การเพิ่มอัตราการละลายของยาเม็ด เพรดนิโซโลน โดยวิธีการผสมอย่างมีระเบียบ

นาย ซัชวาร พงษ์บริบูรณ์

วิทยานิพนธ์นี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญา เภสัชศาสตรมห**าบัณฑิต** ภาควิชา เภสัชอุตสาหกรรม

บัณฑิตวิทยาลัย จุฬาลงกรณ์มหุาวิทยาลัย

พ.ศ. 2531

ลิขสิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย
ISBN 974-569-538-6

016929

IMPROVING DISSOLUTION RATE OF PREDNISOLONE TABLET BY ORDERED MIXING METHOD

Mr. Chaatchavan Pongboriboon

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science in Pharmacy

Department of Manufacturing Pharmacy

Graduate School

Chulalongkorn University

1988

ISBN 974-569-538-6

Thesis Title

Improving Dissolution Rate of Prednisolone

Tablet by Ordered Mixing Method

Ву

Mr. Chaatchavan Pongboriboon

Department

Manufacturing Pharmacy

Thesis Advisor

Associate Professor Parunee Thanomkiat

Thesis Co-Advisor

Assistant Professor Poj Kulvanich, Ph.D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree. Lavor Vajrashaya

Dean of Graduate School

(Professor Thavorn Vajrabhaya, Ph.D.)

Thesis Committe

Pridly Sulli- Chomina (Professor Captain Pisidhi Sudhi-Aroman RTN)

Pariner Thanomkiat (Associate Professor Parunee Thanomkiat)

(Assistant Professor Poj Kulvanich, Ph.D.)

(Assistant Professor Ubolthip Nimmannit, Ph.D.)

ช้ชวาร พงษ์บริบูรณ์ การเพิ่มอัตราการละลายของยาเม็ดเพรดนิโซโลน โดยวิธีการผสม อย่างมีระเบียบ (IMPROVING DISSOLUTION RATE OF PREDNISOLONE TABLET BY ORDERED MIXING METHOD) อ.ที่ปรึกษา รศ.ภารุณี ถนอมเกียรติและ ผศ.ดร.พจน์ กุลวานิช. 83 หน้า

ยาเม็ด เพรดนิโซโลนได้ เตรียมโดยวิธีการผสมอย่างมีระ เบียบ โดยใช้สาร เพิ่มปริมาณที่ต่อก
ได้โดยตรงชนิดต่าง ๆ ที่มีจำหน่ายในท้องตลาด สูตรตำรับที่ 1 ประกอบด้วยสาร เพิ่มปริมาณชนิด เดียว คือ
Starch 1500 สูตรตำรับที่ 2 และที่ 3 ประกอบด้วยสาร เพิ่มปริมาณสองชนิด คือ Elcema G. 250
กับ Starch 1500 และ Tablettose กับ Starch 1500 ตามลำดับในอัตราส่วน 77:20 สูตร
ตำรับทั้งสามนำมาทำการศึกษาถึงความสม่ำ เสมอของสารผสม เวลาในการผสม และการแยกของสาร
ผสมระหว่างการตอก เม็ด ยา เม็ดที่ได้นำมาศึกษาถึงความแข็ง เวลาในการแตกตัว และอัตราการละลาย
ของตัวยา จากนั้นนำมาทำการดทสอบความคงตัวทางด้านกายภาพ

จากการทดลองพบว่า สูตรตำรับที่ 2 ได้สารผสมที่มีความสม่ำ เสมอของตัวยาดีที่สุด (C.V.=1.69%) ในเวลา 20 นาที ส่วนสูตรตำรับที่ 3 และสูตรตำรับที่ 1 ได้สารผสมที่มีความสม่ำ เสมอ ของตัวยาดีที่สุด (C.V. = 1.0% และ C.V. = 3.10%) ในเวลา 30 นาที และ 60 นาที ตามลำดับ สูตรตำรับที่ 2 เกิดการแยกของสารผสมระหว่างการตอกมากกว่าอีกสองสูตรตำรับ สูตรตำรับที่ 3 ได้ ยา เม็ดที่มีการแตกตัว และอัตราการละลายของตัวยาที่เร็วที่สุด รองลงมา คือ สูตรตำรับที่ 2 ส่วนสูตร ตำรับที่ 1 ให้การแตกตัวที่ซ้าที่สุด และอัตราการละลายของตัวยาตำมาก

ยาเม็ดทั้งสามสูตรตำรับ นำมาบรรจุใส่กระปุกโพลิสตัยรีน และเก็บที่อุณหภูมิห้องเป็นเวลา

ภาควิชา	เภสัชอุตสาหกรรม	
สาขาวิชา	เภสัชอุตสาหกรรม	•
ปีการศึกษา.	2531	

SULT M SEPARA

ลายมือชื่ออาจารย์ที่ปรึกษา 🎢 กนอมเพียง

CHAATCHAVAN PONGBORIBOON: IMPROVING DISSOLUTION RATE OF PREDNISOLONE TABLET BY ORDERED MIXING METHOD. THESIS ADVISOR: ASSO. PROF.PARUNEE THANOMKIAT AND ASSIST. PROF. POJ. KULVANICH, 83 PP.

Prednisolone tablets were prepared by ordered mixing method with various commercially direct compression vehicles. Formulation 1 contained a single drug carrier, Starch 1500, formulation 2 and 3 contained two direct compression vehicles; Elcema G.250 and Starch 1500, and Tablettose and Starch 1500 respectively at ratio 77: 20. The three formulations were studied on homogeneity of mixture, mixing time and ordered unit segregation during compression. The tablets were studied on hardness, disintegration time and drug dissolution rate. The physical stability was also tested.

The results show that formulation 2 gave the highest degree of homogeneity of the ordered mixture (C.V.= 1.69%) at 20 minutes mixing time while formulation 3 and formulation 1 gave the highest degree of homogeneity of the ordered mixture (C.V.= 1.0% and C.V.=3.10%) at 30 minutes and 60 minutes respectively. Formulation 2 gave the higher degree of ordered unit segregation than the other two formulations. Tablets from formulation 3 exhibited the fastest disintegration time and drug dissolution rate followed by formulation 2. Formulation 1 gave the slowest disintegration time and unsatisfied drug dissolution rate.

Upon storage in polystyrene jar at room temperature for 12 weeks, the three formulations of prednisolone tablets were physically stable.

	เภสัชอุตสาหกรรม	ลายมือชื่อนิสิตรัฐวิช พอระโมริมา	
สาขาวิชา	เภสัชอุตสาหกรรม		1
ปีการศึกษา	2531	ลายมือชื่ออาจารย์ที่ปรึกษา 🛶 🎽 หนอน เพียง	4

ACKNOWLEDGEMENT

My sincere gratitude is expressed to my respectful advisor, Associate Professor Parunee Thanomkiat for her helpful advices, guidance and encouragement throughout this study. With her valuable advices, enable me to carry out my thesis sucessfully to which I am indebt.

I would like to expressed my sincere thanks to my co-advisor, Assistant Professor Dr.Pot Kulvanich for his helpful advices during my thesis work.

My thanks goes to Mr. Visit Hanputpakdikul,

Managing Director of Rama Production Company Limited for

supporting me the diluents in this study.

Sincere thank to all instructors and personnel in the Department of Manufacturing Pharmacy for their assistance.

I am indebt to the Graduate School, Chulalongkorn University for granting financial support to fulfill this investigations.

Finally, my warm thanks goes to my beloved parents for their support and understanding.

CONTENTS

		pag	ge
ABSTRACT	(Thai)	iv	
ABSTRACT	(English)	v	
	GEMENTS		
	ABLES		i i
	IGURES		
LISI OF F	IGURES		
CHAPTER			
I.	INTRODUCTION	1	
II.	MATERIALS AND METHODS	19	
III.	RESULTS	30	
IV.	DISCUSSION AND CONCLUSION	68	
REFERENCE	S	78	
VITAE		83	

LIST OF TABLES

TABLE		page
1.	Experimental formulations of three	
	differences mixing batches	23
2.	Particle size distribution data of Starch 1500	31
3.	Particle size distribution data of Elcema G.250	32
4.	Particle size distribution data of Tablettose	33
5.	Prednisolone content (%) in sample from ordered	
	mixture of prednisolone with Starch 1500	
	(formulation 1) at various mixing time	40
6.	Prednisolone content (%) in sample from ordered	
	mixture of prednisolone with Elcema G.250 and	
	Starch 1500 (77:20) (formulation 2) at	
	various mixing time	41
7.	Prednisolone content (%) in sample from ordered	
	mixture of prednisolone with Tablettose and	
	Starch 1500 (77:20) (formulation 3) at	
	various mixing time	42
8.	Content uniformity of prednisolone tablets,	
	using Starch 1500 as drug carrier	
	(formulation 1)	45
9.	Content uniformity of prednisolone tablets,	
	using Elcema G.250 and Starch 1500 as drug	
	consists (formulation 2)	46

TABLE	(cont.)	pag
10	Content uniformity of prednisolone tablets,	
10.	using Tablettose and Starch 1500 as drug	
		47
	carriers (formulation 3)	41
11.	Evaluation of prednisolone direct compressed	
	tablets for three differences formulations	49
12.	Dissolution rate of prednisolone tablets	
	prepared by direct compression containing	
	Starch 1500 as drug carrier (formulation 1)	51
13.	Dissolution rate of prednisolone tablets	
	prepared by direct compression containing	
	Elcema G.250 and Starch 1500 (77:20) as	
	drug carriers (formulation 2)	52
14.	Dissolution rate of prednisolone tablets	
	prepared by direct compression containing	
	Tablettose and Starch 1500 (77:20) as	
	drug carriers (formulation 3)	53
15.	Dissolution rate of prednisolone tablets	
	prepared by wet granulation containing	
	Elcema G.250 and Starch 1500 (77:20) as	
	drug carriers (formulation 2)	56
16.	Dissolution rate of prednisolone tablets	
	prepared by wet granulation containing	
	Tablettose and Starch 1500 (77:20) as	
	drug carriers (formulation 3)	57

TABLE	(cont.)	page
17.	Disintegration time of prednisolone direct	
	compressed tablet, after stored in polystyrene	
	jar at room temperature for a period of time	61
18.	Hardness of prednisolone direct compressed	
	tablets, after stored in polystyrene jar at	
	room temperature for a period of time	61
19.	Percent of prednisolone dissolved from tablets	
	prepared by direct compression containing	
A CONTRACTOR	Starch 1500 as drug carrier (formulation 1),	
	after stored in polystyrene jar at room	
	for a period of time	62
20.	Percent of prednisolone dissolved from tablets	
	prepared by direct compression containing	
	Elcema G.250 and Starch 1500 (77:20) as drug	
	carriers (formulation 2), after stored in	
	polystyrene jar at room temperature for a	
	period of time	63
21.	Percent of prednisolone dissolved from tablets	
	prepared by direct compression containing	
	Tablettose and Starch 1500 (77:20) as drug	
	carriers (formulation 3), after atored in	
	polystyrene jar at room temperature for a	
	period of time	64

LIST OF FIGURES

FIGURE		page
	a discriptional andored mixture	7
1.	Ordered unit of the adhesional ordered mixture	,
2.	Diagram showing drug particle adhered (a) in	
	a cleft on an excipient particle surface and	
	(b) on a smooth excipient surface	11
3.	Process involved when a tablet is exposed to	
	fluid water	13
4.	Standard curve plotting the concentration of	
	prednisolone in absolute methanol versus	
	absorbance at 242 nm	28
	and the concentration of	
5.	Standard curve plotting the concentration of	
	prednisolone in deaerated distilled water	
	versus absorbance at 242 nm	29
6.	Scanning electron micrograph of micronized	
	prednisolone (×750 magnification)	35
7.	Scanning electron micrograph of Starch 1500	
	(×750 magnification)	35
8.	Scanning electron micrograph of Elcema G.250	
	(×350 magnification)	37
9.	Scanning electron micrograph of Tablettose	
	(a) 500 magnification)	37

FICTIOE	(cont.)
FIGURE	(Conc.)

~	_	~	0
P	1	y	E

GURE	(conc.)	
10.	Scanning electron micrograph of Starch 1500	
	after mixed for 50 minutes with 2.5%	
	prednisolone (×750 magnification)	38
	2 Flares C 250	
11.	Scanning electron micrograph of Elcema G.250	
	after mixed for 20 minutes with 2.5%	
	prednisolone (×350 magnification)	38
	Scanning electron micrograph of Tablettose	
12	after mixed for 50 minutes with 2.5%	
	prednisolone (×500 magnification)	39
	prednisolone (x500 magnification, viv	
13.	Scanning electron micrograph of Tablettose	
	after mixed for 50 minutes with 2.5%	
	prednisolone (×750 magnification)	39
14.		
	with various drug carriers	43
15.	Dissolution rate profiles of prednisolone	
	tablets prepared by direct compression	
	containing various drug carriers	54
16.	Dissolution rate profiles of prednisolone	
	tablets perpared by wet granulation	
	containing various drug carriers	58
17	. Comparison of the dissolution rate profiles of	
	prednisolone tablets prepared by direct	
	compression and by wet granulation with	
	maniana drug carriers	59

1- T	CITTOE	(cont)
1. 1	GUKE	(cont.)

page

18.	Dissolution rate profiles of prednisolone
	tablets prepared by direct compression
	containing Starch 1500 as drug carrier
	(formulation 1), after stored at room
	temperature for a period of time
19.	Dissolution rate profiles of prednisolone
	tablets prepared by direct compression
	containing Elcema G.250 and Starch 1500 (77:20)
	as drug carriers (formulation 2), after stored
	at room temperature for a period of time 66
20.	Dissolution rate profiles of prednisolone
	tablets prepared by direct compression
	containing Tablettose and Starch 1500 (77:20)
	as drug carriers (formulation 3), after stored
	at room temperature for a period of time 67