low-temperature limit and (3.26) for the high-temperature limit

are plotted in Fig 3.3 for a few values of x and d shown by full circles and empty
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circles respectively. It is clear that both asymptotic formulae are in very good

agreement with fully numerical computation of log[N(ρaf)]. Note that, for the

empty circles, we used the asymptotic equation f as
n−(x)(x) = 0 from (3.18) to de-

termine n−(x) numerically. Note also that both asymptotic formulae are more

accurate for bigger d so, unlike (3.26) where N(ρaf) rapidly goes to zero, we keep

log(4) term in (3.23) in order to get an accurate enough result for the d = 2 case.

Of course, for the case of d = 5, 10 or higher alone, the log(4) term can also be

neglected (with an acceptable accuracy) as we have done for obtaining (3.26).

Another interesting behavior at the negativity is the step-type behavior

which occurs near the maximum x ≈ 1.5 (see inset of Fig. 3.3). In order to

understand it, note first that x0(0) ≈ 1.42 is the first zero (starting from large x)

for fn(x), n = 0, 1, 2, ... (see Fig 3.1). For x > x0(0) ≈ 1.42, all eigenvalues λ
(−)
n (x)

(n = 0, 1, 2, ...) are all negative and contribute to the negativity. For x < x0(0),

the first eigenvalue becomes positive (since f0(x) > 0 implies B0A1 − C2
0 > 0 so

λ
(−)
0 (x) > 0 )and no longer contributes to negativity N(ρaf) which explains the

abrupt change near x = x0(0). By the same argument, at the second zero x0(1) ≈
1.32, the second eigenvalue λ

(−)
1 (x) turns from negative to positive and no longer

contributes to N(ρaf) which again explains the abrupt change near x = x0(1).

The other abrupt changes are clearly explained by the same mechanism applied

near the third zero x0(2) ≈ 1.25, the fourth zero x0(3) ≈ 1.19, and so on. Since

this step-type behavior comes directly from the discreteness of the eigenvalues, it

clearly reflects the discrete nature of the quantized field.



Chapter IV

Conclusion and Discussion

In this thesis, we have examined various aspects of the Jaynes-Cummings

model (JCM). In particular, we have obtained the following results:

1. For three initial atom-field states, we have shown, in contrast to the general

case of black-body radiation, there is a direct correspondence between the

large average photon-number limit and the semiclassical approximation in

which the field is treated classically and only the atom treated by quantum

mechanics. These three initial states are:

(a) The initial state |Ψ(0)〉 = |φ〉 ⊗ |ϕ〉 , where |φ〉 = Ca |a〉 + Cb |b〉 is

the general linear combination atom state and |ϕ〉 ∈ Coh(β) is any

field state belonging to the class of coherent-like states called coherent

class denoted by Coh(β) :=
{|γ〉

∣∣ 〈n|γ〉 =
√

Pn einβ ∀n ∈ N , where the

probability Pn has the property that n̄3 À (∆n)4
}
. In the limit of very

large average photon number (i.e., n̄~Ω = Ecl), Pa(t) calculated from

this |Ψ(0)〉 goes to semiclassical probability P
(sc)
a (t) obtained from the

semiclassical model with the initial phase of the classical electric field

equal to β;

(b) The initial state |Ψ(0)〉 = |φ〉⊗|N〉 , where |φ〉 = Ca |a〉+Cb |b〉 and |N〉
is the number state with fixed N photons. In the limit of large photon

number (i.e., N~Ω = Ecl), Pa(t) ≈ P
(sc)
a (t) if (i) Ca = 0 or Cb = 0, or

(ii) δ = 0 with the initial phase φ = (θa − θb) ± nπ (n = 0, 1, 2, . . .),

where θa = Arg(Ca) and θb = Arg(Cb);

(c) The initial state |Ψ(0)〉 = CaN(0) |aN〉+CbN+1(0) |bN + 1〉 in the two-

dimensional subspace Pn. For n̄~Ω = Ecl, Pa(t) ≈ P sc
a (t) if (i) Ca = 0
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or Cb = 0, or (ii) the initial phase φ = ±2nπ (n = 0, 1, 2, . . .), i.e.,

initially the classical e.m. field has only the electric field component.

This three initial states show that the initial mixture of the two-level atom

states is very important for the rules of classical correspondence. If a two-

level atom is initially prepared in the mixed state (between upper and lower

states), the initial phase φ of the classical field plays an important roles.

In contrast, if it is initially prepared in the upper or lower state, the initial

phase φ is not important and we can group all these three initial states

into a more compact form by defining the similar but bigger class Coh :=
{
|γ〉

∣∣ |〈n|γ〉|2 = Pn, where the probability Pn has the property that n̄3 À
(∆n)4

}
, which is the same definition of Coh(β) without the restriction of

phase structure. By this definition, the correspondence rules between the

JCM and semiclassical model is simple. Let the initial state be |Ψ(0)〉 =

|φ〉 ⊗ |ϕ〉, where |φ〉 = |a〉 or |b〉, and |ϕ〉 ∈ Coh. Then, independent of

the classical initial phase φ, Pa(t) ≈ P sc
a (t) when n̄~Ω = Ecl. It would be

interesting to extend or generalize these case studies in order to find the

general theorems of this correspondence.

2. By calculating the thermal atom-field density matrix the ppt-criterion and

negativity showed that, even though the entanglement goes to zero in the

limits of zero and infinite temperature, at any finite temperature the atom

(matter) and the e.m. field (light) are always entangled, i.e., the classical

separable behavior is not attained.

It would be interesting to extend these investigations to more general states

in the framework of the JCM and also to include dynamics. In particular,

it is an open question whether ppt entangled state exist in the context of

coupled few-level and (“Gaussian”) continuous variable systems.
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Appendix

Asymptotic Formulae of fn(x)

In this appendix, we derive the asymptotic formulae of fn(x) introduced

in Chapter 3. Applying cosh2(x
√

n + 1)− sinh2(x
√

n + 2) = 1 to (3.17), we get

fn(x) = 1 + [cos(x
√

n) cosh(x
√

n + 2)− cosh2(x
√

n + 1)] . (1)

For fixed x and large (enough) n, cosh(x
√

n) ∼ ex
√

n

2
, cos h(x

√
n + 2) ∼ ex

√
n+2

2
,

and cosh2(x
√

n + 1) ∼ e2x
√

n+1

4
so we have

cosh (x
√

n) cosh(x
√

n + 2)− cosh2(x
√

n + 1)

∼ ex(
√

n+2+
√

n) − e2x
√

n+1

4

= −e2x
√

n+1

4

[
1− ex(

√
n+2+

√
n−2

√
n+1)

]
. (2)

Consider

√
n + 2 +

√
n− 2

√
n + 1

=
√

n

(
1 +

√
1 +

2

n
− 2

√
1 +

1

n

)

=
√

n

[
1

(
1 +

1

n
− 1

2n2
+ ...

)
− 2

(
1 +

1

2n
− 1

8n2
+ ...

)]

= − 1

4n3/2
+ O(1/n5/2) ≈ − 1

4n3/2
(3)

for large n. Substituting (3) into (2) and then (2) into (1), we obtain

fn(x) ∼ 1− e2x
√

n+1

4
(1− e−x/4n3/2

) .

Since, for large (enough) n, e−x/4n3/2 ≈ 1− x
4n3/2 , the above equation becomes

fn(x) ∼ f as
n (x) := 1− xe2x

√
n+1

16n3/2
(4)
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for fixed x and large (enough) n. Note that the above n + 1 in the square root

in the exponent of (4) can also be approximated by n but we keep it in order to

get a more accurate result (than without keeping it) if f as
n (x) is supposed to be

used for not so large n. Next, in order to derive the asymptotic form of fn(x)

for fixed n and large (enough) x, notice that
√

n + 2 +
√

n− 2
√

n + 1 < 0 for all

n = 0, 1, 2, . . .. Hence, it is clear now from (2) and (1) that

fn(x) ∼ −e2x
√

n+1

4
(5)

for fixed n and large (enough) x.
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