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This thesis presents a new method to obtain multiple change-points. These change-points
are used in a Multiple Change-point AutoRegressive Moving Average (MARMA) model for a
fluctuated time series prediction. A change-point is captured by using a sample reduction strategy.
The statistical residual normality test is used to validate the change-point detection in our
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Literature Surveys

An AutoRegressive (AR) process is applied in a time series forecasting for many years,
for instance, the stock price prediction. Javier, et al. [1] used AutoRegressive Integrated Moving
Average (ARIMA) models to forecast the next-day electricity price in Spanish Market and
Californian Market. Nochai et al. [2] predicted the Thai oil prices by using ARIMA models and
suggested the order of the ARIMA model that yielded the small values of the Mean Absolute
Percentage Error (MAPE).

The AR model is a probabilistic model (Williams [3]). Its prediction capability comes
from a stationary time series assumption. A Threshold AutoRegressive (TAR) model, exhibited
by Tong [4], extends the capability of an AR model in a time series prediction. More specifically,
the TAR model has an advantage to predict a shifted time series. Tong proved that the TAR
process has flexibility in building the different AR models of each shifted regime. An initial
process of the TAR model starts with identifying a threshold variable; however, Tong did not
present an exact experimental procedure for the threshold identification. Tsay [5] introduced an
effective method to identify a threshold variable by using a simple linear regression technique.
Bermejo et al. [6] proposed a method to identify the threshold values and compared their results
with the results that were proposed by Tong [4] and Tsay [5]. Their experiments were examined
on the same dataset, the annual sunspot series and logged lynx data which were reported with
lower Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) values than Tong [4]

and Tsay [5].



Furthermore, TAR models were used to investigate a stock market movement. Dijk et al.
[7] proposed the discussion on the self-exciting TAR model for the Standard & Poor’s 500 Index
(S&P) prediction. Narayan [8] proposed the acceptance of a unit root in the TAR method to
predict the behavior of stock markets in USA.

However, TAR models encounter the difficulty to determine threshold variables (Tsay
[5]) and it has a limited prediction capability for some characteristics of a time series (Gibson
[9]). Hence, a method that combines two or more techniques was proposed as an alternative
model for predicting a volatile time series. This combined method is called a hybrid model. For
instance, Pai and Lin [10] presented their hybrid model, which was constructed from an ARIMA
model and a Support Vector Machines (SVMs) model, to forecast Taiwan Stock Exchange. Merh,
Saxena and Pardasani [11] simulated the daily open, close, high and low prices of Indian stock
market by using a hybrid model which includes three layers back propagation Artificial Neural
Network (ANN) and the ARIMA model. The conclusion of their research was that their hybrid
model outperformed the ARIMA model or ANN model alone. Areekul et al. [12] proposed a
short-term price forecasting in the deregulated market by using the model that was constructed
from the ARIMA and ANN model. Its result evaluated by the statistical measurement had a better
performance than the pure ARIMA or ANN model.

In Economics, the heteroskedasticity happens when a sub-population of a time series has
different variability from the others. The behavior of the heroskedasticity shows that the variance
of the prediction errors in an AR process is not a constant, but the ordinary least square (OLS) test
still holds for the parameter estimation. Consequently, the use of this AR model leads to the
wrong inferences according to the heteroskedasticity. An AutoRegressive Conditional
Heteroskedasticity (ARCH) model, popularized by Engle [13], was proposed for estimating the
heteroskedasticity. The studies of the ARCH were widely used in the stock market prediction, for
instance, Mahajan and Singh [14] analyzed the Generalized AutoRegressive Conditional
Heteroskedasticity (GARCH) model capability in prediction of the stock returns in India. Liu et
al. [15] investigated that the return distribution of the stock market had an influence on the

forecast accuracy by using two GARCH models. Even though the various methods of reducing



the prediction errors were introduced as mentioned above, the AR process still plays an important
role in the time series predictions. The ARIMA models, based on the AR process, are commonly
used in comparison with other models, see Table 1.1.

This thesis proposes a Multiple change-point AutoRegressive Moving Average
(MARMA) model. The method of the MARMA model requires a simple reduction strategy and
statistical technique. The sample reduction strategy is used to capture a change-point by the
residual normality test. If the residual series is not normally distributed, the initial point in the
time series will be removed until the residual series has normality or the number of samples is too
low. We define the first point that causes the residual distribution depart from normality, as the
change-point. The MARMA model can be used for predicting a volatile time series, such that the
time series shifted up or down by some unknown factors such as stock market circumstances.
This research compares the prediction accuracy of the ARIMA, TAR, GARCH and MARMA
models. The MARMA models are built for the stock prices of the specific ten indexes in Thai
Stock Exchange, in the year 2012 and then the prediction accuracy is compared to ARIMA, TAR
and GARCH models. The ten indices are ADVANC, AOT, BANPU, CPALL, DTAC, JAS,
KBANK, LOXLEY, PTT and STANLY. The MARMA model is also used for forecasting the
sunspot data. We compare the sunspot data result by MARMA model to the one by the TAR

model, proposed by Bermejo et al., [6]. This result is reported in Appendix A.

1.2 Research Objective

The goals of this research are to predict the next day closed prices of the ten indices in
Thai Stock Exchange by using the MARMA model and to compare the MARMA performance

with the ARIMA, TAR and Generalized ARCH.



1.3 Overview

We organize the thesis as follows. After this introduction chapter, in Chapter 11, we

provide the background knowledge and methodologies used in this thesis. In Chapter 111, we

present the results of using MARMA models. In chapter IV, we present the conclusion. The detail

on sunspot data prediction result is in the Appendix A, and the Appendix B shows R code

implementing in the MARMA model.

Tablel.1: The comparison of ARIMA models and other prediction models.

Publication Data M odel Criterion Criterion
Value
. . . SVM 1.1433
(a) Pai and Lin | Taiwan Stock Exchange , MAPE
[10] (2002) Hybrid model 0.7593
ARIMA 1.1494
(b) Hassan The daily stock price of | ANN-GA-HMM- 2 16429
Md.R., et al. Apple Computer Interpolation MAPE
[16] Inc.(2003) ARIMA 1.8009
SKSVR 45.686
Yeh C., etal.| DS-V ind in TAIEX
(c) YenC..eta NEga==t MKSVR RMSE | 45.634
[17] (2004)
ARIMA 45.421
(d) P. Areekul., | Australian national ARIMA-ANN MAPE 15.62946
et al. [12] electricity market (2006) | Seasonal ARIMA 16.06611

From Table 1.1, SVM, MAPE, GA, HMM, SKSVR, RMSE and MKSVR stand for Support
Vector Machine, Mean Average Percent Error, Genetic Algorithm, Hidden Markov Model,
Single-Kernel Support Vector Regression, Root Mean Square Errors and Multiple-Kernel Support

Vector Regression, respectively.



CHAPTER 11

BACKGROUND KNOWLEDGE AND METHODOLOGY

This chapter provides the background knowledge and methodologies that are used in this
study. It consists of four main sections. First, we introduce a method to reduce an in-sample series
to a stationary time series. The second section, we describe an estimation of AR parameters by
using Yule-Walker Equation. The method of an AR order determination is also included. The
third section, we describe a normality test for a residual series and the sample reduction strategy.

The last section, the prediction procedure of the MARMA model is explained.

2.1 Data Transformation and Stationary Validation

Lo and Mackinlay [18] proved that the stock market was predictable in some degree.
Their theory showed that the prices in the stock market were shifted by trends. Hence, some past
pattern series can be used for the future prediction. Their proposed equation is called the simple

volatility-based specification.

X(t)=p+ X (t—1)+¢, (2.1)

where X (t) is the price of a stock index at time t, y is an arbitrary drifted trend parameter, and

& 1is a random disturbance term.

Definition 2.1.1 A time series is said to be strictly stationary for t;,t,,...t, if the joint
distribution of X (t),...,.X (t,) is the same as the joint distribution of X (t; +7),....X (t, +7) for

integer T .



We denote {x[}fil as a time series. In Equation (2.1), it implies that the stock market
. . o0 . . . o0 .
time series {X‘}tzl is not stationary. The mean and variance of {X‘}tzl is changed by the trend
1 hence, the time series {x[}fil is transformed into the stationarity by decomposing p . For non-
seasonal time series, first-order differencing is usually sufficient to attain apparent stationarity

[19]. The first-order differencing formula is given as

V% =% — %_1, (2.2)

where X is the value of the time series at particular time t. Box and Jenkins [20] introduced to
difference a given non-seasonal time series until it becomes stationary. The d-order differencing

is required using the operation vY [19], where

d d-1 d-1
Vi%Xid =V %4d =V Xid-1- (23)

Definition 2.1.2 The process {Xt}toil is the differencing stationary process of order d, if it

satisfies V4 % = II(t) for all t where {H(t)}toC is a stationary process and d is a positive integer.

In the case of a time series has a seasonality component; Chatfield [19] introduced three

seasonal models.

Model A X(t)=m +S(t)+ &
Model B X (t)=mS(t)+¢
Model C X (t)=mS(t)e (2.4)

where m is the deseasonalized mean level at time t, S(t) is the seasonal effect at time t, and
& is the random error. The model A is an additive case that the variation of S(t) appears to be

roughly constant in size. The models B and C are multiplicative cases that the variations of S(t)



increase amplitude over time. In our experiment, the multiplicative or additive seasonal time
series are observed by a time series plot. Figure 2.1 shows the examples of the non-seasonal time
series, the additive seasonal time series [2] and the multiplicative seasonal time series,
respectively. The seasonal components are estimated by using the “decompose” function in R.
The function manages the seasonal figures by averaging, for each time unit, over all periods. The
period is determined by the time series plot. We remove the seasonal components from the time

series by subtracting for the additive case or dividing for the multiplicative case.
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Figure 2.1: The respective time series plots of (a) the non-seasonal case, (b) the additive

case and (c) the multiplicative case.

We identify the stationary time series by using the statistical unit root test.



Definition 2.1.3 The process {Xt}zl is a unit root process if it satisfies Vx =II(t), where
0 . .
{H (t)}tzl is a stationary process.

For a given time series, the null hypothesis states that “the time series is a unit root
process” against the alternative hypothesis as “the time series is not a unit root process”. The unit
root test is performed by the method of the Augmented Dickey Fuller (ADF) test. The ‘adf.test’
function on R programming is used to calculate the test statistic [22] of the ADF test. The null
hypothesis is rejected if the test statistic is less than the critical value at o = 0.05 significant level

and then the given time series is accepted the stationarity.

2.2 Parameter Estimation

Definition 2.2.1 A process {yt }til is said to be an AutoRegressive (AR) process of order p if

Ve =Y 1+t oY ot YpVp Tt 7, 2.5)

where 1)y,15,...40p 1s the set of the parameters and {zt}:il is a purely random process.

Definition 2.2.2 A time series, {zt}fil, is said to be a purely random process if it satisfies the
following properties:

(@) E[z]=o0,
(b) og is a constant and

(¢c) Cov(z,z,k)=0,wheret>k, kK=+1,£2, ...

The residual is the difference between the real data y at time t and the predicted value

Vs i.e.,
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%z =Y —%- (2.6)

Definition 2.2.3 Suppose that {Zt}zl is a purely random process with a mean zero and constant
variance a%. A process {Qt }til is said to be a moving average process of order q if

QY =z+05z 1+...+B4%_q- 2.7

The Yule-Walker Equation in [19] is used for the parameter estimations of the in-sample

series, {y; }::1. The equation is

Ry=r, 2.8)
1 n Mp-1
n 1 O ) S T
where R= , W _(wl, Yo, ...,wp),and r _<rl, ry, ...,rp) .
n
1 fp—2 - 1

The values of r;, i €{1,...,p} , is calculated by

j31un; 2.9)

— (yt*)_/)(yHi*)_/) ! _\2 .
where G = Z , and ¢y = Z(yt - y) . The order of an AR model is
n
t=1 t=1

determined by Akaike Information Criterion (AIC) value, [19]. We can automatically calculate
from the AIC function providing in R program. The order of an AR model is selected from the
value p that gives the smallest value of AIC.

In the AR process, a very small number of time series data is used to build an AR model

may not effective because the AR parameter calculation is based on the mean of data, see

Equation (2.9). We set the smallest number of in-sample series for the AR process as U =20.
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2.3 Residual Normality Test and Sample Reduction Strategy

From Definition 2.2.1, the prediction errors are from the AR process, whose residual
values have a constant mean and variance. The residual distribution is taken into the consideration

by using the statistical normality test.

Definition 2.3.1 Let {z},", be a time series random variable. Then, {7} ~, has a normality if it

is normally distributed.

Suppose that ¥, is the predicted values of y; by using the AR model of the order p and
Zpi1,2pi 2002y are  the in-sample = prediction errors, where z =Yy —Y% for all
te {p+1, p+ 2,...n} .We use the Shapiro-Wilk test [23] (the statistical normality test) to detect

the normal distribution of a residual series, {Zt}fil using its sample {z }tn: D1’ The test statistics

of the Shapiro-Wilk test is calculated by

wo B (2.10)
¢

2
>

& is defined as the order statistics of z, § =7, where i€{1,2,..n—p} so that

& <63...<6p_p - The value of [ is estimated by

5= aiald 4. @

where 7 is the number of residuals,  =n— p. The value of k is calculated by k :g when the
value of 7 is the even number, or k = %4 when the value of 7 is the odd number. The values

k
of {a,]_i +1}i:1 are the normalized coefficients that were proposed by Sarhan and Greenberg [24]

for 7 <20 and Royston, [25] and [26], for 1 > 20. The value of ( is calculated by the formula,
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2
n -
=30 a7 (2.12)
— . n
where Z is the mean of {7 },_ o1
To show the calculation of the test statistic, suppose a residual series {Zt}tp:p7+1 is

{7,2,1,5,3,6,9 , namely z,,,1=7,2,,,=2,2p,3=12p,4= 525,5= 32,,6= € and
z,,7 =9. The test statistic is provided by

() ordering {zt}tpj;+1 to obtain & =1, 6, =2, 63=3,6,= 5,65= 6,6g= i and

67 =9,
(ii) calculating 5, from [23] a; =0.6233,a5 = 0.3031a; = 0.1404, = 0.0/, thus
$=0.6233 9- 1+ 0.3031 # 2= 0.14046 B) =0 6.9 and

7 2 :
Py (z —Z) =49.428¢ and then w = 6.9222 = 0.140C.
t=p+1 49.4285

(iii) estimating ¢, ¢ = Z
The null hypothesis of the Shapiro-Wilk test is that the prediction residuals are normally
distributed. We determine the null hypothesis acceptance at 0.05 significance level. In the case
when the null hypothesis is rejected, we propose a new method called the sample reduction
strategy. The sample reduction strategy operates on the time series to detect the series with

normality residual.

Definition 2.3.2 Let {y, }Zl be a time series and ¥, be the predicted value that is estimated by
AR model of the order p, ¥ =y q+...+ VpYi—p> where Y1, ¥,.. Y are the parameters;
te{p+1Lp+2.}. 7 is the residual value at time t , where z =y, — ;. {yt}l(:d is said to be a
cluster in the time series {y }til if {zt}l(: dip is normally distributed and the series

{z }l‘: dg+ o is not normally distributed for all positive integers g and f that g+ f >0.

We perform a sample reduction strategy to search for a cluster in time series, see Figure

2.2-2.5 which we repeatedly remove an initial point of the time series until the cluster is found or
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not enough sample points to test. The AR model is rebuilt for every recursion; i.e. we keep
removing the first point of a current set of the time series whose residuals fail the Shapiro-Wilk
test, until we obtain the first cluster whose residuals are normality or not enough samples is left.

In the case that we follow the method of removing the first point recursively, until we
have only the last point but the Shapiro-Wilk test still fail to detect normality; we define this in-
sample series to be in a border.

After identifying a border, we need to remove the last point of the in-sample series. It
forces us to have a new considered interval which is one datum smaller than the old one. We redo
the process of reduction strategy again; until we can obtain the next cluster, see Figure 2.6-2.8.

We cluster time series by using the property of the residual normality, and then we
consider the time series in any two consecutive clusters having no border in order to indicate the
point that is called a change-point. Tsay [5] proposed the method for testing the nonlinearity in
time series as in [27]. His proposed method is used to identify whether a linear AR model or a
nonlinear model is better in describing the time series. We use the method of Tsay [5] to examine
our two consecutive clusters that there is no border between both clusters. If the time series from
both clusters cannot be modeled by AR model while the time series from each cluster can
modeled separately by two AR models, and then the last point in the time series of the previous
cluster is called a change-point. We exhibit step by step to identify an AR( P ) model in the given
time series in the example 2.3.1.

The Algorithm 1 presents the procedure of the sample reduction strategy, clustering time

series and change-point identification in a finite time series {Yt }tzl'
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Algorithm 1:
N := the number of all in-sample data.
d=1i=0,j =0 andk:=n.
D:={y }L g
u=20;
# Define q as the clusters of the order i,
# cp; as the time index of the change-point of order i
# b as the time index of the border of order j.
# O as the time series in the cluster i .

# U as the time indices, where

# 00,00y as the parameters of an AR model that are generated by
the Yule-Walker equation. p as the order of an AR model that is
evaluated by using AIC value.
# D as an in-sample time series
# z as a residual.
O:={} CP:={}B:=¢} T:={}
#Step 1: (AR Model Construction)
D ¢={Yt}f:d
# Build the AR( p) model from D, generate {1,v5,...4pp and p
forall te{d+p,d+p+1..k}, %=t 1+Ua¥% 2+ -+Vp¥p
and z =Y — Y .
# Step 2: (Residual Normality Test and Stationarity Test)
# Examine {z }tk: a4 p Using the Shapiro-Wilk test and examine { y; }l(: d
# using the ADF test at 0.05 significance level. There are two possible cases.

# Case I: (New Cluster Found)

if
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{the Shapiro-Wilk test accepts the null hypothesis and the ADF test
rejects the null hypothesis)
then
#update i
{i=i+1, q ={Yg,Yg41,-Yk | and O:=0U{q}
If d =1 then stop the algorithm.
If d=1 then
#add the elements to the set of the change-points,
cp :=d—1, CP:=CPU{cp}
#and update k,
k=d-1,
#Hand update d,
d=1.
If K—d <u then go to Step 4.
If k—d >u then recur Step 1.}
Else,
# Case II: (Non-normality and/or Non-stationarity, and then Removing Initial
Point)
{d:=d+1.
If kK—d >u, then the algorithm recurs Step 1.
If{k—d<u},
then
#(Border Identification)
{i=]+L bj =k B:=BU{bj} d=1andk:=k-1,
If K—d <u then go to Step 4.

If k—d >u then go to Step 1.
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/

#Step4.: # After all clusters in the finite time series, {Yt }tn:1 are determined, we identify
the change-point by examining the time series in two consecutive clusters
whether the series is able to model by AR model.

Set H: time series is able to be modeled by AR model.
# r:=running time of ‘for’ looping function
for (rin 1) {
if{cp, €0 V...vep, €0}
then {
[a]:=examine H,in the time series O3,
[b]:= examine H, in the time series o
[c]:=examine H, in the gathering time series O,_; and O, .
If [a] accepts H,and [b] accepts H, but [c] rejects H, we do
not delete cp, from CP.
Otherwise, delete cp, from CP.
/
} End.
Remarks:
(@) If {1,2,..n}€0, {y, }::lwill be used in the prediction process,
(b) if O=¢, the MARMA model is unable to use,

(c) if ne B, the MARMA model is unable to use.
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Figure 2.2: Removing the first point when the residual is not normally distributed.

Figure 2.2 shows the sample reduction strategy to reduce the in-sample series of STANLY index
after the series is decomposed a trend by differencing method. We remove points for achieving
the first cluster (see Figure 2.2), which is the same as our new considered interval in Figure 2.3.
We continue using Shapiro-Wilk test to remove points until we got our second cluster as in Figure

2.4.
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Figure 2.3: The first (normal distributed residuals) cluster after performing the recursion process.



18

STANLY

15

Last Cluster

10

- New Cluster

New Considered Interval N l h
or) allil I
\ |

All removed points for achieving the 2" cluster

Second Differencing
A
A4
lanuns

-10

5
L
LR s,

-15

S mwsssmsmsmssmEsmEEnEE

=3

0 100 200 300 400

o

600

Time Series23-06-2010to 12-12-2012

Figure 2.4: The example of searching the clusters in time series.

We continue the process until we can divide our in-sample series into clusters as in
Figure 2.5. The time series of STANLY index has five clusters that each consecutive cluster has a
successive time index. Even though we always obtain the 1" cluster at the last partition of time
index in the in-sample data, we rename the clusters by running the cluster number from the

smallest to the largest time index, as in Figure 2.5.
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Figure 2.5: Clusters for STANLY in-sample data.
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We use the in-sample time series of daily closing prices of DTAC index to demonstrate
the border detection. The DTAC in-sample dataset (after we decompose a trend) is provided in
Figure 2.6. We apply the same procedure as the one for STANLY index to obtain the 1"cluster of
DTAC data series, as in Figure 2.7. Continue the process with the new considered interval series,

it turns out that all points are removed after testing by the Shapiro-Wilk test.
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Time Series:23-06-2010 to 12-12-2012

Figure 2.6: The DTAC in-sample time series (after decompose a trend).
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Figure 2.7: The first cluster of DTAC index prices.
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Figure 2.8: The second cluster obtained after detecting the border.

After identifying a border, we redo the process of the reduction strategy again; until we
can obtain the next cluster, see Figure 2.8.

We show the example to examine the time series whether the series can be modeled by
AR model in the example 2.3.1.

Suppose that {yt },i qand {% }l(=cp+1 are samples of the time series in two consecutive
clusters where 1< d <cp<k. We examine {y }cp { }k and {y }k on the nonlineari

SAas0p=Kk. Ut=d > Wtit=cp11 tt=d ty
by using Tsay [5] method. The concept is based on the ordered AR [27]. If the distribution in
(WP and {y} be modeled by AR model but {y; }* t be modeled by AR
Yeri_g and (M fi_gpyq can be modeled by model but |}, , cannot be modeled by

model, then the change-point is indicated at the point, yg, .

Example 2.3.1 Let {y }tljl ={1,05,2.5,7.5,12.5,3.5,1.2,4.5,5.6,6.7,9.0,10.0/11b8 the time
series in a cluster. Suppose that its order of the maximum partial autocorrelation function value is
3;ie.,p=3.

Tsay method starts with reordering the given time series into a non-decreasing order as
follows

{0.5,1,1.2,2.5,3.5,4.5,556,6.7,7.5,9.0,10.0,11.0/12.5 .
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Let [t] be the original time index of the reordered series. Table 2.1 shows the non-decreasing

order of {1,0.5,2.5,7.5,12.5,3.5,1.2,4.5,5.6,6.9,20.0,11.0and its corresponding time index [t].

Table 2.1: Non-decreasing order of the time series of the example 2.3.1 at its original time index

[t

Non-decreasing

t Vi ]

order
1 1 2 0.5
2 0.5 1 1
3 2.5 7 1.2
4 7.5 3 2.5
5 12.5 6 3.5
6 35 8 4.5
7 1.2 9 5.6
8 4.5 10 6.7
9 5.6 4 7.5
10 6.7 11 9.0
11 9.0 12 10.0
12 10.0 13 11.0
13 11.0 5 12.5

Next, the matrix of regressors are built with the order p=3, (the details are in the shaded

columns of Table 2.2).
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Table 2.2: The regressors of the order P =3 for the time series of Example 2.3.1.

Regressors

t Vi [t Vi

Vi Yia1 Vo2
3 2.5 7 1.2 1.2 3.5 12.5
4 7.5 3 2.5 2.5 0.5 1
5 12.5 6 35 3.5 12.5 7.5
6 3.5 8 4.5 4.5 1.2 3.5
7 1.2 9 5.6 5.6 4.5 1.2
8 4.5 10 6.7 6.7 5.6 4.5
9 5.6 4 7.5 7.5 2.5 0.5
10 6.7 11 9.0 9.0 6.7 5.6
11 9.0 12 10.0 10.0 9.0 6.7
12 10.0 5 12.5 12.5 7.5 2.5

The parameters, 14,1, and ¢y, are generated from the ordinary least squares method that is

provided by the “Im” function on R programming. The predicted values, 9[t] 11 1s calculated by
Yitjer = Y] + V2V 2+ PaY o for all [t].
Then, the prediction errors, 8- are calculated by 8 =Yt~ §/M for all M The test is performed

on the prediction errors. We consider the regression on Equation (2.13).
e=YO+e, (2.13)

where € is the vector of the prediction errors, Y is the matrix of regressors, © is the parameters
vector, where © = [wl,wz,wgf, and € is the error vector. The null hypothesis is accepted when
the all values of © are close to zero. We use the F test in R programming for the hypothesis

testing. If the null hypothesis is accepted, the prediction errors are independently identically
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distributed and orthogonality to the regressors, and then a linear model will not handle the time

series.

We apply Algorithm 1 to DTAC data. The results on clusters, borders and change-points

are presented in figure 2.9.
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Figure 2.9: Change-points, borders, and clusters for DTAC index prices from 23/06/2010 to

01/11/2012.
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From Figure 2.9, the first graph shows that the raw data with the locations of the change-
points and the borders. The second graph shows the change-points, borders and clusters of in-

sample time series. The voids between lines indicate the borders.

2.4 Prediction Procedure

In the MARMA model, the series from the last cluster that is generated by the method in

Section 2.3 is used for the in-sample time series. Then, the MARMA equation is defined as

Yni1=tVa¥n + VoY 1+ -+ ¥pYn pia, (2.14)

where ¥y, ¥, ..., 1y are AR( P) parameters, generated by Yule-Walker Equation. The order p
is determined by AIC values. In order to estimate the error part, Z,,1, we use the strategy
suggested by Elder [28] and the procedure of Zero Lag Exponential Moving Average (ZLEMA)
suggested by Chen et al. [29]. Elder suggested that the moving average will be use to smooth
three nearest closing prices, and the ZLEMA method is a weighted smoothing method that takes
more weight to the current data. The method of ZLEMA is adapted from Exponential Moving
Average, that the procedure is shown by Algorithm 2.
Algorithm 2

Define: P :=Numeric Series; # P[t] is a price at time t

Period:=NumericSimple;

t=1; #tis the order in series P

ZLEMA:=Variable;

F=2/(Period+1); lag=(Period-1)/2
while(t<=length(P)){

ift==D{



25

ZLEMA[t] =P[t];

Jelsef
ZLEMA[t]=F*(2*P[t]-P[lag])+(1-F) *ZLEMA[t-1];
/
t=t+1
/
End.

A MARMA model for prediction is defined by the equation,

9n+1 =UYp +oo ¢pYn~ p+1 +041 (2.15)

where (2,7 is the moving average process of the order q = 3.

Q1= BoZni1+ B+ 8201t BFn- 2 (2.16)

where Sy, 01,..., O3 are the parameters, that Gy =1, the values of (31, 5, and (33 are estimated by

the Algorithm 2.



CHAPTER III

EXPERIMENTS AND RESULTS OF USING MARMA MODELS

3.1 Dataset

The closing ten index prices of Thai Stock Exchange used as the in-sample and out-of-sample

dataset are provided in Table 3.1.

Table 3.1: The names and companies of the ten indices.

Index Name company

ADVANC ADVANC Info Service Public Company Limited
AOT Airports of Thailand Public Company Limited
BANPU BANPU Public Company Limited

CPALL CP All public company Limited

DTAC Total Access Communication Public Company Limited
JAS Jasmine International Public Company Limited
KBANK Kasikorn Bank Public Company Limited
LOXLEY LOXLEY Public Company Limited

PTT PTT Public Company Limited

STANLY Thai Stanley Eletric Public Company Limited
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Table 3.2: The number of the in-sample and out-of-sample dataset of the ten indices.

Names of No. of In-sample No. of Out-of-sample
Indexes Dataset Dataset
AOT 560 26
BANPU 560 26
DTAC 560 26
ADVANC 562 26
JAS 560 26
STANLY 559 26
CPALL 559 26
KBANK 560 26
PTT 559 26
LOXLEY 560 26

The in-sample dataset of each index is collected between June 23, 2010 and November 1,
2012. The out-of-sample dataset is extracted from November 5, 2012 to December 12, 2012.
Table 3.2 lists the exact number of in-sample and out-of-sample data of these specific ten indexes.
Note that these ten time series dataset was skipped the dates with no trading activities, for

instance, national holidays.

3.2 Tools

This thesis uses R programming version 1386 2.15.1, which is an open source, that can be
able to download from http://cran.r-project.org. The R programming builds an AR model with the
function, ‘ar()’ and generates the residuals by ‘ar()$resid’. The function ‘shapiro.test()’ is used for
detecting the residual normality. The stationarity is detected by the function ‘adf.test()’. The

prediction error is smooth by the moving average function, ‘ZLEMA()’.



28

3.3 Procedures and Results

We first provide the clusters of the in-sample time series of ten indices using the
Algorithm 1 in Chapter II. We predict the next day of index prices by using the selected in-sample
dataset from the last cluster. The code of the MARMA model is shown in Appendix B.

The prediction accuracy of the next day price of ten indices for 26 days is examined by
the Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute Percentage
Error (MAPE) and Mean Square Error (MSE). We provide the ARIMA, TAR and Generalized
ARCH model as the MARMA model’s competitors. ARIMA, TAR and GARCH models are
generated by using the same in-sample and out-of-sample time series as in the MARMA model.
The functions, ‘auto.arima()’, ‘setar()’ and ‘garchFit()’ are used to generate the ARIMA, TAR
and GARCH model, respectively. We input the order m from m=1, 2, 3, 4 and 5 of TAR model
then select the order that yields the best fit TAR model. The GARCH model is provided in R by
using function ‘garchFit()’ without any external input.

The out-of-sample prediction errors of the MARMA model are compared to the
prediction errors of ARIMA, TAR and GARCH models that are measured by using MAE, RMSE,

MAPE and MSE, see more details in Table 3.3 (a) — (j).
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Table 3.3 : The prediction errors of four models, MARMA, ARIMA, TAR and GARCH in the
out-of-sample series using MAE, RMSE, MAPE and MSE in ten indices, (a) AOT, (b) BANPU,

(c) DTAC, (d) ADVANC, (e) JAS, (f) STANLY, (g) CPALL, (h) KBANK, (i) PTT and (j)

LOXLEY.
(a)
Measurements MARMA ARIMA TAR GARCH
MAE 0.8556 1.1160 1.0656 1.3997
AOT RMSE 1.0242 1.4699 1.4387 1.6885
MAPE 0.9614 1.2558 1.2029 1.5841
MSE 1.0911 2.2471 2.1502 2.9653
(b)
Measurements MARMA ARIMA TAR GARCH
MAE 3.6819 4.1769 4.1376 4.2030
BANPU RMSE 5.6179 6.5844 6.6700 6.6343
MAPE 0.9703 1.1051 1.0933 1.1104
MSE 32.8239 45.0890 46.2697 45.774
(c)
Measurements MARMA ARIMA TAR GARCH
MAE 0.5283 0.7669 0.7896 0.7738
DTAC RMSE 0.6980 0.9592 0.9604 0.9650
MAPE 0.6261 0.9019 0.9243 0.9119
MSE 0.5067 0.9569 0.9593 0.9685
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(d)
Measurements MARMA ARIMA TAR GARCH
MAE 2.3380 3.1128 2.7908 2.9513
ADVANC | RMSE 2.8557 3.8434 3.8742 3.7760
MAPE 1.1545 1.5428 1.3860 1.4674
MSE 8.4813 15.3629 15.6100 14.8287
(e)
Measurements MARMA ARIMA TAR GARCH
MAE 0.0608 0.0781 0.0722 0.0819
JAS RMSE 0.0859 0.1081 0.1043 0.1113
MAPE 1.2226 1.5578 1.4483 1.6372
MSE 0.0076 0.0121 0.0113 0.0128
6y
Measurements MARMA ARIMA TAR GARCH
MAE 1.0954 1.7877 1.5177 1.6682
STANLEY | RMSE 1.2509 2.4042 2.2647 2.3685
MAPE 0.5160 0.8376 0.7122 0.7824
MSE 1.6273 6.0114 5.3342 5.8345
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(2
Measurements MARMA ARIMA TAR GARCH
MAE 0.4087 0.4774 0.4503 0.4709
CPALL RMSE 0.4922 0.5888 0.5630 0.5849
MAPE 1.0148 1.1843 1.1177 1.1667
MSE 0.2519 0.3606 0.3296 0.3558
(h)
Measurements MARMA ARIMA TAR GARCH
MAE 1.6089 1.7813 1.7951 1.8662
KBANK RMSE 2.1336 2.4807 2.4094 2.4232
MAPE 0.8715 0.9632 0.9721 1.0104
MSE 4.7344 6.4005 6.0378 6.1070
@
Measurements MARMA ARIMA TAR GARCH
MAE 1.3045 1.8469 1.7392 1.8717
PTT RMSE 1.7218 2.2465 2.2403 2.2695
MAPE 0.4089 0.5783 0.5461 0.5867
MSE 3.0833 5.2486 5.2197 5.3568
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V)
Measurements MARMA ARIMA TAR GARCH
MAE 0.0956 0.1124 0.1135 0.1152
LOXLEY | RMSE 0.1152 0.1472 0.1513 0.1468
MAPE 1.8853 2.2049 2.2166 2.2546
MSE 0.0138 0.0225 0.0238 0.0224

Next, we provide the figures of the cluster regions of each index in the time series plots. The bars

in the time series plots represent the borders.
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Figure 3.1: The cluster region plots of the specific ten indices (a)-(j).
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CHAPTER IV

CONCLUSION

A Multiple change-point AutoRegressive Moving Average model is a prediction model
based on a linear AutoRegressive model but the MARMA procedure is more flexible than an AR
model. The AR process requires a normality of residuals throughout an in-sample time series.
However, a MARMA model uses a part of whole in-sample series, that the residual has a normal
distribution to predict the out-of-sample values. Moreover, in comparison with other models, a
MARMA model is more realistic in a various kind of time series. For instance, the GARCH
procedure has a misleading estimation when a time series is affected by an unknown short period
factor which is required the use of the exogenous variable while the MARMA procedure does not
require any external variable.

The comparison of the MARMA, ARIMA, TAR and GARCH models in Chapter III
shows that the MARMA model consistently outperformed the other competitor models in the
prediction of the specific ten indexes. In addition, we investigate to use the MARMA model in the
prediction of a periodic time series. The sunspot data has a seasonal period in every 11 years. We
predict the sunspot data during the years 1920 to 2008. We obtain that the prediction accuracy
measurement showed a smaller Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE) values than the TAR model that was presented by Bermejo, Pena and Scanchez [6],
more detail in Appendix A.

However, the MARMA model is unable to use when the out-of-sample series is not
successive to the in-sample series. Hence, if the border is indicated at the previous point of the

out-of-sample dataset in time series, the MARMA model will not be applicable.
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APPENDIX A: SUNSPOT DATA PREDICTION

We use the MARMA model to predict the annual sunspot data in the year 1920-2008 by
using the in-sample series in the year 1700-1919, and then we compare the results with Tong,
Tsay and Miguel [2] that they predicted the sunspot data by using the same time series data, see

more details in Table 5.1.

Measurements | MARMA Tong Tsay Miguel (2011)

(1983) (1989)

1

h=1 h=2 | h=1 h=2 | h=1 h=2

MAE 09.25 12.31 12.42 | 11.74 | 11.84 | 11.37 11.47

RMSE 12.16 16.59 16.69 | 15.52 | 15.61 | 15.33 15.42

Table 5.1: The prediction errors of the MARMA model and the TAR models that are proposed by

Tong, Tsay and Miguel, respectively.

In Table 5.1, A stands for the number of horizontal lines for the regime regions in TAR model.



APPENDIX B: MARMA MODEL CODE

# Functions and Variables
# Code: MARMA model for ADVANC index prices
# insample Year 2010 to 2012

library("nlme")
library("Rcmdr")
library("Imtest")
library("tseries")
require(graphics)
library("nortest")
library("el071")
library("rpart”)
library("Hmisc")
library("fBasics")
library("TTR")
library("fUnitRoots")
library("tsDyn")
library("FinTS")
data<-seq()
data<-adv[,-1]
data<-rev(data)
data<-data[-c(1:2)]
plot.ts(data,col="blue",main="ADVANCE index",type="1",xlab="Days: 23-06-2010 to
12-12-2012",ylab="Prices")
windows()
tdat<-diff(data)
realdat<-data

plot(tdat,col="blue" main="ADVANCE" type="1",xlab="Time Series:23-06-2010 to 12-



12-2012",ylab="First Differencing")
sam<-559

outsam<-26

keep.s<-seq()

run=1

pre.end<-seq()

p-va<-seq()

res.end<-seq()

mod.end<-seq()

cor.end<-seq()

cp.all<-list()

pre.all<-list()

res.all<-list()

best.mod<-seq()

cor.all<-list()

min.res<-seq()

cor<-list()

marma.lag<-seq()

s=3

while(run<=outsam){

datcheck<-tdat[1:(sam+run-1)]

aa=1

bb=length(datcheck)

u=1

cpf<-seq()

cpb<-seq()

while(length(datcheck)>=20){

dat<-seq()
dat<-ar(datcheck)$resid[-c(1:ar(datcheck)$order)]
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#dat<-datcheck
aa<-1
g=1
kptrend<-kpss.test(datcheck,null="Trend")
kplevel<-kpss.test(datcheck,null="Level")
adfuller<-adftest(datcheck)
ander<-ad.test(datcheck)
shap<-shapiro.test(dat)

test.st<-seq()
if(adfuller$p.value[1]<0.05){

test.st[g]<-1

2y Al

}

if(shap[[2]]>0.05){
test.st[g]<-1
e

/

if(sum(test.st)!=2){
ao<-aa
while(length(ao:bb)>20){
aa=aa+l1
ao<-aa
datcheck<-seq()
datcheck<-tdat[aa:bb]
dat<-ar(datcheck)$resid[-c(1:ar(datcheck)Sorder)]
#Hdat<-seq()
#dat<-datcheck
g=1
kptrend<-kpss.test(datcheck,null="Trend")

kplevel<-kpss.test(datcheck,null="Level")

51



adfuller<-adftest(datcheck)
ander<-ad.test(datcheck)
shap<-shapiro.test(dat)
test.st<-seq()
iftadfuller$p.value[1]<0.05){
test.st[g]<-1
g=g+l
}
if(shap[[2]]>0.05){
test.st[g]<-1
g=g+tl
if(sum(test.st)==2){

cpffuj<-aa
cpb[u]<-bb
u=u+l
ao<-bb
/
/
if(length(aa:bb)<=20){
aa<-bb-1
/
Jelse{
cpffuj<-aa
cpb[u]<-bb
u=u+1
/

bb<-aa

datcheck<-tdat[1:bb]
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cpf<-rev(cpf)
cpb<-rev(cpb)
#kd<-seq()
#bb<-seq()
#m=1

#or(i in 1:length(cpf)){

# kd[i]<-cpb[i]-cpfli]+1

# iftkd[i]<10){

# bbfm]<-i
# m=m-+1
# /

#

#epf<-cpf[-c(bb)]

#epb<-cpb[-c(bb)]
ep.allf[run]]<-c(cpf.cpb)
Hif(((220+run-1)-cpb[length(cpb)])>30){
tepfl (length(cpf)+1)] <-cpfflength(cpf)]+ 1
#icpb[(length(cpb)+1)] <-(220+run-1-s)

#

keep.s[run]<-s

# TRAINING...SET
datcheck<-tdat[1:(sam+run-s)]

pred.train<-list()

res.train<-list()

data.train<-list()

datalast<-seq()

datalast<-tdat[(cpf](length(cpf)]): (sam+run-1)]

# Moving Average ----------------

res.ma<-seq()

pre.ma<-seq()



parameter<-list()
m<-ar(datalast)
marma.lag[run]<-m$order
for(iin 1:s){

[<-m$order

parameter[[i]]<-rev(m3ar)

pre.mafi]<-realdat[(sam+run-s+i)]+sum((parameter[[1]]) *(tdat[(sam+run-s+i-

1-1+1):(sam+run-s+i-1)]))
res.mafi]<-pre.mafi]-realdat[(sam~+run-s+i+1)]

/

par.end<-seq()

moddy<-ar(datalast)

ord<-moddy$order

par.end<-rev(moddy$ar)

#pre.end[run]<-(realdat[(sam+run)]+sum((par.end)*(tdat[ (sam~+run-1-

(ord)+1):(sam~+run-1)])))-mean(res.ma)

pre.end[run]<-(realdat[(sam+run)]+sum((par.end)*(tdat[(sam~+run-1-

(ord)+1):(sam+run-1)])))-ZLEMA(res.ma,n=3)[length(res.ma)]

res.end[run]<-pre.end[run]-realdat[(sam+run+1)]

# compare with all model
plot.ts(realdat[(sam+2):(sam+run+1)],type="0",col="brown" main="Estimate the
outsample: Brown=0bservation Data and Dash line=Prediction

Data" ylim=c(50,250),xlim=c(0,run),xlab="Days:Days: 23-06-2010 to 12-12-
2012",ylab="Comparison of Prediction data")

par(new=TRUE)
plot.ts(pre.end[1:run],col="purple",lty=2,type="0",main="Estimate the
outsample: Brown=0bservation Data and Dash line=Prediction
Data",ylim=c(50,250),xlim=c(0,run),xlab="Days:Days: 23-06-2010 to 12-12-
2012",ylab="Comparison of Prediction data")

run=run-+1
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/

sum(abs(res.end))/length(res.end)
#root mean square error
print("RMSE=")
sqrt((1/outsam) *sum(res.end”2))
#MAPE
(100/outsam)*(sum(abs(res.end)/abs(realdat[(sam+2):length(realdat)])))
#MSE
(sum(res.end”2))/(outsam-1)
windows()
HiHHHHHH Dot change.point
inter.cp<-cp.allf[length(cp.all)]]
en<-length(inter.cp)/2
a<-inter.cp[1:en]
b<-inter.cp[(en+1):length(inter.cp)]
mab<-rbind(a,b)
mab
i=1
while(i<=en){

plot(c(ali]:b[i]),realdat[a[i] :b[i]],type="1",col="brown", main="Change
- points", ylim=c(50,250),xlim=c(0,b[length(b)]),xlab="Days",ylab="Prices")

par(new=TRUE)

if(i!=en){
plot(c(a[(i+1)]:b[(i+1)]),realdat[a[(i+1)]:b[(i+1)]],Ity=2,type="1",col="green",
main="Change -
points" ylim=c(50,250),xlim=c(0,b[length(b)]),xlab="Days",ylab="Prices")
/
par(new=TRUE)

i=i+2



/

matrix(marma.lag)

##Ht# Running Time

ptm <- proc.time()

for (iin 1:50) mad(stats::runif(500))

proc.time() - ptm

End.
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