CHAPTER II

LITERATURE SURVEY

2.1 Flow Problems
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Here, V denotes Iﬂe outlet velocity; gc,ﬂlonversion factor; and
£, coefficient of gesistance which takes value of 0.480 for a

sudden conﬂ%ﬂ éadwa ‘V"Wﬂsﬁ}ﬁz‘}nlargement.

In 5550, Kays[8] Eas obtained semi-empiﬁical results on
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These coefficients whose magnitude is a measure of pressure drop
AP due to sudden expansion or contraction can be determined from

the Darcy equation
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Where AP represents the pressure drop; V, the bulk velocity in

the flow passage; and p the fluid density. His results are only



valid for the flow passage of large length-to-hydraulic diameter
ratio L/Dy, since the study was performed on a fully developed
flow in either the laminar or turbulent flow range. K, and Kg
are plotted against the area ratio, 0, at different Reynolds
numbers. A single curve is used to represent the coefficient of

both K, and Ko for the entire laminar region.

In 1952, Kays and London [ 9] have dealt with graphical
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distr] essentially uniform.
Ko and K, are also protted a@inéxrea ratio, 0 at
s 0.1 and 0.05 for
000 and » for turbulent.
~\the flow through a tube

dimensionless vari
laminar range and
Therefore, the ré
bundle of any L neral case of any shape

of cross-sectiony .'” HD ,o ng equations:

Kg = 1 m - cavEwnEasivEy s LRl
QZ:L* :
Nl

Ko = 37 C/Bll-1+cz sanoldshd

Where C, is the at_the tube entrance and
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that the frij¢tion factor, f, was obtai e 2L/Re for laminar
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report d here. In summary, the hydrodynamic entry length for flows
through long tubes and ducts can be related to the flow [ 5,12,17,
19,20,21] by
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where C varies from 0.0138 to 0.07, such as, in Ref.[20] C = 0.138
for the duct of aspect ratio 5:1, and C = 0.0317 for the duct of

aspect ratio 2:1.



Bunditkul and Yang [1,2] obtained K;, Ko and critical
constriction length in long parallel channel and obtained
correction factor for loss coefficients and Fanning friction
factor, C,, Co and Cy respectively for short flow constriction
in parallel duct. Pressure distributions were also obtained in
both cases. The results are attained by numerically integrating

the full Navier-Stokes and Energy equations using finite-difference

technique.
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have emphasized & finite-difference method.
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AP/4(L/D)(pP V /2) = Y (VDP/U, e/D) .eee...(2.9)

Where the dimensionless numerical constant 4 and 2 are added

here for convenience.

The above dimensionless group involving AP has been

defined as a friction factor, f

f = AP/#(L/D)\(pva/a) SRR (%



Then, eq.(2.9) becomes

f = V( Re, ¢/D ) PP M IRERRP £ 0 L

For a duct of noncircular cross section, D is replaced by a
" hydraulic diameter," Dy defined by '

For laminar flow between g
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Here b is the distan ; 174 ] flat plates.
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From reference [16] , Bernoulli equation defined as
dH = d( P/p + V°/2 + Zgy) = dF .........(2.15)

Where dF is the frictional effect. The quantity ( P/p + V2/2 +
gc2 ) is known as the Bernoulli head, H, and eq.(2.15) for



idealized frictionless flow ( dF = O ) is known as the Bernoulli

equation.

The pressure drop assoqiated with sudden contraction and
expansion, Fig.2.1, is reported in terms of a decrease in
Bernoulli head H, eq.(2.15), and a loss coefficient K referred to
the kinetic energy of the flow in the smaller cross section.

Since AZ = O for each of the cases, -
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From continuity si d p0 = p and py =~ P3
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Thus V3/Vs eeees..(2.18)
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Inserting eq.(2.18
eq.(2.16) and (2.

.17), rearranging
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Where o0 = A1/A°!g A g - ‘of consigiction area to frontal area
V=Vq= V3‘= mean veloc%{y inside constricted duct
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Loss coeff1c1ents, K¢ K and Fanning friction factor, f are

determined by eq.(2.19), (2.20) and eq.(2.10) respectively, in
this investigation.
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