Chapter I
Self Consistent Field Molecular Orbital Theory

In principle, any physically observable quantity can be

calculated quantum mechanic if the corresponding Schrodinger
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for the hydrog ' the |simples tem. For more complicated

equation can be solved.

However, can be solved exactly only

systems, some a

If we are l/ b \\\\\- systems, the total
Hamiltonian of “thef s ’\\ \.-\-ﬂ as sum of all possible
coulombic im.:er i : i k - \ energy of the electrons and
nuclei. \
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nuclei, respectively.

According to Schrtdinger equation the total energy will be
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where vy is the normalized total wave function of the system.



To solve the Schrodinger equation which includes the Halmiltonian of
equation 1.1 exactly is mathematically imposible. Further appro-

ximations must be introduced.

The Born-Oppenheimer approximation

The first approxi . in solving the non-relativistic

Schrédinger equation : systems is the Born-Oppenheimer
approximation.

This approXing fact that the nuclei are

much heavier more slowly. As a good

LS
approximation, onefcan /gansi \ ure, the electrons in a
molecule to be =« g i, ali- d nuclei. Within this
.ﬁ::

approximation, kifie .ﬁ: SRHE of, ,\. €lei in equation 1.1 can be

neglected, and the rg uclei can be considered to
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be constant. The remdinin “in equation 1.1 are called the

Electronic ami to n or Hamil -:;ﬁiihing the motion of
electrons in the/f a. bBoS.
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The electronic wave function is

be1 = ¥e1 (qi’ qA) 1.5



which describes the motion of the electrons, explicitly depends on
the electronic coordinates, and depends parametrically on the

nuclear coordinates as does the electronic energy:

Bep = Eer(ap) 1.6

Parametric dependence impli€sfthat, for different arrangements

of the muclei, ¢,is a-iune >  of “thewelectronic coordinates and the

nuclear coordinat xplifiely in ¢ ;. The total energy

\\\‘\t nt nuclear repulsion.

N
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for fixed nuclei

For the métign of-'iHe snucléi 'a similar equation can be
constructed under _ as used to formulate the
clectronic. protjen.co e e/ electiing moye mch faster than. the
nuclei, it is n' 0 'h;;-'-jm 1.1 by replacing the

electronic cour@ute - a,g%values, averaged over the
electronic wave funetion. This ghen generates a nuclear Hamiltonian

for he soflol i hrd m N IVEARG o oo clectrons.
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The total energy tot(qA] provides a potential for nuclear motion.
This function constitutes a potential energy surface as shown in
figure 1.1 Thus the nuclei in the Born-Oppenheimer approximation move

on a potential energy surface obtained by solving the electronic

problem.
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The snlut G hrodinger equation describe the
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vibration, rotation a/.. - ecule. From the Born-
Oppenheimer approximatis /-f \\\%\\ function of the total

wave function is Eivgn Weuce ds )

1.9

¥ {q.il q.h) 1.10

and the co bl-' ding total ener es glectronic, vibrational,
rotational, and V -anslational =

V(r)
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Figure 1.1 The potential energy surface of molecule



The Independent Electron Model.

The Schrodinger equation which involves electrons only, i.e.
the many-electron Schrodinger problem, is approached for an N-electron
system in the simplest way by constructing the total wave function as

a product of one electron wave functions.

¢ (1, 2,...0) = o,(1) apl2IV 1.11

Such one electron orbitals and the product

function as such

In its phySical Mefiding,: this approximation of a many electron
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wave function by tions means independent

electrons in nondcogfelated mokion leads to splitting up
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the Hamiltonian int

: lectron Hamiltonians:
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Due to t@ antis Yy neip! em(electrms are femions)
the total wave functien has to be @ntisymmetrized, which leads to new
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where (ZJJ.- Kj) is an effective potential of the instantaneous field

1.12

presents by the other n-1 electrons and Jj and K. represent the coulomb

J
and exchange operator, respectively.

Now, the one electron Schrodinger equation will be of the form:



F(1)g (1) = ¢ o (1) 1.14

where ¢ is the (not really observable) orbital energy.
The effective potential V(p), has to be known before ¢ is
constructed. In mathematical terms, this will lead to an iterative

solution process.

can be applied to large

systems, but the ron correlation which will be

P 1.15
where E.. means cilated with the independent

orm of the ¢ function, an

%nown Slater determinant,
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to ¢,(2n) a(2n) and ¢,(2n) 8(2n) respectively.

Molecular orbitals and the linear combination of atomic orbitals

(LCAO) approximation

We define an orbital as a wave function for a single particle,

and we will use molecular orbitals for the wave functions for all
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electrons in a molecular system.
The simplest way to construct such molecular orbitals is from
atomic orbitals (basis functions). For example, we take the clectronic

equation associated with the hydrogen molecule ion:

2
(-1/2 v® + 1/Ryg - /R, - E ¢ 1.17
At a point=#ff the i y of theswnucleus A, the potential
-1/R, is more imporian F ‘\\\- -1/Rg.  If the latter
potential is neglected’ fi jon ef eguation 1.17 is simply the

wave function ¢ 'the hydroge ~\| entered at point A .
Similarily near B ghef furlticft, ¢ t 'be analogous to the wave
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Slater determinant built up of spin orbitals, and these molecular

1.18

orbitals will be extended in terms of atomic orbitals(basis functions).
The general form of the LCAO-MO approximation is

n
¥i = T %% .19
for the ith spin orbital, where n is the total number of basis
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functions in use.

Self consistent field molecular orbital theory

We have discussed all of the approximations which are needed
for solving the approximate molecular Schrodinger equation. Now, we

, ation value of a closed shell system
(one space orbital is ocgupiec &mm with different spin).

will consider the energy

uer approximation, the total

) ‘Y

E 1.20
The first term is '-:f: ion. The second term represents
the electronic energ i Hamiltc sists of two terms: Hy,
which includes| Jhe Tuciear & Bperator and the kinetic
operator . : mcludes™ the e@tmn—electrm repulsion

ope
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g 1 1.23
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Substituting Hel in equation 1.20 by equation 1.21 we obtain

Frot T hep Zalg/Ryy + 6 [y ) @ (B9 1.24
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In this equation, the total energy of the system is given as
the sum of three terms, nuclear-nuclear repulsions, one-electron
terms, and electron-electron interactions. The latter two terms
represent the total electronic energy of the system. Using the LACO-

MO approximation, we obtain

Ei = 2:_(
1.25
when Pkl is defin
Pa 1.26

and the integral (w (13 | isshnrtl:f written as H.
tic energy iclear attraction of an

electron resid ingd ion 1.25 may now be

expressed as
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way and gives:

E, = 1!2:kzlz E B Pl (o (1) 0,2) | By | 9y (1) vntz)>
mn '

2172 (o (1) 9,2 | Hyley @) (D) 1.28
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where the first integral, often written as (kl{mn) is the Coulomb
repulsion between two electrons residing in the overlap regions k-1
and m-n, respectively. The second integral is written as <kn|1m} and
is called the Exchange integral. Now we have

E: = 1/2 £z P

Iz ((kifmn) - 1/2 (kn|1m) ) 1.29

The final expression &

By - 1/2 = £ B ( (k1 |mn)
1.30
AlL of these terms afe fal n the| <o called ab initio method.
2.
istermine-the-best-moiscutar-cititals, which yield the

lowest possible _ energy, 10na %&uinciple is applied to

minimize the total energy with respect to each coefficient

AU INENINGINT
aﬁﬁaqn"%mummmaﬂ o
d(iipklydc“i' 2 fcli“'su;flfcmicnij 1.32

Minimizing the total energy leads to a set of linear homogenous
equations of the type
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0 = dE/AG; = 2 I'::.';Z[“'Sk:l LI Cy Cpy)

mn

x [ By +zz By ((Kilm) - 1/2 (knlln))] 1.33
mn

We define the Fock matrix elements as

1.34

1.35

1.36
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equatiouIE? is transformed to
F'C' = C'B _ 1.38

where F' = 5—1!'2 F g~1/2 1.39
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c = s Vi 1.40

Equation 1.38 is the standard eigenvalue problem of ab initio

computation. The elements g; of E will be the roots of the

determinant equation

1.4

d molecular orbitals. For

each root githe coef £a€ients C' 4 N d from the linear equations

1.42
and the coefficient
C 1.43
. (G
The central fielﬂpp oximation and the selﬂconsistent field (SCF)

%mj immms the evaluation of
the ix e wiich themselves de oh/the coefficients)
AT AU U A A e e

mn
is needed. By guessing an initial set of linear combination

coefficients C;; and generating the corresponding density matrix P one
computes the first F, elements. By diagonalizing F a new C matrix is
obtained. The whole process is then repeated until the change in the
total energy E . is smaller than a given energy limit (usually set at

1D'Shartree) .

010114
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The diagram of the SCF procedure is
C--""':" P'__-:" F.'—"-} E‘--"'} C' ----- TEEE Cn dll+1

The basis set (atomic orbitals)

The type of basis set commonly used consists either of
Slater-type orbitals (STO) o sian-type orbitals (GT0). Nowadays

' ,, Gaussian-lobe orbitals (GLO)
an orbitals in solving the

which are more coriVenient

most non-empirical

integrals. S
The gene
xn,l,m 1.44
and GLO's are simpl
X(r) = 1.45
The angular .;*‘,G.—'_:‘——"”" ype uw th 1>0 is simulated by

the superpusiti@ of a numbe n trit@ly distributed spherical

j:;_ztﬂfﬁﬂo eas dorbital is re:rj:tad by the
p, ﬂwlﬁzﬂﬂﬁﬁ! &J&‘lﬂ'm&&}ﬂﬂmﬁ 1.46

re, taking the nucleus as the origin, the Gaussians are centered at
positions (0,0, + R). A p-type Gaussian lobe is therefore specified
by the two parameters ¢ and R.
In this work, we have used minimal basis sets of Gaussian-lobe
orbitals (GLO) for ab initio calculations. Although the absolute
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energy is quite poor, the relative energies are reasonable, as many
works have proved (8,9). The main advantage of the GLO basis set is

the decreased C.P.U. time .

By the LCAO-MO method the molecular orbitals will be

constructed from these basis functions. To reach the HF limit,

basis functions is needed, but in

theoretically an infinite numbe

practice quite small basi be used because of the time of

calculation. The sagesS which theoretical chemists

_ y one basis function
per orbital quantéf pembey . n, in'ca om. For example, in HF

the basis set 15325, pr, Zp?, szfar

Fluorine.
Zs
minimal basis sets
and can incl 'E'i or example p functions
for hydrogen and and ction 1g w atoms.
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