CHAPTER III
EXTREMAL GRAPHS RELATED TO COMPLETE SUBGRAPHS

In this chapter, we determine the maximum number of lines of graphs
with p points that contain exactly n complete subgraphs of order r and all of
these n complete subgraphs are pairwise disjoint. The result is given in

Theorem 3.10.

For each G = (V, X) we associate a function ng: V — P(¥V), the power
set of V, by defining
ngw)={viveV,uve X}

The function 7 will be called the neighborhood function of G. Note that

degg(v) = lng()l.

Proposition 3.1
For any graph G, ns has the following properties:
(1). For each v € V(G), v ¢ ng(v).

(ii). For any u, v € V(G), ifu € ng (v), thenv € ng(u).

Proof By definition of graphs, we see that vw ¢ X(G) for any v € V(G). Hence
we have (i). Let u, v be any points of V(G) such that ¥ € g (v). Then uv € X.

But vu = uv. Hence vu € X. Thus v € ng(u). Therefore ng has properties (ii). O
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Proposition 3.2
Let V be a non-empty set. Let : V' — P(¥). If 5 satisfies both of the
following properties:
(1). Foreachv e V,v ¢ n(v).
(ii). For any u, v € V, if u € n(v), then v € n(u).
Then there exists a unique graph G such that V(G) =V and 75 = 7.

Proof Define
X={uv|uveV, ue nk)}.
By property (i), it can be seen that members of X, if exist, must be 2-subsets
of V. By property (ii), we see that for any u, v in V we have
uv € X if and only if vu € X.
Hence X is a well-defined set of 2-subsets of V. Therefore (V, X) is a graph.
Let G = (V, X). Let v be any point in V. For any u € ng(v), uv € X.
Thus ue n(v). Hence ng(v) < n(v). Similarly we can show that n(v) < ng(v).
Hence ng(v) = n(v) for all v € V. Therefore 75 = 7.
Let G’ be any graph such that ng’= 7. Thus G’ = ng. It is clear that
V(G" =V=VG).
Observe that
uv € X(G") © u e ng(v)
& uengl)
© uv e X

Therefore G'=G m]
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In the sequel, we shall denote the graph with neighborhood function 7
by G[7].
Let V, V' be any two non-empty sets such that ¥ c V’. Let 7, n' be any

two neighborhood functions on V and V' respectively. 7 is said to be a sub-

neighborhood function of #° when 7(v) is a subset of 7'(v) for each v in V.
We note that 7 being a sub-neighborhood function of 7’ does not mean that 7

is a subset of ’. For example, let

V.=%a,bc};

V'={a, b, c, &§

n ={(a {8}), (B, {a,c}), (c, {B}) };
and n'={(a, {b c}), (b {a,c}), (c {a b}) }.

It can be seen that 7 is a sub-neighborhood function according to the above

definition, but 7 is not a subset of 7"

Proposition 3.3

If n is a sub-neighborhood function of 7’. Then G[#] is a subgraph of
G[n'].

Proof Observe that
X(G[nD = {uv|uy e V(G[nD), u e n()}
and  X(G[#n]) = {uv|u,v e V(G[n]), u e n() }.
Since 7 is a sub-neighborhood function of 7’, hence the domain of 7 must be a

subset of the domain of n’. Therefore

V(G[n]) € W(G[n'D).
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That is each point of G[7] is a point of G[7']. Next we show that every line
of G[n] is a line of G[7]. To do this, let uv € X(G[7n]). Then u € n(v). Since
n(v)c n'(v). Thus u € n'(v). Thus uv € X(G[n']). Hence

X(G[n]) < X(G[7'D.
Therefore G[7] is a subgraph of G[7']. ; O

A graph G is said to have the property P(r) if every two distinct

complete subgraphs of order r are disjoint. A graph G is said to have the

property P(r, n) if it contains exactly » complete subgraphs of order » and has

property P(r).

Proposition 3.4.

Let n, r be any positive integers such that » > 2. Let H be a graph of
order rn with property P(r, n). Let G be any graph with property P(r) such
that G is a supergraph of H. Then for any point v € V(G)\V(H), there exist at

most (r—2)n lines from v to points of H.

Proof Let (V;, X;)i=1,...,n be the n disjoint complete subgraphs of order r
of H, Let
v € V(G)\V(H).
Thus
vel,
i =1,...,n. Suppose there are more than (r-2) iines from v to points of V; for
some i. Let vy, v,,..., v,_; be r—1 points of V; which are joined by lines to v..

Thus v, vy, v,,..., v,.1 form a complete subgraphs of order r which is not
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disjoint from (¥;, X;). This is contrary to the assumption that G has the
property P(r). Thus for each i, there are at most (r—2) lines from v to points of

V;. Therefore there are at most (r—2)n lines from v to points of H. O
In what follows, we shall use the symbol 7 to denote the set {1, 2,....n}.

Proposition 3.5
Let n, r be any positive integers such that r > 2. Let G be any graph

of order rn that has the property P(r, n). Then G can have atmost

rn(n(r-2) +1)
2

lines.

Proof Let (V;, X;)i=1,...,n be the n disjoint complete subgraphs of order r
of G. Leti € n. Since G has the property P(r, n), hence G\V; has property
P(r, n-1). Note that G\V; has order r(n;l). Since G is a supergraph of G\V;
which has property P(r, n—1). Therefore, by Proposition 3.4, there exist at
most (r—2)(n-1) lines from any v € V; to points of G\V;. Thus for anyv € V},
degg(v) ={u|lueGV;,uwveX(G)}|+|{ulueV; uv e X(G) }|
<(r-2)n-1)+r-1
: n(r-2) + 1.

Therefore

> degg(v)
!X(G)I i VEV(G)2 < m(n(r2— 2)+1 ; o
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Note that Proposition 3.5 gives an upper bound of the number of lines
among graphs of order rn that have the property P(r, n). In the next
proposition (Proposition 3.6), we shall show that this upper bound is attained.
This will be done by constructing a graph of order rn that has the property
P(r, n). Our construction calls for arithemetic of the subscripts used in
labelling parts of certain complete r-partite graphs, and this is best done by

using the elements of Z,, the set of residue classes modulo 7, as subscripts.

Proposition 3.6

Let n, r be any positive integers such that r 22. Letvy, i€ Z,je n,

be any rn distinct elements. Let
T ={v,-j|ieZ,,jeﬁ}.

For each iy € Z, and jj e n, let
¢ ‘ ifj0=1,
Ay(io, jo) = {
{Vijy-1li €Z i #igandizig+1} - if 1<jo<n,
Ag(io, jo) = {vij, lvij, e T,i#ip};
{v,-jo+1|ieZ,,i:tioandi¢io—l} if 1< jo<mnm;
As(ig, jo) = {
¢ if]o =n.

Let n: T — P(7) be difined by
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1(Vigjy ) UA 100, J) © Ag(io, jo) v UAs(ip. ).
J=lo

Then 7 is a neighborhood function of a graph G of order rn with property

P(r, n) that has the maximum number of lines and

IX(G)| = '_"(n_(r;z_)tl_)

Proof Let Vio be any element of 7. Foranyie Z,andje n, if v Vij, € A(ig, D,
then, by the definition of A;(ip,j), we have i # ig. Hence
(3.1 Vigjo € A1lio, )
for any j € n. By similar argument we see that
Vigjo € A2lio, J) and v; ;¢ As(ip, j)

for any j € n. Therefore

Vigo & (JAl(’o,ﬂ S Az('o,.l) v UAs(Io,J')
J =)

Since for any jen

(Vi) = (JA(zo, ) O Aglio, o UAio 1)

J'=]
thus
(3.2) Viedo € M Viyj )
In particular, we have
Vioo & T Vigjo )-
Since v; ; is arbitrary, so we have :
(3.3) (1) Vij € n(v; j) for any vij-€T.

Let v; € T be any elements such that v; ; € n(v,-ljl). Since

iviv YigJs
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J n
n(vij, )= UALGL ) © A, i) o UAs(y, ),
J=i I=h

Ji
thus v; ; € j[_lel(zl,J) or vy j, € dy(iy, j1) or v, j € '

J=h

I'.'IA3(I b j) .

J
Case 1. Suppose that Viyj, € UAl(il,]). Then there exists j € n such that

=1
(3.4) J sJ1s
(3:5) Vi, jp € A1, J)-
From (3.5), we see that
Viyjp = Vij-1

for somei € Z, such thati # i; and 7 # i;+1. Therefore
(3.6) J2=j-1,
(37) i2¢il and i2¢i1+l.
From (3.4) and (3.6) we see that
2y

Let j'=j;—-1. Then j; =j+1 and j+1 >j, and hence j’'>j,. Therefore by
definition of As(i,, j"), we see that

Viij, € Asliz, J).

Since

n
As(iz, J) € UAsl)) < 1(viy ),
J=j2
so, we have

-

Viij, € 1Vi, j,)-

Case 2. Suppose that v; ; € A;(i}, j)). By the definition of Ay(iy, jy),
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i2 =il and jz ?‘-'jl.

Thus
Viyjy € A2(i2, /o)
Since
A(iz, o) € NV, 1,)-
Therefore

Viijy € 10iyj)-
n
Case 3. Suppose that Vigj, € UAj(iy, /). Then there exists j € n such that
J=h
(3.8) Jj2jn
(3.9 Viyj, € A3l )
From (3.9), we see that
Vigjy T Vijt1
for somei € Z, such that 7#i; and i# i;—1. Therefore
(3.10) ja =1,
{3:11) ip #iy and i, #i;-1.
From (3.8) and (3.10) we see that
. d (12
Let j'=j;+1. Then j; =j’-1 and j'-1<j, and hence j’'<j,. Therefore by
definition of A(i,, j"),
Vi j, € A1li2, )

Since

J
Ayl J) < UAlin ) < i, j,)>
j=1

so, we have
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Viyj, € MViyjp)-

From the three cases considered, we see that 7 satisfies property
(3.12) (i) forany v; ;,v; ;, € T, ifv; j, € r](v,-1 jl)’ then Viijy € M0V, j)-
Now we have (3.3) and (3.12). So, by Proposition 3.2, there is a graph G[#]
such that V(G[#n]) =T and 7 is the neighborhood function of G[7].
For each j € n, let

Vi={ o} Vijp-s¥r-1j }-
Observe that for any ¥}, any pair of distinct points of V; must be of the form
Vijs Vijs where i # i’. Hence, by definitions of A,(i’, j) and 7, we have

v € Agli’ J) € nviy).
Hence v;v;; € X(G[n]). Therefore every pair of points of V; forms a line.
Hence

<V>=K,.
Thus <V;>, <V,>, ...,<V,> are n complete subgraphs of order r of G[7].
Suppose G[#n] has more than n complete subgraphs of order . Let W

be any subset of T consisting of 7 points such that <W> = K,. Suppose that
(3.13) W= "Vigje Yiviy Yy}

and

L3

W:th

for any j € n. By (3.2) we know that for any vy, vy € Tif i =i" then vj; ¢ n(v;;7)

ie vy & X(G[7n]). Thus for any distinct points v vij» € W such that

ij’
vivir € X(G[7n]), we must have i # i". Hence ig, ij,..., i,.1 are distinct.
Without loss of generality, we may assume that

io = 0, il = 1, g ir-l =r-1.

Thus (3.13) may be rewritten as
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(3.14) W= g Vijps-s Vet -

Let i € Z,. Since. <W>=K,, VijVitlj,,, €X ie.

Jis1 n
(3.15) vy € nviryy, ) = UAIG+LJ) U Ay(i+1, jis) U UAsG+1, j).
Jj=1 J=iin1

For any j e n and v;y» € T, by definition of A3(i,)), if
i'=j or i'=i-1 or j' #jtl,
then
vijr & Az(, )).
Hence
vij, € As(itl, )

for any j € n. Thus

n
vUi & UA3(1+1, _])
J=Jiv1

Therefore, by (3.15), we have
Ji+1

viji, € UALG+1, ) U Ay(it], jiv).
j=1

Note that in case vij, € JGIAl(iH,j), we have vij, € A,(i+1, j) for some j < ji4.
j=1

Thus

(3.16) JiT 1< Jm

On the other hand, if v; € A,(i+1, ji+1), then

(3.17) : Ji = Ji+1-

In any case we have, ‘

Ji £Ji+1-
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Therefore
Jo =J1 5. jp1 SJo-

Hence there exists j € 7 such that

Jo=i1=-=Jr2=Jp1=J
Thus, by (3.14), we have

W= Ly vlj,..., Vet = V)
which is a contradiction. Thus G[#7] has exactly n complete subgraphs of order
r. Since V;nV;= O, for distinct j, j' € n.. Hence the n complete subgraphs of
order r are disjoint. Therefore G[7] has the property P(r, n). For each Vig € 7",

deggy1(Viy o) = 171( Vig j, )l

J n
= IjAl(io,J) U Ay(ig, jo) v UAj3(p 1)l
Jj=1 J=Jo

Jo n
= | UA G, NI + |AzG0, Jo)l + | UAs(ig, )]
j=1

J=fq
= (i-1)(r-2) + (r-1) + (n-i)(r-2)
= n(r-2) + 1.
By (1.1), therefore
> degs(v)
L g _ mn(r-2)+1)
|X(G[7)) S 5 :

By the Proposition 3.5, G[n] is a graph of order rn with property P(r, n) that

has the maximum number of lines. O

An illustration of the construction given in the above proof for the case

n=4, r=3 can be found in Appendix A.



28

Proposition 3.7 Let n be a non-negative integer. Let 7 be any positive integer

such that r 2 2. If G is a graph of order 1+rn with property P(r, n), then
X(G)| < (r — 2)n + Mz‘z_)*_l)

Furthermore, the maximum number of lines of graphs of order 1+rm with

property P(r, n) is

(r—2)n+w_
2

Proof Let v be the point of V(G) such that v is not a point of any complete
subgraphs of order . Note that G-v has order rn. Since G is a supergraph of
G-v which has property P(r, n). Thus, by Proposition 3.5,

IX(G—v)| < w,

and by Proposition 3.4, there exist at most (r—2)n lines from v to points of G-

v. Therefore
|X(G)| = |X(G-v)| + The number of lines from v to points of G-v

: rm(n(r —2)+1)

- + (r-2)n.

In order to prove that the maximum number of lines of graphs of order
2 + rn(n(r2—2)+1)

1+rn with property P(r, n) is (r — , it suffices to establish a

' graph of order 1+rn with property P(r, n) that has (r — 2)n + MZZM lines.

Let T and 7 be as defined in Proposition 3.6. Thus G[7] is a graph of

order rn with property P(r, n) such that
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rn(n(r — 2)+1)
e

|X(G[nD)| =
Let v be an element that is distinct from all elements of 7. For eachi € Z,, let

Ci={vylvyeTforjen}.
Let G be the graph defined as follows.

- V(G) =V(G[n]) v {v}.

XG)=XG[nDvw{vulueT\(C,,uC, )}

Note that v is joined to all the points of r[—fC,
i=0
Next, we shall show G has the property P(r, n).
Consider any r-1 points that are joined to v. Since r—1 points are from

the r-2 sets C,...,C,.3. Hence a pair of the points must be from the same C;
for some i. Assume that this pair of points are v;;» vij». Since 7 is as given in
Proposition 3.6. Hence it satisfies the relation (3.2) in the proof of the
proposition. It follows from this condition that

vvin & X(GLr). |
Thus

g € XGIm) U {vu|u € T\(Crp U Cp) }
i.e
ijvijr & X(G).

Thus for any r-1 points joined to v there are at least two points not joined by a
line. Hence v is not an point in any complete subgraphs of order » of G. Hence
‘the complete subgraphs of order r of G are those and only those of G[7].

Hence G contains exactly # disjoint complete subgraphs of order . Therefore

G has the property P(r, n). Observe that
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1X(G)| = 1X(G[nD)| + [{ vu |u € T\(C, v C, 1 }|
2,

Therefore, G is a graph of order 1+rm with property P(r, n) that has the

maximum number of lines. (=]

Proposition 3.8

Let n be a non-negative integer. Let p, r be any positive integers such
“m

thatp>r>2and p>rn. Let m=p—-rn, k= [—-—1-] and s=m - k(r-1).
r—

Then there exists a graph G of order p such that
( 1). G has the property P(r, n);
(ii). max{degg(v) | v € (G\T } =m — k + (r-2)n, where T is the set of

all the points of the » disjoint complete subgraphs of order r of G;

(iii). [X(G)| = m? —km—s k+1) +2mn(r—2)+rn(n(r—2)+l).

2

Proof Let

mo = m1_= LAV ms_l = k+1
and

M=M= ... =My = k.
Let

Vo1 V02r:ceceeeereoecens > Yon»

V115 V]12seevvseoosocosane > Vins

Yoi 1l Ve 105oneies fre A
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UL UQDseverereverecncreieccnnnns > Uok+1>
UpL UPDseeevvvvrecresinnneccannns > U1k+1>
Ug 11> Ug-125--vvreereeancennnns s Ug 1k+1>
Ugl, Ugdserereeeroinnneennnn. > Usk,

Ugt11> Us+125-vvvrnee- > Us+ 1k

Up 3]s Up2Dsessssoeioo.ep. s Up 2k

be distinct elements. For each i € Z,, let

Ci = { Vil> Vi2s-+-> Vin }

Define

= 1IC.

ieZ,
For each i € Z, 4, let

Ui = { Ui, u,~2,...,uimi }

Define

u= UU.

ieZ,_,

Note that |Ci|=n;i € Z,, |T|=m, |Uj|=m;; i € Z, 4, |U] = m.

For each iy € Z, and jj € n, define A (i, jo), Ay(ip, Jo), A3(ig, jo) and n(vi,j,)
aé in Proposition 3.6. Let 7' : UuT — P(UUT) be defined by
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n(v)U -U; when ve(C; forsomeieZ \{r-1}.

UuT -U; uC; uC,_; when veU; forsomeieZ,_;.
7(v)= {
nv) when veC,_;.

We shall show that n’ is a neighborhood function on UUT. First we ﬁxust show
that
(3.18) venQy)
for all v € UuUT. This will be done according to the cases used in the definition
of n".
Case 1.v € U, for some i € Z,.;. In this case n'(v) = UUT - U;uC;UC,. ;.
Since v ¢ UUT - U, thus 7'(y) n U; = O, and hence v ¢ n'(v).
Therefore (3.18) holds.
Case 2.v € C; for somei € Z\{r—1}. In this case '(v) = n(v)LU - U;.
Since v¢ n(v)andv ¢ U, v ¢ np(v)uU - U;. Thus v ¢ n'(v).
Therefore (3.18) holds.
Case 3.v € C,_;. Then .'(v) = n(v). Since v ¢ n(v) forallv e T, v ¢ n'(v).
Therefore (3.18) holds.
Since v is arbitrary, so we have
(3.19) ve n(),
for all v e UUT.
Next we shall show that
(3.20) ven)
for all vy, voe UUT such that vie 7n'(v;). Let v;,v,€ UUT be such that vje 7'(v,).
By definition of 7', we have three cases.

Case 1. v, € U; for some ig € Z,). In this case



7'(vy) = UUT - U; uC; UG,y

#olckide oy ble
iEZr_l\{io} iEZ,\{io, r—l}
Thus

V] € UU, and V] € UCI %
ieZ, 1\{io} ieZ, \{ip, r-1}

Subcase 1.1. v €  |JU; . Therefore there exists ani € Z,_j\{iy} such that
ieZ,_1\{ip}

vy € U,
Note that

ig#i and ig#r-1.
Since

vy € Uy,
hence

vy ¢ UpuCpuC,_y.
Therefore

vy € UUT - U;uCuC,
i.e. we have
vy € n'(vy).

Subcase 1.2. v, € UC; . Therefore i € Z,\{iy, r—1} such that
ieZ,\{io,r—l}

vy € C;.
Note that
ig # 1.
Since
himed,
hence

‘V2 & Ui'
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Therefore
vy € n(v)uU - U;
~ i.e. we have
vy € 7'(vp).
Therefore (3.20) holds.
Case 2. vy € C; for some iy € Z,\{ip, r-1}. In this case
n'(v2) = n(vp))oU - Uj,.
Thus
vy € n(vy))ulU - Uio‘
Subcase 2.1. v; € n(v,). Then v, € 7(vy).
Since n(v) < n'(v) forallv € T, v, € n'(v}).
Subcase 2.2. v; € U; for some i € Z, {\{ip}. Then

n(vl) = UuT - UiUCiUCr-I 5

Note that

ig#i and ig#r-1.
Since

v, € U,-o,
hence

vy & UpuCiuC, .
Therefore

vy € UUT - U;uC;uC,
i.e. we have

vy € 7'(vy).
Therefore (3.20) holds.

34
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Case 3. vy € C,1. Then 7'(vy) = n(v;). Thus v; € 7(v,). So that v, € n(v)).
Since n(v) < n'(v) for all v € T, vy € n'(v]). Therefore (3.20) holds.
From the three cases considered, we see that 7’ satisfies property
(3.21) for all v{, v, € UUT if v; € n(v,) then v, € n(v)
From (3.19) and (3.21) we see that 7’ satisfies (i) and (ii) of Proposition 3.2.
Therefore there exists a graph G[7'] such that V(G[n']) = UUT and 7’ is its
neighborhood function of G[7'].
Next, we shall show (i).
Observe that 7 is a sub-neighborhood function of " and n(v) = '(V\U

for all v € 7, hence <> = G[7n']. Therefore, by Préposition 33, G[n] is a
subgraph of G[n']. Since G[#] has property P(r, n), thus G[n'] contains all the
complete subgraphs of order r of G[7], i.e. it contains at least » disjoint
complete subgraphs of order r.
Let uy € U. Then thereis iy € Z,; such that uy € Uj,- Thus

n(ug) = UUT = Uy UC; UC,...
Let v,, v3,...,v, be distinct points in 7'(#). Then

V2, V3,...,V, € UUT - U,-OUC,-OUC,._I.
Since

[{ili € Z.\io), U; < ') or C; < @) }| = |Z\ig, r-1}] = r-2
and

| { V2, V3 } =71,

then there exist vj, vi» € { v1,...,v,1 } and i € Z,_1\{iy} such that

Vj', Vj" = Ul
or

Vj', Vj" (= Ci
or

111002500
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le € Ul and Vj" € C,
or

vjr€ C;and vj» € U,
Case 1. vj, vj» € U; Then

T]'(le) S UUT—UIUC,UC g
so that Vj" & ﬂ'(Vj'). Thus ervj" Z X
Case 2. v;, vj» € C; Then

n'(vy) = n(vi)oU - U;.
By Proposition 3.6, v« 7(v;), so that v;» ¢ 7'(v;). Thus v;v» ¢ X.
Case 3. vy € U;and vj» € C;. Then

n'(vj) = UOT = UpoCiuC, .
Since

n’(le)mCi ~ @,
thus

v & ')

i.e. we have that
vivin & X.
Case 4. v;» € C; and vj» € U;. It can be shown in the same way as Case 3 that
vivin & X.
Thus for any r—1 points in n(ug) there are at least two points not joined by a
line. Hence u is not a point in any complete subgraphs of order . Therefore
any complete subgraphs of order r not contain any points in U. Thus for any
complete subgraphs of order r consist of r points contained in 7. Since <T> is
isomorphic to the graph in Proposition 3.6 and G[7] has n disjoint complete
subgraphs of order . Thus Gf#'] has » disjoint complete subgraphs of order .
Hence G[ 7] has the property P(r, n). Therefore (i) holds.
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Let ucU be arbitrary. Thus there exists i such that u € U; for somei € Z, ;.
Hence
deggy (@) = |7'(w)|
= 1 Ual ~UpCroCy s |
=m-—m;tm-2n
=m-m;+ (r-2)n.
Since m; = k or m; = k + 1, hence m; > k. Therefore we have
deggp,q(u) < m -k + (r-2)n,
forall u e U.

Note that the value m — k + (r—2)n is attained by degG[nr](u) for u € U,

hence
max{degg(v) |ve V(G\T } =m - k+ (r-2)n.

Therefore (ii) holds.
To show (iii), observe that
(322) 2 degGy(v) = D deggry () + D deggr ().
veUuT veU ; vel
Each sum on the right hand side of (3.22) can be calculated as follows.

Let 7 € Z,_;. Note that

I

D deggi) = X7 M)

veU; veU;

= > (m-m;+rn-2n)
veU;

= > .(m—m;+n(r-2))

velU;

= m; (m—m; + n(r-2))
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= mm; — m;2 + myn(r-2).

Therefore, we have

D deggr i) = 2 ( 27
velU ieZ,_yvelU;
= 2. (mmj-m?2+mpn(r-2))
iEZr_l
= m( myt+...+ m,_z)—mg—mlz—...—-mrz_2+(m0+...+m,_2)n(r—2)
= e = mg - ml2 - mrz_2 + mn(r-2)
= m2 - s(k+1)2- (r -1 - s)k2. + mn(r-2)
= m? - km - s(k+1) + mn(r-2).
Hence
(3.23) > degg(») = m* —km - s(k+1) + mn(r-2).
veU

Let i € Z,_1\{r-1}. Note that, by definition of 7 and #’,

Y deggipi®) = SO
veC veC;
= 2Un@r-2)+)+m-m;)
veG
=n((n@E-2)+1)+m-m;)
= n(n@E-2)+ 1) + mn - mn.
Therefore
2. deggi M= > D degg ™ )+ ZdegG[r/](V)
vel ieZ \{r-1}veC veC,_

S n(n@E-2D+ D) +mn-mn)+ Tlro)

ieZ,\{r-—‘l} VGC,_I
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(r=Dn( n(r-2)*1) + mn(r-1)-n(my+...+m, )y +n(n(r-2)+1)

mn( r-2) + rn( n( r-2)+1).
Hence

(3.24) Y. deggpy (V) = mn(r-2) + ra( n(r-2)+1).

vel

Then, by substituting values from (3.23) and (3.24) in (3.22), we have,

2 deggy(v) = 2 deggy)(v) + X deggy(¥)
veUuT velU vel

= i bt s(k+1) + mn(r-2) + mn(r-2) + rn(n(r-2)+1)

= m* - km- s(k+1) + 2mn(r-2) + rn(n(r-2)+1).

2. degGpm ()
Thus X(G)| = A £
_ m* ~km — s(k+1) + 2mn(r - 2) + r(n(r - 2)+1)
= .
Therefore (iii) holds. : O

Note that for any n, p, r, the graph G[7'] constructed according to our
proof of Proposition 3.8 is unique up to isomorphism. We shall refer to such a
graph as G(p, r, n). Note that the graph constructed in Proposition 3.6 is a
special case of G(p, r, n). It is G(rn, r, n). Therefore the graph constructed in
Appendix A is G(12, 3, 4). In Appendix B we give a construction of G(17, 3, 4)

as another examﬁle of G(p, r, n) in the general case.
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Lemma 3.9
Let n be a non-negative integer. Let m®*, r be any positive integers.

Let G be any graph of order m* + rn with property P(r, n). Let

r—I]’ s*=m* -k*'(r-1),

m=m*-1, k'= [—m—I] and s'=m’' - k'(r-1).
r—

If T is the set of all the points of the » disjoint complete subgraphs of order r
of G. Then

(i). min{degg(v) |v e V(G\T } sm'—k'+ (r - 2)n,
and  (ii). A'm’ + s'(kK'+1) + 2K’ + 1 = k*'m* + s*(k*+1).

Proof. Observe that T consists of exactly those points of G that are points of
the n disjoint subgraphs of G that are isomorphic to X,. Hence |7] = rn and
<T> has property P(r, n). Let

U= V(G)\T.
Thus |U] = m*. By definition of U, it can be seen that <U> is a subgraph of G
not containing any complete subgraphs of order r.

Pick a point v € U for which deg<;~(v) is minimum. We claim that

(3.25) deg<y>(v) <m' - k'.
To show this, we consider two cases:
Case 1. s* = 0. In this case we have

m'=m*-1=k*(r-1) -1 = (k*-1)(r-1) + (r-2).
But we also have

m'=k'(r-1) + s/,

where 0 < s’ <r. Hence, by the division algorithm, we have
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(3.26) k'=k"-1and s’ = r-2.
Thus

m* -k =m+1)-K+1)=m'-k"
Hence, by Proposition 2.5, we have

deg<pys(v) <m' - k'
Case 2. s* > 0. In this case we have

Kir-1)+s' =m'=m* - 1=k*(-1)+s" - 1.
Again, hence, by the division algorithm, we have
(3.27) k'=k* and s'=s"-1.
Thus

m* —k* - =40/ 1) = RN’ - K.
Hence, by Proposition 2.5, we have

deg<y>(v) <m' - k'
Since G and <7> have the property P(r, n) and G is a supergraph of <7>,
hence, by Proposition 3.4, there exist at most (r~2)n lines from v to points of
<T>. Thus
(3.28) |{u|lueT u e X(G)} <(2)n
Observe that

degg(v) =|{u|lucUuweX(G)}|+|{u|lueT, u e X(G) }|

=degcy>(V) +|{u|ueT uveXG)}
By applying (3.25) and (3.28) to the right hand side of the above equation, we _
have

degg(v) <m'-k'+ (r-2)n,

L6 (D holds.

To prove (ii) we consider 2 cases according to the values of s*.
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If s* =0, then, by (3.26),
k'm'+s'(k'+1) + 2k'+ 1 = kK'm'+ (r-2)(k'+1) + 2k’ + 1
= k'(m'+1) + (r-1)(k'+1)
= k'm* + (r-1)k*
= k'm* +m*
= m*(k'+1)
= m'k*
= *'m* - s*(k*+1).
If s*>0, then, by (3.27), we have
K'm' + S'(EH1) + 2K+ 1 = E'm’+ k' + (s =1)(k*1) + (k+1)

k'(m'+1) + s(k'+1)

Il

K*m* + s*(K*+1).

Therefore (ii) holds. O

Theorem 3.10

Let n be a non-negative integer. Let p, r be any positive integers such
that p >r>2and p >2rn. If G is a graph of order p with property P(r, n)
that has the maximum number of lines then

m? — km — S(k+1) +2mn(r - 2) + ro(n(r — 2)+1)

X@)l = .

where m=p —rn, k= [—nl-l-] and s=m — k(r-1).
r—

Proof Let n, r be fixed. Our proof will be by induction on p. By Proposition 3.6
and Proposition 3.7, the statement of the theorem holds for the case for p = rn

and p = 1+rn respectively. Let p* be any positive integer such that p* > 1+rn.
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Assume that the statement of the theorem holds for all p such that rn < p < p*.
Let G* be a graph of order p*, with property P(r, n) that has the maximum
number of lines. Let T be the set of all the points of the n disjoint complete
subgraphs of order  of G*. Let

U= V(G"\T.
Pick a point v € U for which deg<;~(v) is minimum. Let

V' = V(G)\{v}.
Letp’'=|V'|. Thus p'=p* - 1. Letm'=p’'—rn, k' = [m—ll and s'=m' - k'(r-1).
r—
By Proposition 3.8, there exists a graph G’ with point set }” such that
( 1). G’ has property P(r, n),

(1i). max{degg(w) |w € V\T'} =m' — k' + (r-2)n where T’ is the set

of all the points of the n disjoint complete subgraphs of order r of G’;

m'? — k'm’ —s'(k"+1) +2m’ n(r - 2) + rn(n(r — 2)+1)

(ii1). |1 X(GN)| = >
By the induction hypothesis, any graphs with p’ points that has the property P(r, n)

and has the maximum number of lines has

m'2 — k'm’ - s'(k"+1) +2m’ n(r - 2) + m(n(r - 2)+1)
2

lines. Hence G'is a graph of order p’ which has the maximum number of lines.
Note that the set V\T' # &, hence
{degg(w) |w e V\T"} # Q.
So it has a maximum element. Let # € V\T’ be such that
degg(u) = max{degg(w) | w € V\T" }.
Thus, by (ii), we have
(3.29) degg(u) =m' - k' + (r-2)n.



Let G* be the graph defined as follows.
. WGYH =G
XGH=XG)u {w|weG,uwe X(G)}.
Note that v is joined to those and only those points of G’ that are joined to u.
Hence
(3.30) deggu(v) = degg(u),
=m' -k tlr-inm.
The last equality follows from (3.29).

Note that the n complete subgraphs of order r of G’ are also complete
subgraphs of order r of G¥ which are disjoint. We claim that G¥ has no other
complete subgraphs of order r. Suppose the contrary. Let H be a complete
subgraph of order r of G* which is distinct from the n disjoint complete
subgraphs of order r.of G’. By construction of G* we see that v must be a
point of H. Let v,,...,v, be the other points of H. Since a point is joined to v if
and only if it is joined to ». Hence V,...,Vy are joined to u. So u together
vy,...,v, form complete subgraph of order 7 of G’. This is contrary to the fact
that G’ has exactly n disjoint complete subgraphs of order . Hence our
supposition must be wrong. Hence G* has the property P(r, n).

Observe that
IX(G¥)| = |1X(G*-v)| +|{w|we G’ uwe X(G) }|
= |X(G)| + degg#(v)

m”? —k'm' —(k'+1) +2m'n(r - 2) +rm(n(r —2) +1) -
2

m’'—k'+ (r-2)n

m'? —k'm' —s' (k' +1)+ 2m'n(r - 2) +m(n(r —2) + 1)+ 2m' -2k'+2(r - 2)n
= _
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_ (m'+1)’ —k'm' -5 (k' +1) - 2k' -1+ 2(m' + D)n(r - 2) + rn(n(r - 2) +1)
5 y

Let m*=p* —rn, k*= [m—l] and s* =m* - k*(r-1).
r—

By Lemma 3.9(ii), we have

kKm'+s'(k'+1) +2k'+1 = E*m* + s*(k*+1).
Therefore
2
w M —mk =5 (k1) 2m n(r - 2) + m(n(r —2)+1)
|X(G™)| = 3 :
Observe that
(3.31) IX(G™)| = |X(G*)| + degg+(v).

Since G*-v and G’ are graphs of order p’ that have the property P(r, n) and G’
is one with the maximum number of lines. Hence
(3.32) IX(G*-v)| = [X(G)).
By Lemma 3.9(i) and (3.30), we have
(3.33) degg*(v) Sm' = k' + (r-2)n = deggu(v).
Thus, by (3.31), (3.32) and (3.33), we have
IX(G¥)] < |IX(G")| + deggu(v).
By definition of X(G¥), we have
IX(GP)| = |IX(G")| + deggr(v).
Thus
IX(G™)| < 1X(G¥).
Note that both G* and G* are graphs of order p* that have property P(r,
n) and G* is such a graph with the maximum number of lines. Thus
IX(G™)| 2 |X(GH)|.

Therefore



IX(G™)|

IX(GH)|

2
m —mk —s (& +1y2m'n@ - 2) + min(r - 2)+1)

2
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