Chapter 4

Conclusions and Discussions

Through this work, a model of disordered structure of porous silicon is
proposed. An irregular structure of porous silicon is assumably produced by
removals of some silicon atoms randomly from a perfect crystalline silicon and all
dangling bonds are terminated by hydrogen atoms. We also assume that there is
no reconstruction around vacancies. Removals of some atoms are represented by
the occurring of potential barriers, which equivalents to the generating of potential
wells among the barriers. Then porous silicon can be modelled as a disordered
assembly of three-dimensional quantum wells which are produced from random
potential fluctuation from the system. All quantum wells are assumed to have
Gaussian form for simplicity. The model directly leads to the reduction of density
of states near the band edges of crystalline silicon (Figure 2.1 and 3.1) which seems
to be band-gap widening as found in the quantum confinement model (crystalline
silicon model). Actually, our model is classified to be a quantum confinement
model category. The localization of carriers and the upshift of states near bulk
crystalline band edge are, indeed, due to size effect. Our model is just a modified
modél formed by addition of disorder into the ordinary crystalline silicon model
then it is not surprised that many results are in the same way as that of original
crystalline silicon model.

There are two important advantages of our model over others’ when
porous silicon is treated as a disordered system. First, it allows us to do the in-
vestigation using Feynman'’s path-integral of disordered system (Samathiyakanit,
1974; Sa-yakanit, 1979). So the analytical approximated density of states closed
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to the band edge is obtained (eq.(2.81)) :
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as well as its low-energy limit (eq.(2.89)),
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and high-energy limit (eq.(2.97)),
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The low- and high-energy limit density of states of porous silicon are shown

graphically in Figures 2.2 and 2.1 respectively. Then, the band-gap widening can
clearly be observed from the obtained density of states. Furthermore, treating a
porous silicon as a disordered system also implies the existence of mobility gap
which is important part to explain electrical conduction mechanism of porous sili-
con which consists of hopping via localized states and extended states conduction
(Lubianiker and Balberg, 1997) as discussed previously in Section 1.4.4. Such
mechanisms cannot be explained in the ordinary crystalline silicon model. In ad-
dition, in our model, the mobility gap of porous silicon, Ej, is roughly estimated

as a function of porosity, p, as well (eq.(2.110)) :
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It is important to point out that our model can imply both optical and

electrical properties of the porous silicon. In addition, the expression (4.1) is the



90

first analytical expression of density of states of porous silicon which is obtained
from our more realistic structure of porous silicon. Moreover, our proposed model
can be generally applied to other porous semiconductors which originated from
crystalline semiconductors (Sukpitak, Sa-yakanit and Sritrakool, 2003).

However, our model has still been incomplete. The scatterer strength vy
cannot be directly obtained from the model. By using the advantage of our model
that can relate to electrical properties of porous silicon, the scatterer strength
can then be related to the activation energy of extended state conduction E, as

expressed in eq.(2.114)
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Using eq.(4.5) or (2.114) together with experimental data of activation energy

(Lee et al., 1996), we can obtained the scatterer strengths at various levels of
porosity and can be used in the numerical calculations (Table 2.2 and Figure
2.3).

In order to verify our model, a numerical calculation from our model
is needed to compare with experiments. The calculation of optical absorption
coefficient is the most suitable one since it can be related directly to the density
of states. The calculation is comfortable and gives more reliable result if dealing
with direct-gap porous semiconductors such as GaAs or InP at first, in order to
avoid phonon-assisted transitions. Unfortunately, most studies reported to date
concern porous silicon and a few indirect gap semiconductors. There are a few
reports on GaAs (Beale et al., 1985; Schmuki, Lockwood, Labé et al., 1996) and
on InP (Takizawa, Arai and Nakahara, 1994; Kikuno, Amiotti, Takizawa et al.,

1995) but there is no experimental absorption results that we need.
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In case of optical absorption of porous silicon, there are a number of
evidence which indicate that the transitions are phonon-assisted (Kovalev et
al., 1996: Datta and Narasimhan, 1999). This means that non-phonon assisted
processes are small or no contribution to the optical absorption, contrast to the
photoluminescence of porous silicon which involves with both non-phonon and
phonon assisted processes (Hybertsen, 1994; Kovalev et al., 1998).

In order to examine this contradiction, we calculate the optical absorption
coefficients using the obtained density of states (eq.(3.39)) together with a simple
model of optical absorption as discussed in Chapter 3. However, because of the
unclear band structure of porous silicon, it is impossible to calculate the absorp-
tion coefficients which take care rigorously both non-phonon and phonon assisted
processes. Here, we focus ourselve on non-phonon assisted processes which can
occur only when it involves with localized states because wave functions of lo-
calized states widely spread in momentum space then the non-phonon assisted
process can occur. On the other hand, such a process cannot occur in transitions
between delocalized states with well-defined wave vectors. Thus, we neglect all
between delocalized states in our calculation. We also assume that all transitions
of interest are direct-gap transitions, as a result, although the calculated absorp-
tion-coefficients are overestimated in magnitude but still be enough to determine
the energy range of the non-phonon assisted process.

The calculation results are shown in Figures 3.1-3.8. For porous silicon
with over 70% porosity, the calculated absorption coefficient shown by a peak
appears. The height of this peak is comparable to the value of the experimental
results, within the narrow particular energy range. On the other hand, for porous

silicon with less than 65% porosity, the calculated results are about 0 cm~! which
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indicate that non-phonon assisted transition can be completely ignored. However,
because of overestimation of the assumption, this can imply that non-phonon
assisted transition can be neglected in an optical absorption process as suggested
by many authors (Kovalev et al., 1996; Datta and Narasimhan, 1999).
Furthermore, the expected absorption closed to the band gap of bulk
crystalline silicon is not found for all cases in our calculations since there are
no states near bulk crystalline silicon band edge in our model. However, this
contrasts with the experimental results such as that of Xie et al. (1994) and Datta
and Narasimhan (1999), which have significant absorption near bulk crystalline
band gap. This means that there are a large number of states in porous silicon,
near band edges of bulk crystalline. Such states require an existence of a large
nanocrystal size in porous silicon but it does not exist in our model since our
porous structure model is obtained by removals of some silicon atoms randomly.
Then the remaining of nanocrystal would have a size distribution form of Gaussian
with small variance. So, in order to explain all spectrum of optical absorption, it is
essential to seriously involve the nanocrystal’s size distribution in the calculation.
The important role of size distribution is emphasized recently in work of Datta

and Narasimhan (1999) which suggests the distribution P (d) of lognormal form,
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where dy, o are mean size and its standard deviation respectively. A lognormal

(4.6)

and Gaussian distribution are shown in Figure 4.1. In addition, we also suggest
for future work that the size distribution can include to our model by considering
porous silicon consisting of subsystems of various porosity.

Consequently, from our model, we calculate scatterer strength from the

experimental results of activation energy (Lee et al., 1996) as shown in Figure
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Figure 4.1: Size distribution (a) for a Gaussian and (b) for a lognormal distribu-
tion of widths, having dy = 30 A and ¢ = 4 A (Datta and Narasimhan, 1999)

2.3 and Table 2.2. We found that the calculated scatterer strength seems to be
an increasing function of porosity which contrasts with our assumption. In our
model, the scatterer strength is assumed to be a constant at all porosity contents.
However, it is obviously seen that existence of perfect potential wells essentially
require occurrence of a large number of scatterers (high porosity). At low porosity,
the wells do not have perfect shape as in the model. The well shape is broader and
lower in height than that of our model. Then we believe that porosity dependent
béhavior of scatterer strength can indicate the perfection of potential wells in our
modél. In addition, there is a significant stable of scatterer strength at 70-80%
porosity. This can imply that our model potential wells become perfect shape at
around 70% porosity.

Moreover, it is interesting to consider the associated confinement energy
in each case, as shown in Table 4.1. We found that all cases, which non-phonon

assisted transition significantly involved, have confinement energy of about 0.8
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Porosity (%) Confinement energy (eV)
T=7K T = 100K T = 300K
80 0.85 0.85 0.85
71 0.80 0.79 0.79
65 0.29 0.29 0.29
60 0.03 0.03 0.03

Table 4.1: Calculated confinement energy for all cases of study

eV. While all cases, which are not participated by non-phonon assisted transition,
have confinement energy below 0.3 eV. This coincides with the work of Kovalev
et al. (1998) in study of a ratio between the non-phonon assisted process and
the phonon-assisted process in luminescence of silicon nanocrystal. They suggest
that non-phonon transitions begin to dominate at confinement energy about 0.7
eV.

Finally, at here, the validity of our model is discussed. According to
our model, the random potential wells are generated from occurrence of random
scatterers. It is obviously seen that the existence of the potential wells needs
occurrence of a large number of scatterers. This implies that our model is not
valid in low porosity region. In addition, the investigation of relation between
scatterer strength and porosity (Figure 2.3) indicates that scatterer strength has
a reasonable when porosity exceed 60%. Therefore, the lower limit of porosity

applied to our model is reasonably about 60%.
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