Chapter I1I

CGeometry and Conformation of Molecules in Aqueous Sclution

The first and the second chapter have been devoted to the

principles of the non-empirical (ab initioc) and the semi-empirical
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V(r) uﬁhl be constructed and added to the SCF Hamiltonian, which is

solved iteratively.

H= Hscp-t- V(r) 3.1

There are several approaches to set the potential V(r). For example,
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Klopman(15) constructed the potential V(r) by introducing the well

known Born equation

H = Hgop :«:g ezﬂridﬁs, (1-1/e,) 3.2

Recently, Bonaccorsi, R., and Tomasi, E. (7) have

constructed the potential ¥
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where o¢(s) =

Where t tion of the dielectric

constant and also e solute according to its

conformation.

In this ch: ,  of the solvent is fully
taken into cnmsldiratlun. Solvat;nm of the solute is described by a
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molecules. ’h15 formation is called the “'super molecule" Rigorously
speaf;aéiﬂiﬂq éiFiéﬁE}ﬁjiiﬂE}i;ﬁfﬁﬂéaq1%;{'qﬂgdgsriilquse due to the
small amount of solvent molecules. The data from the experiment
indicate that the interaction of a solvated molecule or ion with the
molecules forming the first solvation layer represents the most
important energy contribution to the solvation energy at infinite
dilution (16). Hence the supermolecule model is quite suitable tool

for the solution chemist.
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The central problem is how many solvent molecules must be
included in the model in order to represent the properties of the
solvated molecule correctly. The more complete the solvation shell ,
the more information will be obtained. However, including only a part
of the solvation shell has already proven to be quite useful in
certain systems by Pullman, A. and Pullman, B. (1).

#ym influence of a solvent on the

r:atl:,r on the supermolecule

In this work, whe

This proc beer |  .. cloped and applied by many
researchers , e.g. . " gmenti, E. etc.(18) In the
first step the intefaction . of all solutes and solvent
molecules with thier” a valus quantum  chemical
computed by ab tions. In the second
step, these 1nter&ct}m1 potmtials ha\re to be fitted to an analytical

expression ﬁ‘ﬁﬁﬂ%‘ﬂ'ﬁﬁ Ap8 Pt interaction  energy

surface. The third step makef use of these anal)rtlcal potentials for

the e\ﬂwﬁ a WWﬂﬁWﬂ%ﬁﬂ multiparticle

ensemblés which allows us to evaluate structural data of the solution
at a given tempearature.

However, the technique does not give intramolecular data such

as the internal rotation barrier. For these effects one has to retreat

to the super molecule approach again, after having determined the most

probable structure elements of solution by the Monte-Carlo technique.



Determination of the interaction energy in the super-molecule approach

In quantum-chemical calculations of the interaction energy A E
between two systems (A,B) based on the molecular orbital method, the
value of a E is determined as the difference between the supersystem

energy EA.B and the sum of the subsystem energies (Eﬁ,EBJ
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by this expressic

difficulties are al treatment. The most

important difficulsy

the sum of the #heggi _' ,; bsystems are very large
number  ccmpared t energy. Therefore, the
determination of the Ene¥gy of - - ems must be extremly accurate

(10> Hartree). A ncing the A E value is the

effect of the be ;f_—'_“""—"'""'—"“"‘“? interaction energy. In
general , the bas:.ﬂet , oTredt 'y express the multipole

moments and the pelarizability ,of the systems. Inclusion of
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However, in calculations of the interactiop,energy for more
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cases even minimal basis sets and a correction will be needed to

compensate errors in the interaction energy.

The basis set superposition error

vhen insufficient basis sets are used, an artificial basis set

improvement will take place in the supersystem, leading to an error
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which has been known as basis set superposition error, and the
interaction energies are always overestimated. To explain the error

can be attempted using figure 3.1

A E
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Figure 3.1  The/6figin of cient stabilizationae
Let theWie—tho—subeyasams A= g supersystem (A-B
v £ ‘ sy (A-B).

The formation of B.\ .u‘.ﬁm ed by a gain of energy AE.

Subsystems A and } dascrlbed‘yy means of equivalent basis sets.
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quality renmmcd identicaly with bsystens the
supelq ﬁw ﬂﬂi%%mﬂ%& energies plus
the in eracum energy. However, the supersystem energy is determined
by using the basis set of both subsystems EA and Eg and hence the
supersystem is described by a larger basis set compared to the
subsystem basis set. The energy of the complex (A-B) then consists of
the sum of the energies of the two subsystems (Eﬁ.*ﬂﬂ}- the interaction
energy (A E), and the additional stabilization (4 e). However, if
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extended basis sets are employed, the energy of each part of the
supersystem 1is described sufficiently well by the basis set of each
subsystem alone, so that a further extension in the basis set by
function of the other subsystem has little effect.

The wupper limit of this additional stabilization A e can be

estimated by the counterpoise method proposed by Boy and Bernardi

(19). The method 1is be : Vy etermination of the subsystem
- the determination of the
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q
where A E is interaction energy which calculate from truncated basis set

As this procedure only gives the upper limit of additional
stabilization & e and in some case equation 3.6 yields destabilized

corrected interaction energy so we have suggested another way of

obtaining reasonable absolute energy values in this work. This



35

procedure also makes use of a scaling factor fHF, which is determined
by a calculation of a small but similar system at the Hartree-Fock
limit and a calculation using the minimal basis set employed for the

large system.

ﬁ:-ﬁli. 3.7
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The overestimated interac ies obtained with the small
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basis set are then /+ G wEle  factor to approximate the

absolute values fg ;/ i giess, In our case, the water
dimer was used as_afmode f system fo \ at of EHF.

Determination of i

In order to ’d%
of the CNDO method in g catculal f 't

sémi-empirical method (CNDO)

ors connected with the use
e interaction energies, the
sidered. The CNDO method
implies two rough physical approximatio .m-....-.l.. B eglect of inner shell

electrons and e g dectron interactions. 1In

i)
addition, we make usi of emplr:.cal 3meters. The various influences

of these IR AR SACTHDIREY oy roprs 16,20

and can be Yevaluated only G:ou,ghly by cmparing ab itio data with
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Population analysis.

theoretical prmc:.ples B g,# 2 I

There is no unique definition of the number of electrons to be
associated with & given atom or nucleus in a molecule, but it is still

sometimes useful to perform such population analyses. Since

T2 b5
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N/2
N =2 I<¢ {r;iq, (r)) 3.8

divides the total number of electrons into two electrons per molecular

orbital, by substituting the basis expansion of ¢, into (3.8), we have

tr PFS 3.9
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ken population analysis.
on atomic nuclei, the
corresponding numb€T g t «"; assegiated with a given atom
ol ver all basis functions

centered on that atg > net’ G g associated with an atom is then

q = Zy -z (BSh v/ 3.10
17 ]
where Z is the-che S & the index of summation

d

indicated that we nn}y sum over the basis functions centered on A. The
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for any « with o = 1/2, we have

s ety oL
N=z Vi, =3y, 3.12

where we can show that F-‘r is the density matrix in terms of a
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symmetrically orthogonalized basis set,

| T | v il \
p (r) =2z P 4, (r) ¢, (r) 3.13
uv
oy (1) = £ (ST ¢ ) 3.14
v
The diagonal elements y used for a Lowdin population
analysis
qy = 20 WA RN 3.15
None o© 1 5 hemes is unique, but they

are often usef different molecules using the same

type of basis set fr fach mHale¢

o e,

AUt INENINeINg
RINNIUUNININY



	Chapter III Geometry and Conformation of Molecules in Aqueous Solution
	The Continuous Model
	The Super Molecular Approach
	Monte-Carlo Simulation
	Determination of the Interaction Energy in the Super-Molecule Approach
	The Basis Set Superposition Error
	Determination of Interaction Energies from Semi-Empirical Method (Cndo)
	Population Analysis


